From 2427ef949cde499963962e11f6663b57aab7d173 Mon Sep 17 00:00:00 2001 From: Daniel Date: Mon, 8 Jan 2024 15:53:10 +0100 Subject: [PATCH] add test, docs --- R/mcdonalds_omega.r | 58 ++++++++++++++++----- man/mcdonalds_omega.Rd | 25 ++++++--- tests/testthat/test-mcdonalds_omega.R | 74 +++++++++++++++++++++++++++ 3 files changed, 135 insertions(+), 22 deletions(-) create mode 100644 tests/testthat/test-mcdonalds_omega.R diff --git a/R/mcdonalds_omega.r b/R/mcdonalds_omega.r index f9b926c1f..9925a0bdd 100644 --- a/R/mcdonalds_omega.r +++ b/R/mcdonalds_omega.r @@ -13,18 +13,26 @@ #' @details The McDonald's Omega value for `x`. A value closer to 1 #' indicates greater internal consistency, where usually following #' rule of thumb is applied to interpret the results: -#' \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.5 is unacceptable, -#' 0.5 < \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.6 is poor, -#' 0.6 < \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.7 is questionable, -#' 0.7 < \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.8 is acceptable, +#' \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.5 is unacceptable, +#' 0.5 < \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.6 is poor, +#' 0.6 < \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.7 is questionable, +#' 0.7 < \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.8 is acceptable, #' and everything > 0.8 is good or excellent. #' -#' @references Bland, J. M., and Altman, D. G. Statistics notes: Cronbach's -#' alpha. BMJ 1997;314:572. 10.1136/bmj.314.7080.572 +#' `mcdonalds_omega()` is a simplified implementation of the `MBESS::ci.reliability()` +#' function. Currently, it only computes the simple McDonald's Omega estimate +#' (not hierarchical, not for categorical data) and should return the same +#' results as the default `MBESS::ci.reliability()` call. +#' +#' @note The code is based on the `MBESS::ci.reliability()` function, which +#' is licensed under the GPL-2|GPL-3 license. Credits go to Sunthud Pornprasertmanit +#' and Ken Kelley. +#' +#' @references McDonald, R.P. (1999). Test theory: A unified treatment. Hillsdale: Erlbaum. #' #' @examples -#' data(mtcars) -#' x <- mtcars[, c("cyl", "gear", "carb", "hp")] +#' data(iris) +#' x <- iris[1:4] #' mcdonalds_omega(x) #' @export mcdonalds_omega <- function(x, ...) { @@ -75,13 +83,35 @@ mcdonalds_omega.data.frame <- function(x, ci = 0.95, verbose = TRUE, ...) { insight::check_if_installed("lavaan") # fit CFA to get reliability estimate - fit <- lavaan::cfa(model, data = .data, missing = "ml", estimator = "mlr", se = "default") - out <- lavaan::parameterEstimates(fit) + fit <- .safe(suppressWarnings(lavaan::cfa(model, data = .data, missing = "ml", estimator = "mlr", se = "default"))) + if (is.null(fit)) { + if (verbose) { + insight::format_warning("Could not compute McDonald's Omega.") + } + return(NULL) + } + out <- suppressWarnings(lavaan::parameterEstimates(fit)) # extract omega and related standard error estimate <- as.vector(out$est[out$label == "relia"]) se <- as.vector(out$se[out$label == "relia"]) + # check if omega is in range + if ((estimate < 0 || estimate > 1)) { + if (!is.null(ci) && !is.na(ci)) { + if (verbose) { + insight::format_warning("McDonald's Omega is not in range [0, 1]. Estimate is not reliable. Furthermore, can't compute confidence intervals.") # nolint + } + ci <- NULL + } else if (verbose) { + if (estimate < 0) { + insight::format_warning("McDonald's Omega is negativ. Estimate is not reliable.") + } else { + insight::format_warning("McDonald's Omega is greater than 1. Estimate is not reliable.") + } + } + } + # if user requested CI, return data frame with omega and CI if (!is.null(ci) && !is.na(ci)) { crit <- stats::qnorm((1 + ci) / 2) @@ -141,7 +171,7 @@ mcdonalds_omega.parameters_pca <- function(x, verbose = TRUE, ...) { # sort and get unique IDs so we only get data from relevant columns unique_factors <- sort(unique(factor_assignment)) - # apply cronbach's alpha for each component, + # apply mcdonalds_omega for each component, # only for variables with max loading omegas <- sapply(unique_factors, function(i) { mcdonalds_omega( @@ -163,10 +193,10 @@ mcdonalds_omega.parameters_pca <- function(x, verbose = TRUE, ...) { print.mcdonalds_omega <- function(x, digits = 3, ...) { # print regular R2 out <- sprintf( - "Omega: %.*f %s", + "McDonald's Omega: %.*f %s", digits, - x$omega, - insight::format_ci(ci_low, ci_high, digits = digits, ci = NULL) + x$Omega, + insight::format_ci(x$CI_low, x$CI_high, digits = digits, ci = NULL) ) cat(out) diff --git a/man/mcdonalds_omega.Rd b/man/mcdonalds_omega.Rd index 7f1cd2f68..ed89425ef 100644 --- a/man/mcdonalds_omega.Rd +++ b/man/mcdonalds_omega.Rd @@ -26,18 +26,27 @@ for tests or item-scales of questionnaires. The McDonald's Omega value for \code{x}. A value closer to 1 indicates greater internal consistency, where usually following rule of thumb is applied to interpret the results: -\ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.5 is unacceptable, -0.5 < \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.6 is poor, -0.6 < \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.7 is questionable, -0.7 < \ifelse{html}{\out{α}}{\eqn{\alpha}{alpha}} < 0.8 is acceptable, +\ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.5 is unacceptable, +0.5 < \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.6 is poor, +0.6 < \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.7 is questionable, +0.7 < \ifelse{html}{\out{ω}}{\eqn{\omega}{omega}} < 0.8 is acceptable, and everything > 0.8 is good or excellent. + +\code{mcdonalds_omega()} is a simplified implementation of the \code{MBESS::ci.reliability()} +function. Currently, it only computes the simple McDonald's Omega estimate +(not hierarchical, not for categorical data) and should return the same +results as the default \code{MBESS::ci.reliability()} call. +} +\note{ +The code is based on the \code{MBESS::ci.reliability()} function, which +is licensed under the GPL-2|GPL-3 license. Credits go to Sunthud Pornprasertmanit +and Ken Kelley. } \examples{ -data(mtcars) -x <- mtcars[, c("cyl", "gear", "carb", "hp")] +data(iris) +x <- iris[1:4] mcdonalds_omega(x) } \references{ -Bland, J. M., and Altman, D. G. Statistics notes: Cronbach's -alpha. BMJ 1997;314:572. 10.1136/bmj.314.7080.572 +McDonald, R.P. (1999). Test theory: A unified treatment. Hillsdale: Erlbaum. } diff --git a/tests/testthat/test-mcdonalds_omega.R b/tests/testthat/test-mcdonalds_omega.R new file mode 100644 index 000000000..1061a8c64 --- /dev/null +++ b/tests/testthat/test-mcdonalds_omega.R @@ -0,0 +1,74 @@ +test_that("mcdonalds_omega, data frame", { + data(mtcars) + x <- mtcars[, c("cyl", "gear", "carb", "hp")] + expect_warning(mcdonalds_omega(x), regex = "is not in range [0, 1]") + expect_warning(mcdonalds_omega(x, ci = NULL), regex = "is greater than 1") + expect_equal(mcdonalds_omega(x, verbose = FALSE), 1.156718, tolerance = 1e-3) + + data(iris) + x <- iris[1:4] + expect_equal( + mcdonalds_omega(x), + data.frame( + Omega = 0.984746012592052, + CI_low = 0.969115091775479, + CI_high = 0.992527090611996 + ), + tolerance = 1e-4, + ignore_attr = TRUE + ) + expect_equal( + mcdonalds_omega(x, ci = NULL), + 0.984746012592052, + tolerance = 1e-4, + ignore_attr = TRUE + ) + expect_equal( + mcdonalds_omega(x, ci = 0.8), + data.frame( + Omega = 0.984746012592052, + CI_low = 0.97577453015612, + CI_high = 0.990427655221259 + ), + tolerance = 1e-4, + ignore_attr = TRUE + ) +}) + +test_that("mcdonalds_omega", { + expect_warning(expect_null(mcdonalds_omega(mtcars[1])), regex = "Too few columns") +}) + + +test_that("mcdonalds_omega, principal_components", { + skip_if_not_installed("parameters", minimum_version = "0.21.3") + pca <- parameters::principal_components(iris[1:4], n = 2) + expect_equal(mcdonalds_omega(pca, verbose = FALSE), c(PC1 = 0.9855684), tolerance = 1e-3) + expect_warning(mcdonalds_omega(pca), regex = "Too few columns") + + pca <- parameters::principal_components(iris[1:4], n = 1) + expect_equal(mcdonalds_omega(pca, verbose = FALSE), c(PC1 = 0.984746), tolerance = 1e-3) + expect_silent(mcdonalds_omega(pca)) +}) + + +test_that("mcdonalds_omega, principal_components", { + skip_if_not_installed("parameters", minimum_version = "0.20.3") + pca <- parameters::principal_components(mtcars, n = 2) + expect_equal(mcdonalds_omega(pca), c(PC1 = 0.91522, PC2 = 0.0086), tolerance = 1e-3) +}) + + +test_that("mcdonalds_omega, matrix", { + m <- as.matrix(iris[1:4]) + expect_equal( + mcdonalds_omega(x), + data.frame( + Omega = 0.984746012592052, + CI_low = 0.969115091775479, + CI_high = 0.992527090611996 + ), + tolerance = 1e-4, + ignore_attr = TRUE + ) +})