forked from churchlab/UniRep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_models.py
385 lines (337 loc) · 15.5 KB
/
custom_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import tensorflow as tf
# Here I will try to implement a class which properly subclasses RNNCell
# but implements a mLSTM cell as above
class mLSTMCell(tf.nn.rnn_cell.RNNCell):
def __init__(self,
num_units,
weight_initializer=tf.orthogonal_initializer(),
bias_initializer=tf.constant_initializer(3),
wn_initializer=tf.ones_initializer(),
wn=True,
scope='mlstm',
var_device='cpu:0',
):
# Really not sure if I should reuse here
super(mLSTMCell, self).__init__()
self._num_units = num_units
self._weight_initializer = weight_initializer
self._bias_initializer = bias_initializer
self._wn_initializer = wn_initializer
self._wn = wn
self._scope = scope
self._var_device = var_device
@property
def state_size(self):
# The state is a tuple of c and h
return (self._num_units, self._num_units)
@property
def output_size(self):
# The output is h
return (self._num_units)
def zero_state(self, batch_size, dtype):
c = tf.zeros([batch_size, self._num_units], dtype=dtype)
h = tf.zeros([batch_size, self._num_units], dtype=dtype)
return (c, h)
def call(self, inputs, state):
# Inputs will be a [batch_size, input_dim] tensor.
# Eg, input_dim for a 10-D embedding is 10
nin = inputs.get_shape()[1].value
# Unpack the state tuple
c_prev, h_prev = state
with tf.variable_scope(self._scope):
wx = tf.get_variable(
"wx", [nin, self._num_units * 4], initializer=self._weight_initializer)
wh = tf.get_variable(
"wh", [self._num_units, self._num_units * 4], initializer=self._weight_initializer)
wmx = tf.get_variable(
"wmx", [nin, self._num_units], initializer=self._weight_initializer)
wmh = tf.get_variable(
"wmh", [self._num_units, self._num_units], initializer=self._weight_initializer)
b = tf.get_variable(
"b", [self._num_units * 4], initializer=self._bias_initializer)
if self._wn:
gx = tf.get_variable(
"gx", [self._num_units * 4], initializer=self._wn_initializer)
gh = tf.get_variable(
"gh", [self._num_units * 4], initializer=self._wn_initializer)
gmx = tf.get_variable(
"gmx", [self._num_units], initializer=self._wn_initializer)
gmh = tf.get_variable(
"gmh", [self._num_units], initializer=self._wn_initializer)
if self._wn:
wx = tf.nn.l2_normalize(wx, dim=0) * gx
wh = tf.nn.l2_normalize(wh, dim=0) * gh
wmx = tf.nn.l2_normalize(wmx, dim=0) * gmx
wmh = tf.nn.l2_normalize(wmh, dim=0) * gmh
m = tf.matmul(inputs, wmx) * tf.matmul(h_prev, wmh)
z = tf.matmul(inputs, wx) + tf.matmul(m, wh) + b
i, f, o, u = tf.split(z, 4, 1)
i = tf.nn.sigmoid(i)
f = tf.nn.sigmoid(f)
o = tf.nn.sigmoid(o)
u = tf.tanh(u)
c = f * c_prev + i * u
h = o * tf.tanh(c)
return h, (c, h)
class mLSTMCellStack(tf.nn.rnn_cell.RNNCell):
def __init__(self,
num_units,
num_layers=1,
dropout=None,
res_connect=True,
weight_initializer=tf.orthogonal_initializer(),
bias_initializer=tf.constant_initializer(3),
wn_initializer=tf.ones_initializer(),
wn=True,
scope='mlstm_stack',
var_device='cpu:0',
):
# Really not sure if I should reuse here
super(mLSTMCellStack, self).__init__()
self._num_units = num_units
self._num_layers = num_layers
self._dropout = dropout
self._res_connect = res_connect
self._weight_initializer = weight_initializer
self._bias_initializer = bias_initializer
self._wn_initializer = wn_initializer
self._wn = wn
self._scope = scope
self._var_device = var_device
layers = [mLSTMCell(
num_units=self._num_units,
weight_initializer=self._weight_initializer,
bias_initializer=self._bias_initializer,
wn_initializer=self._wn_initializer,
wn=self._wn,
scope=self._scope + str(i),
var_device=self._var_device,
) for i in range(self._num_layers)]
if self._dropout:
layers = [
tf.contrib.rnn.DropoutWrapper(
layer, output_keep_prob=1-self._dropout) for layer in layers[:-1]] + layers[-1:]
self._layers = layers
@property
def state_size(self):
# The state is a tuple of c and h
return (
tuple(self._num_units for _ in range(self._num_layers)),
tuple(self._num_units for _ in range(self._num_layers))
)
@property
def output_size(self):
# The output is h
return (self._num_units)
def zero_state(self, batch_size, dtype):
c_stack = tuple(tf.zeros([batch_size, self._num_units], dtype=dtype) for _ in range(self._num_layers))
h_stack = tuple(tf.zeros([batch_size, self._num_units], dtype=dtype) for _ in range(self._num_layers))
return (c_stack, h_stack)
def call(self, inputs, state):
# Inputs will be a [batch_size, input_dim] tensor.
# Eg, input_dim for a 10-D embedding is 10
# Unpack the state tuple
c_prev, h_prev = state
new_outputs = []
new_cs = []
new_hs = []
for i, layer in enumerate(self._layers):
if i == 0:
h, (c,h_state) = layer(inputs, (c_prev[i],h_prev[i]))
else:
h, (c,h_state) = layer(new_outputs[-1], (c_prev[i],h_prev[i]))
new_outputs.append(h)
new_cs.append(c)
new_hs.append(h_state)
if self._res_connect:
# Make sure number of layers does not affect the scale of the output
scale_factor = tf.constant(1 / float(self._num_layers))
final_output = tf.scalar_mul(scale_factor,tf.add_n(new_outputs))
else:
final_output = new_outputs[-1]
return final_output, (tuple(new_cs), tuple(new_hs))
class myLSTMCell(tf.nn.rnn_cell.RNNCell):
def __init__(self,
num_units,
weight_initializer=tf.orthogonal_initializer(),
bias_initializer=tf.constant_initializer(3),
wn_initializer=tf.ones_initializer(),
wn=True,
scope='lstm',
var_device='cpu:0',
):
# Really not sure if I should reuse here
super(myLSTMCell, self).__init__()
self._num_units = num_units
self._weight_initializer = weight_initializer
self._bias_initializer = bias_initializer
self._wn_initializer = wn_initializer
self._wn = wn
self._scope = scope
@property
def state_size(self):
# The state is a tuple of c and h
return (self._num_units, self._num_units)
@property
def output_size(self):
# The output is h
return (self._num_units)
def zero_state(self, batch_size, dtype):
c = tf.zeros([batch_size, self._num_units], dtype=dtype)
h = tf.zeros([batch_size, self._num_units], dtype=dtype)
return (c, h)
def call(self, inputs, state):
# Inputs will be a [batch_size, input_dim] tensor.
# Eg, input_dim for a 10-D embedding is 10
nin = inputs.get_shape()[1].value
# Unpack the state tuple
c_prev, h_prev = state
with tf.variable_scope(self._scope):
# Weights from input to hidden layer
wxg = tf.get_variable(
"wxg", [nin, self._num_units], initializer=self._weight_initializer)
wxi = tf.get_variable(
"wxi", [nin, self._num_units], initializer=self._weight_initializer)
wxf = tf.get_variable(
"wxf", [nin, self._num_units], initializer=self._weight_initializer)
wxo = tf.get_variable(
"wxo", [nin, self._num_units], initializer=self._weight_initializer)
# Weights from hidden (-1) to hidden layer
whg = tf.get_variable(
"whg", [self._num_units, self._num_units], initializer=self._weight_initializer)
whi = tf.get_variable(
"whi", [self._num_units, self._num_units], initializer=self._weight_initializer)
whf = tf.get_variable(
"whf", [self._num_units, self._num_units], initializer=self._weight_initializer)
who = tf.get_variable(
"who", [self._num_units, self._num_units], initializer=self._weight_initializer)
# Biases
bg = tf.get_variable(
"bg", [self._num_units], initializer=tf.constant_initializer(0))
bi = tf.get_variable(
"bi", [self._num_units], initializer=tf.constant_initializer(0))
# Forget bias should be nonzero
bf = tf.get_variable(
"bf", [self._num_units], initializer=self._bias_initializer)
bo = tf.get_variable(
"bo", [self._num_units], initializer=tf.constant_initializer(0))
if self._wn:
gxg = tf.get_variable(
"gxg", [self._num_units], initializer=self._wn_initializer)
gxi = tf.get_variable(
"gxi", [self._num_units], initializer=self._wn_initializer)
gxf = tf.get_variable(
"gxf", [self._num_units], initializer=self._wn_initializer)
gxo = tf.get_variable(
"gxo", [self._num_units], initializer=self._wn_initializer)
ghg = tf.get_variable(
"ghg", [self._num_units], initializer=self._wn_initializer)
ghi = tf.get_variable(
"ghi", [self._num_units], initializer=self._wn_initializer)
ghf = tf.get_variable(
"ghf", [self._num_units], initializer=self._wn_initializer)
gho = tf.get_variable(
"gho", [self._num_units], initializer=self._wn_initializer)
if self._wn:
wxg = tf.nn.l2_normalize(wxg, dim=0) * gxg
wxi = tf.nn.l2_normalize(wxi, dim=0) * gxi
wxf = tf.nn.l2_normalize(wxf, dim=0) * gxf
wxo = tf.nn.l2_normalize(wxo, dim=0) * gxo
whg = tf.nn.l2_normalize(whg, dim=0) * ghg
whi = tf.nn.l2_normalize(whi, dim=0) * ghi
whf = tf.nn.l2_normalize(whf, dim=0) * ghf
who = tf.nn.l2_normalize(who, dim=0) * gho
g = tf.nn.tanh(tf.matmul(inputs, wxg) + tf.matmul(h_prev, whg) + bg)
i = tf.nn.sigmoid(tf.matmul(inputs, wxi) + tf.matmul(h_prev, whi) + bi)
f = tf.nn.sigmoid(tf.matmul(inputs, wxf) + tf.matmul(h_prev, whf) + bf)
o = tf.nn.sigmoid(tf.matmul(inputs, wxo) + tf.matmul(h_prev, who) + bo)
c = f * c_prev + i * g
h = o * tf.nn.tanh(c)
return h, (c, h)
class myGRUCell(tf.nn.rnn_cell.RNNCell):
"""
To keep the signature of the other LSTM classes, this will
return a duplicate tuple of the hidden state and another hidden state
"""
def __init__(self,
num_units,
weight_initializer=tf.orthogonal_initializer(),
bias_initializer=tf.constant_initializer(0),
wn_initializer=tf.ones_initializer(),
wn=True,
scope='gru',
var_device='cpu:0',
):
# Really not sure if I should reuse here
super(myGRUCell, self).__init__()
self._num_units = num_units
self._weight_initializer = weight_initializer
self._bias_initializer = bias_initializer
self._wn_initializer = wn_initializer
self._wn = wn
self._scope = scope
@property
def state_size(self):
# The state is a tuple of h and h (duplicated- see docstring)
return (self._num_units, self._num_units)
@property
def output_size(self):
# The output is h
return (self._num_units)
def zero_state(self, batch_size, dtype):
h = tf.zeros([batch_size, self._num_units], dtype=dtype)
h_dup = tf.zeros([batch_size, self._num_units], dtype=dtype)
return (h, h_dup)
def call(self, inputs, state):
# Inputs will be a [batch_size, input_dim] tensor.
# Eg, input_dim for a 10-D embedding is 10
nin = inputs.get_shape()[1].value
# Unpack the state tuple
h_prev, __ = state
with tf.variable_scope(self._scope):
# Weights from input to hidden layer
wxz = tf.get_variable(
"wxf", [nin, self._num_units], initializer=self._weight_initializer)
wxr = tf.get_variable(
"wxr", [nin, self._num_units], initializer=self._weight_initializer)
wxh = tf.get_variable(
"wxh", [nin, self._num_units], initializer=self._weight_initializer)
# Weights from hidden (-1) to hidden layer
whz = tf.get_variable(
"whg", [self._num_units, self._num_units], initializer=self._weight_initializer)
whr = tf.get_variable(
"whi", [self._num_units, self._num_units], initializer=self._weight_initializer)
whh = tf.get_variable(
"whf", [self._num_units, self._num_units], initializer=self._weight_initializer)
# Biases
bz = tf.get_variable(
"bz", [self._num_units], initializer=tf.constant_initializer(0))
br = tf.get_variable(
"br", [self._num_units], initializer=tf.constant_initializer(0))
bh = tf.get_variable(
"bh", [self._num_units], initializer=self._bias_initializer)
if self._wn:
gxz = tf.get_variable(
"gxz", [self._num_units], initializer=self._wn_initializer)
gxr = tf.get_variable(
"gxr", [self._num_units], initializer=self._wn_initializer)
gxh = tf.get_variable(
"gxh", [self._num_units], initializer=self._wn_initializer)
ghz = tf.get_variable(
"ghz", [self._num_units], initializer=self._wn_initializer)
ghr = tf.get_variable(
"ghr", [self._num_units], initializer=self._wn_initializer)
ghh = tf.get_variable(
"ghh", [self._num_units], initializer=self._wn_initializer)
if self._wn:
wxz = tf.nn.l2_normalize(wxz, dim=0) * gxz
wxr = tf.nn.l2_normalize(wxr, dim=0) * gxr
wxh = tf.nn.l2_normalize(wxh, dim=0) * gxh
whz = tf.nn.l2_normalize(whz, dim=0) * ghz
whr = tf.nn.l2_normalize(whr, dim=0) * ghr
whh = tf.nn.l2_normalize(whh, dim=0) * ghh
z = tf.nn.sigmoid(tf.matmul(inputs, wxz) + tf.matmul(h_prev, whz) + bz)
r = tf.nn.sigmoid(tf.matmul(inputs, wxr) + tf.matmul(h_prev, whr) + br)
g = tf.nn.tanh(tf.matmul(inputs, wxh) + tf.matmul(r * h_prev, whh) + bh)
h = z * h_prev + (1 - z) * g
return h, (h, h)