-
Notifications
You must be signed in to change notification settings - Fork 1
/
RAdam.py
182 lines (140 loc) · 7.88 KB
/
RAdam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#######################################
# RAdam implementation for TensorFlow #
#######################################
# From https://github.com/taki0112/RAdam-Tensorflow
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.training import optimizer
class RAdamOptimizer(optimizer.Optimizer):
"""
RAdam optimizer : On The Variance Of The Adaptive Learning Rate And Beyond
https://arxiv.org/abs/1908.03265
"""
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
weight_decay=0.,
use_locking=False,
name="RAdam"):
super(RAdamOptimizer, self).__init__(use_locking, name)
self._lr = learning_rate
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
self._weight_decay = weight_decay
self._lr_t = None
self._step_t = None
self._beta1_t = None
self._beta2_t = None
self._epsilon_t = None
self._weight_decay_t = None
def _get_beta_accumulators(self):
with ops.init_scope():
if context.executing_eagerly():
graph = None
else:
graph = ops.get_default_graph()
return (self._get_non_slot_variable("step", graph=graph),
self._get_non_slot_variable("beta1_power", graph=graph),
self._get_non_slot_variable("beta2_power", graph=graph))
def _create_slots(self, var_list):
first_var = min(var_list, key=lambda x: x.name)
self._create_non_slot_variable(initial_value=1.0, name="step", colocate_with=first_var)
self._create_non_slot_variable(initial_value=self._beta1, name="beta1_power", colocate_with=first_var)
self._create_non_slot_variable(initial_value=self._beta2, name="beta2_power", colocate_with=first_var)
for v in var_list:
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
def _prepare(self):
lr = self._call_if_callable(self._lr)
beta1 = self._call_if_callable(self._beta1)
beta2 = self._call_if_callable(self._beta2)
epsilon = self._call_if_callable(self._epsilon)
weight_decay = self._call_if_callable(self._weight_decay)
self._lr_t = ops.convert_to_tensor(lr, name="learning_rate")
self._beta1_t = ops.convert_to_tensor(beta1, name="beta1")
self._beta2_t = ops.convert_to_tensor(beta2, name="beta2")
self._epsilon_t = ops.convert_to_tensor(epsilon, name="epsilon")
self._weight_decay_t = ops.convert_to_tensor(weight_decay, name="weight_decay")
def _apply_dense(self, grad, var):
return self._resource_apply_dense(grad, var)
def _resource_apply_dense(self, grad, var):
step, beta1_power, beta2_power = self._get_beta_accumulators()
step = math_ops.cast(step, var.dtype.base_dtype)
beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
sma_inf = 2.0 / (1.0 - beta2_t) - 1.0
sma_t = sma_inf - 2.0 * step * beta2_power / (1.0 - beta2_power)
m = self.get_slot(var, "m")
m_t = state_ops.assign(m, beta1_t * m + (1.0 - beta1_t) * grad, use_locking=self._use_locking)
mhat_t = m_t / (1.0 - beta1_power)
v = self.get_slot(var, "v")
v_t = state_ops.assign(v, beta2_t * v + (1.0 - beta2_t) * math_ops.square(grad), use_locking=self._use_locking)
vhat_t = math_ops.sqrt(v_t / ((1.0 - beta2_power) + epsilon_t))
r_t = math_ops.sqrt( ((sma_t - 4.0) * (sma_t - 2.0) * sma_inf) / ((sma_inf - 4.0) * (sma_inf - 2.0) * sma_t) )
var_t = tf.cond(sma_t >= 5.0, lambda : r_t * mhat_t / (vhat_t + epsilon_t), lambda : mhat_t)
if self._weight_decay > 0.0:
var_t += math_ops.cast(self._weight_decay_t, var.dtype.base_dtype) * var
var_update = state_ops.assign_sub(var, lr_t * var_t, use_locking=self._use_locking)
updates = [var_update, m_t, v_t]
return control_flow_ops.group(*updates)
def _apply_sparse_shared(self, grad, var, indices, scatter_add):
step, beta1_power, beta2_power = self._get_beta_accumulators()
step = math_ops.cast(step, var.dtype.base_dtype)
beta1_power = math_ops.cast(beta1_power, var.dtype.base_dtype)
beta2_power = math_ops.cast(beta2_power, var.dtype.base_dtype)
lr_t = math_ops.cast(self._lr_t, var.dtype.base_dtype)
beta1_t = math_ops.cast(self._beta1_t, var.dtype.base_dtype)
beta2_t = math_ops.cast(self._beta2_t, var.dtype.base_dtype)
epsilon_t = math_ops.cast(self._epsilon_t, var.dtype.base_dtype)
sma_inf = 2.0 / (1.0 - beta2_t) - 1.0
sma_t = sma_inf - 2.0 * step * beta2_power / (1.0 - beta2_power)
m = self.get_slot(var, "m")
m_scaled_g_values = grad * (1 - beta1_t)
m_t = state_ops.assign(m, m * beta1_t, use_locking=self._use_locking)
with ops.control_dependencies([m_t]):
m_t = scatter_add(m, indices, m_scaled_g_values)
mhat_t = m_t / (1.0 - beta1_power)
v = self.get_slot(var, "v")
v_scaled_g_values = (grad * grad) * (1 - beta2_t)
v_t = state_ops.assign(v, v * beta2_t, use_locking=self._use_locking)
with ops.control_dependencies([v_t]):
v_t = scatter_add(v, indices, v_scaled_g_values)
vhat_t = math_ops.sqrt(v_t / (1.0 - beta2_power) + epsilon_t)
r_t = math_ops.sqrt( ((sma_t - 4.0) * (sma_t - 2.0) * sma_inf) / ((sma_inf - 4.0) * (sma_inf - 2.0) * sma_t) )
var_t = tf.cond(sma_t >= 5.0, lambda : r_t * mhat_t / (vhat_t + epsilon_t), lambda : mhat_t)
if self._weight_decay > 0.0:
var_t += math_ops.cast(self._weight_decay_t, var.dtype.base_dtype) * var
var_update = state_ops.assign_sub(var, lr_t * var_t, use_locking=self._use_locking)
updates = [var_update, m_t, v_t]
return control_flow_ops.group(*updates)
def _apply_sparse(self, grad, var):
return self._apply_sparse_shared(
grad.values,
var,
grad.indices,
lambda x, i, v: state_ops.scatter_add(x, i, v, use_locking=self._use_locking))
def _resource_scatter_add(self, x, i, v):
with ops.control_dependencies([resource_variable_ops.resource_scatter_add(x.handle, i, v)]):
return x.value()
def _resource_apply_sparse(self, grad, var, indices):
return self._apply_sparse_shared(grad, var, indices, self._resource_scatter_add)
def _finish(self, update_ops, name_scope):
with ops.control_dependencies(update_ops):
step, beta1_power, beta2_power = self._get_beta_accumulators()
with ops.colocate_with(beta1_power):
update_step = step.assign(step + 1.0, use_locking=self._use_locking)
update_beta1 = beta1_power.assign(beta1_power * self._beta1_t, use_locking=self._use_locking)
update_beta2 = beta2_power.assign(beta2_power * self._beta2_t, use_locking=self._use_locking)
return control_flow_ops.group(*update_ops + [update_step, update_beta1, update_beta2], name=name_scope)