forked from AllenDowney/ThinkBayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheuro.py
145 lines (103 loc) · 3.56 KB
/
euro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""This file contains code for use with "Think Bayes",
by Allen B. Downey, available from greenteapress.com
Copyright 2012 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
"""This file contains a partial solution to a problem from
MacKay, "Information Theory, Inference, and Learning Algorithms."
Exercise 3.15 (page 50): A statistical statement appeared in
"The Guardian" on Friday January 4, 2002:
When spun on edge 250 times, a Belgian one-euro coin came
up heads 140 times and tails 110. 'It looks very suspicious
to me,' said Barry Blight, a statistics lecturer at the London
School of Economics. 'If the coin were unbiased, the chance of
getting a result as extreme as that would be less than 7%.'
MacKay asks, "But do these data give evidence that the coin is biased
rather than fair?"
"""
import thinkbayes
import thinkplot
class Euro(thinkbayes.Suite):
"""Represents hypotheses about the probability of heads."""
def Likelihood(self, data, hypo):
"""Computes the likelihood of the data under the hypothesis.
hypo: integer value of x, the probability of heads (0-100)
data: string 'H' or 'T'
"""
x = hypo / 100.0
if data == 'H':
return x
else:
return 1-x
class Euro2(thinkbayes.Suite):
"""Represents hypotheses about the probability of heads."""
def Likelihood(self, data, hypo):
"""Computes the likelihood of the data under the hypothesis.
hypo: integer value of x, the probability of heads (0-100)
data: tuple of (number of heads, number of tails)
"""
x = hypo / 100.0
heads, tails = data
like = x**heads * (1-x)**tails
return like
def UniformPrior():
"""Makes a Suite with a uniform prior."""
suite = Euro(xrange(0, 101))
return suite
def TrianglePrior():
"""Makes a Suite with a triangular prior."""
suite = Euro()
for x in range(0, 51):
suite.Set(x, x)
for x in range(51, 101):
suite.Set(x, 100-x)
suite.Normalize()
return suite
def RunUpdate(suite, heads=140, tails=110):
"""Updates the Suite with the given number of heads and tails.
suite: Suite object
heads: int
tails: int
"""
dataset = 'H' * heads + 'T' * tails
for data in dataset:
suite.Update(data)
def Summarize(suite):
"""Prints summary statistics for the suite."""
print suite.Prob(50)
print 'MLE', suite.MaximumLikelihood()
print 'Mean', suite.Mean()
print 'Median', thinkbayes.Percentile(suite, 50)
print '5th %ile', thinkbayes.Percentile(suite, 5)
print '95th %ile', thinkbayes.Percentile(suite, 95)
print 'CI', thinkbayes.CredibleInterval(suite, 90)
def PlotSuites(suites, root):
"""Plots two suites.
suite1, suite2: Suite objects
root: string filename to write
"""
thinkplot.Clf()
thinkplot.PrePlot(len(suites))
thinkplot.Pmfs(suites)
thinkplot.Save(root=root,
xlabel='x',
ylabel='Probability',
formats=['pdf', 'eps'])
def main():
# make the priors
suite1 = UniformPrior()
suite1.name = 'uniform'
suite2 = TrianglePrior()
suite2.name = 'triangle'
# plot the priors
PlotSuites([suite1, suite2], 'euro2')
# update
RunUpdate(suite1)
Summarize(suite1)
RunUpdate(suite2)
Summarize(suite2)
# plot the posteriors
PlotSuites([suite1], 'euro1')
PlotSuites([suite1, suite2], 'euro3')
if __name__ == '__main__':
main()