forked from AllenDowney/ThinkBayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathredline.py
808 lines (580 loc) · 21.4 KB
/
redline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
"""This file contains code used in "Think Bayes",
by Allen B. Downey, available from greenteapress.com
Copyright 2013 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
import thinkbayes
import thinkplot
import numpy
import math
import random
import sys
FORMATS = ['pdf', 'eps', 'png', 'jpg']
"""
Notation guide:
z: time between trains
x: time since the last train
y: time until the next train
zb: distribution of z as seen by a random arrival
"""
# longest hypothetical time between trains, in seconds
UPPER_BOUND = 1200
# observed gaps between trains, in seconds
# collected using code in redline_data.py, run daily 4-6pm
# for 5 days, Monday 6 May 2013 to Friday 10 May 2013
OBSERVED_GAP_TIMES = [
428.0, 705.0, 407.0, 465.0, 433.0, 425.0, 204.0, 506.0, 143.0, 351.0,
450.0, 598.0, 464.0, 749.0, 341.0, 586.0, 754.0, 256.0, 378.0, 435.0,
176.0, 405.0, 360.0, 519.0, 648.0, 374.0, 483.0, 537.0, 578.0, 534.0,
577.0, 619.0, 538.0, 331.0, 186.0, 629.0, 193.0, 360.0, 660.0, 484.0,
512.0, 315.0, 457.0, 404.0, 740.0, 388.0, 357.0, 485.0, 567.0, 160.0,
428.0, 387.0, 901.0, 187.0, 622.0, 616.0, 585.0, 474.0, 442.0, 499.0,
437.0, 620.0, 351.0, 286.0, 373.0, 232.0, 393.0, 745.0, 636.0, 758.0,
]
def BiasPmf(pmf, name='', invert=False):
"""Returns the Pmf with oversampling proportional to value.
If pmf is the distribution of true values, the result is the
distribution that would be seen if values are oversampled in
proportion to their values; for example, if you ask students
how big their classes are, large classes are oversampled in
proportion to their size.
If invert=True, computes in inverse operation; for example,
unbiasing a sample collected from students.
Args:
pmf: Pmf object.
name: string name for the new Pmf.
invert: boolean
Returns:
Pmf object
"""
new_pmf = pmf.Copy(name=name)
for x in pmf.Values():
if invert:
new_pmf.Mult(x, 1.0/x)
else:
new_pmf.Mult(x, x)
new_pmf.Normalize()
return new_pmf
def UnbiasPmf(pmf, name=''):
"""Returns the Pmf with oversampling proportional to 1/value.
Args:
pmf: Pmf object.
name: string name for the new Pmf.
Returns:
Pmf object
"""
return BiasPmf(pmf, name, invert=True)
def MakeUniformPmf(low, high):
"""Make a uniform Pmf.
low: lowest value (inclusive)
high: highest value (inclusive)
"""
pmf = thinkbayes.Pmf()
for x in MakeRange(low=low, high=high):
pmf.Set(x, 1)
pmf.Normalize()
return pmf
def MakeRange(low=10, high=None, skip=10):
"""Makes a range representing possible gap times in seconds.
low: where to start
high: where to end
skip: how many to skip
"""
if high is None:
high = UPPER_BOUND
return range(low, high+skip, skip)
class WaitTimeCalculator(object):
"""Encapsulates the forward inference process.
Given the actual distribution of gap times (z),
computes the distribution of gaps as seen by
a random passenger (zb), which yields the distribution
of wait times (y) and the distribution of elapsed times (x).
"""
def __init__(self, pmf, inverse=False):
"""Constructor.
pmf: Pmf of either z or zb
inverse: boolean, true if pmf is zb, false if pmf is z
"""
if inverse:
self.pmf_zb = pmf
self.pmf_z = UnbiasPmf(pmf, name="z")
else:
self.pmf_z = pmf
self.pmf_zb = BiasPmf(pmf, name="zb")
# distribution of wait time
self.pmf_y = PmfOfWaitTime(self.pmf_zb)
# the distribution of elapsed time is the same as the
# distribution of wait time
self.pmf_x = self.pmf_y
def GenerateSampleWaitTimes(self, n):
"""Generates a random sample of wait times.
n: sample size
Returns: sequence of values
"""
cdf_y = thinkbayes.MakeCdfFromPmf(self.pmf_y)
sample = cdf_y.Sample(n)
return sample
def GenerateSampleGaps(self, n):
"""Generates a random sample of gaps seen by passengers.
n: sample size
Returns: sequence of values
"""
cdf_zb = thinkbayes.MakeCdfFromPmf(self.pmf_zb)
sample = cdf_zb.Sample(n)
return sample
def GenerateSamplePassengers(self, lam, n):
"""Generates a sample wait time and number of arrivals.
lam: arrival rate in passengers per second
n: number of samples
Returns: list of (k1, y, k2) tuples
k1: passengers there on arrival
y: wait time
k2: passengers arrived while waiting
"""
zs = self.GenerateSampleGaps(n)
xs, ys = SplitGaps(zs)
res = []
for x, y in zip(xs, ys):
k1 = numpy.random.poisson(lam * x)
k2 = numpy.random.poisson(lam * y)
res.append((k1, y, k2))
return res
def PlotPmfs(self, root='redline0'):
"""Plots the computed Pmfs.
root: string
"""
pmfs = ScaleDists([self.pmf_z, self.pmf_zb], 1.0/60)
thinkplot.Clf()
thinkplot.PrePlot(2)
thinkplot.Pmfs(pmfs)
thinkplot.Save(root=root,
xlabel='Time (min)',
ylabel='CDF',
formats=FORMATS)
def MakePlot(self, root='redline2'):
"""Plots the computed CDFs.
root: string
"""
print 'Mean z', self.pmf_z.Mean() / 60
print 'Mean zb', self.pmf_zb.Mean() / 60
print 'Mean y', self.pmf_y.Mean() / 60
cdf_z = self.pmf_z.MakeCdf()
cdf_zb = self.pmf_zb.MakeCdf()
cdf_y = self.pmf_y.MakeCdf()
cdfs = ScaleDists([cdf_z, cdf_zb, cdf_y], 1.0/60)
thinkplot.Clf()
thinkplot.PrePlot(3)
thinkplot.Cdfs(cdfs)
thinkplot.Save(root=root,
xlabel='Time (min)',
ylabel='CDF',
formats=FORMATS)
def SplitGaps(zs):
"""Splits zs into xs and ys.
zs: sequence of gaps
Returns: tuple of sequences (xs, ys)
"""
xs = [random.uniform(0, z) for z in zs]
ys = [z-x for z, x in zip(zs, xs)]
return xs, ys
def PmfOfWaitTime(pmf_zb):
"""Distribution of wait time.
pmf_zb: dist of gap time as seen by a random observer
Returns: dist of wait time (also dist of elapsed time)
"""
metapmf = thinkbayes.Pmf()
for gap, prob in pmf_zb.Items():
uniform = MakeUniformPmf(0, gap)
metapmf.Set(uniform, prob)
pmf_y = thinkbayes.MakeMixture(metapmf, name='y')
return pmf_y
def ScaleDists(dists, factor):
"""Scales each of the distributions in a sequence.
dists: sequence of Pmf or Cdf
factor: float scale factor
"""
return [dist.Scale(factor) for dist in dists]
class ElapsedTimeEstimator(object):
"""Uses the number of passengers to estimate time since last train."""
def __init__(self, wtc, lam, num_passengers):
"""Constructor.
pmf_x: expected distribution of elapsed time
lam: arrival rate in passengers per second
num_passengers: # passengers seen on the platform
"""
# prior for elapsed time
self.prior_x = Elapsed(wtc.pmf_x, name='prior x')
# posterior of elapsed time (based on number of passengers)
self.post_x = self.prior_x.Copy(name='posterior x')
self.post_x.Update((lam, num_passengers))
# predictive distribution of wait time
self.pmf_y = PredictWaitTime(wtc.pmf_zb, self.post_x)
def MakePlot(self, root='redline3'):
"""Plot the CDFs.
root: string
"""
# observed gaps
cdf_prior_x = self.prior_x.MakeCdf()
cdf_post_x = self.post_x.MakeCdf()
cdf_y = self.pmf_y.MakeCdf()
cdfs = ScaleDists([cdf_prior_x, cdf_post_x, cdf_y], 1.0/60)
thinkplot.Clf()
thinkplot.PrePlot(3)
thinkplot.Cdfs(cdfs)
thinkplot.Save(root=root,
xlabel='Time (min)',
ylabel='CDF',
formats=FORMATS)
class ArrivalRate(thinkbayes.Suite):
"""Represents the distribution of arrival rates (lambda)."""
def Likelihood(self, data, hypo):
"""Computes the likelihood of the data under the hypothesis.
Evaluates the Poisson PMF for lambda and k.
hypo: arrival rate in passengers per second
data: tuple of elapsed_time and number of passengers
"""
lam = hypo
x, k = data
like = thinkbayes.EvalPoissonPmf(k, lam * x)
return like
class ArrivalRateEstimator(object):
"""Estimates arrival rate based on passengers that arrive while waiting.
"""
def __init__(self, passenger_data):
"""Constructor
passenger_data: sequence of (k1, y, k2) pairs
"""
# range for lambda
low, high = 0, 5
n = 51
hypos = numpy.linspace(low, high, n) / 60
self.prior_lam = ArrivalRate(hypos, name='prior')
self.prior_lam.Remove(0)
self.post_lam = self.prior_lam.Copy(name='posterior')
for _k1, y, k2 in passenger_data:
self.post_lam.Update((y, k2))
print 'Mean posterior lambda', self.post_lam.Mean()
def MakePlot(self, root='redline1'):
"""Plot the prior and posterior CDF of passengers arrival rate.
root: string
"""
thinkplot.Clf()
thinkplot.PrePlot(2)
# convert units to passengers per minute
prior = self.prior_lam.MakeCdf().Scale(60)
post = self.post_lam.MakeCdf().Scale(60)
thinkplot.Cdfs([prior, post])
thinkplot.Save(root=root,
xlabel='Arrival rate (passengers / min)',
ylabel='CDF',
formats=FORMATS)
class Elapsed(thinkbayes.Suite):
"""Represents the distribution of elapsed time (x)."""
def Likelihood(self, data, hypo):
"""Computes the likelihood of the data under the hypothesis.
Evaluates the Poisson PMF for lambda and k.
hypo: elapsed time since the last train
data: tuple of arrival rate and number of passengers
"""
x = hypo
lam, k = data
like = thinkbayes.EvalPoissonPmf(k, lam * x)
return like
def PredictWaitTime(pmf_zb, pmf_x):
"""Computes the distribution of wait times.
Enumerate all pairs of zb from pmf_zb and x from pmf_x,
and accumulate the distribution of y = z - x.
pmf_zb: distribution of gaps seen by random observer
pmf_x: distribution of elapsed time
"""
pmf_y = pmf_zb - pmf_x
pmf_y.name = 'pred y'
RemoveNegatives(pmf_y)
return pmf_y
def RemoveNegatives(pmf):
"""Removes negative values from a PMF.
pmf: Pmf
"""
for val in pmf.Values():
if val < 0:
pmf.Remove(val)
pmf.Normalize()
class Gaps(thinkbayes.Suite):
"""Represents the distribution of gap times,
as updated by an observed waiting time."""
def Likelihood(self, data, hypo):
"""The likelihood of the data under the hypothesis.
If the actual gap time is z, what is the likelihood
of waiting y seconds?
hypo: actual time between trains
data: observed wait time
"""
z = hypo
y = data
if y > z:
return 0
return 1.0 / z
class GapDirichlet(thinkbayes.Dirichlet):
"""Represents the distribution of prevalences for each
gap time."""
def __init__(self, xs):
"""Constructor.
xs: sequence of possible gap times
"""
n = len(xs)
thinkbayes.Dirichlet.__init__(self, n)
self.xs = xs
self.mean_zbs = []
def PmfMeanZb(self):
"""Makes the Pmf of mean zb.
Values stored in mean_zbs.
"""
return thinkbayes.MakePmfFromList(self.mean_zbs)
def Preload(self, data):
"""Adds pseudocounts to the parameters.
data: sequence of pseudocounts
"""
thinkbayes.Dirichlet.Update(self, data)
def Update(self, data):
"""Computes the likelihood of the data.
data: wait time observed by random arrival (y)
Returns: float probability
"""
k, y = data
print k, y
prior = self.PredictivePmf(self.xs)
gaps = Gaps(prior)
gaps.Update(y)
probs = gaps.Probs(self.xs)
self.params += numpy.array(probs)
class GapDirichlet2(GapDirichlet):
"""Represents the distribution of prevalences for each
gap time."""
def Update(self, data):
"""Computes the likelihood of the data.
data: wait time observed by random arrival (y)
Returns: float probability
"""
k, y = data
# get the current best guess for pmf_z
pmf_zb = self.PredictivePmf(self.xs)
# use it to compute prior pmf_x, pmf_y, pmf_z
wtc = WaitTimeCalculator(pmf_zb, inverse=True)
# use the observed passengers to estimate posterior pmf_x
elapsed = ElapsedTimeEstimator(wtc,
lam=0.0333,
num_passengers=k)
# use posterior_x and observed y to estimate observed z
obs_zb = elapsed.post_x + Floor(y)
probs = obs_zb.Probs(self.xs)
mean_zb = obs_zb.Mean()
self.mean_zbs.append(mean_zb)
print k, y, mean_zb
# use observed z to update beliefs about pmf_z
self.params += numpy.array(probs)
class GapTimeEstimator(object):
"""Infers gap times using passenger data."""
def __init__(self, xs, pcounts, passenger_data):
self.xs = xs
self.pcounts = pcounts
self.passenger_data = passenger_data
self.wait_times = [y for _k1, y, _k2 in passenger_data]
self.pmf_y = thinkbayes.MakePmfFromList(self.wait_times, name="y")
dirichlet = GapDirichlet2(self.xs)
dirichlet.params /= 1.0
dirichlet.Preload(self.pcounts)
dirichlet.params /= 20.0
self.prior_zb = dirichlet.PredictivePmf(self.xs, name="prior zb")
for k1, y, _k2 in passenger_data:
dirichlet.Update((k1, y))
self.pmf_mean_zb = dirichlet.PmfMeanZb()
self.post_zb = dirichlet.PredictivePmf(self.xs, name="post zb")
self.post_z = UnbiasPmf(self.post_zb, name="post z")
def PlotPmfs(self):
"""Plot the PMFs."""
print 'Mean y', self.pmf_y.Mean()
print 'Mean z', self.post_z.Mean()
print 'Mean zb', self.post_zb.Mean()
thinkplot.Pmf(self.pmf_y)
thinkplot.Pmf(self.post_z)
thinkplot.Pmf(self.post_zb)
def MakePlot(self):
"""Plot the CDFs."""
thinkplot.Cdf(self.pmf_y.MakeCdf())
thinkplot.Cdf(self.prior_zb.MakeCdf())
thinkplot.Cdf(self.post_zb.MakeCdf())
thinkplot.Cdf(self.pmf_mean_zb.MakeCdf())
thinkplot.Show()
def Floor(x, factor=10):
"""Rounds down to the nearest multiple of factor.
When factor=10, all numbers from 10 to 19 get floored to 10.
"""
return int(x/factor) * factor
def TestGte():
"""Tests the GapTimeEstimator."""
random.seed(17)
xs = [60, 120, 240]
gap_times = [60, 60, 60, 60, 60, 120, 120, 120, 240, 240]
# distribution of gap time (z)
pdf_z = thinkbayes.EstimatedPdf(gap_times)
pmf_z = pdf_z.MakePmf(xs, name="z")
wtc = WaitTimeCalculator(pmf_z, inverse=False)
lam = 0.0333
n = 100
passenger_data = wtc.GenerateSamplePassengers(lam, n)
pcounts = [0, 0, 0]
ite = GapTimeEstimator(xs, pcounts, passenger_data)
thinkplot.Clf()
# thinkplot.Cdf(wtc.pmf_z.MakeCdf(name="actual z"))
thinkplot.Cdf(wtc.pmf_zb.MakeCdf(name="actual zb"))
ite.MakePlot()
class WaitMixtureEstimator(object):
"""Encapsulates the process of estimating wait time with uncertain lam.
"""
def __init__(self, wtc, are, num_passengers=15):
"""Constructor.
wtc: WaitTimeCalculator
are: ArrivalTimeEstimator
num_passengers: number of passengers seen on the platform
"""
self.metapmf = thinkbayes.Pmf()
for lam, prob in sorted(are.post_lam.Items()):
ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
self.metapmf.Set(ete.pmf_y, prob)
self.mixture = thinkbayes.MakeMixture(self.metapmf)
lam = are.post_lam.Mean()
ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
self.point = ete.pmf_y
def MakePlot(self, root='redline4'):
"""Makes a plot showing the mixture."""
thinkplot.Clf()
# plot the MetaPmf
for pmf, prob in sorted(self.metapmf.Items()):
cdf = pmf.MakeCdf().Scale(1.0/60)
width = 2/math.log(-math.log(prob))
thinkplot.Plot(cdf.xs, cdf.ps,
alpha=0.2, linewidth=width, color='blue',
label='')
# plot the mixture and the distribution based on a point estimate
thinkplot.PrePlot(2)
#thinkplot.Cdf(self.point.MakeCdf(name='point').Scale(1.0/60))
thinkplot.Cdf(self.mixture.MakeCdf(name='mix').Scale(1.0/60))
thinkplot.Save(root=root,
xlabel='Wait time (min)',
ylabel='CDF',
formats=FORMATS,
axis=[0,10,0,1])
def GenerateSampleData(gap_times, lam=0.0333, n=10):
"""Generates passenger data based on actual gap times.
gap_times: sequence of float
lam: arrival rate in passengers per second
n: number of simulated observations
"""
xs = MakeRange(low=10)
pdf_z = thinkbayes.EstimatedPdf(gap_times)
pmf_z = pdf_z.MakePmf(xs, name="z")
wtc = WaitTimeCalculator(pmf_z, inverse=False)
passenger_data = wtc.GenerateSamplePassengers(lam, n)
return wtc, passenger_data
def RandomSeed(x):
"""Initialize the random and numpy.random generators.
x: int seed
"""
random.seed(x)
numpy.random.seed(x)
def RunSimpleProcess(gap_times, lam=0.0333, num_passengers=15, plot=True):
"""Runs the basic analysis and generates figures.
gap_times: sequence of float
lam: arrival rate in passengers per second
num_passengers: int number of passengers on the platform
plot: boolean, whether to generate plots
Returns: WaitTimeCalculator, ElapsedTimeEstimator
"""
global UPPER_BOUND
UPPER_BOUND = 1200
cdf_z = thinkbayes.MakeCdfFromList(gap_times).Scale(1.0/60)
print 'CI z', cdf_z.CredibleInterval(90)
xs = MakeRange(low=10)
pdf_z = thinkbayes.EstimatedPdf(gap_times)
pmf_z = pdf_z.MakePmf(xs, name="z")
wtc = WaitTimeCalculator(pmf_z, inverse=False)
if plot:
wtc.PlotPmfs()
wtc.MakePlot()
ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
if plot:
ete.MakePlot()
return wtc, ete
def RunMixProcess(gap_times, lam=0.0333, num_passengers=15, plot=True):
"""Runs the analysis for unknown lambda.
gap_times: sequence of float
lam: arrival rate in passengers per second
num_passengers: int number of passengers on the platform
plot: boolean, whether to generate plots
Returns: WaitMixtureEstimator
"""
global UPPER_BOUND
UPPER_BOUND = 1200
wtc, _ete = RunSimpleProcess(gap_times, lam, num_passengers)
RandomSeed(20)
passenger_data = wtc.GenerateSamplePassengers(lam, n=5)
total_y = 0
total_k2 = 0
for k1, y, k2 in passenger_data:
print k1, y/60, k2
total_y += y/60
total_k2 += k2
print total_k2, total_y
print 'Average arrival rate', total_k2 / total_y
are = ArrivalRateEstimator(passenger_data)
if plot:
are.MakePlot()
wme = WaitMixtureEstimator(wtc, are, num_passengers)
if plot:
wme.MakePlot()
return wme
def RunLoop(gap_times, nums, lam=0.0333):
"""Runs the basic analysis for a range of num_passengers.
gap_times: sequence of float
nums: sequence of values for num_passengers
lam: arrival rate in passengers per second
Returns: WaitMixtureEstimator
"""
global UPPER_BOUND
UPPER_BOUND = 4000
thinkplot.Clf()
RandomSeed(18)
# resample gap_times
n = 220
cdf_z = thinkbayes.MakeCdfFromList(gap_times)
sample_z = cdf_z.Sample(n)
pmf_z = thinkbayes.MakePmfFromList(sample_z)
# compute the biased pmf and add some long delays
cdf_zp = BiasPmf(pmf_z).MakeCdf()
sample_zb = cdf_zp.Sample(n) + [1800, 2400, 3000]
# smooth the distribution of zb
pdf_zb = thinkbayes.EstimatedPdf(sample_zb)
xs = MakeRange(low=60)
pmf_zb = pdf_zb.MakePmf(xs)
# unbias the distribution of zb and make wtc
pmf_z = UnbiasPmf(pmf_zb)
wtc = WaitTimeCalculator(pmf_z)
probs = []
for num_passengers in nums:
ete = ElapsedTimeEstimator(wtc, lam, num_passengers)
# compute the posterior prob of waiting more than 15 minutes
cdf_y = ete.pmf_y.MakeCdf()
prob = 1 - cdf_y.Prob(900)
probs.append(prob)
# thinkplot.Cdf(ete.pmf_y.MakeCdf(name=str(num_passengers)))
thinkplot.Plot(nums, probs)
thinkplot.Save(root='redline5',
xlabel='Num passengers',
ylabel='P(y > 15 min)',
formats=FORMATS,
)
def main(script):
RunLoop(OBSERVED_GAP_TIMES, nums=[0, 5, 10, 15, 20, 25, 30, 35])
RunMixProcess(OBSERVED_GAP_TIMES)
if __name__ == '__main__':
main(*sys.argv)