diff --git a/index.qmd b/index.qmd index f7e9d5c..09cac88 100644 --- a/index.qmd +++ b/index.qmd @@ -2619,48 +2619,33 @@ coefs_MA_mod <- bind_rows( ManyEcoEvo_viz %>% ```{r inline-text-Zr-data, message=FALSE, echo=FALSE} bt_complete_data <- ManyEcoEvo_viz %>% - filter(exclusion_set == "complete", - estimate_type == "Zr", - model_name == "MA_mod", - dataset == "blue tit", - publishable_subset == "All", - expertise_subset == "All", - collinearity_subset == "All") %>% - select(model) %>% - mutate(plot_data = map(model, - .f = ~ broom::tidy(.x, - conf.int = TRUE, - include_studies = TRUE) %>% - dplyr::mutate(point_shape = - ifelse(stringr::str_detect(term, "overall"), - "diamond", - "circle"), - Parameter = - forcats::fct_reorder(term, - estimate) %>% - forcats::fct_reorder(., - point_shape, - .desc = TRUE)) - ), - meta_analytic_mean = map_dbl(plot_data, - ~ filter(.x, Parameter == "overall") %>% - pull(estimate))) %>% - select(plot_data, meta_analytic_mean) %>% - unnest(cols = c("plot_data")) %>% - mutate(parameter_type = case_when(str_detect(Parameter, "overall") ~ "mean", - TRUE ~ "study")) - -# bt_complete_data <- -# bt_complete_data %>% -# rename(id_col = term) %>% -# group_by(type) %>% -# group_split() %>% -# set_names(., bt_complete_data$type %>% unique) %>% -# map_if(.x = ., names(.) == "study", -# .f = ~ anonymise_teams(.x, TeamIdentifier_lookup)) %>% -# bind_rows() %>% -# rename(term = id_col) - + filter(exclusion_set == "complete", + estimate_type == "Zr", + model_name == "MA_mod", + dataset == "blue tit", + publishable_subset == "All", + expertise_subset == "All", + collinearity_subset == "All") %>% + select(tidy_mod_summary) %>% + mutate(plot_data = map(tidy_mod_summary, + .f = ~ dplyr::mutate(.x, point_shape = + ifelse(stringr::str_detect(term, "overall"), + "diamond", + "circle"), + Parameter = + forcats::fct_reorder(term, + estimate) %>% + forcats::fct_reorder(., + point_shape, + .desc = TRUE)) + ), + meta_analytic_mean = map_dbl(plot_data, + ~ filter(.x, Parameter == "overall") %>% + pull(estimate))) %>% + select(plot_data, meta_analytic_mean) %>% + unnest(cols = c("plot_data")) %>% + mutate(parameter_type = case_when(str_detect(Parameter, "overall") ~ "mean", + TRUE ~ "study")) complete_euc_data <- ManyEcoEvo_viz %>% @@ -2670,21 +2655,19 @@ complete_euc_data <- dataset == "eucalyptus", publishable_subset == "All", expertise_subset == "All") %>% - select(model) %>% - mutate(plot_data = map(model, - .f = ~ broom::tidy(.x, - conf.int = TRUE, - include_studies = TRUE) %>% - dplyr::mutate(point_shape = - ifelse(stringr::str_detect(term, "overall"), - "diamond", - "circle"), - Parameter = - forcats::fct_reorder(term, - estimate) %>% - forcats::fct_reorder(., - point_shape, - .desc = TRUE)) + select(tidy_mod_summary) %>% + mutate(plot_data = map(tidy_mod_summary, + .f = ~ dplyr::mutate(.x, + point_shape = + ifelse(stringr::str_detect(term, "overall"), + "diamond", + "circle"), + Parameter = + forcats::fct_reorder(term, + estimate) %>% + forcats::fct_reorder(., + point_shape, + .desc = TRUE)) ), meta_analytic_mean = map_dbl(plot_data, ~ filter(.x, Parameter == "overall") %>% @@ -2693,27 +2676,18 @@ complete_euc_data <- unnest(cols = c("plot_data")) %>% mutate(parameter_type = case_when(str_detect(Parameter, "overall") ~ "mean", TRUE ~ "study")) -# -# complete_euc_data <- -# complete_euc_data %>% -# rename(id_col = term) %>% -# group_by(type) %>% -# group_split() %>% -# set_names(., complete_euc_data$type %>% unique) %>% -# map_if(.x = ., names(.) == "study", -# .f = ~ anonymise_teams(.x, TeamIdentifier_lookup)) %>% -# bind_rows() %>% -# rename(term = id_col) #find the second smallest - small2 <- function(x) { - u <- unique(x) -sort(u, decreasing = FALSE)[2L]} - +small2 <- function(x) { + u <- unique(x) + sort(u, decreasing = FALSE)[2L] +} + #find the second largest - large2 <- function(x) { - u <- unique(x) -sort(u, decreasing = TRUE)[2L]} +large2 <- function(x) { + u <- unique(x) + sort(u, decreasing = TRUE)[2L] +} ``` Although the majority (`r bt_complete_data %>% filter(estimate < 0, type == "study") %>% nrow()` of `r filter(Table1, dataset == "blue tit", subset_name == "effects") %>% pluck("totalanalyses")`) of the usable $Z_r$ effects from the blue tit dataset found nestling growth decreased with sibling competition, and the meta-analytic mean $\bar{Z_r}$ (Fisher's transformation of the correlation coefficient) was convincingly negative (`r filter(coefs_MA_mod, dataset == "blue tit", !!!filter_vars_main_no_est) %>% round_pluck("estimate")` $\pm$ `r filter(coefs_MA_mod, dataset == "blue tit", !!!filter_vars_main_no_est) %>% mutate(interval = estimate - conf.low) %>% round_pluck("interval")` 95$\%$CI), there was substantial variability in the strength and the direction of this effect.