From d0f7bd65b6690c7825141b5a55fd59d1760462b9 Mon Sep 17 00:00:00 2001 From: Daniel Date: Wed, 29 Nov 2023 21:21:33 +0100 Subject: [PATCH] Simple glms no longer supported? (#660) --- DESCRIPTION | 2 +- NEWS.md | 7 +++ R/binned_residuals.R | 27 +++++----- tests/testthat/test-binned_residuals.R | 68 +++++++++++++++++++++++++- 4 files changed, 91 insertions(+), 13 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 98e92908f..ac7741ecd 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: performance Title: Assessment of Regression Models Performance -Version: 0.10.8.5 +Version: 0.10.8.6 Authors@R: c(person(given = "Daniel", family = "Lüdecke", diff --git a/NEWS.md b/NEWS.md index 98805e5e6..5984b7b9d 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,8 +1,15 @@ # performance 0.10.9 +## Changes + * `r2()` for models of class `glmmTMB` without random effects now returns the correct r-squared value for non-mixed models. +## Bug fixes + +* Fixed issue in `binned_residuals()` for models with binary outcome, where + in rare occasions empty bins could occur. + # performance 0.10.8 ## Changes diff --git a/R/binned_residuals.R b/R/binned_residuals.R index 370f33c20..8c6608ebf 100644 --- a/R/binned_residuals.R +++ b/R/binned_residuals.R @@ -143,17 +143,22 @@ binned_residuals <- function(model, n <- length(items) sdev <- stats::sd(y[items], na.rm = TRUE) - conf_int <- switch(ci_type, - gaussian = stats::qnorm(c((1 - ci) / 2, (1 + ci) / 2), mean = ybar, sd = sdev / sqrt(n)), - exact = { - out <- stats::binom.test(sum(y0[items]), n)$conf.int - # center CIs around point estimate - out <- out - (min(out) - ybar) - (diff(out) / 2) - out - }, - boot = .boot_binned_ci(y[items], ci, iterations) - ) - names(conf_int) <- c("CI_low", "CI_high") + # sanity check - do we have any data in our bin? + if (n == 0) { + conf_int <- stats::setNames(c(NA, NA), c("CI_low", "CI_high")) + } else { + conf_int <- switch(ci_type, + gaussian = stats::qnorm(c((1 - ci) / 2, (1 + ci) / 2), mean = ybar, sd = sdev / sqrt(n)), + exact = { + out <- stats::binom.test(sum(y0[items]), n)$conf.int + # center CIs around point estimate + out <- out - (min(out) - ybar) - (diff(out) / 2) + out + }, + boot = .boot_binned_ci(y[items], ci, iterations) + ) + names(conf_int) <- c("CI_low", "CI_high") + } d0 <- data.frame( xbar = xbar, diff --git a/tests/testthat/test-binned_residuals.R b/tests/testthat/test-binned_residuals.R index ae2822d0d..7b966797e 100644 --- a/tests/testthat/test-binned_residuals.R +++ b/tests/testthat/test-binned_residuals.R @@ -164,7 +164,7 @@ test_that("binned_residuals, msg for non-bernoulli", { dat <- data.frame(tot, suc) dat$prop <- suc / tot - dat$x1 <- as.factor(sample(1:5, 100, replace = TRUE)) + dat$x1 <- as.factor(sample.int(5, 100, replace = TRUE)) mod <- glm(prop ~ x1, family = binomial, @@ -175,3 +175,69 @@ test_that("binned_residuals, msg for non-bernoulli", { expect_message(binned_residuals(mod), regex = "Using `ci_type = \"gaussian\"`") expect_silent(binned_residuals(mod, verbose = FALSE)) }) + +test_that("binned_residuals, empty bins", { + eel <- data.frame( + cured_bin = c( + 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, + 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, + 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, + 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, + 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, + 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0 + ), + intervention = c( + "No treatment", + "No treatment", "No treatment", "No treatment", "Intervention", + "No treatment", "Intervention", "Intervention", "No treatment", + "No treatment", "Intervention", "No treatment", "No treatment", + "Intervention", "No treatment", "No treatment", "Intervention", + "Intervention", "Intervention", "Intervention", "No treatment", + "Intervention", "Intervention", "No treatment", "Intervention", + "Intervention", "No treatment", "No treatment", "Intervention", + "Intervention", "No treatment", "No treatment", "Intervention", + "Intervention", "Intervention", "No treatment", "No treatment", + "Intervention", "No treatment", "Intervention", "No treatment", + "Intervention", "Intervention", "Intervention", "No treatment", + "No treatment", "No treatment", "Intervention", "Intervention", + "No treatment", "Intervention", "Intervention", "Intervention", + "No treatment", "No treatment", "Intervention", "Intervention", + "No treatment", "Intervention", "Intervention", "No treatment", + "No treatment", "No treatment", "Intervention", "Intervention", + "No treatment", "No treatment", "No treatment", "No treatment", + "No treatment", "Intervention", "No treatment", "Intervention", + "Intervention", "Intervention", "No treatment", "Intervention", + "Intervention", "No treatment", "Intervention", "No treatment", + "No treatment", "Intervention", "Intervention", "Intervention", + "Intervention", "No treatment", "Intervention", "Intervention", + "No treatment", "Intervention", "No treatment", "Intervention", + "Intervention", "Intervention", "Intervention", "No treatment", + "No treatment", "No treatment", "Intervention", "No treatment", + "No treatment", "Intervention", "No treatment", "No treatment", + "No treatment", "No treatment", "No treatment", "Intervention", + "Intervention", "No treatment", "No treatment", "Intervention" + ), duration = c( + 7L, 7L, 6L, 8L, 7L, 6L, 7L, 7L, 8L, 7L, 7L, 7L, + 5L, 9L, 6L, 7L, 8L, 7L, 7L, 9L, 7L, 9L, 8L, 7L, 6L, 8L, 7L, 6L, + 7L, 6L, 7L, 6L, 5L, 6L, 7L, 7L, 8L, 7L, 5L, 7L, 9L, 10L, 7L, + 8L, 5L, 8L, 4L, 7L, 8L, 6L, 6L, 6L, 7L, 7L, 8L, 7L, 7L, 7L, 7L, + 8L, 7L, 9L, 7L, 8L, 8L, 7L, 7L, 7L, 8L, 7L, 8L, 7L, 8L, 8L, 9L, + 7L, 10L, 5L, 7L, 8L, 9L, 5L, 10L, 8L, 7L, 6L, 5L, 6L, 7L, 7L, + 7L, 7L, 7L, 7L, 8L, 5L, 6L, 7L, 6L, 7L, 7L, 9L, 6L, 6L, 7L, 7L, + 6L, 7L, 8L, 9L, 4L, 6L, 9L + ), + stringsAsFactors = FALSE + ) + m_eel <- glm(cured_bin ~ intervention + duration, data = eel, family = binomial()) + out <- binned_residuals(m_eel) + expect_equal( + out$xbar, + c(0.27808, 0.28009, 0.28167, 0.28326, 0.48269, 0.56996, 0.57188, 0.57456), + tolerance = 1e-4 + ) + expect_equal( + out$CI_low, + c(-0.42552, -0.45162, -0.10819, -0.7339, -0.28086, -0.52599, 0.02795, -0.44023), + tolerance = 1e-4 + ) +})