-
Notifications
You must be signed in to change notification settings - Fork 0
/
Validate.py
197 lines (150 loc) · 6.14 KB
/
Validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import print_function, division, absolute_import
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from data.feeder_skeleton import DataFeeder_Skeleton
import time
import pycuda.driver as cuda
import pycuda.autoinit
import tensorrt as trt
from model.action_dnn_trian import MLP_TRN
print_freq = 5
# engine = context.get_engine()
# assert(engine.get_nb_bindings() == 2)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def inference(inputs, output, batch_size, context, stream, d_input, d_output, bindings):
inputs = inputs.astype(np.float32)
cuda.memcpy_htod_async(d_input, inputs, stream)
# batch_size = 1 in default
context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle)
cuda.memcpy_dtoh_async(output, d_output, stream)
# print(output)
stream.synchronize()
def validate_trt(val_loader, context, batch_size, criterion, is_initialized=False):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
# switch to evaluate mode
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.numpy()
if not is_initialized:
output = np.empty((batch_size, 5), dtype=np.float32)
d_input = cuda.mem_alloc(input.size * input.dtype.itemsize)
d_output = cuda.mem_alloc(output.size * output.dtype.itemsize)
bindings = [int(d_input), int(d_output)]
stream = cuda.Stream()
is_initialized = True
# compute output
inference(input, output, batch_size, context, stream, d_input, d_output, bindings)
# measure elapsed time
batch_time.update(time.time() - end)
output_tensor = torch.from_numpy(output)
input_tensor = torch.from_numpy(input)
loss = criterion(output_tensor, target)
# measure accuracy and record loss
prec1, prec2 = accuracy(output_tensor.data, target, topk=(1, 2))
losses.update(loss.data, input_tensor.size(0))
top1.update(prec1, input_tensor.size(0))
top2.update(prec2, input_tensor.size(0))
if i % print_freq == 0:
line = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@2 {top2.val:.3f} ({top2.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top2=top2))
print(line)
end = time.time()
line = ('Testing Results: Prec@1 {top1.avg:.3f} Prec@2 {top2.avg:.3f} Loss {loss.avg:.5f}'
.format(top1=top1, top2=top2, loss=losses))
print(line)
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input = input.reshape(input.shape[0],-1)
input = input.cuda()
# compute output
output = model(input)
# measure elapsed time
batch_time.update(time.time() - end)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec2 = accuracy(output.data, target, topk=(1, 2))
losses.update(loss.data, input.size(0))
top1.update(prec1, input.size(0))
top2.update(prec2, input.size(0))
if i % print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@2 {top2.val:.3f} ({top2.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top2=top2))
print(output)
end = time.time()
line = ('Testing Results: Prec@1 {top1.avg:.3f} Prec@2 {top2.avg:.3f} Loss {loss.avg:.5f}'
.format(top1=top1, top2=top2, loss=losses))
print(line)
def main():
is_initialized = False
data_path = './dataset/label_action_five.txt'
label_path = './dataset/label_category.txt'
root_path = './dataset/ContinuousFrame/'
num_segments = 1
batch_size = 10
val_loader = DataLoader(
DataFeeder_Skeleton(data_path, label_path, root_path, transform=None, data_type="Single",
num_segment=num_segments),
batch_size=batch_size,
shuffle=True)
criterion = nn.CrossEntropyLoss()
engine_path = './tensorrt/test.trt'
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
with open(engine_path, 'rb') as engine_file, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(engine_file.read())
context = engine.create_execution_context()
validate_trt(val_loader, context, batch_size, criterion, is_initialized)
model_path = './checkpoint/MLP_TRN/100_85.789474.pt'
model = MLP_TRN(num_segments=1, class_nums=5)
model.load_state_dict(torch.load(model_path))
model.cuda()
validate(val_loader, model, criterion)
if __name__ == '__main__':
main()