-
Notifications
You must be signed in to change notification settings - Fork 0
/
SetModelParam.m
47 lines (33 loc) · 1.93 KB
/
SetModelParam.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
function SetModelParam
%Sets Common parameters for all experimental conditions: Initial state,
%time, noise...
% for use with MasterFile or simulationEulerVTD_12hourMes_v5
global ModelParam;
fprintf(1, '%s called to define params\n',mfilename);
ModelParam.modelName = 'VTD_landscape_model_v6';
ModelParam.t0 = 0; % Start of the experiment (time in hours)
ModelParam.tF = 3*24; % End of the experiment (time in hours)
ModelParam.dt = 0.01; % Time step
% WNT FGF
ModelParam.InitialParameters = [ 0 1 ];
ModelParam.M = (ModelParam.tF-ModelParam.t0)/ModelParam.dt;
ModelParam.nfates = 5;
%% Parameters post-competence (if we decide to do this)
% Run the system without signals for a short period of time
ModelParam.PC = 0; %1 if doing post-competence step, 0 otherwise
ModelParam.MPC = 10; % Number of steps post-competence
ModelParam.dtPC = 0.1; % Time-step post-competence
ModelParam.pPC = ModelParam.InitialParameters; %Parameters post-Competence
ModelParam.pPC(1:2) = [0,0];
%% Parameters for the solver
ModelParam.y0 = [-8 3]'; %Deterministic Initial condition. For example [0,0]
ModelParam.nsimulations = 500; %Number of simulations
ModelParam.DiffusionConstant = 0.2; %Difusion constant for the noise
ModelParam.InitialCondition = repmat(ModelParam.y0,1,ModelParam.nsimulations)+randn(2,ModelParam.nsimulations)*sqrt(ModelParam.DiffusionConstant); %This will be substituted by the solution coming from the LNA
ModelParam.NoiseX = randn(ModelParam.nsimulations,ModelParam.M)*sqrt(2*ModelParam.DiffusionConstant*ModelParam.dt);
ModelParam.NoiseY = randn(ModelParam.nsimulations,ModelParam.M)*sqrt(2*ModelParam.DiffusionConstant*ModelParam.dt);
if ModelParam.PC
ModelParam.NoiseXPC = randn(ModelParam.nsimulations,ModelParam.MPC)*sqrt(2*ModelParam.DiffusionConstant*ModelParam.dt);
ModelParam.NoiseYPC = randn(ModelParam.nsimulations,ModelParam.MPC)*sqrt(2*ModelParam.DiffusionConstant*ModelParam.dt);
end
end