forked from qianguih/voxelnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse_log.py
95 lines (70 loc) · 3.56 KB
/
parse_log.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
from collections import OrderedDict
import sys
linestyles = OrderedDict(
[('solid', (0, ())),
('loosely dotted', (0, (1, 10))),
('dotted', (0, (1, 5))),
('densely dotted', (0, (1, 1))),
('loosely dashed', (0, (5, 10))),
('dashed', (0, (5, 5))),
('densely dashed', (0, (5, 1))),
('loosely dashdotted', (0, (3, 10, 1, 10))),
('dashdotted', (0, (3, 5, 1, 5))),
('densely dashdotted', (0, (3, 1, 1, 1))),
('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))),
('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))),
('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))])
# These are the "Tableau 20" colors as RGB.
tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
# Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts.
for i in range(len(tableau20)):
r, g, b = tableau20[i]
tableau20[i] = (r / 255., g / 255., b / 255.)
ROOT_DIR = sys.argv[1]
det_3d = [ [] for _ in range(3) ]
det_bv = [ [] for _ in range(3) ]
for epoch in range(9, 200, 10):
log_file = os.path.join(ROOT_DIR, str(epoch), 'log')
if not os.path.exists( log_file ):
break
else:
lines = open(log_file).readlines()
for line in lines:
line = line.split()
if line[0] == 'car_detection_ground':
det_bv[0].append( float( line[-3] ) )
det_bv[1].append( float( line[-2] ) )
det_bv[2].append( float( line[-1] ) )
elif line[0] == 'car_detection_3d':
det_3d[0].append( float(line[-3]) )
det_3d[1].append( float(line[-2]) )
det_3d[2].append( float(line[-1]) )
RANGE = range(len(det_bv[0]))
plt.figure(figsize=(10, 7))
plt.plot( RANGE, det_3d[0] , linestyle=linestyles['solid'], linewidth=1.5, color=tableau20[0] )
plt.plot( RANGE, det_3d[1] , linestyle=linestyles['solid'], linewidth=1.5, color=tableau20[2] )
plt.plot( RANGE, det_3d[2] , linestyle=linestyles['solid'], linewidth=1.5, color=tableau20[4] )
plt.plot( RANGE, det_bv[0] , linestyle=linestyles['densely dotted'], linewidth=1.5, color=tableau20[0] )
plt.plot( RANGE, det_bv[1] , linestyle=linestyles['densely dotted'], linewidth=1.5, color=tableau20[2] )
plt.plot( RANGE, det_bv[2] , linestyle=linestyles['densely dotted'], linewidth=1.5, color=tableau20[4] )
plt.legend(['3d easy', '3d moderate', '3d hard', 'bird view easy', 'bird view moderate', 'bird view hard'], loc=4)
plt.xlabel('Epoch', fontsize=16)
plt.xticks( RANGE, range(9, len(RANGE)*10, 10) )
plt.xticks(fontsize=14)
plt.ylabel('AP', fontsize=16)
plt.ylim(35, 95)
plt.yticks( range(35, 95, 5) )
plt.yticks(fontsize=14)
plt.grid(linestyle=linestyles['dotted'])
DIR_NAME = ROOT_DIR.split('/')[-1]
OUTPUT_NAME = DIR_NAME + '.jpg'
plt.savefig(OUTPUT_NAME)
print('results parsed and saved in: ' + OUTPUT_NAME)