forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stepwise_param.py
76 lines (67 loc) · 3.43 KB
/
stepwise_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from federatedml.param.base_param import BaseParam
from federatedml.util import consts
class StepwiseParam(BaseParam):
"""
Define stepwise params
Parameters
----------
score_name: {"AIC", "BIC"}, default: 'AIC'
Specify which model selection criterion to be used
mode: {"Hetero", "Homo"}, default: 'Hetero'
Indicate what mode is current task
role: {"Guest", "Host", "Arbiter"}, default: 'Guest'
Indicate what role is current party
direction: {"both", "forward", "backward"}, default: 'both'
Indicate which direction to go for stepwise.
'forward' means forward selection; 'backward' means elimination; 'both' means possible models of both directions are examined at each step.
max_step: int, default: '10'
Specify total number of steps to run before forced stop.
nvmin: int, default: '2'
Specify the min subset size of final model, cannot be lower than 2. When nvmin > 2, the final model size may be smaller than nvmin due to max_step limit.
nvmax: int, default: None
Specify the max subset size of final model, 2 <= nvmin <= nvmax. The final model size may be larger than nvmax due to max_step limit.
need_stepwise: bool, default False
Indicate if this module needed to be run
"""
def __init__(self, score_name="AIC", mode=consts.HETERO, role=consts.GUEST, direction="both",
max_step=10, nvmin=2, nvmax=None, need_stepwise=False):
super(StepwiseParam, self).__init__()
self.score_name = score_name
self.mode = mode
self.role = role
self.direction = direction
self.max_step = max_step
self.nvmin = nvmin
self.nvmax = nvmax
self.need_stepwise = need_stepwise
def check(self):
model_param_descr = "stepwise param's"
self.score_name = self.check_and_change_lower(self.score_name, ["aic", "bic"], model_param_descr)
self.check_valid_value(self.mode, model_param_descr, valid_values=[consts.HOMO, consts.HETERO])
self.check_valid_value(self.role, model_param_descr, valid_values=[consts.HOST, consts.GUEST, consts.ARBITER])
self.direction = self.check_and_change_lower(self.direction, ["forward", "backward", "both"], model_param_descr)
self.check_positive_integer(self.max_step, model_param_descr)
self.check_positive_integer(self.nvmin, model_param_descr)
if self.nvmin < 2:
raise ValueError(model_param_descr + " nvmin must be no less than 2.")
if self.nvmax is not None:
self.check_positive_integer(self.nvmax, model_param_descr)
if self.nvmin > self.nvmax:
raise ValueError(model_param_descr + " nvmax must be greater than nvmin.")
self.check_boolean(self.need_stepwise, model_param_descr)