forked from AllenDowney/ThinkBayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdungeons.py
115 lines (86 loc) · 2.82 KB
/
dungeons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""This file contains code for use with "Think Bayes",
by Allen B. Downey, available from greenteapress.com
Copyright 2012 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
import random
import thinkbayes
import thinkplot
FORMATS = ['pdf', 'eps', 'png']
class Die(thinkbayes.Pmf):
"""Represents the PMF of outcomes for a die."""
def __init__(self, sides, name=''):
"""Initializes the die.
sides: int number of sides
name: string
"""
thinkbayes.Pmf.__init__(self, name=name)
for x in xrange(1, sides+1):
self.Set(x, 1)
self.Normalize()
def PmfMax(pmf1, pmf2):
"""Computes the distribution of the max of values drawn from two Pmfs.
pmf1, pmf2: Pmf objects
returns: new Pmf
"""
res = thinkbayes.Pmf()
for v1, p1 in pmf1.Items():
for v2, p2 in pmf2.Items():
res.Incr(max(v1, v2), p1*p2)
return res
def main():
pmf_dice = thinkbayes.Pmf()
pmf_dice.Set(Die(4), 5)
pmf_dice.Set(Die(6), 4)
pmf_dice.Set(Die(8), 3)
pmf_dice.Set(Die(12), 2)
pmf_dice.Set(Die(20), 1)
pmf_dice.Normalize()
mix = thinkbayes.Pmf()
for die, weight in pmf_dice.Items():
for outcome, prob in die.Items():
mix.Incr(outcome, weight*prob)
mix = thinkbayes.MakeMixture(pmf_dice)
colors = thinkplot.Brewer.Colors()
thinkplot.Hist(mix, width=0.9, color=colors[4])
thinkplot.Save(root='dungeons3',
xlabel='Outcome',
ylabel='Probability',
formats=FORMATS)
random.seed(17)
d6 = Die(6, 'd6')
dice = [d6] * 3
three = thinkbayes.SampleSum(dice, 1000)
three.name = 'sample'
three.Print()
three_exact = d6 + d6 + d6
three_exact.name = 'exact'
three_exact.Print()
thinkplot.PrePlot(num=2)
thinkplot.Pmf(three)
thinkplot.Pmf(three_exact, linestyle='dashed')
thinkplot.Save(root='dungeons1',
xlabel='Sum of three d6',
ylabel='Probability',
axis=[2, 19, 0, 0.15],
formats=FORMATS)
thinkplot.Clf()
thinkplot.PrePlot(num=1)
# compute the distribution of the best attribute the hard way
best_attr2 = PmfMax(three_exact, three_exact)
best_attr4 = PmfMax(best_attr2, best_attr2)
best_attr6 = PmfMax(best_attr4, best_attr2)
# thinkplot.Pmf(best_attr6)
# and the easy way
best_attr_cdf = three_exact.Max(6)
best_attr_cdf.name = ''
best_attr_pmf = thinkbayes.MakePmfFromCdf(best_attr_cdf)
best_attr_pmf.Print()
thinkplot.Pmf(best_attr_pmf)
thinkplot.Save(root='dungeons2',
xlabel='Sum of three d6',
ylabel='Probability',
axis=[2, 19, 0, 0.23],
formats=FORMATS)
if __name__ == '__main__':
main()