forked from OpenGVLab/InternImage
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mask_rcnn_internimage_s_fpn_3x_coco.py
49 lines (49 loc) · 1.59 KB
/
mask_rcnn_internimage_s_fpn_3x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# --------------------------------------------------------
# InternImage
# Copyright (c) 2022 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
_base_ = [
'../_base_/models/mask_rcnn_r50_fpn.py',
'../_base_/datasets/coco_instance.py',
'../_base_/schedules/schedule_3x.py',
'../_base_/default_runtime.py'
]
pretrained = 'https://huggingface.co/OpenGVLab/InternImage/resolve/main/internimage_s_1k_224.pth'
model = dict(
backbone=dict(
_delete_=True,
type='InternImage',
core_op='DCNv3',
channels=80,
depths=[4, 4, 21, 4],
groups=[5, 10, 20, 40],
mlp_ratio=4.,
drop_path_rate=0.3,
norm_layer='LN',
layer_scale=1.0,
offset_scale=1.0,
post_norm=True,
with_cp=False,
out_indices=(0, 1, 2, 3),
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
neck=dict(
type='FPN',
in_channels=[80, 160, 320, 640],
out_channels=256,
num_outs=5))
# By default, models are trained on 8 GPUs with 2 images per GPU
data = dict(samples_per_gpu=2)
optimizer = dict(
_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.05,
constructor='CustomLayerDecayOptimizerConstructor',
paramwise_cfg=dict(num_layers=33, layer_decay_rate=1.0,
depths=[4, 4, 21, 4]))
optimizer_config = dict(grad_clip=None)
# fp16 = dict(loss_scale=dict(init_scale=512))
evaluation = dict(save_best='auto')
checkpoint_config = dict(
interval=1,
max_keep_ckpts=3,
save_last=True,
)