forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
feldman_verifiable_sum_param.py
53 lines (45 loc) · 2.1 KB
/
feldman_verifiable_sum_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from federatedml.param.base_param import BaseParam
class FeldmanVerifiableSumParam(BaseParam):
"""
Define how to transfer the cols
Parameters
----------
sum_cols : list of column index, default: None
Specify which columns need to be sum. If column index is None, each of columns will be sum.
q_n : int, positive integer less than or equal to 16, default: 6
q_n is the number of significant decimal digit, If the data type is a float,
the maximum significant digit is 16. The sum of integer and significant decimal digits should
be less than or equal to 16.
"""
def __init__(self, sum_cols=None, q_n=6):
self.sum_cols = sum_cols
self.q_n = q_n
def check(self):
self.sum_cols = [] if self.sum_cols is None else self.sum_cols
if isinstance(self.sum_cols, list):
for idx in self.sum_cols:
if not isinstance(idx, int):
raise ValueError(f"type mismatch, column_indexes with element {idx}(type is {type(idx)})")
if not isinstance(self.q_n, int):
raise ValueError(f"Init param's q_n {self.q_n} not supported, should be int type", type is {type(self.q_n)})
if self.q_n < 0:
raise ValueError(f"param's q_n {self.q_n} not supported, should be non-negative int value")
elif self.q_n > 16:
raise ValueError(f"param's q_n {self.q_n} not supported, should be less than or equal to 16")