forked from alibaba/libgrape-lite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sampler.h
238 lines (207 loc) · 8.79 KB
/
sampler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/** Copyright 2020 Alibaba Group Holding Limited.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef EXAMPLES_GNN_SAMPLER_SAMPLER_H_
#define EXAMPLES_GNN_SAMPLER_SAMPLER_H_
#include <grape/parallel/parallel_engine.h>
#include <grape/utils/concurrent_queue.h>
#include <iomanip>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "flat_hash_map/flat_hash_map.hpp"
#include "fragment_indices.h"
#include "sampler_context.h"
namespace grape {
template <typename FRAG_T>
class Sampler : public ParallelAppBase<FRAG_T, SamplerContext<FRAG_T>>,
public ParallelEngine {
INSTALL_PARALLEL_WORKER(Sampler<FRAG_T>, SamplerContext<FRAG_T>, FRAG_T);
using oid_t = typename fragment_t::oid_t;
using vid_t = typename fragment_t::vid_t;
using vdata_t = typename fragment_t::vdata_t;
using edata_t = typename fragment_t::edata_t;
using vertex_t = grape::Vertex<vid_t>;
using message_t = std::tuple<vid_t, vid_t, uint32_t>;
using rng_ptr_t = std::shared_ptr<xoroshiro128plus64>;
using result_entry_t =
ska::detailv3::sherwood_v3_entry<std::pair<vid_t, std::vector<vid_t>>>;
using thread_local_message_buffer_t =
ThreadLocalMessageBuffer<message_manager_t>;
void PEval(const fragment_t& frag, context_t& ctx,
message_manager_t& messages) {
auto& random_result = ctx.random_result;
auto& cur_hop = ctx.cur_hop;
cur_hop = 1;
#ifdef PROFILING
ctx.time_pval -= GetCurrentTime();
#endif
LOG(INFO) << "Sampler - Thread Num: " << thread_num();
messages.InitChannels(thread_num(), 2 * 1023 * 64, 2 * 1024 * 64);
ctx.rngs.resize(thread_num());
for (size_t idx = 0; idx < thread_num(); ++idx) {
uint64_t s0 = rand() % 1024 + 1; // NOLINT(runtime/threadsafe_fn)
uint64_t s1 = rand() % 1024 + 1; // NOLINT(runtime/threadsafe_fn)
ctx.rngs[idx] = std::make_shared<xoroshiro128plus64>(s0, s1);
}
auto for_caches =
std::make_shared<std::vector<std::vector<message_t>>>(thread_num());
auto begin = random_result.begin().current,
end = random_result.end().current;
ForEach(begin, end,
[this, &ctx, &frag, &messages, &for_caches, cur_hop](
int tid, const result_entry_t& entry) {
if (entry.has_value()) { // skip empty cells
auto root = entry.value.first; // root is represented by gid
RandomSelect(frag, ctx, messages.Channels()[tid], ctx.rngs[tid],
root, root, 0, cur_hop, (*for_caches)[tid]);
}
});
ctx.random_cache = for_caches;
messages.ForceContinue();
#ifdef PROFILING
ctx.time_pval += GetCurrentTime();
LOG(INFO) << "Time PEval: " << ctx.time_pval;
#endif
}
void IncEval(const fragment_t& frag, context_t& ctx,
message_manager_t& messages) {
auto& cur_hop = ctx.cur_hop;
++cur_hop;
auto& random_cache = ctx.random_cache;
#ifdef PROFILING
ctx.time_inceval -= GetCurrentTime();
ctx.time_inceval_get_apply_msg -= GetCurrentTime();
#endif
auto for_caches =
std::make_shared<std::vector<std::vector<message_t>>>(thread_num());
messages.ParallelProcess<message_t>(
thread_num(), [this, &frag, &ctx, &messages, cur_hop, &for_caches](
int tid, message_t& msg) {
vid_t root = std::get<0>(msg);
vid_t gid = std::get<1>(msg);
vid_t pos = std::get<2>(msg);
if (pos < ctx.hop_size[cur_hop - 1]) {
ctx.random_result[root][pos] = gid;
} else {
RandomSelect(frag, ctx, messages.Channels()[tid], ctx.rngs[tid],
gid, root, pos, cur_hop, (*for_caches)[tid]);
}
});
#ifdef PROFILING
ctx.time_inceval_get_apply_msg += GetCurrentTime();
ctx.time_inceval_gen_send_msg -= GetCurrentTime();
#endif
// process random_cache
auto begin = random_cache->begin(), end = random_cache->end();
ForEach(begin, end,
[this, &ctx, &frag, &messages, &for_caches, cur_hop](
int tid, const std::vector<message_t>& msgs) {
for (auto const& msg : msgs) {
vid_t root = std::get<0>(msg);
vid_t u_id = std::get<1>(msg);
vid_t pos = std::get<2>(msg);
RandomSelect(frag, ctx, messages.Channels()[tid], ctx.rngs[tid],
u_id, root, pos, cur_hop, (*for_caches)[tid]);
}
});
if (cur_hop <= ctx.nums_of_hop.size()) {
ctx.random_cache = for_caches;
messages.ForceContinue();
}
#ifdef PROFILING
ctx.time_inceval_gen_send_msg += GetCurrentTime();
ctx.time_inceval += GetCurrentTime();
LOG(INFO) << "Time IncEval: " << ctx.time_inceval;
LOG(INFO) << "Time IncEval GetApply Msg: "
<< ctx.time_inceval_get_apply_msg;
LOG(INFO) << "Time IncEval Gen&Send Msg: " << ctx.time_inceval_gen_send_msg;
#endif
}
private:
void RandomSelect(const fragment_t& frag, context_t& ctx,
thread_local_message_buffer_t& channel,
rng_ptr_t& random_engine, vid_t u_id, vid_t root,
const uint32_t pos, const uint32_t cur_hop,
std::vector<message_t>& random_cache) {
vertex_t n;
auto& nums_of_hop = ctx.nums_of_hop;
uint32_t hop_num = nums_of_hop.size();
uint32_t random_num = (cur_hop <= hop_num) ? nums_of_hop[cur_hop - 1] : 0;
uint32_t num_of_next_hop = (cur_hop < hop_num) ? nums_of_hop[cur_hop] : 0;
auto weight_indices =
dynamic_cast<WeightIndices<oid_t, vid_t, vdata_t, edata_t>*>(
frag.GetFragmentIndices().get());
frag.Gid2Vertex(u_id, n);
if (ctx.random_strategy == RandomStrategy::Random) {
auto& ids = weight_indices->GetOrderedIds(n);
for (uint32_t count = 0; count < random_num; ++count) {
uint64_t index = (*random_engine)() % ids.size();
auto v_id = ids[index];
PushResult(frag, ctx, channel, root, v_id, hop_num, num_of_next_hop,
pos, random_cache, cur_hop, count);
}
} else if (ctx.random_strategy == RandomStrategy::EdgeWeight) {
auto& acc_weights = weight_indices->GetAccWeights(n);
auto& ordered_ids = weight_indices->GetOrderedIds(n);
for (uint32_t count = 0; count < random_num; ++count) {
edata_t linear =
(*random_engine)() * acc_weights.back() /
static_cast<edata_t>(std::numeric_limits<uint64_t>::max());
auto it =
std::lower_bound(acc_weights.begin(), acc_weights.end(), linear);
auto v_id = ordered_ids[std::distance(acc_weights.begin(), it)];
PushResult(frag, ctx, channel, root, v_id, hop_num, num_of_next_hop,
pos, random_cache, cur_hop, count);
}
} else if (ctx.random_strategy == RandomStrategy::TopK) {
auto& ids = weight_indices->GetOrderedIds(n);
int i = ids.size() - 1;
for (uint32_t count = 0; count < random_num; ++count) {
if (i < 0) {
i = ids.size() - 1; // recycle
}
auto v_id = ids[i--];
PushResult(frag, ctx, channel, root, v_id, hop_num, num_of_next_hop,
pos, random_cache, cur_hop, count);
}
}
}
void PushResult(const fragment_t& frag, context_t& ctx,
thread_local_message_buffer_t& channel, const vid_t root,
const vid_t v_gid, const uint32_t hop_num,
const uint32_t num_of_next_hop, const uint32_t pos,
std::vector<message_t>& random_cache, const uint32_t cur_hop,
const uint32_t count) {
auto& result = ctx.random_result;
auto& hop_size = ctx.hop_size;
if (frag.GetFragIdByGid(root) == frag.fid()) {
result[root][count + pos] = v_gid;
} else {
channel.SendToFragment(frag.GetFragIdByGid(root),
std::make_tuple(root, v_gid, pos + count));
}
if (cur_hop < hop_num) {
uint32_t next_pos =
(pos + count - hop_size[cur_hop - 1]) * num_of_next_hop +
hop_size[cur_hop];
auto v_fid = frag.GetFragIdByGid(v_gid);
if (v_fid == frag.fid()) {
random_cache.emplace_back(root, v_gid, next_pos);
} else {
channel.SendToFragment(v_fid, std::make_tuple(root, v_gid, next_pos));
}
}
}
};
} // namespace grape
#endif // EXAMPLES_GNN_SAMPLER_SAMPLER_H_