forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ke.py
234 lines (209 loc) · 6.5 KB
/
eval_ke.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
Script for evaluating trained model on Keras (validate/test).
"""
import argparse
import time
import logging
import keras
from common.logger_utils import initialize_logging
from keras_.utils import prepare_ke_context, prepare_model, get_data_rec, get_data_generator, backend_agnostic_compile
def parse_args():
"""
Parse python script parameters.
Returns
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(
description="Evaluate a model for image classification (Keras)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--rec-train",
type=str,
default="../imgclsmob_data/imagenet_rec/train.rec",
help="the training data")
parser.add_argument(
"--rec-train-idx",
type=str,
default="../imgclsmob_data/imagenet_rec/train.idx",
help="the index of training data")
parser.add_argument(
"--rec-val",
type=str,
default="../imgclsmob_data/imagenet_rec/val.rec",
help="the validation data")
parser.add_argument(
"--rec-val-idx",
type=str,
default="../imgclsmob_data/imagenet_rec/val.idx",
help="the index of validation data")
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--dtype",
type=str,
default="float32",
help="data type for training")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters if not None")
parser.add_argument(
"--input-size",
type=int,
default=224,
help="size of the input for model")
parser.add_argument(
"--resize-inv-factor",
type=float,
default=0.875,
help="inverted ratio for input image crop")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--log-packages",
type=str,
default="keras, mxnet, tensorflow-gpu",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="keras, keras-mxnet, mxnet, mxnet-cu100",
help="list of pip packages for logging")
args = parser.parse_args()
return args
def test(net,
val_gen,
val_size,
batch_size,
num_gpus,
calc_weight_count=False,
extended_log=False):
"""
Main test routine.
Parameters:
----------
net : Model
Model.
val_gen : generator
Data loader.
val_size : int
Size of validation subset.
batch_size : int
Batch size.
num_gpus : int
Number of used GPUs.
calc_weight_count : bool, default False
Whether to calculate count of weights.
extended_log : bool, default False
Whether to log more precise accuracy values.
"""
keras.backend.set_learning_phase(0)
backend_agnostic_compile(
model=net,
loss="categorical_crossentropy",
optimizer=keras.optimizers.SGD(
lr=0.01,
momentum=0.0,
decay=0.0,
nesterov=False),
metrics=[keras.metrics.categorical_accuracy, keras.metrics.top_k_categorical_accuracy],
num_gpus=num_gpus)
# net.summary()
tic = time.time()
score = net.evaluate_generator(
generator=val_gen,
steps=(val_size // batch_size),
verbose=True)
err_top1_val = 1.0 - score[1]
err_top5_val = 1.0 - score[2]
if calc_weight_count:
weight_count = keras.utils.layer_utils.count_params(net.trainable_weights)
logging.info("Model: {} trainable parameters".format(weight_count))
if extended_log:
logging.info("Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})".format(
top1=err_top1_val, top5=err_top5_val))
else:
logging.info("Test: err-top1={top1:.4f}\terr-top5={top5:.4f}".format(
top1=err_top1_val, top5=err_top5_val))
logging.info("Time cost: {:.4f} sec".format(
time.time() - tic))
def main():
"""
Main body of script.
"""
args = parse_args()
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
batch_size = prepare_ke_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip())
num_classes = net.classes if hasattr(net, "classes") else 1000
input_image_size = net.in_size if hasattr(net, "in_size") else (args.input_size, args.input_size)
train_data, val_data = get_data_rec(
rec_train=args.rec_train,
rec_train_idx=args.rec_train_idx,
rec_val=args.rec_val,
rec_val_idx=args.rec_val_idx,
batch_size=batch_size,
num_workers=args.num_workers,
input_image_size=input_image_size,
resize_inv_factor=args.resize_inv_factor,
only_val=True)
val_gen = get_data_generator(
data_iterator=val_data,
num_classes=num_classes)
val_size = 50000
assert (args.use_pretrained or args.resume.strip())
test(
net=net,
val_gen=val_gen,
val_size=val_size,
batch_size=batch_size,
num_gpus=args.num_gpus,
calc_weight_count=True,
extended_log=True)
if __name__ == "__main__":
main()