forked from kevinzakka/pytorch-goodies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
187 lines (155 loc) · 6.25 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
"""Common image segmentation losses.
"""
import torch
from torch.nn import functional as F
def bce_loss(true, logits, pos_weight=None):
"""Computes the weighted binary cross-entropy loss.
Args:
true: a tensor of shape [B, 1, H, W].
logits: a tensor of shape [B, 1, H, W]. Corresponds to
the raw output or logits of the model.
pos_weight: a scalar representing the weight attributed
to the positive class. This is especially useful for
an imbalanced dataset.
Returns:
bce_loss: the weighted binary cross-entropy loss.
"""
bce_loss = F.binary_cross_entropy_with_logits(
logits.float(),
true.float(),
pos_weight=pos_weight,
)
return bce_loss
def ce_loss(true, logits, weights, ignore=255):
"""Computes the weighted multi-class cross-entropy loss.
Args:
true: a tensor of shape [B, 1, H, W].
logits: a tensor of shape [B, C, H, W]. Corresponds to
the raw output or logits of the model.
weight: a tensor of shape [C,]. The weights attributed
to each class.
ignore: the class index to ignore.
Returns:
ce_loss: the weighted multi-class cross-entropy loss.
"""
ce_loss = F.cross_entropy(
logits.float(),
true.long(),
ignore_index=ignore,
weight=weights,
)
return ce_loss
def dice_loss(true, logits, eps=1e-7):
"""Computes the Sørensen–Dice loss.
Note that PyTorch optimizers minimize a loss. In this
case, we would like to maximize the dice loss so we
return the negated dice loss.
Args:
true: a tensor of shape [B, 1, H, W].
logits: a tensor of shape [B, C, H, W]. Corresponds to
the raw output or logits of the model.
eps: added to the denominator for numerical stability.
Returns:
dice_loss: the Sørensen–Dice loss.
"""
num_classes = logits.shape[1]
if num_classes == 1:
true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
true_1_hot_f = true_1_hot[:, 0:1, :, :]
true_1_hot_s = true_1_hot[:, 1:2, :, :]
true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1)
pos_prob = torch.sigmoid(logits)
neg_prob = 1 - pos_prob
probas = torch.cat([pos_prob, neg_prob], dim=1)
else:
true_1_hot = torch.eye(num_classes)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
probas = F.softmax(logits, dim=1)
true_1_hot = true_1_hot.type(logits.type())
dims = (0,) + tuple(range(2, true.ndimension()))
intersection = torch.sum(probas * true_1_hot, dims)
cardinality = torch.sum(probas + true_1_hot, dims)
dice_loss = (2. * intersection / (cardinality + eps)).mean()
return (1 - dice_loss)
def jaccard_loss(true, logits, eps=1e-7):
"""Computes the Jaccard loss, a.k.a the IoU loss.
Note that PyTorch optimizers minimize a loss. In this
case, we would like to maximize the jaccard loss so we
return the negated jaccard loss.
Args:
true: a tensor of shape [B, H, W] or [B, 1, H, W].
logits: a tensor of shape [B, C, H, W]. Corresponds to
the raw output or logits of the model.
eps: added to the denominator for numerical stability.
Returns:
jacc_loss: the Jaccard loss.
"""
num_classes = logits.shape[1]
if num_classes == 1:
true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
true_1_hot_f = true_1_hot[:, 0:1, :, :]
true_1_hot_s = true_1_hot[:, 1:2, :, :]
true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1)
pos_prob = torch.sigmoid(logits)
neg_prob = 1 - pos_prob
probas = torch.cat([pos_prob, neg_prob], dim=1)
else:
true_1_hot = torch.eye(num_classes)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
probas = F.softmax(logits, dim=1)
true_1_hot = true_1_hot.type(logits.type())
dims = (0,) + tuple(range(2, true.ndimension()))
intersection = torch.sum(probas * true_1_hot, dims)
cardinality = torch.sum(probas + true_1_hot, dims)
union = cardinality - intersection
jacc_loss = (intersection / (union + eps)).mean()
return (1 - jacc_loss)
def tversky_loss(true, logits, alpha, beta, eps=1e-7):
"""Computes the Tversky loss [1].
Args:
true: a tensor of shape [B, H, W] or [B, 1, H, W].
logits: a tensor of shape [B, C, H, W]. Corresponds to
the raw output or logits of the model.
alpha: controls the penalty for false positives.
beta: controls the penalty for false negatives.
eps: added to the denominator for numerical stability.
Returns:
tversky_loss: the Tversky loss.
Notes:
alpha = beta = 0.5 => dice coeff
alpha = beta = 1 => tanimoto coeff
alpha + beta = 1 => F beta coeff
References:
[1]: https://arxiv.org/abs/1706.05721
"""
num_classes = logits.shape[1]
if num_classes == 1:
true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
true_1_hot_f = true_1_hot[:, 0:1, :, :]
true_1_hot_s = true_1_hot[:, 1:2, :, :]
true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1)
pos_prob = torch.sigmoid(logits)
neg_prob = 1 - pos_prob
probas = torch.cat([pos_prob, neg_prob], dim=1)
else:
true_1_hot = torch.eye(num_classes)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
probas = F.softmax(logits, dim=1)
true_1_hot = true_1_hot.type(logits.type())
dims = (0,) + tuple(range(2, true.ndimension()))
intersection = torch.sum(probas * true_1_hot, dims)
fps = torch.sum(probas * (1 - true_1_hot), dims)
fns = torch.sum((1 - probas) * true_1_hot, dims)
num = intersection
denom = intersection + (alpha * fps) + (beta * fns)
tversky_loss = (num / (denom + eps)).mean()
return (1 - tversky_loss)
def ce_dice(true, pred, log=False, w1=1, w2=1):
pass
def ce_jaccard(true, pred, log=False, w1=1, w2=1):
pass
def focal_loss(true, pred):
pass