forked from huggingface/candle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.rs
156 lines (135 loc) · 4.54 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::{Error as E, Result};
use clap::Parser;
mod model;
use model::{Config, GPTBigCode};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: GPTBigCode,
device: Device,
tokenizer: Tokenizer,
logits_processor: LogitsProcessor,
}
impl TextGeneration {
fn new(
model: GPTBigCode,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp);
Self {
model,
tokenizer,
logits_processor,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
println!("starting the inference loop");
print!("{prompt}");
std::io::stdout().flush()?;
let mut tokens = self
.tokenizer
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
let mut new_tokens = vec![];
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let (context_size, past_len) = if self.model.config().use_cache && index > 0 {
(1, tokens.len().saturating_sub(1))
} else {
(tokens.len(), 0)
};
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, past_len)?;
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
new_tokens.push(next_token);
let token = self
.tokenizer
.decode(vec![next_token], true)
.map_err(E::msg)?;
print!("{token}");
std::io::stdout().flush()?;
}
let dt = start_gen.elapsed();
println!(
"{sample_len} tokens generated ({:.3} token/s)",
sample_len as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, default_value_t = 100)]
sample_len: usize,
#[arg(long, default_value = "bigcode/starcoderbase-1b")]
model_id: String,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
weight_file: Option<String>,
}
fn main() -> Result<()> {
let args = Args::parse();
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = repo.get("tokenizer.json")?;
let filenames = match args.weight_file {
Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
None => ["model.safetensors"]
.iter()
.map(|f| repo.get(f))
.collect::<std::result::Result<Vec<_>, _>>()?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let weights = filenames
.iter()
.map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? }))
.collect::<Result<Vec<_>>>()?;
let weights = weights
.iter()
.map(|f| Ok(f.deserialize()?))
.collect::<Result<Vec<_>>>()?;
let start = std::time::Instant::now();
let device = candle_examples::device(args.cpu)?;
let vb = VarBuilder::from_safetensors(weights, DType::F32, &device);
let config = Config::starcoder_1b();
let model = GPTBigCode::load(vb, config)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(model, tokenizer, args.seed, args.temperature, &device);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}