From 46938cefecd27cc1bcfbb42f15d9a07bb1bc7e29 Mon Sep 17 00:00:00 2001 From: Indrajeet Patil Date: Mon, 29 Jul 2024 16:58:52 +0200 Subject: [PATCH] Minor clean-up translation vignette setup (#531) --- vignettes/tidyverse_translation.Rmd | 57 +++++++++++++++-------------- 1 file changed, 30 insertions(+), 27 deletions(-) diff --git a/vignettes/tidyverse_translation.Rmd b/vignettes/tidyverse_translation.Rmd index e78006008..ae4b339b3 100644 --- a/vignettes/tidyverse_translation.Rmd +++ b/vignettes/tidyverse_translation.Rmd @@ -9,7 +9,7 @@ vignette: > %\VignetteEngine{knitr::rmarkdown} --- -```{r message=FALSE, warning=FALSE, include=FALSE, eval = TRUE} +```{r setup, message=FALSE, warning=FALSE, include=FALSE, eval = TRUE} library(knitr) options(knitr.kable.NA = "") knitr::opts_chunk$set( @@ -21,25 +21,28 @@ knitr::opts_chunk$set( pkgs <- c( "dplyr", - "datawizard", "tidyr" ) +all_deps_available <- all(vapply(pkgs, requireNamespace, quietly = TRUE, FUN.VALUE = logical(1L))) -# since we explicitely put eval = TRUE for some chunks, we can't rely on -# knitr::opts_chunk$set(eval = FALSE) at the beginning of the script. So we make -# a logical that is FALSE only if deps are not installed (cf easystats/easystats#317) -evaluate_chunk <- TRUE - -if (!all(vapply(pkgs, requireNamespace, quietly = TRUE, FUN.VALUE = logical(1L))) || getRversion() < "4.1.0") { - evaluate_chunk <- FALSE +if (all_deps_available) { + library(datawizard) + library(dplyr) + library(tidyr) } + +# Since we explicitly put `eval = TRUE` for some chunks, we can't rely on +# `knitr::opts_chunk$set(eval = FALSE)` at the beginning of the script. +# Therefore, we introduce a logical that is `FALSE` only if all suggested +# dependencies are not installed (cf easystats/easystats#317) +evaluate_chunk <- all_deps_available && getRversion() >= "4.1.0" ``` This vignette can be referred to by citing the following: Patil et al., (2022). datawizard: An R Package for Easy Data Preparation and Statistical Transformations. *Journal of Open Source Software*, *7*(78), 4684, https://doi.org/10.21105/joss.04684 -```{css, echo=FALSE, eval = evaluate_chunk} +```{css, echo=FALSE, eval = TRUE} .datawizard, .datawizard > .sourceCode { background-color: #e6e6ff; } @@ -97,20 +100,20 @@ efc <- head(efc) Before we look at their *tidyverse* equivalents, we can first have a look at `{datawizard}`'s key functions for data wrangling: -| Function | Operation | -| :---------------- | :------------------------------------------------ | -| `data_filter()` | [to select only certain observations](#filtering) | -| `data_select()` | [to select only a few variables](#selecting) | -| `data_modify()` | [to create variables or modify existing ones](#modifying) | -| `data_arrange()` | [to sort observations](#sorting) | -| `data_extract()` | [to extract a single variable](#extracting) | -| `data_rename()` | [to rename variables](#renaming) | -| `data_relocate()` | [to reorder a data frame](#relocating) | -| `data_to_long()` | [to convert data from wide to long](#reshaping) | -| `data_to_wide()` | [to convert data from long to wide](#reshaping) | -| `data_join()` | [to join two data frames](#joining) | -| `data_unite()` | [to concatenate several columns into a single one](#uniting) | -| `data_separate()` | [to separate a single column into multiple columns](#separating) | +| Function | Operation | +| :---------------- | :--------------------------------------------------------------- | +| `data_filter()` | [to select only certain observations](#filtering) | +| `data_select()` | [to select only a few variables](#selecting) | +| `data_modify()` | [to create variables or modify existing ones](#modifying) | +| `data_arrange()` | [to sort observations](#sorting) | +| `data_extract()` | [to extract a single variable](#extracting) | +| `data_rename()` | [to rename variables](#renaming) | +| `data_relocate()` | [to reorder a data frame](#relocating) | +| `data_to_long()` | [to convert data from wide to long](#reshaping) | +| `data_to_wide()` | [to convert data from long to wide](#reshaping) | +| `data_join()` | [to join two data frames](#joining) | +| `data_unite()` | [to concatenate several columns into a single one](#uniting) | +| `data_separate()` | [to separate a single column into multiple columns](#separating) | Note that there are a few functions in `{datawizard}` that have no strict equivalent in `{dplyr}` or `{tidyr}` (e.g `data_rotate()`), and so we won't discuss them in @@ -124,7 +127,7 @@ Before we look at them individually, let's first have a look at the summary tabl | :---------------- | :------------------------------------------------------------------ | | `data_filter()` | `dplyr::filter()`, `dplyr::slice()` | | `data_select()` | `dplyr::select()` | -| `data_modify()` | `dplyr::mutate()` | +| `data_modify()` | `dplyr::mutate()` | | `data_arrange()` | `dplyr::arrange()` | | `data_extract()` | `dplyr::pull()` | | `data_rename()` | `dplyr::rename()` | @@ -134,8 +137,8 @@ Before we look at them individually, let's first have a look at the summary tabl | `data_join()` | `dplyr::inner_join()`, `dplyr::left_join()`, `dplyr::right_join()`, | | | `dplyr::full_join()`, `dplyr::anti_join()`, `dplyr::semi_join()` | | `data_peek()` | `dplyr::glimpse()` | -| `data_unite()` | `tidyr::unite()` | -| `data_separate()` | `tidyr::separate()` | +| `data_unite()` | `tidyr::unite()` | +| `data_separate()` | `tidyr::separate()` | ## Filtering {#filtering}