forked from AllenDowney/ThinkBayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkidney.py
779 lines (579 loc) · 20.5 KB
/
kidney.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
"""This file contains code for use with "Think Bayes",
by Allen B. Downey, available from greenteapress.com
Copyright 2012 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
import math
import numpy
import random
import sys
import correlation
import thinkplot
import matplotlib.pyplot as pyplot
import thinkbayes
INTERVAL = 245/365.0
FORMATS = ['pdf', 'eps']
MINSIZE = 0.2
MAXSIZE = 20
BUCKET_FACTOR = 10
def log2(x, denom=math.log(2)):
"""Computes log base 2."""
return math.log(x) / denom
def SimpleModel():
"""Runs calculations based on a simple model."""
# time between discharge and diagnosis, in days
interval = 3291.0
# doubling time in linear measure is doubling time in volume * 3
dt = 811.0 * 3
# number of doublings since discharge
doublings = interval / dt
# how big was the tumor at time of discharge (diameter in cm)
d1 = 15.5
d0 = d1 / 2.0 ** doublings
print 'interval (days)', interval
print 'interval (years)', interval / 365
print 'dt', dt
print 'doublings', doublings
print 'd1', d1
print 'd0', d0
# assume an initial linear measure of 0.1 cm
d0 = 0.1
d1 = 15.5
# how many doublings would it take to get from d0 to d1
doublings = log2(d1 / d0)
# what linear doubling time does that imply?
dt = interval / doublings
print 'doublings', doublings
print 'dt', dt
# compute the volumetric doubling time and RDT
vdt = dt / 3
rdt = 365 / vdt
print 'vdt', vdt
print 'rdt', rdt
cdf = MakeCdf()
p = cdf.Prob(rdt)
print 'Prob{RDT > 2.4}', 1-p
def MakeCdf():
"""Uses the data from Zhang et al. to construct a CDF."""
n = 53.0
freqs = [0, 2, 31, 42, 48, 51, 52, 53]
ps = [freq/n for freq in freqs]
xs = numpy.arange(-1.5, 6.5, 1.0)
cdf = thinkbayes.Cdf(xs, ps)
return cdf
def PlotCdf(cdf):
"""Plots the actual and fitted distributions.
cdf: CDF object
"""
xs, ps = cdf.xs, cdf.ps
cps = [1-p for p in ps]
# CCDF on logy scale: shows exponential behavior
thinkplot.Clf()
thinkplot.Plot(xs, cps, 'bo-')
thinkplot.Save(root='kidney1',
formats=FORMATS,
xlabel='RDT',
ylabel='CCDF (log scale)',
yscale='log')
# CDF, model and data
thinkplot.Clf()
thinkplot.PrePlot(num=2)
mxs, mys = ModelCdf()
thinkplot.Plot(mxs, mys, label='model', linestyle='dashed')
thinkplot.Plot(xs, ps, 'gs', label='data')
thinkplot.Save(root='kidney2',
formats=FORMATS,
xlabel='RDT (volume doublings per year)',
ylabel='CDF',
title='Distribution of RDT',
axis=[-2, 7, 0, 1],
loc=4)
def QQPlot(cdf, fit):
"""Makes a QQPlot of the values from actual and fitted distributions.
cdf: actual Cdf of RDT
fit: model
"""
xs = [-1.5, 5.5]
thinkplot.Clf()
thinkplot.Plot(xs, xs, 'b-')
xs, ps = cdf.xs, cdf.ps
fs = [fit.Value(p) for p in ps]
thinkplot.Plot(xs, fs, 'gs')
thinkplot.Save(root = 'kidney3',
formats=FORMATS,
xlabel='Actual',
ylabel='Model')
def FitCdf(cdf):
"""Fits a line to the log CCDF and returns the slope.
cdf: Cdf of RDT
"""
xs, ps = cdf.xs, cdf.ps
cps = [1-p for p in ps]
xs = xs[1:-1]
lcps = [math.log(p) for p in cps[1:-1]]
_inter, slope = correlation.LeastSquares(xs, lcps)
return -slope
def CorrelatedGenerator(cdf, rho):
"""Generates a sequence of values from cdf with correlation.
Generates a correlated standard Gaussian series, then transforms to
values from cdf
cdf: distribution to choose from
rho: target coefficient of correlation
"""
def Transform(x):
"""Maps from a Gaussian variate to a variate with the given CDF."""
p = thinkbayes.GaussianCdf(x)
y = cdf.Value(p)
return y
# for the first value, choose from a Gaussian and transform it
x = random.gauss(0, 1)
yield Transform(x)
# for subsequent values, choose from the conditional distribution
# based on the previous value
sigma = math.sqrt(1 - rho**2)
while True:
x = random.gauss(x * rho, sigma)
yield Transform(x)
def UncorrelatedGenerator(cdf, _rho=None):
"""Generates a sequence of values from cdf with no correlation.
Ignores rho, which is accepted as a parameter to provide the
same interface as CorrelatedGenerator
cdf: distribution to choose from
rho: ignored
"""
while True:
x = cdf.Random()
yield x
def RdtGenerator(cdf, rho):
"""Returns an iterator with n values from cdf and the given correlation.
cdf: Cdf object
rho: coefficient of correlation
"""
if rho == 0.0:
return UncorrelatedGenerator(cdf)
else:
return CorrelatedGenerator(cdf, rho)
def GenerateRdt(pc, lam1, lam2):
"""Generate an RDT from a mixture of exponential distributions.
With prob pc, generate a negative value with param lam2;
otherwise generate a positive value with param lam1.
"""
if random.random() < pc:
return -random.expovariate(lam2)
else:
return random.expovariate(lam1)
def GenerateSample(n, pc, lam1, lam2):
"""Generates a sample of RDTs.
n: sample size
pc: probablity of negative growth
lam1: exponential parameter of positive growth
lam2: exponential parameter of negative growth
Returns: list of random variates
"""
xs = [GenerateRdt(pc, lam1, lam2) for _ in xrange(n)]
return xs
def GenerateCdf(n=1000, pc=0.35, lam1=0.79, lam2=5.0):
"""Generates a sample of RDTs and returns its CDF.
n: sample size
pc: probablity of negative growth
lam1: exponential parameter of positive growth
lam2: exponential parameter of negative growth
Returns: Cdf of generated sample
"""
xs = GenerateSample(n, pc, lam1, lam2)
cdf = thinkbayes.MakeCdfFromList(xs)
return cdf
def ModelCdf(pc=0.35, lam1=0.79, lam2=5.0):
"""
pc: probablity of negative growth
lam1: exponential parameter of positive growth
lam2: exponential parameter of negative growth
Returns: list of xs, list of ys
"""
cdf = thinkbayes.EvalExponentialCdf
x1 = numpy.arange(-2, 0, 0.1)
y1 = [pc * (1 - cdf(-x, lam2)) for x in x1]
x2 = numpy.arange(0, 7, 0.1)
y2 = [pc + (1-pc) * cdf(x, lam1) for x in x2]
return list(x1) + list(x2), y1+y2
def BucketToCm(y, factor=BUCKET_FACTOR):
"""Computes the linear dimension for a given bucket.
t: bucket number
factor: multiplicitive factor from one bucket to the next
Returns: linear dimension in cm
"""
return math.exp(y / factor)
def CmToBucket(x, factor=BUCKET_FACTOR):
"""Computes the bucket for a given linear dimension.
x: linear dimension in cm
factor: multiplicitive factor from one bucket to the next
Returns: float bucket number
"""
return round(factor * math.log(x))
def Diameter(volume, factor=3/math.pi/4, exp=1/3.0):
"""Converts a volume to a diameter.
d = 2r = 2 * (3/4/pi V)^1/3
"""
return 2 * (factor * volume) ** exp
def Volume(diameter, factor=4*math.pi/3):
"""Converts a diameter to a volume.
V = 4/3 pi (d/2)^3
"""
return factor * (diameter/2.0)**3
class Cache(object):
"""Records each observation point for each tumor."""
def __init__(self):
"""Initializes the cache.
joint: map from (age, bucket) to frequency
sequences: map from bucket to a list of sequences
initial_rdt: sequence of (V0, rdt) pairs
"""
self.joint = thinkbayes.Joint()
self.sequences = {}
self.initial_rdt = []
def GetBuckets(self):
"""Returns an iterator for the keys in the cache."""
return self.sequences.iterkeys()
def GetSequence(self, bucket):
"""Looks up a bucket in the cache."""
return self.sequences[bucket]
def ConditionalCdf(self, bucket, name=''):
"""Forms the cdf of ages for a given bucket.
bucket: int bucket number
name: string
"""
pmf = self.joint.Conditional(0, 1, bucket, name=name)
cdf = pmf.MakeCdf()
return cdf
def ProbOlder(self, cm, age):
"""Computes the probability of exceeding age, given size.
cm: size in cm
age: age in years
"""
bucket = CmToBucket(cm)
cdf = self.ConditionalCdf(bucket)
p = cdf.Prob(age)
return 1-p
def GetDistAgeSize(self, size_thresh=MAXSIZE):
"""Gets the joint distribution of age and size.
Map from (age, log size in cm) to log freq
Returns: new Pmf object
"""
joint = thinkbayes.Joint()
for val, freq in self.joint.Items():
age, bucket = val
cm = BucketToCm(bucket)
if cm > size_thresh:
continue
log_cm = math.log10(cm)
joint.Set((age, log_cm), math.log(freq) * 10)
return joint
def Add(self, age, seq, rdt):
"""Adds this observation point to the cache.
age: age of the tumor in years
seq: sequence of volumes
rdt: RDT during this interval
"""
final = seq[-1]
cm = Diameter(final)
bucket = CmToBucket(cm)
self.joint.Incr((age, bucket))
self.sequences.setdefault(bucket, []).append(seq)
initial = seq[-2]
self.initial_rdt.append((initial, rdt))
def Print(self):
"""Prints the size (cm) for each bucket, and the number of sequences."""
for bucket in sorted(self.GetBuckets()):
ss = self.GetSequence(bucket)
diameter = BucketToCm(bucket)
print diameter, len(ss)
def Correlation(self):
"""Computes the correlation between log volumes and rdts."""
vs, rdts = zip(*self.initial_rdt)
lvs = [math.log(v) for v in vs]
return correlation.Corr(lvs, rdts)
class Calculator(object):
"""Encapsulates the state of the computation."""
def __init__(self):
"""Initializes the cache."""
self.cache = Cache()
def MakeSequences(self, n, rho, cdf):
"""Returns a list of sequences of volumes.
n: number of sequences to make
rho: serial correlation
cdf: Cdf of rdts
Returns: list of n sequences of volumes
"""
sequences = []
for i in range(n):
rdt_seq = RdtGenerator(cdf, rho)
seq = self.MakeSequence(rdt_seq)
sequences.append(seq)
if i % 100 == 0:
print i
return sequences
def MakeSequence(self, rdt_seq, v0=0.01, interval=INTERVAL,
vmax=Volume(MAXSIZE)):
"""Simulate the growth of a tumor.
rdt_seq: sequence of rdts
v0: initial volume in mL (cm^3)
interval: timestep in years
vmax: volume to stop at
Returns: sequence of volumes
"""
seq = v0,
age = 0
for rdt in rdt_seq:
age += interval
final, seq = self.ExtendSequence(age, seq, rdt, interval)
if final > vmax:
break
return seq
def ExtendSequence(self, age, seq, rdt, interval):
"""Generates a new random value and adds it to the end of seq.
Side-effect: adds sub-sequences to the cache.
age: age of tumor at the end of this interval
seq: sequence of values so far
rdt: reciprocal doubling time in doublings per year
interval: timestep in years
Returns: final volume, extended sequence
"""
initial = seq[-1]
doublings = rdt * interval
final = initial * 2**doublings
new_seq = seq + (final,)
self.cache.Add(age, new_seq, rdt)
return final, new_seq
def PlotBucket(self, bucket, color='blue'):
"""Plots the set of sequences for the given bucket.
bucket: int bucket number
color: string
"""
sequences = self.cache.GetSequence(bucket)
for seq in sequences:
n = len(seq)
age = n * INTERVAL
ts = numpy.linspace(-age, 0, n)
PlotSequence(ts, seq, color)
def PlotBuckets(self):
"""Plots the set of sequences that ended in a given bucket."""
# 2.01, 4.95 cm, 9.97 cm
buckets = [7.0, 16.0, 23.0]
buckets = [23.0]
colors = ['blue', 'green', 'red', 'cyan']
thinkplot.Clf()
for bucket, color in zip(buckets, colors):
self.PlotBucket(bucket, color)
thinkplot.Save(root='kidney5',
formats=FORMATS,
title='History of simulated tumors',
axis=[-40, 1, MINSIZE, 12],
xlabel='years',
ylabel='diameter (cm, log scale)',
yscale='log')
def PlotJointDist(self):
"""Makes a pcolor plot of the age-size joint distribution."""
thinkplot.Clf()
joint = self.cache.GetDistAgeSize()
thinkplot.Contour(joint, contour=False, pcolor=True)
thinkplot.Save(root='kidney8',
formats=FORMATS,
axis=[0, 41, -0.7, 1.31],
yticks=MakeLogTicks([0.2, 0.5, 1, 2, 5, 10, 20]),
xlabel='ages',
ylabel='diameter (cm, log scale)')
def PlotConditionalCdfs(self):
"""Plots the cdf of ages for each bucket."""
buckets = [7.0, 16.0, 23.0, 27.0]
# 2.01, 4.95 cm, 9.97 cm, 14.879 cm
names = ['2 cm', '5 cm', '10 cm', '15 cm']
cdfs = []
for bucket, name in zip(buckets, names):
cdf = self.cache.ConditionalCdf(bucket, name)
cdfs.append(cdf)
thinkplot.Clf()
thinkplot.PrePlot(num=len(cdfs))
thinkplot.Cdfs(cdfs)
thinkplot.Save(root='kidney6',
title='Distribution of age for several diameters',
formats=FORMATS,
xlabel='tumor age (years)',
ylabel='CDF',
loc=4)
def PlotCredibleIntervals(self, xscale='linear'):
"""Plots the confidence interval for each bucket."""
xs = []
ts = []
percentiles = [95, 75, 50, 25, 5]
min_size = 0.3
# loop through the buckets, accumulate
# xs: sequence of sizes in cm
# ts: sequence of percentile tuples
for _, bucket in enumerate(sorted(self.cache.GetBuckets())):
cm = BucketToCm(bucket)
if cm < min_size or cm > 20.0:
continue
xs.append(cm)
cdf = self.cache.ConditionalCdf(bucket)
ps = [cdf.Percentile(p) for p in percentiles]
ts.append(ps)
# dump the results into a table
fp = open('kidney_table.tex', 'w')
PrintTable(fp, xs, ts)
fp.close()
# make the figure
linewidths = [1, 2, 3, 2, 1]
alphas = [0.3, 0.5, 1, 0.5, 0.3]
labels = ['95th', '75th', '50th', '25th', '5th']
# transpose the ts so we have sequences for each percentile rank
thinkplot.Clf()
yys = zip(*ts)
for ys, linewidth, alpha, label in zip(yys, linewidths, alphas, labels):
options = dict(color='blue', linewidth=linewidth,
alpha=alpha, label=label, markersize=2)
# plot the data points
thinkplot.Plot(xs, ys, 'bo', **options)
# plot the fit lines
fxs = [min_size, 20.0]
fys = FitLine(xs, ys, fxs)
thinkplot.Plot(fxs, fys, **options)
# put a label at the end of each line
x, y = fxs[-1], fys[-1]
pyplot.text(x*1.05, y, label, color='blue',
horizontalalignment='left',
verticalalignment='center')
# make the figure
thinkplot.Save(root='kidney7',
formats=FORMATS,
title='Credible interval for age vs diameter',
xlabel='diameter (cm, log scale)',
ylabel='tumor age (years)',
xscale=xscale,
xticks=MakeTicks([0.5, 1, 2, 5, 10, 20]),
axis=[0.25, 35, 0, 45],
legend=False,
)
def PlotSequences(sequences):
"""Plots linear measurement vs time.
sequences: list of sequences of volumes
"""
thinkplot.Clf()
options = dict(color='gray', linewidth=1, linestyle='dashed')
thinkplot.Plot([0, 40], [10, 10], **options)
for seq in sequences:
n = len(seq)
age = n * INTERVAL
ts = numpy.linspace(0, age, n)
PlotSequence(ts, seq)
thinkplot.Save(root='kidney4',
formats=FORMATS,
axis=[0, 40, MINSIZE, 20],
title='Simulations of tumor growth',
xlabel='tumor age (years)',
yticks=MakeTicks([0.2, 0.5, 1, 2, 5, 10, 20]),
ylabel='diameter (cm, log scale)',
yscale='log')
def PlotSequence(ts, seq, color='blue'):
"""Plots a time series of linear measurements.
ts: sequence of times in years
seq: sequence of columes
color: color string
"""
options = dict(color=color, linewidth=1, alpha=0.2)
xs = [Diameter(v) for v in seq]
thinkplot.Plot(ts, xs, **options)
def PrintCI(fp, cm, ps):
"""Writes a line in the LaTeX table.
fp: file pointer
cm: diameter in cm
ts: tuples of percentiles
"""
fp.write('%0.1f' % round(cm, 1))
for p in reversed(ps):
fp.write(' & %0.1f ' % round(p, 1))
fp.write(r'\\' '\n')
def PrintTable(fp, xs, ts):
"""Writes the data in a LaTeX table.
fp: file pointer
xs: diameters in cm
ts: sequence of tuples of percentiles
"""
fp.write(r'\begin{tabular}{|r||r|r|r|r|r|}' '\n')
fp.write(r'\hline' '\n')
fp.write(r'Diameter & \multicolumn{5}{c|}{Percentiles of age} \\' '\n')
fp.write(r'(cm) & 5th & 25th & 50th & 75th & 95th \\' '\n')
fp.write(r'\hline' '\n')
for i, (cm, ps) in enumerate(zip(xs, ts)):
#print cm, ps
if i % 3 == 0:
PrintCI(fp, cm, ps)
fp.write(r'\hline' '\n')
fp.write(r'\end{tabular}' '\n')
def FitLine(xs, ys, fxs):
"""Fits a line to the xs and ys, and returns fitted values for fxs.
Applies a log transform to the xs.
xs: diameter in cm
ys: age in years
fxs: diameter in cm
"""
lxs = [math.log(x) for x in xs]
inter, slope = correlation.LeastSquares(lxs, ys)
# res = correlation.Residuals(lxs, ys, inter, slope)
# r2 = correlation.CoefDetermination(ys, res)
lfxs = [math.log(x) for x in fxs]
fys = [inter + slope * x for x in lfxs]
return fys
def MakeTicks(xs):
"""Makes a pair of sequences for use as pyplot ticks.
xs: sequence of floats
Returns (xs, labels), where labels is a sequence of strings.
"""
labels = [str(x) for x in xs]
return xs, labels
def MakeLogTicks(xs):
"""Makes a pair of sequences for use as pyplot ticks.
xs: sequence of floats
Returns (xs, labels), where labels is a sequence of strings.
"""
lxs = [math.log10(x) for x in xs]
labels = [str(x) for x in xs]
return lxs, labels
def TestCorrelation(cdf):
"""Tests the correlated generator.
Makes sure that the sequence has the right distribution and correlation.
"""
n = 10000
rho = 0.4
rdt_seq = CorrelatedGenerator(cdf, rho)
xs = [rdt_seq.next() for _ in range(n)]
rho2 = correlation.SerialCorr(xs)
print rho, rho2
cdf2 = thinkbayes.MakeCdfFromList(xs)
thinkplot.Cdfs([cdf, cdf2])
thinkplot.Show()
def main(script):
for size in [1, 5, 10]:
bucket = CmToBucket(size)
print 'Size, bucket', size, bucket
SimpleModel()
random.seed(17)
cdf = MakeCdf()
lam1 = FitCdf(cdf)
fit = GenerateCdf(lam1=lam1)
# TestCorrelation(fit)
PlotCdf(cdf)
# QQPlot(cdf, fit)
calc = Calculator()
rho = 0.0
sequences = calc.MakeSequences(100, rho, fit)
PlotSequences(sequences)
calc.PlotBuckets()
_ = calc.MakeSequences(1900, rho, fit)
print 'V0-RDT correlation', calc.cache.Correlation()
print '15.5 Probability age > 8 year', calc.cache.ProbOlder(15.5, 8)
print '6.0 Probability age > 8 year', calc.cache.ProbOlder(6.0, 8)
calc.PlotConditionalCdfs()
calc.PlotCredibleIntervals(xscale='log')
calc.PlotJointDist()
if __name__ == '__main__':
main(*sys.argv)