-
Notifications
You must be signed in to change notification settings - Fork 4
/
test_av.py
199 lines (168 loc) · 7.89 KB
/
test_av.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import argparse
import time
from pathlib import Path
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
from sklearn.metrics import confusion_matrix, accuracy_score
from epic_kitchens import EpicKitchens
from egtea import Egtea
from models_av import MTCN_AV
import pickle
_DATASETS = {'epic': EpicKitchens, 'egtea': Egtea}
_NUM_CLASSES = {'epic-55': [125, 352], 'epic-100': [97, 300], 'egtea': 106}
def eval_video(data, net, device):
data = data.to(device)
# For EGTEA, we feed each of 10 clips of each action in the sequence independently
# to the audio-visual transformer and average their predictions, while for EPIC-KITCHENS
# we feed all 10 clips for each action in the sequence simultaneously to the audio-visual transformer
if args.dataset == 'egtea':
data = data.view(10, -1, data.shape[2])
if args.extract_attn_weights:
rst, attn_weights = net(data, extract_attn_weights=args.extract_attn_weights)
else:
rst = net(data, extract_attn_weights=args.extract_attn_weights)
if args.dataset == 'egtea':
rst = torch.mean(rst, dim=0)
if not isinstance(_NUM_CLASSES[args.dataset], list):
if args.extract_attn_weights:
return rst.cpu().numpy().squeeze(), attn_weights
else:
return rst.cpu().numpy().squeeze()
else:
if args.extract_attn_weights:
return {'verb': rst[0].cpu().numpy().squeeze(),
'noun': rst[1].cpu().numpy().squeeze()},\
attn_weights
else:
return {'verb': rst[0].cpu().numpy().squeeze(),
'noun': rst[1].cpu().numpy().squeeze()}
def evaluate_model():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", 0)
net = MTCN_AV(_NUM_CLASSES[args.dataset],
seq_len=args.seq_len,
num_clips=10 if 'epic' in args.dataset else 1,
visual_input_dim=args.visual_input_dim,
audio_input_dim=args.audio_input_dim if args.dataset.split('-')[0] == 'epic' else None,
d_model=args.d_model,
dim_feedforward=args.dim_feedforward,
nhead=args.nhead,
num_layers=args.num_layers,
dropout=args.dropout,
classification_mode='summary',
audio=not args.dataset == 'egtea')
checkpoint = torch.load(args.checkpoint)
print("model epoch {} best prec@1: {}".format(checkpoint['epoch'], checkpoint['best_prec1']))
net.load_state_dict(checkpoint['state_dict'])
dataset = _DATASETS[args.dataset.split('-')[0]]
test_loader = torch.utils.data.DataLoader(
dataset(args.test_hdf5_path,
args.test_pickle,
visual_feature_dim=args.visual_input_dim,
audio_feature_dim=args.audio_input_dim if args.dataset.split('-')[0] == 'epic' else None,
window_len=args.seq_len,
num_clips=10,
clips_mode='all',),
batch_size=1, shuffle=False,
num_workers=args.workers, pin_memory=True)
net = net.to(device)
with torch.no_grad():
net.eval()
results = []
if args.extract_attn_weights:
attention_weights_dict = {}
total_num = len(test_loader.dataset)
proc_start_time = time.time()
for i, (data, label, narration_id) in enumerate(test_loader):
if args.extract_attn_weights:
rst, attn_weights = eval_video(data, net, device)
else:
rst = eval_video(data, net, device)
if not isinstance(_NUM_CLASSES[args.dataset], list):
label_ = label.item()
else:
label_ = {k: v.item() for k, v in label.items()}
results.append((rst, label_, narration_id))
if args.extract_attn_weights:
attention_weights_dict[narration_id[0]] = attn_weights
cnt_time = time.time() - proc_start_time
print('video {} done, total {}/{}, average {} sec/video'.format(
i, i + 1, total_num, float(cnt_time) / (i + 1)))
if args.extract_attn_weights:
return results, attention_weights_dict
else:
return results
def print_accuracy(scores, labels):
video_pred = [np.argmax(score) for score in scores]
cf = confusion_matrix(labels, video_pred).astype(float)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf)
cls_cnt[cls_hit == 0] = 1 # to avoid divisions by zero
cls_acc = cls_hit / cls_cnt
acc = accuracy_score(labels, video_pred)
print('Accuracy {:.02f}%'.format(acc * 100))
print('Average Class Accuracy {:.02f}%'.format(np.mean(cls_acc) * 100))
def save_scores(results, output):
save_dict = {}
if not isinstance(_NUM_CLASSES[args.dataset], list):
scores = np.array([result[0] for result in results])
labels = np.array([result[1] for result in results])
save_dict['scores'] = scores
save_dict['labels'] = labels
else:
keys = results[0][0].keys()
save_dict = {k + '_output': np.array([result[0][k] for result in results]) for k in keys}
save_dict['narration_id'] = np.array([result[2] for result in results])
with open(output, 'wb') as f:
pickle.dump(save_dict, f)
def main():
parser = argparse.ArgumentParser(description=('Test Audio-Visual Transformer on Sequence ' +
'of actions from untrimmed video'))
parser.add_argument('--test_hdf5_path', type=Path)
parser.add_argument('--test_pickle', type=Path)
parser.add_argument('--dataset', choices=['epic-55', 'epic-100', 'egtea'])
parser.add_argument('--checkpoint', type=Path)
parser.add_argument('--seq_len', type=int, default=5)
parser.add_argument('--visual_input_dim', type=int, default=2304)
parser.add_argument('--audio_input_dim', type=int, default=2304)
parser.add_argument('--d_model', type=int, default=512)
parser.add_argument('--dim_feedforward', type=int, default=2048)
parser.add_argument('--nhead', type=int, default=8)
parser.add_argument('--num_layers', type=int, default=6)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--window_len', type=int, default=60)
parser.add_argument('--extract_attn_weights', action='store_true')
parser.add_argument('--output_dir', type=Path)
parser.add_argument('--split')
parser.add_argument('-j', '--workers', default=40, type=int, metavar='N',
help='number of data loading workers (default: 4)')
global args
args = parser.parse_args()
if args.extract_attn_weights:
results, attention_weights_dict = evaluate_model()
else:
results = evaluate_model()
if ('test' not in args.split and 'epic' in args.dataset) or 'epic' not in args.dataset:
if isinstance(_NUM_CLASSES[args.dataset], list):
keys = results[0][0].keys()
for task in keys:
print('Evaluation of {}'.format(task.upper()))
print_accuracy([result[0][task] for result in results],
[result[1][task] for result in results])
else:
print_accuracy([result[0] for result in results],
[result[1] for result in results])
output_dir = args.output_dir / Path('scores')
if not output_dir.exists():
output_dir.mkdir(parents=True)
save_scores(results, output_dir / Path(args.split+'.pkl'))
if args.extract_attn_weights:
attention_output_dir = args.output_dir / Path('attention')
if not attention_output_dir.exists():
attention_output_dir.mkdir(parents=True)
attention_output_file = attention_output_dir / Path(args.split+'.pkl')
with open(attention_output_file, 'wb') as f:
pickle.dump(attention_weights_dict, f)
if __name__ == '__main__':
main()