-
Notifications
You must be signed in to change notification settings - Fork 97
/
learn.py
301 lines (256 loc) · 11.4 KB
/
learn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""
https://github.com/berkeleydeeprlcourse/homework/tree/master/hw3
"""
import torch
from torch.autograd import Variable
import sys
import os
import gym.spaces
import itertools
import numpy as np
import random
from collections import namedtuple
from utils.replay_buffer import *
from utils.schedules import *
from utils.gym_setup import *
from logger import Logger
import time
OptimizerSpec = namedtuple("OptimizerSpec", ["constructor", "kwargs"])
# CUDA variables
USE_CUDA = torch.cuda.is_available()
dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
dlongtype = torch.cuda.LongTensor if torch.cuda.is_available() else torch.LongTensor
# Set the logger
logger = Logger('./logs')
def to_np(x):
return x.data.cpu().numpy()
def dqn_learning(env,
env_id,
q_func,
optimizer_spec,
exploration=LinearSchedule(1000000, 0.1),
stopping_criterion=None,
replay_buffer_size=1000000,
batch_size=32,
gamma=0.99,
learning_starts=50000,
learning_freq=4,
frame_history_len=4,
target_update_freq=10000,
double_dqn=False,
dueling_dqn=False):
"""Run Deep Q-learning algorithm.
You can specify your own convnet using q_func.
All schedules are w.r.t. total number of steps taken in the environment.
Parameters
----------
env: gym.Env
gym environment to train on.
env_id: string
gym environment id for model saving.
q_func: function
Model to use for computing the q function.
optimizer_spec: OptimizerSpec
Specifying the constructor and kwargs, as well as learning rate schedule
for the optimizer
exploration: rl_algs.deepq.utils.schedules.Schedule
schedule for probability of chosing random action.
stopping_criterion: (env, t) -> bool
should return true when it's ok for the RL algorithm to stop.
takes in env and the number of steps executed so far.
replay_buffer_size: int
How many memories to store in the replay buffer.
batch_size: int
How many transitions to sample each time experience is replayed.
gamma: float
Discount Factor
learning_starts: int
After how many environment steps to start replaying experiences
learning_freq: int
How many steps of environment to take between every experience replay
frame_history_len: int
How many past frames to include as input to the model.
target_update_freq: int
How many experience replay rounds (not steps!) to perform between
each update to the target Q network
grad_norm_clipping: float or None
If not None gradients' norms are clipped to this value.
"""
assert type(env.observation_space) == gym.spaces.Box
assert type(env.action_space) == gym.spaces.Discrete
###############
# BUILD MODEL #
###############
if len(env.observation_space.shape) == 1:
# This means we are running on low-dimensional observations (e.g. RAM)
input_shape = env.observation_space.shape
in_channels = input_shape[0]
else:
img_h, img_w, img_c = env.observation_space.shape
input_shape = (img_h, img_w, frame_history_len * img_c)
in_channels = input_shape[2]
num_actions = env.action_space.n
# define Q target and Q
Q = q_func(in_channels, num_actions).type(dtype)
Q_target = q_func(in_channels, num_actions).type(dtype)
# initialize optimizer
optimizer = optimizer_spec.constructor(Q.parameters(), **optimizer_spec.kwargs)
# create replay buffer
replay_buffer = ReplayBuffer(replay_buffer_size, frame_history_len)
######
###############
# RUN ENV #
###############
num_param_updates = 0
mean_episode_reward = -float('nan')
best_mean_episode_reward = -float('inf')
last_obs = env.reset()
LOG_EVERY_N_STEPS = 1000
SAVE_MODEL_EVERY_N_STEPS = 100000
for t in itertools.count():
### 1. Check stopping criterion
if stopping_criterion is not None and stopping_criterion(env, t):
break
### 2. Step the env and store the transition
# store last frame, returned idx used later
last_stored_frame_idx = replay_buffer.store_frame(last_obs)
# get observations to input to Q network (need to append prev frames)
observations = replay_buffer.encode_recent_observation()
# before learning starts, choose actions randomly
if t < learning_starts:
action = np.random.randint(num_actions)
else:
# epsilon greedy exploration
sample = random.random()
threshold = exploration.value(t)
if sample > threshold:
obs = torch.from_numpy(observations).unsqueeze(0).type(dtype) / 255.0
q_value_all_actions = Q(Variable(obs, volatile=True)).cpu()
action = ((q_value_all_actions).data.max(1)[1])[0]
else:
action = torch.IntTensor([[np.random.randint(num_actions)]])[0][0]
obs, reward, done, info = env.step(action)
# clipping the reward, noted in nature paper
reward = np.clip(reward, -1.0, 1.0)
# store effect of action
replay_buffer.store_effect(last_stored_frame_idx, action, reward, done)
# reset env if reached episode boundary
if done:
obs = env.reset()
# update last_obs
last_obs = obs
### 3. Perform experience replay and train the network.
# if the replay buffer contains enough samples...
if (t > learning_starts and
t % learning_freq == 0 and
replay_buffer.can_sample(batch_size)):
# sample transition batch from replay memory
# done_mask = 1 if next state is end of episode
obs_t, act_t, rew_t, obs_tp1, done_mask = replay_buffer.sample(batch_size)
obs_t = Variable(torch.from_numpy(obs_t)).type(dtype) / 255.0
act_t = Variable(torch.from_numpy(act_t)).type(dlongtype)
rew_t = Variable(torch.from_numpy(rew_t)).type(dtype)
obs_tp1 = Variable(torch.from_numpy(obs_tp1)).type(dtype) / 255.0
done_mask = Variable(torch.from_numpy(done_mask)).type(dtype)
# input batches to networks
# get the Q values for current observations (Q(s,a, theta_i))
q_values = Q(obs_t)
q_s_a = q_values.gather(1, act_t.unsqueeze(1))
q_s_a = q_s_a.squeeze()
if (double_dqn):
# ---------------
# double DQN
# ---------------
# get the Q values for best actions in obs_tp1
# based off the current Q network
# max(Q(s', a', theta_i)) wrt a'
q_tp1_values = Q(obs_tp1).detach()
_, a_prime = q_tp1_values.max(1)
# get Q values from frozen network for next state and chosen action
# Q(s',argmax(Q(s',a', theta_i), theta_i_frozen)) (argmax wrt a')
q_target_tp1_values = Q_target(obs_tp1).detach()
q_target_s_a_prime = q_target_tp1_values.gather(1, a_prime.unsqueeze(1))
q_target_s_a_prime = q_target_s_a_prime.squeeze()
# if current state is end of episode, then there is no next Q value
q_target_s_a_prime = (1 - done_mask) * q_target_s_a_prime
error = rew_t + gamma * q_target_s_a_prime - q_s_a
else:
# ---------------
# regular DQN
# ---------------
# get the Q values for best actions in obs_tp1
# based off frozen Q network
# max(Q(s', a', theta_i_frozen)) wrt a'
q_tp1_values = Q_target(obs_tp1).detach()
q_s_a_prime, a_prime = q_tp1_values.max(1)
# if current state is end of episode, then there is no next Q value
q_s_a_prime = (1 - done_mask) * q_s_a_prime
# Compute Bellman error
# r + gamma * Q(s',a', theta_i_frozen) - Q(s, a, theta_i)
error = rew_t + gamma * q_s_a_prime - q_s_a
# clip the error and flip
clipped_error = -1.0 * error.clamp(-1, 1)
# backwards pass
optimizer.zero_grad()
q_s_a.backward(clipped_error.data.unsqueeze(1))
# update
optimizer.step()
num_param_updates += 1
# update target Q network weights with current Q network weights
if num_param_updates % target_update_freq == 0:
Q_target.load_state_dict(Q.state_dict())
# (2) Log values and gradients of the parameters (histogram)
if t % LOG_EVERY_N_STEPS == 0:
for tag, value in Q.named_parameters():
tag = tag.replace('.', '/')
logger.histo_summary(tag, to_np(value), t+1)
logger.histo_summary(tag+'/grad', to_np(value.grad), t+1)
#####
### 4. Log progress
if t % SAVE_MODEL_EVERY_N_STEPS == 0:
if not os.path.exists("models"):
os.makedirs("models")
add_str = ''
if (double_dqn):
add_str = 'double'
if (dueling_dqn):
add_str = 'dueling'
model_save_path = "models/%s_%s_%d_%s.model" %(str(env_id), add_str, t, str(time.ctime()).replace(' ', '_'))
torch.save(Q.state_dict(), model_save_path)
episode_rewards = get_wrapper_by_name(env, "Monitor").get_episode_rewards()
if len(episode_rewards) > 0:
mean_episode_reward = np.mean(episode_rewards[-100:])
best_mean_episode_reward = max(best_mean_episode_reward, mean_episode_reward)
if t % LOG_EVERY_N_STEPS == 0:
print("---------------------------------")
print("Timestep %d" % (t,))
print("learning started? %d" % (t > learning_starts))
print("mean reward (100 episodes) %f" % mean_episode_reward)
print("best mean reward %f" % best_mean_episode_reward)
print("episodes %d" % len(episode_rewards))
print("exploration %f" % exploration.value(t))
print("learning_rate %f" % optimizer_spec.kwargs['lr'])
sys.stdout.flush()
#============ TensorBoard logging ============#
# (1) Log the scalar values
info = {
'learning_started': (t > learning_starts),
'num_episodes': len(episode_rewards),
'exploration': exploration.value(t),
'learning_rate': optimizer_spec.kwargs['lr'],
}
for tag, value in info.items():
logger.scalar_summary(tag, value, t+1)
if len(episode_rewards) > 0:
info = {
'last_episode_rewards': episode_rewards[-1],
}
for tag, value in info.items():
logger.scalar_summary(tag, value, t+1)
if (best_mean_episode_reward != -float('inf')):
info = {
'mean_episode_reward_last_100': mean_episode_reward,
'best_mean_episode_reward': best_mean_episode_reward
}
for tag, value in info.items():
logger.scalar_summary(tag, value, t+1)