-
Notifications
You must be signed in to change notification settings - Fork 7
/
multicaca1.tex
954 lines (915 loc) · 39.4 KB
/
multicaca1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
\begin{Answer}{2.2}
Since polynomials are continuous
functions and the image of a connected set is connected for a
continuous function, the image must be an interval of some sort. If
the image were a finite interval, then $f(x,kx)$ would be bounded
for every constant $k$, and so the image would just be the point
$f(0,0).$ The possibilities are thus
\begin{enumerate}\item a single point (take for example,
$p(x,y)= 0$), \item a semi-infinite interval with an endpoint (take
for example $p(x,y) = x^2$ whose image is $[0; +\infty[$),
\item a semi-infinite interval with no endpoint (take for example
$p(x,y) = (xy - 1)^2 + x^2$ whose image is $]0; +\infty[$),
\item all real numbers (take for example $p(x,y) =
x$).
\end{enumerate}
\end{Answer}
\begin{Answer}{2.8}
$0$
\end{Answer}
\begin{Answer}{2.9}
$2$
\end{Answer}
\begin{Answer}{2.10}
$c=0$.
\end{Answer}
\begin{Answer}{2.11}
$0$
\end{Answer}
\begin{Answer}{2.14}
By AM-GM, $$\dfrac{x^2y^2z^2}{x^2+y^2+z^2} \leq
\dfrac{(x^2+y^2+z^2)^3}{27(x^2+y^2+z^2)} =
\dfrac{(x^2+y^2+z^2)^2}{27}\to 0$$ as $(x,y,z)\to (0,0,0)$.
\end{Answer}
\begin{Answer}{2.21}
$0$
\end{Answer}
\begin{Answer}{2.22}
$2$
\end{Answer}
\begin{Answer}{2.23}
$c=0$.
\end{Answer}
\begin{Answer}{2.24}
$0$
\end{Answer}
\begin{Answer}{2.27}
By AM-GM, $$\dfrac{x^2y^2z^2}{x^2+y^2+z^2} \leq
\dfrac{(x^2+y^2+z^2)^3}{27(x^2+y^2+z^2)} =
\dfrac{(x^2+y^2+z^2)^2}{27}\to 0$$ as $(x,y,z)\to (0,0,0)$.
\end{Answer}
\begin{Answer}{3.4}
We have
$$\renewcommand{\arraystretch}{1.7}
{\everymath{\displaystyle}\begin{array}{lll} F(\vector{x} +
\vector{h})
- F(\vector{x}) & = & (\vector{x} + \vector{h})\cross L(\vector{x} + \vector{h}) - \vector{x}\cross L(\vector{x})\\
& = & (\vector{x} + \vector{h})\cross (L(\vector{x}) +
L(\vector{h})) - \vector{x}\cross L(\vector{x})\\
& = & \vector{x}\cross L(\vector{h}) + \vector{h}\cross
L(\vector{x}) + \vector{h}\cross
L(\vector{h}) \\
\end{array}}
$$\renewcommand{\arraystretch}{1}
Now, we will prove that $|| \vector{h}\cross L(\vector{h})|| =
\smallosans{\norm{\vector{h}}}$ as $\vector{h} \rightarrow
\vector{0}$. For let $$\vector{h} = \sum_{k = 1} ^n h_k
\vector{e}_k,$$where the $\vector{e}_k$ are the standard basis for
$\reals^n$. Then
$$L(\vector{h}) = \sum_{k = 1} ^n h_k L(\vector{e}_k),$$and hence
by the triangle inequality, and by the Cauchy-Bunyakovsky-Schwarz
inequality,
$$\renewcommand{\arraystretch}{1.7}\begin{array}{ccc}||L(\vector{h})|| & \leq & \sum_{k = 1} ^n |h_k| ||L(\vector{e}_k)|| \\ &
\leq& \left(\sum_{k = 1} ^n |h_k|^2\right)^{1/2}\left(\sum_{k = 1}
^n ||L(\vector{e}_k)||^2\right)^{1/2} \\ & = &
\norm{\vector{h}}(\sum_{k = 1} ^n
||L(\vector{e}_k)||^2)^{1/2}, \\
\end{array}$$whence, again by the Cauchy-Bunyakovsky-Schwarz
Inequality, $$|| \vector{h}\cross L(\vector{h})|| \leq||
\vector{h}||||L(\vector{h})|\leq
||\vector{h}||^2|||L(\vector{e}_k)||^2)^{1/2} =
\smallosans{||\vector{h}||},$$ as it was to be shewn.
\end{Answer}
\begin{Answer}{3.5}
Assume that $\vector{x} \neq
\vector{0}.$ We use the fact that $(1 + t)^{1/2} = 1 + \dfrac{t}{2}
+ \smallosans{t}$ as $t \rightarrow 0$. We have
$$\renewcommand{\arraystretch}{1.7}
{\everymath{\displaystyle}\begin{array}{lll} \funvect{f}(\vector{x} +
\vector{h}) - \funvect{f}(\vector{x}) & = & ||\vector{x}+\vector{h}|| - \norm{\vector{x}} \\
& = & \sqrt{(\vector{x} + \vector{h})\bp (\vector{x} + \vector{h})} - \norm{\vector{x}} \\
& = & \sqrt{\norm{\vector{x}}^2 + 2\vector{x}\bp\vector{h}+
\norm{\vector{h}}^2} - \norm{\vector{x}}
\\
& = & \dfrac{2\dotprod{x}{h}+
\norm{\vector{h}}^2}{\sqrt{\norm{\vector{x}}^2 +
2\vector{x}\bp\vector{h}+ \norm{\vector{h}}^2} + \norm{\vector{x}}}.\\
\end{array}}$$\renewcommand{\arraystretch}{1}
As $\vector{h} \rightarrow \vector{0}$,
$$\sqrt{\norm{\vector{x}}^2 +
2\vector{x}\bp\vector{h}+ \norm{\vector{h}}^2} + \norm{\vector{x}}
\rightarrow 2\norm{\vector{x}}.$$Since $\norm{\vector{h}}^2 =
\smallosans{\norm{\vector{h}}}$ as $\vector{h} \rightarrow
\vector{0}$, we have
$$\dfrac{2\dotprod{x}{h}+ \norm{\vector{h}}^2}{\sqrt{\norm{\vector{x}}^2 +
2\vector{x}\bp\vector{h}+ \norm{\vector{h}}^2} + \norm{\vector{x}}}
\rightarrow \dfrac{\vector{x}\bp\vector{h}}{\norm{\vector{h}}} +
\smallosans{\norm{\vector{h}}},$$proving the first assertion.
To prove the second assertion, assume that there is a linear
transformation $\deriv{0}{f} = L$, $L:\reals^n \rightarrow \reals$
such that
$$||\funvect{f}(\vector{0} + \vector{h}) - \funvect{f}(\vector{0}) - L(\vector{h})|| = \smallosans{\norm{\vector{h}}},$$as $\norm{\vector{h}}\rightarrow
0$. Recall that by theorem \ref{thm:lipschitzlin}, $L(\vector{0}) =
\vector{0}$, and so by example \ref{exa:derivlintran},
$\deriv{0}{L}(\vector{0}) = L(\vector{0}) = \vector{0}$. This
implies that $\dis{\dfrac{L(\vector{h})}{\norm{\vector{h}}}}
\rightarrow \deriv{0}{L}(\vector{0}) = \vector{0}$, as
$\norm{\vector{h}}\rightarrow 0$. Since $\funvect{f}(\vector{0}) = \norm{0} =
0, \funvect{f}(\vector{h}) = \norm{\vector{h}}$ this would imply that
$$\left|\left|\norm{\vector{h}} - L(\vector{h})\right|\right| = \smallosans{\norm{\vector{h}}},$$or
$$\left|\left| 1 - \dfrac{L(\vector{h})}{\norm{\vector{h}}}\right|\right| = \smallosans{1}.$$
But the left side $\rightarrow 1$ as $\vector{h} \rightarrow
\vector{0}$, and the right side $\rightarrow 0$ as $\vector{h}
\rightarrow \vector{0}$. This is a contradiction, and so, such
linear transformation $L$ does not exist at the point $\vector{0}$.
\end{Answer}
\begin{Answer}{3.7}
Observe that
$$\funvect{f}(x,y)=\left\{\begin{array}{ll} x & \mathrm{if}\ x \leq y^2 \\ y^2 & \mathrm{if}\ x > y^2 \\ \end{array}\right. $$
Hence
$$\dfrac{\partial}{\partial x}\funvect{f}(x,y)=\left\{\begin{array}{ll} 1 & \mathrm{if}\ x > y^2 \\ 0 & \mathrm{if}\ x > y^2 \\ \end{array} \right. $$ and
$$\dfrac{\partial}{\partial y}\funvect{f}(x,y)=\left\{\begin{array}{ll} 0 & \mathrm{if}\ x > y^2 \\ 2y & \mathrm{if}\ x > y^2 \\ \end{array}\right. $$
\end{Answer}
\begin{Answer}{3.8}
Observe that
$$\funvect{g}(1,0,1) = \coord{3 \\ 0}, \qquad f'(x,y) = \begin{bmatrix} y^2 &
2xy \cr 2xy & x^2
\end{bmatrix}, \qquad g'(x,y) =\begin{bmatrix} 1 & -1 & 2 \cr y & x & 0
\cr
\end{bmatrix}, $$
and hence
$$ g'(1,0,1) = \begin{bmatrix} 1 & -1 & 2 \cr 0 & 1 & 0
\cr
\end{bmatrix},\qquad f'(\funvect{g}(1,0,1)) = f'(3,0) = \begin{bmatrix} 0 & 0 \cr 0 & 9
\cr
\end{bmatrix}. $$This gives, via the Chain-Rule,
$$(f\circ g)'(1,0,1) = f'(\funvect{g}(1,0,1))g'(1,0,1) = \begin{bmatrix} 0 & 0 \cr 0 & 9
\cr
\end{bmatrix}\begin{bmatrix} 1 & -1 & 2 \cr 0 & 1 & 0
\cr
\end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \cr 0 & 9 & 0
\cr
\end{bmatrix}. $$
The composition $g\circ \funvect{f}$ is undefined. For, the output of $\funvect{f}$ is
$\reals^2$, but the input of $\funvect{g}$ is in $\reals^3$.
\end{Answer}
\begin{Answer}{3.9}
Since $\funvect{f}(0,1) = \coord{0\\ 1}$, the Chain Rule gives
$$(g\circ f)'(0,1) = (g'(\funvect{f}(0,1)))(f'(0,1)) = (g'(0,1))(f'(0,1)) =\begin{bmatrix} 1 & -1\\ 0 &
0 \\ 1 & 1 \\
\end{bmatrix}\begin{bmatrix} 1 & 0\\ 1 & 1
\end{bmatrix} = \begin{bmatrix} 0 & -1\\ 0 & 0 \\ 2 & 1 \\
\end{bmatrix} $$
\end{Answer}
\begin{Answer}{3.13}
We have
$$ \dfrac{\partial }{\partial x}(x+z)^2+\dfrac{\partial }{\partial x}(y+z)^2= \dfrac{\partial }{\partial x}8
\implies 2(1+ \dfrac{\partial z}{\partial x})(x+z) +
2\dfrac{\partial z}{\partial x}(y+z)=0. $$ At $(1,1,1)$ the last
equation becomes
$$ 4(1+ \dfrac{\partial z}{\partial x}) +
4\dfrac{\partial z}{\partial x}=0\implies \dfrac{\partial
z}{\partial x} = -\dfrac{1}{2}. $$
\end{Answer}
\begin{Answer}{3.14}
a) Here $\nabla T = (y+z) \vector{ i} + (x+z) \vector{ j} + (y+x) \vector{ k}$.
The maximum rate of change at $(1,1,1)$ is
$|\nabla T(1,1,1)| = 2 \sqrt{3}$ and direction cosines are
\begin{eqnarray*}
\dfrac{\nabla T}{|\nabla T|} =
\dfrac{1}{\sqrt{3}} \vector{ i} +
\dfrac{1}{\sqrt{3}} \vector{ j} +
\dfrac{1}{\sqrt{3}} \vector{ k} =
\cos \alpha \vector{ i} + \cos \beta \vector{ j} + \cos \gamma \vector{ k}
\end{eqnarray*}
b) The required derivative is
\begin{eqnarray*}
\nabla T(1,1,1) \bp
\dfrac{3 \vector{ i} - 4 \vector{ k}}{|3 \vector{ i} - 4 \vector{ k}|} =
- \dfrac{2}{5}
\end{eqnarray*}
\end{Answer}
\begin{Answer}{3.15}
a) Here $\nabla \phi = \vector{ F}$ requires $\nabla \times \vector{ F} = 0$ which is
not the case here, so no solution.
b) Here $\nabla \times \vector{ F} = 0$ so that
\begin{eqnarray*}
\phi(x,y,z) = x^{2} y + y^{2} z + z + c
\end{eqnarray*}
\end{Answer}
\begin{Answer}{3.16}
$\nabla f(x,y,z)=\coord{e^{yz} ,xze^{yz},xye^{yz}}\implies
(\nabla f)(2,1,1) = \coord{e,2e,2e} $.
\end{Answer}
\begin{Answer}{3.17}
$(\nabla \cross f)(x,y,z)=\coord{0,x, ye^{xy}} \implies (\nabla
\cross f)(2,1,1)=\coord{0,2 ,e^2}$.
\end{Answer}
\begin{Answer}{3.19}
The vector $\coord{1 ,-7 ,0}$ is perpendicular to the plane. Put $\funvect{f}(x,y,z)=x^2+y^2-5xy+xz-yz+3$. Then $(\nabla f)(x,y,z)=\coord{2x-5y+z ,2y-5x-z \\
x-y}$. Observe that $\nabla f(x,y,z)$ is parallel to the vector
$\coord{1 ,-7 ,0}$, and hence there exists a constant $a$ such
that $$ \coord{2x-5y+z ,2y-5x-z \\
x-y}=a\coord{1 ,-7 ,0} \implies x=a, \quad y=a, \quad z=4a.$$
Since the point is on the plane $$x-7y=-6 \implies a-7a=-6 \implies
a=1.$$ Thus $x=y=1$ and $z=4$.
\end{Answer}
\begin{Answer}{3.22}
Observe that $$\funvect{f}(0,0) =1, \quad f_x(x,y) = (\cos 2y)e^{x\cos 2y}
\implies f_x(0,0)=1, $$ $$ f_y(x,y) = -2x\sin 2ye^{x\cos 2y}
\implies f_y(0,0) = 0.
$$Hence
$$\funvect{f}(x,y) \approx \funvect{f}(0,0) + f_x(0,0)(x-0) + f_y(0,0)(y-0) \implies \funvect{f}(x,y)\approx 1 + x. $$
This gives $\funvect{f}(0.1,-0.2)\approx 1+0.1 = 1.1$.
\end{Answer}
\begin{Answer}{3.23}
This is essentially the product rule: $\d{uv} = u\d{v}+v\d{u}$,
where $\nabla$ acts the differential operator and $\cross$ is the
product. Recall that when we defined the volume of a parallelepiped
spanned by the vectors $\vector{a},$ $\vector{b}$, $\vector{c}$, we
saw that
$$ \vector{a}\bullet (\crossprod{b}{c}) = (\crossprod{a}{b})\bullet \vector{c}. $$
Treating $\nabla = \nabla _{\vector{u}}+ \nabla _{\vector{v}}$ as a
vector, first keeping $\vector{v}$ constant and then keeping
$\vector{u}$ constant we then see that
$$ \nabla _{\vector{u}} \bullet (\crossprod{u}{v})= (\crossprod{\nabla}{u})\bullet \vector{v}, \qquad \nabla _{\vector{v}} \bullet (\crossprod{u}{v})= -\nabla \bullet (\crossprod{v}{u}) = -(\crossprod{\nabla}{v})\bullet \vector{u}. $$
Thus
$$\nabla \bullet (\point{u}\cross \point{v}) = (\nabla _{\vector{u}} + \nabla _{\vector{v}}) \bullet (\point{u}\cross \point{v})
= \nabla _{\vector{u}} \bullet (\crossprod{u}{v}) + \nabla
_{\vector{v}} \bullet (\crossprod{u}{v}) =
(\crossprod{\nabla}{u})\bullet \vector{v}-
(\crossprod{\nabla}{v})\bullet \vector{u}.
$$
\end{Answer}
\begin{Answer}{3.26}
An angle of $ \dfrac{\pi}{6}$ with the $x$-axis and $
\dfrac{\pi}{3}$ with the $y$-axis.
\end{Answer}
\begin{Answer}{5.1}
Let $\colpoint{x\\ y\\ z}$ be a point on $S$. If this point were on
the $xz$ plane, it would be on the ellipse, and its distance to the
axis of rotation would be $|x| = \dfrac{1}{2}\sqrt{1 -
z^2}$. Anywhere else, the distance from $\colpoint{x\\ y\\
z}$ to the $z$-axis is the distance of this point to the point
$\colpoint{0\\ 0\\ z}$ : $\sqrt{x^2 + y^2}$. This distance is the
same as the length of the segment on the $xz$-plane going from the
$z$-axis. We thus have
$$ \sqrt{x^2 + y^2} = \dfrac{1}{2}\sqrt{1 -
z^2},$$or
$$4x^2 + 4y^2 + z^2 = 1.$$
\end{Answer}
\begin{Answer}{5.2}
Let $\colpoint{x\\ y\\ z}$ be a point on $S$. If this point were on the
$xy$ plane, it would be on the line, and its distance to the axis of
rotation would be $|x| = \dfrac{1}{3}|1 - 4y|$. Anywhere else, the
distance of $\colpoint{x\\ y\\ z}$ to the axis of rotation is the
same as the distance of $\colpoint{x\\ y\\ z}$ to $\colpoint{0\\
y \\ 0}$, that is $\sqrt{x^2 + z^2}$. We must have
$$\sqrt{x^2 + z^2} = \dfrac{1}{3}|1 - 4y|, $$which is to say
$$9x^2 + 9z^2 - 16y^2 + 8y - 1 = 0.$$
\end{Answer}
\begin{Answer}{5.3}
A spiral staircase.
\end{Answer}
\begin{Answer}{5.4}
A spiral staircase.
\end{Answer}
\begin{Answer}{5.6}
The planes $A: x + z = 0$ and $B: y = 0$ are secant. The
surface has equation of the form $f(A, B) = e^{A^2 + B^2} - A = 0$,
and it is thus a cylinder. The directrix has direction $\vector{i}
- \vector{k}$.
\end{Answer}
\begin{Answer}{5.7}
Rearranging,
$$ (x^2 + y^2 + z^2)^2 - \dfrac{1}{2}((x + y + z)^2 - (x^2 + y^2 + z^2)) - 1 = 0,$$
and so we may take $A: x + y + z = 0, \superficie : x^2 + y^2 + z^2 = 0$,
shewing that the surface is of revolution. Its axis is the line in
the direction $\vector{i} + \vector{j} + \vector{k}$.
\end{Answer}
\begin{Answer}{5.8}
Considering the planes $A: x - y = 0, B: y - z = 0$,
the equation takes the form
$$f(A, B) = \dfrac{1}{A} + \dfrac{1}{B} - \dfrac{1}{A + B} - 1 =
0,$$thus the equation represents a cylinder. To find its directrix,
we find the intersection of the planes $x = y$ and $y = z$. This
gives $\colvec{x \\ y \\ z} = t\colvec{1 \\ 1 \\ 1}$. The direction
vector is thus $\vector{i}+ \vector{j} + \vector{k}$.
\end{Answer}
\begin{Answer}{5.9}
Rearranging,
$$(x + y + z)^2 - (x ^2 + y ^2 + z ^2) + 2(x + y + z) + 2 = 0,$$so we
may take $A: x + y + z = 0, \superficie : x ^2 + y ^2 + z ^2 = 0$ as our
plane and sphere. The axis of revolution is then in the direction of
$\vector{i} + \vector{j} + \vector{k}$.
\end{Answer}
\begin{Answer}{5.10}
After rearranging, we obtain
$$(z - 1)^2 - xy = 0,$$or
$$-\dfrac{x}{z - 1}\dfrac{y}{z - 1} + 1 = 0.$$Considering the planes
$$A: x = 0, \ B: y = 0, \ \ C: z = 1,$$we see that our surface is
a cone, with apex at $(0,0,1)$.
\end{Answer}
\begin{Answer}{5.11}
The largest circle has radius $b$. Parallel cross sections of
the ellipsoid are similar ellipses, hence we may increase the size
of these by moving towards the centre of the ellipse. Every plane
through the origin which makes a circular cross section must
intersect the $yz$-plane, and the diameter of any such cross section
must be a diameter of the ellipse $x = 0, \dfrac{y^2}{b^2} +
\dfrac{z^2}{c^2} = 1.$ Therefore, the radius of the circle is at most
$b$. Arguing similarly on the $xy$-plane shews that the radius of
the circle is at least $b$. To shew that circular cross section of
radius $b$ actually exist, one may verify that the two planes given
by $a^2(b^2 - c^2)z^2 = c^2(a^2 - b^2)x^2$ give circular cross
sections of radius $b$.
\end{Answer}
\begin{Answer}{5.12}
Any hyperboloid oriented like the one on the figure has an equation
of the form
$$ \dfrac{z^2}{c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}-1. $$ When $z=0$ we must have
$$4x^2+y^2=1 \implies a=\dfrac{1}{2}, \ b=1. $$
Thus
$$ \dfrac{z^2}{c^2}= 4x^2+y^2-1. $$Hence, letting $z=\pm 2$,
$$ \dfrac{4}{c^2} =4x^2+y^2-1 \implies \dfrac{1}{c^2}= x^2+\dfrac{y^2}{4}-\dfrac{1}{4}=1-\dfrac{1}{4}=\dfrac{3}{4},$$
since at $z=\pm 2$, $x^2+\dfrac{y^2}{4}=1$. The equation is thus
$$ \dfrac{3z^2}{4}= 4x^2+y^2-1.$$
\end{Answer}
\begin{Answer}{13.1}
\noindent
\begin{enumerate}
\item Let $L_1: y =x+1$, $L_2: -x+1$. Then
$$
\begin{array}{lll}
\dint _C x\d{x}+y\d{y} & = & \dint _{L_1} x\d{x}+y\d{y}+\dint _{L_2}
x\d{x}+y\d{y}\\
& = & \dint _{-1} ^1 x\d{x} (x+1)\d{x} + \dint _0 ^1 x\d{x}
-(-x+1)\d{x}\\
& = & 0.
\end{array}
$$
Also, both on $L_1$ and on $L_2$ we have
$\norm{\d{\point{x}}}=\sqrt{2}\d{x}$, thus
$$
\begin{array}{lll}
\dint _C xy \norm{\d{\point{x}}}& = & \dint _{L_1}xy
\norm{\d{\point{x}}}+\dint _{L_2}
xy \norm{\d{\point{x}}}\\
& = & \sqrt{2}\dint _{-1} ^1 x(x+1)\d{x} - \sqrt{2}\dint _0 ^1 x(-x+1)\d{x}\\
& = & 0.
\end{array}
$$
\item We put $x=\sin t$, $y = \cos t$, $t\in\lcrc{-\frac{\pi}{2}}{\frac{\pi}{2}}$. Then
$$
\begin{array}{lll}
\dint _C x\d{x}+y\d{y} & = & \dint _{-\pi/2} ^{\pi/2}
(\sin t)(\cos t)\d{t}-(\cos t)(\sin t)\d{t}\\
& = & 0.
\end{array}
$$
Also, $\norm{\d{\point{x}}}=\sqrt{(\cos t)^2+(-\sin
t)^2}\d{t}=\d{t}$, and thus
$$
\begin{array}{lll}
\dint _C xy \norm{\d{\point{x}}}& = & \dint _{-\pi/2} ^{\pi/2} (\sin
t)(\cos t) \d{t}\\
& = & \dfrac{(\sin t)^2}{2}\Big| _{-\pi/2} ^{\pi/2} \\
& = & 0.
\end{array}
$$
\end{enumerate}
\end{Answer}
\begin{Answer}{13.2}
Let $\Gamma _1$ denote the straight line segment path from $O$ to
$A=(2\sqrt{3},2)$ and $\Gamma _2$ denote the arc of the circle
centred at $(0,0)$ and radius $4$ going counterclockwise from
$\theta=\dfrac{\pi}{6}$ to $\theta=\dfrac{\pi}{5}$.
\bigskip
Observe that the Cartesian equation of the line $\line{OA}$ is $y
=\dfrac{x}{\sqrt{3}}$. Then on $\Gamma _1$
$$x\d{x} + y\d{y} = x\d{x}+ \dfrac{x}{\sqrt{3}}\d{\dfrac{x}{\sqrt{3}}} = \dfrac{4}{3}x\d{x}.$$
Hence $$\dint _{\Gamma _1} x\d{x} + y\d{y} = \dint _0 ^{2\sqrt{3}}
\dfrac{4}{3}x\d{x} = 8.
$$
On the arc of the circle we may put $x=4\cos \theta$, $y = 4\sin
\theta$ and integrate from $\theta = \dfrac{\pi}{6}$ to $\theta =
\dfrac{\pi}{5}$. Observe that there
$$ x\d{x} + y\d{y} = (\cos \theta )\d{\cos \theta} +(\sin\theta)\d{\sin \theta} = -\sin\theta\cos\theta\d{\theta}+\sin\theta\cos\theta\d{\theta}=0,$$
and since the integrand is $0$, the integral will be zero.
\bigskip
Assembling these two pieces,
$$\dint _{\Gamma} x\d{x} + y\d{y} = \dint _{\Gamma _1} x\d{x} + y\d{y} +\dint _{\Gamma _2} x\d{x} + y\d{y}=8+0=8. $$
\bigskip
Using the parametrisations from the solution of problem
\ref{pro:path-integral2}, we find on $\Gamma _1$ that
$$ x\norm{\d{\point{x}}} = x\sqrt{(\d{x})^2+ (\d{y})^2} =x\sqrt{1+\dfrac{1}{3}}\d{x}=\dfrac{2}{\sqrt{3}}x\d{x}, $$
whence
$$ \dint _{\Gamma _1} x\norm{\d{\point{x}}} = \dint _0 ^{2\sqrt{3}}
\dfrac{2}{\sqrt{3}}x\d{x} = 4\sqrt{3}. $$ On $\Gamma _2$ that
$$ x\norm{\d{\point{x}}} = x\sqrt{(\d{x})^2+ (\d{y})^2} =16\cos \theta\sqrt{\sin^2\theta + \cos^2\theta}\d{\theta}=16\cos\theta\d{\theta}, $$
whence
$$ \dint _{\Gamma _2} x\norm{\d{\point{x}}} = \dint _{\pi /6} ^{\pi /5}
16\cos\theta\d{\theta} = 16\sin \dfrac{\pi}{5} -16\sin
\dfrac{\pi}{6}= 4\sin \dfrac{\pi}{5}-8.
$$Assembling these we gather that
$$ \dint _{\Gamma } x\norm{\d{\point{x}}} =\dint _{\Gamma _1} x\norm{\d{\point{x}}}+\dint _{\Gamma _2}
x\norm{\d{\point{x}}}= 4\sqrt{3}-8+16\sin \dfrac{\pi}{5}.$$
\end{Answer}
\begin{Answer}{13.3}
The
curve lies on the sphere, and to parametrise this curve, we dispose
of one of the variables, $y$ say, from where $y = 1-x$ and $x^2 +
y^2 + z^2 = 1$ give
$$\begin{array}{lll}x^2 + (1 - x)^2 + z^2 = 1 & \implies & 2x^2 -2x + z^2 = 0\\ & \implies & 2\left(x - \frac{1}{2}\right)^2 + z^2 = \frac{1}{2}\\
& \implies & 4\left(x - \frac{1}{2}\right)^2 + 2z^2 =
1.\end{array}$$ So we now put $$x = \frac{1}{2} + \frac{\cos t}{2},
\ \ \ z = \dfrac{\sin t}{\sqrt{2}},\ \ \ y = 1 - x =
\frac{1}{2}-\frac{\cos t}{2}.
$$We must integrate on the side of the plane that can be viewed
from the point $(1,1,0)$ (observe that the vector $\colvec{1\\ 1 \\
0}$ is normal to the plane). On the $zx$-plane, $4\left(x -
\frac{1}{2}\right)^2 + 2z^2 = 1$ is an ellipse. To obtain a positive
parametrisation we must integrate from $t = 2\pi$ to $t = 0$ (this
is because when you look at the ellipse from the point $(1,1,0)$ the
positive $x$-axis is to your left, and not your right). Thus
$$\begin{array}{lll}\doint _\Gamma z\d{x} + x\d{y} + y\d{z} & = &
\dint ^0 _{2\pi} \dfrac{\sin
t}{\sqrt{2}} \d{\left( \frac{1}{2} + \frac{\cos t}{2}\right)} \\
& & + \dint ^0 _{2\pi} \left( \frac{1}{2} + \frac{\cos
t}{2}\right)\d{\left(\frac{1}{2} -\frac{\cos t}{2}\right)} \\ & & +
\dint ^0 _{2\pi} \left(\frac{1}{2} -\frac{\cos
t}{2}\right)\d{\left(\dfrac{\sin t}{\sqrt{2}}\right)} \\
& = & \dint ^0 _{2\pi} \left(\frac{\sin t}{4}+ \frac{\cos
t}{2\sqrt{2}}+ \frac{\cos t\sin t}{4} -
\frac{1}{2\sqrt{2}}\right)\ \d{t} \\
& = & \dfrac{\pi}{\sqrt{2}}.
\end{array}$$
\end{Answer}
\begin{Answer}{13.4}
We parametrise the surface by letting $x = u, y =
v, z = u + v^2.$ Observe that the domain $D$ of $\Sigma$ is the
square $[0; 1]\times [0; 2]$. Observe that
$$\d{x} \wedge \d{y}
= \d{u} \wedge \d{v} ,$$
$$\d{y} \wedge \d{z} = -\d{u} \wedge \d{v}, $$
$$\d{z} \wedge \d{x} = -2v\d{u} \wedge \d{v},
$$and so
$$\norm{\d{ ^2\vector{x}}} = \sqrt{2 + 4v^2}\d{u} \wedge \d{v}.$$
The integral becomes
$$\begin{array}{lll}
\dint \limits_\Sigma y \norm{\d{ ^2\vector{x}}} & = & \dint_0 ^2\dint _0
^1
v\sqrt{2 + 4v^2}\d{u}\d{v} \\
& = & \left(\dint_0 ^1 \d{u}\right) \left(\dint_0 ^2 y\sqrt{2 +
4v^2}\d{v}\right) \\
& = & \dfrac{13\sqrt{2}}{3}.
\end{array}$$
\end{Answer}
\begin{Answer}{13.5}
Using $x=r\cos \theta$, $y=r\sin \theta$, $1\leq r \leq 2$, $0 \leq
\theta \leq 2\pi$, the surface area is
$$ \sqrt{2}\dint _0 ^{2\pi}\dint _1 ^2 r\d{r}\d{\theta}=3\pi\sqrt{2}. $$
\end{Answer}
\begin{Answer}{13.6}
We use spherical coordinates, $(x, y, z) =
(\cos\theta\sin\phi, \sin\theta\sin\phi, \cos\phi)$. Here $\theta
\in [0; 2\pi]$ is the latitude and $\phi \in [0; \pi]$ is the
longitude. Observe that
$$\d{x}\wedge\d{y}=
\sin\phi\cos\phi \d{\phi}\wedge\d{\theta} ,$$
$$\d{y}\wedge\d{z} = \cos\theta\sin^2\phi \d{\phi}\wedge\d{\theta},
$$
$$\d{z}\wedge\d{x}= -\sin\theta\sin^2\phi \d{\phi}\wedge\d{\theta},
$$and so
$$\norm{\d{ ^2 \vector{x}}} = \sin\phi \d{\phi}\wedge\d{\theta}.$$
The integral becomes
$$\begin{array}{lll}
\dint \limits_\Sigma x^2 \norm{\d{ ^2\vector{x}}} & = & \dint _0 ^{2\pi}
\dint _{0} ^{\pi} \cos^2\theta\sin^3\phi \d{\phi} \d{\theta} \\
& = & \dfrac{4\pi}{3}.
\end{array}$$
\end{Answer}
\begin{Answer}{13.7}
Put $x
= u, y = v, z^2 = u^2 + v^2$. Then
$$\d{x} = \d{u}, \ \d{y} = \d{v}, \ z\d{z} = u\d{u} + v\d{v}, $$
whence
$$\d{x} \wedge \d{y} = \d{u} \wedge \d{v}, \d{y} \wedge \d{z} = -\dfrac{u}{z} \d{u} \wedge \d{v},
\d{z} \wedge \d{x} = -\dfrac{v}{z} \d{u} \wedge \d{v}, $$ and so
$$\begin{array}{lll}\norm{\d{ ^2\vector{x}}} & = & \sqrt{(\d{x} \wedge \d{y})^2 + (\d{z} \wedge \d{x})^2 + (\d{y} \wedge \d{z})^2} \\
& = & \sqrt{1 + \dfrac{u^2 + v^2}{z^2}}\ \d{u}\wedge\d{v} \\ & = &
\sqrt{2}\ \d{u}\wedge\d{v}.
\end{array}$$ Hence $$\dint \limits_{\Sigma} \ z\norm{\d{ ^2\vector{x}}} =
\dint\limits_{u^2 + v^2 \leq 1} \sqrt{u^2 + v^2}\ \sqrt{2}\
\d{u}\d{v} = \sqrt{2}\dint _0 ^{2\pi}\dint _0 ^1 \rho^2\
\d{\rho}\d{\theta} = \dfrac{2\pi\sqrt{2}}{3}.
$$
\end{Answer}
\begin{Answer}{13.8}
If the egg
has radius $R$, each slice will have height $2R/n$. A slice can be
parametrised by $0 \leq \theta \leq 2\pi$, $\phi_1 \leq \phi \leq
\phi_2$, with $$R\cos\phi_1 - R\cos\phi_2 = 2R/n.$$ The area of the
part of the surface of the sphere in slice is $$\dint _0
^{2\pi}\dint_{\phi_1} ^{\phi_2} R^2\sin\phi \d{\phi}\d{\theta} = 2\pi
R^2(\cos\phi_1 - \cos\phi_2 ) = 4\pi R^2/n.$$ This means that each
of the $n$ slices has identical area $4\pi R^2 /n$.
\end{Answer}
\begin{Answer}{13.9}
We project this plane
onto the coordinate axes obtaining
$$ \dint \limits_\Sigma xy\d{y}\d{z} = \dint _0 ^6 \dint _0 ^{3-z/2} (3-y-z/2)y \d{y} \d{z} = \frac{27}{4}, $$
$$ -\dint \limits_\Sigma x^2\d{z}\d{x} = -\dint _0 ^3 \dint _0 ^{6-2x} x^2 \d{z} \d{x} = -\frac{27}{2}, $$
$$ \dint \limits_\Sigma (x + z)\d{x}\d{y} = \dint _0 ^3 \dint _0 ^{3 - y} (6 - x - 2y) \d{x} \d{y} = \frac{27}{2}, $$
and hence
$$\dint \limits_\Sigma xy\d{y}\d{z} -
x^2\d{z} \d{x} + (x + z)\d{x} \d{y} = \frac{27}{4}.
$$
\end{Answer}
\begin{Answer}{13.10}
Evaluating this directly would result in evaluating four path
integrals, one for each side of the square. We will use Green's
Theorem. We have
$$\begin{array}{lll}\d{\omega} & = & \d (x^3y) \wedge \d{x}+ \d (xy) \wedge \d{y}\\
& = & (3x^2y\d{x}+ x^3\d{y}) \wedge \d{x}+ (y\d{x}+
x\d{y} ) \wedge \d{y} \\
& = & (y - x^3)\d{x}\wedge \d{y}.
\end{array}$$
The region $M$ is the area enclosed by the square. The integral
equals
$$\begin{array}{lll}
\doint _C x^3y\d{x}+ xy\d{y} & = & \dint _0 ^2 \dint _0 ^2 (y
- x^3)\d{x} \d{y} \\
& = & -4.
\end{array}$$
\end{Answer}
\begin{Answer}{13.11}
We have
\begin{dingautolist}{202} \item $L_{AB}$ is $y = x$; $L_{AC}$ is
$y = -x$, and $L_{BC}$ is clearly $y = -\dfrac{1}{3}x +
\dfrac{4}{3}$.
\item We have \renewcommand{\arraystretch}{1.5}
$${\everymath{\dis}\begin{array}{lllll} \dint _{AB} y^2\d{x}+ x\d{y} & = & \dint _0 ^1 (x^2 + x)\d{x} & = & \dfrac{5}{6} \\
\dint _{BC} y^2\d{x}+ x\d{y} & = & \dint _1 ^{-2}
\left(\left(-\dfrac{1}{3}x + \dfrac{4}{3}\right)^2 -\dfrac{1}{3}x \right)\d{x} & = & -\dfrac{15}{2} \\
\dint _{CA} y^2\d{x}+ x\d{y} & = & \dint _{-2} ^0 (x^2 - x)\d{x} & = & \dfrac{14}{3} \\
\end{array} }$$Adding these integrals we find $$ \doint _\triangle y^2\d{x}+ x\d{y} = -2.$$
\item We have
$${\everymath{\dis}\begin{array}{lll}\dint\limits_{D} (1 - 2y) \d{x}\wedge\d{y} & = & \dint _{-2} ^0 \left(\dint _{-x} ^{-x/3 + 4/3} (1 - 2y)
\d{y}\right) \d{x}\\ & &\quad + \dint _{0} ^1 \left(\dint _{x} ^{-x/3
+ 4/3}
(1 - 2y)\d{y}\right) \d{x} \\
& = & -\dfrac{44}{27} - \dfrac{10}{27} \\
& = & -2.
\end{array}}$$
\end{dingautolist}
\end{Answer}
\begin{Answer}{13.15}
Observe that
$$ \d{(x^2 + 2y^3)\wedge\d{y}} = 2x\d{x}\wedge\d{y}.$$Hence by the
generalised Stokes' Theorem the integral equals $$\dint
\limits_{\{(x - 2)^2 + y^2 \leq 4\}} 2x\d{x}\wedge\d{y} = \dint
_{-\pi/2} ^{\pi/2} \dint _0 ^{4\cos\theta} 2\rho^2 \cos\theta\d{\rho}
\wedge\d\theta = 16\pi .
$$
To do it directly, put $x - 2 = 2\cos t, y = 2\sin t, 0 \leq t \leq
2\pi$. Then the integral becomes
$$\begin{array}{lll}\dint _0 ^{2\pi} ((2 + 2\cos t)^2 + 16\sin^3t)\d{2\sin t} & = & \dint _0 ^{2\pi} (8\cos t + 16\cos^2 t\\ & & \qquad + 8\cos^3t + 32\cos t\sin^3t) \d{t}\\ & = & 16\pi. \end{array} $$
\end{Answer}
\begin{Answer}{13.16}
At the
intersection path
$$ 0 = x^2 + y^2 + z^2 - 2(x + y) = (2 - y)^2 + y^2 + z^2 - 4 = 2y^2 - 4y + z^2 = 2(y - 1)^2 + z^2 - 2, $$
which describes an ellipse on the $yz$-plane. Similarly we get $2(x
- 1)^2 + z^2 = 2$ on the $xz$-plane. We have
$$ \d{\left(y\d{x} + z\d{y} + x\d{z}\right)} = \d{y}\wedge\d{x} +
\d{z}\wedge\d{y} + \d{x}\wedge\d{z} = -\d{x}\wedge\d{y}
-\d{y}\wedge\d{z} - \d{z}\wedge\d{x}.$$ Since $\d{x}\wedge \d{y} =
0$, by Stokes' Theorem the integral sought is
$$ -\dint \limits_{2(y - 1)^2 + z^2 \leq 2} \d{y}\d{z} -\dint \limits_{2(x- 1)^2 + z^2 \leq 2} \d{z}\d{x}
= -2\pi (\sqrt{2}). $$ (To evaluate the integrals you may resort to
the fact that the area of the elliptical region
$\dfrac{(x-x_0)^2}{a^2} + \dfrac{(y-y_0)^2}{b^2} \leq 1$ is $\pi
ab)$.
\bigskip
If we were to evaluate this integral directly, we would set $$ y =
1 + \cos \theta, \ z = \sqrt{2}\sin \theta , x = 2 - y = 1 -
\cos\theta .
$$The integral becomes
$$ \dint _0 ^{2\pi} (1 + \cos \theta)\d{(1 - \cos \theta)} + \sqrt{2}\sin\theta\d{(1 + \cos\theta)} + (1 - \cos\theta)\d{(\sqrt{2}\sin\theta)} $$
which in turn $$ = \dint_0 ^{2\pi} \sin\theta + \sin\theta\cos\theta
- \sqrt{2} + \sqrt{2}\cos\theta \d{\theta} = -2\pi\sqrt{2}.$$
\end{Answer}
\begin{Answer}{B.2.18}
This is clearly
$(1\ 2\ 3 \ 4)(6\ 8\ 7) $ of order ${\textrm lcm} (4, 3) = 12$.
\end{Answer}
\begin{Answer}{B.3.26}
Multiplying the first column of the given matrix by $a$,
its second column by $b$, and its third column by $c$, we obtain
$$abc\Omega = \begin{bmatrix} abc & abc & abc \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3 \cr\end{bmatrix}. $$ We may factor out
$abc$ from the first row of this last matrix thereby obtaining
$$abc\Omega = abc\det
\begin{bmatrix} 1 & 1 & 1 \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3
\cr\end{bmatrix}. $$Upon dividing by $abc$,
$$\Omega = \det
\begin{bmatrix} 1 & 1 & 1 \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3
\cr\end{bmatrix}.
$$
\end{Answer}
\begin{Answer}{B.3.27}
Performing $R_1 + R_2 + R_3 \rightarrow R_1$ we have
$$\begin{array}{l}
\Omega = \det\begin{bmatrix} a - b - c & 2a & 2a \cr 2b & b - c -
a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix}\vspace{2mm}\\ \qquad = \det\begin{bmatrix} a + b + c & a + b + c & a + b + c \cr 2b
& b - c - a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix}.\end{array}$$ Factorising $(a + b + c)$ from the first row of
this last determinant, we have
$$\Omega = (a + b + c)\det\begin{bmatrix} 1 & 1 & 1 \cr 2b
& b - c - a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix}. $$Performing $C_2 - C_1 \rightarrow C_2$ and $C_3 - C_1 \rightarrow
C_3$,
$$\Omega = (a + b + c)\det\begin{bmatrix} 1 & 0 & 0 \cr 2b
& -b - c - a & 0 \cr 2c & 0 & -c - a - b \cr
\end{bmatrix}. $$This last matrix is triangular, hence $$\Omega = (a + b + c)(-b - c - a)(-c -a - b) = (a + b + c)^3, $$
as wanted.
\end{Answer}
\begin{Answer}{B.3.28}
$\det A_1 = \det A = -540$ by multilinearity. $\det A_2 = -\det
A_1 = 540$ by alternancy. $\det A_3 = 3\det A_2 = 1620$ by both
multilinearity and homogeneity from one column. $\det A_4 = \det A_3
= 1620$ by multilinearity, and $\det A_5 = 2\det A_4 = 3240$ by
homogeneity from one column.
\end{Answer}
\begin{Answer}{B.3.30}
From the given data, $\det B = -2.$ Hence
$$\det ABC = (\det A)(\det B)(\det C) = -12,$$
$$\det 5AC = 5^3\det AC = (125)(\det A)(\det C) = 750,$$
$$(\det A^3B^{-3}C^{-1}) = \frac{(\det A)^3}{(\det B)^3(\det C)} = -\frac{27}{16}.$$
\end{Answer}
\begin{Answer}{B.3.31}
Pick $\lambda \in \bbR \setminus \{0,
a_{11}, a_{22}, \ldots , a_{nn}\}$. Put
$$X = \begin{bmatrix} a_{11} - \lambda & 0 & 0 & \cdots & 0 \cr a_{21} & a_{22} - \lambda & 0 & \cdots & 0 \cr
a_{31} & a_{32} & a_{33} - \lambda & \cdots & 0 \cr \vdots &
\vdots & \vdots & \vdots & \vdots \cr a_{n1} & a_{n2} & a_{n3} &
\cdots & a_{nn} - \lambda
\end{bmatrix}$$and
$$Y = \begin{bmatrix}
\lambda & a_{12} & a_{13} & \vdots & a_{1n} \cr 0 & \lambda &
a_{23} & \vdots & a_{2n} \cr
0 & 0 &
\lambda & \vdots & a_{3n} \cr \vdots & \vdots & \vdots & \vdots &
\vdots \cr
0 & 0 &
0 & \vdots & \lambda \cr
\end{bmatrix}$$ Clearly $A = X + Y$, $\det X = (a_{11} - \lambda)(a_{22} -
\lambda)\cdots (a_{nn} - \lambda) \neq 0$, and $\det Y = \lambda^n
\neq 0$. This completes the proof.
\end{Answer}
\begin{Answer}{B.3.32}
No.
\end{Answer}
\begin{Answer}{B.4.8}
We have
\begin{eqnarray*}\det A & = & 2(-1)^{1 + 2}\det
\begin{bmatrix} 4 & 6 \cr 7 & 9 \end{bmatrix} + 5(-1)^{2 + 2}\det
\begin{bmatrix} 1 & 3 \cr 7 & 9 \end{bmatrix} + 8(-1)^{2 + 3}\det
\begin{bmatrix} 1 & 3 \cr 4 & 6 \end{bmatrix} \\ & = & -2(36 - 42) +
5(9 - 21) - 8(6 - 12) = 0. \end{eqnarray*}
\end{Answer}
\begin{Answer}{B.4.9}
Simply expand along the first row$$a\det\begin{bmatrix} a & b
\cr c & a
\end{bmatrix} - b\det\begin{bmatrix}
c & b \cr b & a
\end{bmatrix} + c\det\begin{bmatrix}
c & a \cr b & c\end{bmatrix} = a(a^2 -bc ) - b(ca - b^2) + c(c^2 -
ab) = a^3+b^3+c^3-3abc .
$$
\end{Answer}
\begin{Answer}{B.4.10}
Since the second column has three $0$'s, it is advantageous
to expand along it, and thus we are reduced to calculate
$$-3(-1)^{3 + 2} \det \begin{bmatrix}
1 & -1 & 1 \cr
2 & 0 & 1 \cr
1 & 0 & 1 \cr
\end{bmatrix}$$
Expanding this last determinant along the second column, the
original determinant is thus
$$-3(-1)^{3 + 2}(-1)(-1)^{1 + 2}\det \begin{bmatrix}
2 & 1 \cr
1 & 1 \cr
\end{bmatrix} = -3(-1)(-1)(-1)(1) = 3.$$
\end{Answer}
\begin{Answer}{B.4.12}
Expanding along the first column,
$$\begin{array}{lll} 0 & = & \det\begin{bmatrix} 1 & 1 & 1 & 1 \cr x & a & 0 & 0 \cr
x & 0 & b & 0 \cr x & 0 & 0 & c\cr \end{bmatrix} \\
& = & \det\begin{bmatrix}a & 0 & 0 \cr 0 & b & 0 \cr 0 & 0 & c \cr
\end{bmatrix} - x\det\begin{bmatrix} 1 & 1 & 1 \cr 0 & b & 0 \cr 0
& 0 & c \cr \end{bmatrix} \\ & & \qquad + x\det\begin{bmatrix}1 &
1 & 1 \cr a & 0 & 0 \cr 0 & 0 & c \cr \end{bmatrix}
- x\det\begin{bmatrix} 1 & 1 & 1 \cr a & 0 & 0 \cr 0 & b & 0 \cr \end{bmatrix} \\
& = & xabc - xbc + x\det\begin{bmatrix}1 & 1 & 1 \cr a & 0 & 0 \cr
0 & 0 & c \cr \end{bmatrix} - x\det\begin{bmatrix} 1 & 1 & 1 \cr
a & 0 & 0 \cr 0 & b & 0 \cr \end{bmatrix}.\\ \end{array}$$
Expanding these last two determinants along the third row,
$$\begin{array}{lll} 0 & = & abc - xbc
+ x\det\begin{bmatrix}1 & 1 & 1 \cr a & 0 & 0 \cr 0 & 0 & c \cr
\end{bmatrix}
- x\det\begin{bmatrix} 1 & 1 & 1 \cr a & a & 0 \cr 0 & b & 0 \cr \end{bmatrix}\\
& = & abc - xbc + xc\det \begin{bmatrix} 1 & 1 \cr a & 0 \cr\end{bmatrix} + xb\det \begin{bmatrix} 1 & 1 \cr a & 0 \cr\end{bmatrix} \\
& = & abc - xbc - xca -xab.
\end{array}$$It follows that $$abc = x(bc + ab + ca), $$whence$$\frac{1}{x} = \frac{bc + ab + ca}{abc} = \frac{1}{a} +\frac{1}{b} + \frac{1}{c}, $$as wanted.
\end{Answer}
\begin{Answer}{B.4.14}
Expanding along the first row the determinant equals
$$\begin{array}{lll}-a\det\begin{bmatrix} a & b & 0 \cr
0 & 0 & b \cr 1 & 1 & 1 \cr \end{bmatrix} + b\det\begin{bmatrix} a
& 0 & 0 \cr 0 & a & b \cr 1 & 1 & 1 \cr\end{bmatrix} & = & ab
\det\begin{bmatrix} a & b \cr 1 & 1 \cr
\end{bmatrix} + ab\det\begin{bmatrix} a & b \cr 1 & 1 \cr
\end{bmatrix} \\ & = & 2ab (a - b), \end{array}$$as wanted.
\end{Answer}
\begin{Answer}{B.4.15}
Expanding along the first row, the determinant equals
$$ a\det\begin{bmatrix} a & 0 & b \cr 0 & d & 0 \cr c & 0 & d \cr \end{bmatrix}
+ b \det\begin{bmatrix} 0 & a & b \cr c & 0 & 0 \cr 0 & c & d \cr
\end{bmatrix}.
$$Expanding the resulting two determinants along the second row,
we obtain $$ad\det\begin{bmatrix}a & b \cr c & d\cr \end{bmatrix}
+ b(-c)\det\begin{bmatrix}a & b \cr c & d\cr \end{bmatrix} =
ad(ad - bc) - bc(ad - bc) = (ad - bc)^2,
$$as wanted.
\end{Answer}
\begin{Answer}{B.4.16}
For $n = 1$ we
have $\det (1) = 1 = (-1)^{1 + 1}$. For $n = 2$ we have
$$\det \begin{bmatrix} 1 & 1 \cr 1 & 0 \cr
\end{bmatrix} = -1 = (-1)^{2 + 1}.
$$Assume that the result is true for $n -1$. Expanding the
determinant along the first column
$$ \begin{array}{lll}\det\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 &
1 \cr 1& 0 & 0 & \vdots & 0 & 0 \cr 0 & 1 & 0 & \cdots & 0 & 0
\cr 0 & 0 & 1& \cdots & 0 & 0 \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr 0 & 0 & 0 & \cdots & 1 & 0 \cr
\end{bmatrix} & = & 1\det\begin{bmatrix} 0 & 0 & \vdots & 0 & 0 \cr 1 & 0 & \cdots & 0 & 0
\cr 0 & 1& \cdots & 0 & 0 \cr \vdots & \cdots & \vdots & \vdots
\cr 0 & 0 & \cdots & 1 & 0 \cr
\end{bmatrix} \\ & & \qquad - 1 \det\begin{bmatrix} 1 & 1 & \cdots & 1 &
1 \cr 1& 0 & \cdots & \vdots & 0 \cr 0 & 1 & \cdots & \cdots &
0 \cr 0 & 0 & \cdots & \cdots & 0 \cr \vdots & \vdots & \cdots &
\vdots \cr 0 & 0 & \cdots & 1 & 0 \cr
\end{bmatrix}\\
& = & 1(0) - (1)(-1)^{n}\\
& = & (-1)^{n + 1},\\ \end{array}$$giving the result.
\end{Answer}
\begin{Answer}{B.4.17}
Perform $C_k - C_1 \rightarrow C_k$ for $k \in [2; n]$. Observe that
these operations do not affect the value of the determinant. Then
$$\det A = \det\begin{bmatrix} 1 & n - 1 & n - 1 & n - 1 & \cdots & n - 1 \cr n & 2 - n &
0 & 0 & \vdots & 0 \cr n & 0 & 3 - n & 0 & \cdots & 0 \cr n & 0 &
0 & 4-n & \cdots & 0 \cr \vdots & \vdots & \vdots & \cdots &
\vdots \cr n & 0 & 0 & 0 & 0 & 0 \cr
\end{bmatrix}.
$$Expand this last determinant along the $n$-th row, obtaining,
$$\begin{array}{lll}\det A & = & (-1)^{1 + n}n\det\begin{bmatrix} n - 1 & n - 1 & n - 1 & \cdots & n - 1 & n - 1 \cr 2 - n &
0 & 0 & \vdots & 0 & 0 \cr 0 & 3 - n & 0 & \cdots & 0 & 0 \cr 0
& 0 & 4-n & \cdots & 0 & 0 \cr \vdots & \vdots & \cdots & \vdots
& \vdots \cr 0 & 0 & 0 & \cdots & -1 & 0 \cr
\end{bmatrix} \\
& = & (-1)^{1 + n}n(n - 1)(2 - n)(3 - n)\\ & & \qquad \cdots
(-2)(-1) \det\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \cr 1& 0
& 0 & \vdots & 0 & 0 \cr 0 & 1 & 0 & \cdots & 0 & 0 \cr 0 & 0 &
1& \cdots & 0 & 0 \cr \vdots & \vdots & \cdots & \vdots & \vdots
\cr 0 & 0 & 0 & \cdots & 1 & 0 \cr
\end{bmatrix} \\
& = & -(n!)\det\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \cr 1&
0 & 0 & \vdots & 0 & 0 \cr 0 & 1 & 0 & \cdots & 0 & 0 \cr 0 & 0
& 1& \cdots & 0 & 0 \cr \vdots & \vdots & \cdots & \vdots &
\vdots \cr 0 & 0 & 0 & \cdots & 1 & 0 \cr
\end{bmatrix} \\
& = & -(n!)(-1)^{n} \\
& = & (-1)^{n + 1}n!,
\end{array}$$
upon using the result of problem
\ref{exa:determinant_bunch_of_ones}.
\end{Answer}
\begin{Answer}{B.4.18}
Recall
that $\binom{n}{k} = \binom{n}{n - k}$, $$ \sum _{k = 0} ^n
\binom{n}{k} = 2^n $$ and$$ \sum _{k = 0} ^n (-1)^{k}\binom{n}{k}
= 0, \ \ \ \ {\textrm if}\ \ n > 0. $$ Assume that $n$ is odd. Observe
that then there are $n + 1$ (an even number) of columns and that
on the same row, $\binom{n}{k}$ is on a column of opposite parity
to that of $\binom{n}{n - k}$. By performing $C_1 - C_2 + C_3 -
C_4 + \cdots + C_n - C_{n + 1} \rightarrow C_1$, the first column
becomes all $0$'s, whence the determinant if $0$ if $n$ is odd.
\end{Answer}
\begin{Answer}{B.4.22}
I will prove that
$$\det \begin{bmatrix} (b+c)^2 & ab & ac \cr
ab & (a+c)^2 & bc\cr ac & bc & (a+b)^2 \cr
\end{bmatrix} = 2abc(a+b+c)^3. $$
Using permissible row and column operations,
$$\begin{array}{lll}
\det \begin{bmatrix} (b+c)^2 & ab & ac \cr ab & (a+c)^2 & bc\cr ac
& bc & (a+b)^2 \cr
\end{bmatrix} & = & \det \begin{bmatrix} b^2+2bc+c^2 & ab & ac \cr ab & a^2+2ca+c^2 & bc\cr ac
& bc & a^2+2ab+b^2 \cr
\end{bmatrix}\\
& = \grstep{C_1+C_2+C_3\to C_1} & \det
\begin{bmatrix} b^2+2bc+c^2+ab+ac & ab & ac \cr ab+a^2+2ca+c^2+bc & a^2+2ca+c^2 & bc\cr
ac+bc+a^2+2ab+b^2 & bc & a^2+2ab+b^2 \cr
\end{bmatrix}\\
& = & \det
\begin{bmatrix} (b+c)(a+b+c) & ab & ac \cr (a+c)(a+b+c) & a^2+2ca+c^2 & bc\cr
(a+b)(a+b+c) & bc & a^2+2ab+b^2 \cr
\end{bmatrix}\\
\end{array}$$
Pulling out a factor, the above equals
$$
(a+b+c)\det
\begin{bmatrix} b+c & ab & ac \cr a+c & a^2+2ca+c^2 & bc\cr
a+b & bc & a^2+2ab+b^2 \cr
\end{bmatrix}
$$ and performing $R_1+R_2+R_3\to R_1$, this is $$ (a+b+c)\det
\begin{bmatrix} 2a+2b+2c & ab+a^2+2ca+c^2+bc & ac+bc+ a^2+2ab+b^2 \cr a+c & a^2+2ca+c^2 & bc\cr
a+b & bc & a^2+2ab+b^2 \cr
\end{bmatrix}$$
Factoring this is
$$ (a+b+c)\det
\begin{bmatrix} 2(a+b+c) & (a+c)(a+b+c) & (a+b)(a+b+c) \cr a+c & a^2+2ca+c^2 & bc\cr
a+b & bc & a^2+2ab+b^2 \cr
\end{bmatrix},$$which in turn is $$(a+b+c)^2\det
\begin{bmatrix} 2 & a+c & a+b \cr a+c & a^2+2ca+c^2 & bc\cr
a+b & bc & a^2+2ab+b^2 \cr
\end{bmatrix}$$
Performing $C_2-(a+c)C_1\to C_2$ and $C_3-(a+b)C_1\to C_3$ we obtain
$$(a+b+c)^2\det
\begin{bmatrix} 2 & -a-c & -a-b \cr a+c & 0 & -a^2-ab-ac\cr
a+b &-a^2- ab-ac & 0 \cr
\end{bmatrix}$$
This last matrix we will expand by the second column, obtaining that
the original determinant is thus
$$ (a+b+c)^2\left((a+c)\det\begin{bmatrix}a+c & -a^2-ab-ac \cr a+b & 0 \end{bmatrix} +(a^2+ab+ac)\det\begin{bmatrix} 2 & -a-b \cr a+c & -a^2-ab-ac \end{bmatrix}\right) $$
This simplifies to
$$\begin{array}{lll}
(a+b+c)^2\left((a+c)(a+b)(a^2+ab+ac\right.)\\
\qquad \left.+(a^2+ab+ac)(-a^2-ab-ac+bc)\right) & = &
a(a+b+c)^3((a+c)(a+b)-a^2-ab-ac+bc)\\ & = &
2abc(a+b+c)^3,\end{array}
$$ as claimed.
\end{Answer}
\begin{Answer}{B.4.23}
We have
\begin{eqnarray*}\det \begin{bmatrix} a & b & c & d \cr d & a & b
& c \cr c & d & a & b \cr b & c & d & a\cr \end{bmatrix} &
\grstep[=]{R_1+R_2+R_3+R_4\to R_1} & \det \begin{bmatrix} a+b+c+d &
a+b+c+d & a+b+c+d & a+b+c+d \cr d & a & b & c \cr c & d & a & b \cr
b & c & d & a\cr
\end{bmatrix}\\
& = & (a+b+c+d)\det \begin{bmatrix} 1 & 1 & 1 & 1 \cr d & a & b & c
\cr c & d & a & b \cr b & c & d & a\cr \end{bmatrix}\\
& \grstep[=]{C_4-C_3+C_2-C_1\to C_4} & (a+b+c+d)\begin{bmatrix} 1 &
1 & 1 & 0\cr d & a & b & c-b+a-d \cr c & d & a & b-a+d-c \cr b & c &
d & a-d+c-b\cr
\end{bmatrix}\\
& = & (a+b+c+d)(a-b+c-d)\begin{bmatrix} 1 & 1 & 1 & 0\cr d & a & b
& 1\cr c & d & a & -1 \cr b & c & d & 1\cr
\end{bmatrix}\\
& \grstep[=]{R_2+R_3\to R_2,\ R_4+R_3\to R_4} &
(a+b+c+d)(a-b+c-d)\begin{bmatrix} 1 & 1 & 1 & 0\cr d+c & a+d & b+a &
0\cr c & d & a & -1 \cr b+c & c+d & a+d & 0\cr
\end{bmatrix}\\
&= & (a+b+c+d)(a-b+c-d)\begin{bmatrix} 1 & 1 & 1 \cr d+c & a+d & b+a
\cr b+c & c+d & a+d \cr
\end{bmatrix}\\
& \grstep[=]{C_1-C_3\to C_1, \ C_2-C_3\to C_2} &
(a+b+c+d)(a-b+c-d)\begin{bmatrix} 0 & 0 & 1 \cr d+c-b-a & d-b & b+a
\cr b+c-a-d & c-a
& a+d \cr
\end{bmatrix}\\
& = & (a+b+c+d)(a-b+c-d)\begin{bmatrix} d+c-b-a & d-b \cr b+c-a-d &
c-a
\cr
\end{bmatrix}\\
& = & (a+b+c+d)(a-b+c-d) (d+c-b-a)(c-a)-(d-b)(b+c-a-d)
\\
& = & (a+b+c+d)(a-b+c-d)\\
& & \qquad
((c-a)(c-a)+(c-a)(d-b)-(d-b)(c-a)-(d-b)(b-d))
\\
& = & (a+b+c+d)(a-b+c-d)((a-c)^2+(b-d)^2).
\end{eqnarray*}
\begin{rem}
Since $$ (a-c)^2+(b-d)^2=(a-c+i(b-d))(a-c-i(b-d)), $$ the
above determinant is then
$$ (a+b+c+d)(a-b+c-d)(a+ib-c-id)(a-ib-c+id). $$
Generalisations of this determinant are possible using roots of
unity.
\end{rem}
\end{Answer}