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The promise

What Serverless Computing Is and Should Become

CACM’21

https://cacm.acm.org/magazines/2021/5/25217
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The evolution that serverless computing
represents, the economic forces

that shape It, why It could fall,

and how It might fulfill its potential.

BY JOHANN SCHLEIER-SMITH, VIKRAM SREEKANTI,
ANURAG KHANDELWAL, JOAO CARREIRA, NEERAJA J. YADWADKAR,
RALUCA ADA POPA, JOSEPH E. GONZALEZ, ION STOICA,

AND DAVID A. PATTERSON

What Serverless Computing
Is and Should Become:

The Next Phase of
Cloud Computing

IN 2010, SOME of us co-authored a Communications
article that helped explain the relatively new
phenomenon of cloud computing.' We said that
cloud computing provided the illusion of infinitely
scalable remote servers without charging a premium
for scale, as renting 1,000 servers for one hour costs
the same as renting one server for 1,000 hours, and
that economies of scale for the cloud provider allowed
it to be surprisingly inexpensive. We listed challenges
to cloud computing, and then predicted that most
would be overcome so the industry would increasingly
shift from computing inside local data centers to “the
cloud,” which has indeed happened. Today two-thirds
of enterprise information technology spending for
infrastructure and software is based in the cloud.”
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We are revisiting cloud computing a
decade later to explain its emerging
second phase, which we believe will
further accelerate the shift to the cloud.
The first phase mainly simplified sys-
tem administration by making it easier
to configure and manage computing
infrastructure, primarily through the
use of virtual servers and networks
carved out from massive multitenant
data centers. This second phase hides
the servers by providing programming
abstractions for application builders
that simplify cloud development, mak-
ing cloud software easier to write. Stat-
ed briefly, the target of the first phase
was system administrators and the sec-
ond is programmers. This change re-
quires cloud providers to take over
many of the operational responsibili-
ties needed to run applications well.

To emphasize the change of focus
from servers to applications, this new
phase has become known as senverless
computing, although remote servers are
still the invisible bedrock that powers
it. In this article, we call the traditional
first phase serverful computing.

Figure 1 shows an analogy. To at-
tend a remote conference, you either
renta caror hail a taxicab to get from
the airport to your hotel. Car rental is
like serverful computing, where you
must wait in line, sign a contract, re-
serve the car for your whole stay no

key insights

= The cloud originally revolutionized system
administration. This second phase of cloud
i ifles cloud i

progr

programming
object storage also hide the complexity of
servers, and more are on the way.

change the way programmers work as
dramatically as the first phase changed
how operators work.
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The reality

Serverless Computing: One Step Forward, Two Steps Back

Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith, Vikram Sreekanti,

Alexey Tumanov and Chenggang Wu
UC Berkeley
{hellerstein,jmfaleiro,jegonzal,jssmith, vikrams,atumanov,cgwu}@berkeley.edu

ABSTRACT

Serverless computing offers the potential to program the cloud in
an autoscaling, pay-as-you go manner. In this paper we address
critical gaps in first-generation serverless computing, which place
its autoscaling potential at odds with dominant trends in modern
computing: notably data-centric and distributed computing, but
also open source and custom hardware. Put together, these gaps
make current serverless offerings a bad fit for cloud innovation
and particularly bad for data systems innovation. In addition to
pinpointing some of the main shortfalls of current serverless ar-
chitectures, we raise a set of challenges we believe must be met
to unlock the radical potential that the cloud—with its exabytes of
storage and millions of cores—should offer to innovative developers.

offers the attractive notion of a platform in the cloud where devel-
opers simply upload their code, and the platform executes it on
their behalf as needed at any scale. Developers need not concern
themselves with provisioning or operating servers, and they pay
only for the compute resources used when their code is invoked.

The notion of serverless computing is vague enough to allow
optimists to project any number of possible broad interpretations
on what it might mean. Our goal here is not to quibble about the
terminology. Concretely, each of the cloud vendors has already
launched serverless computing infrastructure and is spending a
significant marketing budget promoting it. In this paper, we assess
the field based on the serverless computing services that vendors
are actually offering today and see why they are a disappointment
when viewed in light of the cloud’s potential.
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The business case

Starling: A Scalable Query Engine on Cloud Function
Services

Matthew Perron
MIT CSAIL
mperron@csail.mit.edu

David DeWitt
MIT CSAIL
david.dewitt@outlook.com

ABSTRACT

Much like on-premises systems, the natural choice for run-
ning database analytics workloads in the cloud is to provision
a cluster of nodes to run a database instance. However, an-

that allow
cally, this s
on a per qt
require dat
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Lambada: Interactive Data Analytics
on Cold Data Using Serverless Cloud Infrastructure

Ingo Miiller Renato Marroquin Gustavo Alonso
ingo.mueller@inf.ethz.ch marenato@inf.ethz.ch alonso@inf.ethz.ch
ETH Zurich ETH Zurich ETH Zurich
ABSTRACT e g TR TEE
Serverless computing has recently attracted a lot of attention s ‘ 3 VMs (DRAM)
from research and industry due to its promise of ultimate elas- f oo frmmmm—- S
ticity and operational simplicity. However, there is no consen- S IO Y - i— e A
sus yet on whether or not the approach is suitable for data pro- § im B I S 1047
cessing. In this paper, we present Lambada, a serverless dis- = \ - S
tributed data processing framework designed to explore how o \\ = T
to perform data analytics on serverless computing. In our anal- v x"“ L 3 A B 18 %2 84
ysis, supported with extensive experiments, we show in which Cont Queries par hour
scenarios serverless makes sense from an economic and per- {a) Job-scoped resources. (b) Always-on resources.

formance perspective. We address several important technical
questions that need to be solved to support data analytics and
present examples from several domains where serverless offers
a cost and performance advantage over existing solutions.

onso. Systems Group. D-INFK. ETH Zurich
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Figure 1: Comparison of cloud architectures.

INTRODUCTION
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Some data

Serverless in the Wild
USENIX ATC’20

https://www.usenix.org/system/files/atc20-shahrad.pdf

Serverless in the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud Provider

Mohammad Shahrad, Rodrigo Fonseca, fﬁigo Goiri, Gohar Chaudhry, Paul Batum,
Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini *

Microsoft Azure and Microsoft Research

Abstract

Function as a Service (FaaS) has been gaining popularity as
a way to deploy computations to serverless backends in the
cloud. This paradigm shifts the complexity of allocating and
provisioning resources to the cloud provider, which has to
provide the illusion of always-available resources (i.e., fast
function invocations without cold starts) at the lowest possible
resource cost. Doing so requires the provider to deeply under-
stand the characteristics of the FaaS workload. Unfortunately,
there has been little to no public information on these charac-
teristics. Thus, in this paper, we first characterize the entire
production FaaS workload of Azure Functions. We show for
example that most functions are invoked very infrequently,
but there is an 8-order-of-magnitude range of invocation fre-
quencies. Using observations from our characterization, we
then propose a practical resource management policy that
significantly reduces the number of function cold starts, while
spending fewer resources than state-of-the-practice policies.

1 Introduction

Function as a Service (FaaS) is a software paradigm that is
becoming inc ingly popular. Multiple cloud providers offer
FaaS [5,17,21,28] as the interface to usage-driven, stateless
(serverless) backend services. Faa$S offers an intuitive, event-
based interface for developing cloud-based applications. In
contrast with the traditional cloud interface, in FaaS, users do
not explicitly provision or configure virtual machines (VMs)
or containers. FaaS users do not pay for resources they do
not use either. Instead, users simply upload the code of their
functions to the cloud: functions get executed when “triggered”
or “invoked” by events, such as the receipt of a message (e.g.,
an HTTP request) or a timer going off. The provider is then
responsible for provisioning the needed resources (e.g., a
in which to each function), providing high
function performance, and billing users just for their actual
function e: ions (e.g., in i of 100 milliseconds).
Obviously, providers seek to achieve high function per-
formance at the lowest possible resource cost. There are
three main aspects to how fast functions can execute and
the resources they First, function execution requi
having the needed code (e.g., user code, language runtime

*Shahrad 1s affiliated with Princeton University, but was at MSR during
this work. Laurcano and Tresness are now with Facebook and D. E. Shaw.

libraries) in memory. A function can be started quickly when
the code is already in memory (warm start) and does not
have to be brought in from persistent storage (cold start).
Second, keeping the resources required by all functions in
memory at all times may be prohibitively expensive for the
provider, especially if function executions are short and in-
frequent. Ideally, the provider wants to give the illusion that
all functions are always warm, while spending resources as
if they were always cold. Third, functions may have widely
varying resource needs and invocation frequencies from mul-
tiple triggers. These characteristics severely complicate any
attempts to predict invocations for reducing resource usage.
For example, the wide range of invocation frequencies sug-
gests that keeping resources in memory may work well for
some functions but not others. With respect to triggers, HTTP
triggers may produce invocations at irregular intervals that
are difficult to predict, whereas timers are regular.

These observations make it clear that providing high func-
tion performance at low cost requires a deep understanding
of the characteristics of the FaaS workload. Unfortunately,
there has been no public information on the characteristics
of production workloads. Prior work [3, 15, 24,25, 27, 44]
has focused on either (1) running benchmark functions to
assess performance and/or reverse-engineer how providers
manage resources; or (2) implementing prototype systems to
run benchmark functions. In contrast, what is needed is a com-
prehensive characterization of the users’ real FaaS workloads
on a production platform from the provider's perspective.
Characterizing production workloads. To fill this gap, in
this paper, we first characterize the entire production FaaS
workload of Azure Functions [28]. We characterize the real
functions and their trigger types, invocation frequencies and
patterns, and resource needs. The characterization produces
many interesting observations. For example, it shows that
most functions are invoked very infrequently, but the most
popular functions are invoked 8 orders of magnitude more
frequently than the least popular ones. It also shows that
functions exhibit a variety of triggers, producing invocation
patterns that are often difficult to predict. In terms of resource
needs, the characterization shows a 4x range of function mem-
ory usage and that 50% of functions run in less than 1 second.

Researchers can use the distributions of the workload char-
acteristics we study to create realistic traces for their work.

Slide courtesy of Ana Klimovic (ETH Zurich)
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FaaS function characteristics

* Short-lived (up to ~15 minutes)

* Example from Azure Functions:
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FaaS function characteristics

» Skewed invocation frequency

* Example from Azure functions

18% >1/min 82% <1/min
99.6% of invocations! 0.4% of invocations
8 ) U L1 4
FRIE
@
Q
_2 0.8
'©
- 0.6 -
o
3]
® 0.4 -
w
(]
2 0.2
@©
g
0.0 KRRET,waee SESENEISIRPID! SESICRRIATISTSTHR, CRMSYREIFURS ore SSRGSt USSRt |
>
®) 0.001% 0.01% 0.1% 1% 10% 100%

Percentage of Most Popular Apps



FaaS function characteristics

* Short-lived (up to ~15 minutes)

* Small resource footprint (e.g., up to 3GB RAM)
» Skewed invocation frequency

* Stateless



Provider side

* Scheduling at this granularity is a potential challenge: many functions
with a short lifetime (15 minutes) that need to be allocated

e Start up time becomes a problem because the functions typically run
for a short time (in milliseconds): keep functions warm, reserve
containers, etc.

* Not compete with other deployment forms (compute time in
serverless much more expensive than in VMs, creates market for
short lived computations but makes no sense for services running
continuously)



The question that needs to be asked

Does it even make sense to run data
analytics on current serverless
infrastructure?



Data Analytics

* Heavy queries

* Not necessarily repetitive (use case dependent)

* Lots of data involved

* Potentially heavy algorithms (e.g., out of core sorting)
 Scatter-gather patterns very common



Speeding data analytics in the cloud

E Compute nodes

Amazon E
Redshift cluster
N

High speed networking Filtered & aggregated results
Sub query

Parallel execution
AQUA layer \L \L J/ \L \L

AQUA nodes

scale-out

AWS-designed architecture

analytics processor

Amazon S3

Durable storage

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Useful things that can be done ...

* Functions can be used to extend an engine

Amazon Redshift announces support for Lambda UDFs
and enables tokenization

Posted On: Oct 26, 2020

Amazon Redshift, a fully-managed cloud data warehouse, now supports Lambda user-defined functions (UDFs) enabling you to use an
AWS Lambda function as a UDF in Amazon Redshift. This functionality enables you to write custom extensions for your SQL query to
achieve tighter integration with other services or third-party products. For example, you can write Lambda UDFs to enable external
tokenization of data by integrating with vendors like Protegrity, or access other services such as Amazon DynamoDB or Amazon
SageMaker in your Redshift query.

Using Amazon Redshift Lambda UDFs, you can register an AWS Lambda function as UDF in Amazon Redshift cluster, and invoke the
UDF from Redshift SQL queries. You can include more powerful operations in the AWS Lambda function such as accessing storage or
network resources, which will allow you to integrate with external services. Lambda UDFs can be written in any of the programming
languages supported by AWS Lambda, such as Java, Go, PowerShell, Node.js, C#, Python, Ruby, or a custom runtime. You can use
Lambda UDFs in any SQL statement such as SELECT, UPDATE, INSERT, or DELETE, and in any clause of the SQL statements where scalar
functions are allowed.

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich



Useful things that can be done

Using Cloud Functions as Accelerator for Elastic Data
Analytics

HAOQIONG BIAN, EPFL, Switzerland
TIANNAN SHA, EPFL, Switzerland
ANASTASIA AILAMAKI, EPFL, Switzerland

Cloud function (CF) services, such as AWS Lambda, have been applied as the new computing infrastructure
in implementing analytical query engines. For bursty and sparse workloads, CF-based query engine is more
elastic than the traditional query engines running in servers, i.e., virtual machines (VMs), and might provide
a higher performance/price ratio. However, it is still controversial whether CF services are good suites for
general analytical workloads, in respect of the limitations of CFs in storage, network, and lifetime, as well as
the much higher resource unit prices than VMs.

In this paper, we first present micro-benchmark evaluations of the features of CF and VM. We reveal that for
query processing, though CF is more elastic than VM, it is less scalable and is more expensive for continuous
workloads. Then, to get the best of both worlds, we propose Pixels-Turbo - a hybrid query engine that processes
queries in a scalable VM cluster by default and invokes CFs to accelerate the processing of unpredictable
workload spikes. In the query engine, we propose several optimizations to improve the performance and
scalability of the CF-based operators and a cost-based optimizer to select the appropriate algorithm and
parallelism for the physical query plan. Evaluations on TPC-H and real-world workload show that our query
engine has a 1-2 orders of magnitude higher performance/price ratio than state-of-the-art serverless query
engines for sustained workloads while not compromising the elasticity for workload spikes.

Gustavo Alonso. Systems Group. D-INFK. ETH Zurich
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Serverless can be done better

e Current offerings are bound to legacy systems

* Many spurious constraints
* Technical constrains => stateless
* Business case constraints => pricing
» Resource constraints => memory allocation
* Cloud provider vs cloud user constraints => what problem are we solving?

* From a research perspective, we should not ignore reality, but we
should not let spurious constraints dominate the agenda



Two ideas from our own research

* Redesign the stack => Dandelion
* Enable networking => Boxer (and see presentation later)



The cloud stack today

Virtual

Application Machine

Layer

CPU \Y[
Hardware emory

Layer Network

interface

Storage

Slide courtesy of Ana Klimovic (ETH Zurich)



Current approach: re-use existing system software

Application Run functions in virtual

EVET A A A LA A A machines for secure isolation
_________ o @)
System °
Layer System software % Orchestrate functions with
o000 traditional cluster manager

kubernetes

Hardware a CPU Memory
Layer

Smart

Storage Network
Interface

Slide courtesy of Ana Klimovic (ETH Zurich)



Current approach has several key problems

Application

NI A [ A AJ[AATALALA
_________ . X high latency to boot functions
System X high memory overhead
Layer SIS SRR X cluster manager becomes bottleneck at high load

——————————————————————————————— X limited scheduling optimizations as function
dependencies are not known to the platform

Hardware g CPU Memory X no support for heterogeneous hardware
Layer

Smart

Storage Network
Interface

Slide courtesy of Ana Klimovic (ETH Zurich)



Dandelion: a new FaaS platform

KEY IDEA: treat functions as functions!

Application Function = snippet of code that
Layer computes on and

produces

Hardware Memory

Layer

Smart
Network
Interface

Slide courtesy of Ana Klimovic (ETH Zurich)



Dandelion: a new FaaS platform

KEY IDEA: treat functions as functions!

Application Function = snippet of code that
Layer computes on and

produces

Application = composition (DAG) of
compute functions (untrusted user code)

g CPU Memory .
& 1/0 functions (trusted platform code)

Hardware
Layer

Smart
Storage Network enable interaction with external storage services

Interface

and between user compute functions

Slide courtesy of Ana Klimovic (ETH Zurich)



Dandelion: a new FaaS platform

— —
© § KEY IDEA: treat functions as functions!
- -
I I
Example Function = snippet of code that
Application computes on and
produces

Application = composition (DAG) of
compute functions (untrusted user code)

g CPU Memory :
Hardware & 1/0 functions (trusted platform code)

Layer

Smart
Storage Network enable interaction with external storage services

Interface

and between user compute functions
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KEY IDEA: treat functions as functions!
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Dandelion: a new FaaS platform
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Dandelion: a new FaaS platform

KEY IDEA: treat functions as functions!

HTTP PUT

Example Benefits:
Application

< Securely isolate functions without VMs (reduce
attack surface by eliminating syscalls in user code)

< Optimize function scheduling with dataflow info

Hardware g8 CPU Memory  Offload pure compute and pure 1/0 tasks to

Layer heterogeneous hardware

Smart

Storage Network
Interface

Slide courtesy of Ana Klimovic (ETH Zurich)



Dandelion: a new FaaS platform

KEY IDEA: treat functions as functions!

Application ETH Team:

e NANNNNDD

»
_

Hardware E CPU Memory Tom Kuchler Ana Klimovic
Layer

Smart

Storage Network
Interface
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Dandelion = Truly serverless

* The key element of serverless is that it hides a complex infrastructure,
making it easier to use

e But the way it is done is by treating functions as black boxes

* Declarative Serverless

* Functions declare their needs: |/O, communication, connectivity, resources
needed, etc.

* The serverless platform uses that information to optimize the deployment
while providing a far better support and incurring less overhead in enforcing
important features: isolation, performance, resource efficiency, etc.



Data Analytics on Serverless

Option 1 (redesign the engine)

* Build platforms that can run
gueries on current serverless

Hack around limitations
Accept constraints
Significant development cost
Unstable environment

Option 2 (replace the stack)

e Build a better serverless
platform

e Tailor it to wider use cases

Not supported by vendors
Higher costs
Often not truly serverless



Data Analytics on Serverless

Option 3 (use what is there)
* There are very many data analytic engines in the cloud
* Do we want to redo all that work?

 What if we can just run existing analytic engines of current
serverless?



Boxer: Achieving TCP in Serverless

* Boxer NAT hole-punching service
* For local connection request ,
* Forremote hole punch requesit// Application Process (A) Application Process (B)

,Od ule connect (B) accept ()

e Transparent compati

* Intercepts relevant i
SOCKET, BIND, CONN
ACCEPT, CLOSE

* Transparent to function process :
. Boxer (A Boxer (B
* Boxer not involved after (B)

TCP connection established
(no SEND, RECV, EPOLL etc.)
NAT

boxer-lib | boxer-lib |

)

EN,

Slide courtesy of Michael Wawrzoniak 34



... more than just networking

e Hostnhame resolution,
 File system redirection, ...

 Coordination service
« Distributed barriers,
 Node membership,
 Process id and role assignments, ...

Slide courtesy of Michael Wawrzoniak 35



Per-request Datacenter

B Platform Instantiation / Request Handling
707 B Application Startup (Apache Drill/Zookeeper)
B Request Processing (Query Executution)
B0 === == == e e e e B e e e e e e e
@ 50-
B
A APACHE = 40
c
A4 DRILL g
5 30
@
X
L
20
e [PC-H benchmark
sf10 - 12GBytes, 10
largest relation of almost 60 million tuples.
0_
. 1 3 5 6 7 8 9 12 13 14 16 17 18 20
e Data stored in 83 TRC-H Query

e d-node Apache Drill + Zookeeper
o [Iff-the-self configuration, not optimized
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Data Analytics on Serverless

* Boxer implements an overlay that makes serverless look like a
“regular” VM

* Analytic engines run unmodified and can be used to run any query in
the same way they run on VMs

* It is not perfect:
* The engines are not optimized for serverless (e.g., fast startup)
* There are many things that reduce efficiency (e.g., resource waste)

* But this already gives us analytics on serverless
* Or does it?
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Serverless as the new autonomous DB

 Serverless is here to stay but it will evolve in significant ways

* Currently, not suitable for data analytics
* But still worthwhile to explore the space

* We are exploring two approaches:
* A radical redesign of the serverless stack (from the provider perspective)
* An incremental extension of the serverless stack to facilitate the transition

* Boxer allows to run existing engines on serverless to explore the
space and get important empirical data on what happens when
running analytics on serverless



