-
Notifications
You must be signed in to change notification settings - Fork 7
/
determinant.tex
1609 lines (1535 loc) · 68.4 KB
/
determinant.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Determinants}
\section{Permutations}
\begin{df}
Let $S$ be a finite set with $n \geq 1$ elements. A \negrito{permutation} is a bijective function $\tau : S \rightarrow S$. It
is easy to see that there are $n!$ permutations from $S$ onto
itself. \index{permutation}
\end{df}
Since we are mostly concerned with the {\em action} that $\tau$
exerts on $S$ rather than with the particular names of the
elements of $S$, we will take $S$ to be the set $S = \{1, 2, 3,
\ldots , n \}$. We indicate a permutation $\tau$ by means of the
following convenient diagram
$$\tau = \begin{bmatrix} 1 & 2 & \cdots & n \cr \tau (1) & \tau (2) & \cdots & \tau (n) \end{bmatrix}.$$
\begin{df}
The notation $S_n$ will denote the set of all permutations on
$\{1, 2, 3, \ldots , n \}$. Under this notation, the composition
of two permutations $(\tau, \sigma)\in S_n ^2$ is
$$ \begin{array}{lll}\tau\circ \sigma & = & \begin{bmatrix} 1 & 2 & \cdots & n \cr \tau (1) & \tau (2) & \cdots & \tau (n) \end{bmatrix}
\circ\begin{bmatrix} 1 & 2 & \cdots & n \cr \sigma (1) & \sigma
(2) & \cdots & \sigma (n) \end{bmatrix} \\ & = &
\begin{bmatrix} 1 & 2 & \cdots & n \cr (\tau \circ \sigma) (1) & (\tau \circ \sigma) (2) & \cdots &
(\tau \circ \sigma) (n) \end{bmatrix}\end{array}. $$ The $k$-fold
composition of $\tau$ is
$$ \underbrace{\tau \circ \cdots \circ \tau}_{k\ {\textrm compositions}} = \tau^k. $$
\end{df}
\begin{rem}
We usually do away with the $\circ$ and write $\tau\circ\sigma$
simply as $\tau\sigma$. This ``product of permutations'' is thus
simply function composition.
\end{rem}
Given a permutation
$\tau: S \rightarrow S$, since $\tau$ is bijective,
$$\tau ^{-1}: S \rightarrow S$$ exists and
is also a permutation. In fact if
$$\tau = \begin{bmatrix} 1 & 2 & \cdots & n \\ \tau (1) & \tau (2) & \cdots & \tau (n) \end{bmatrix},$$
then
$$\tau^{-1} = \begin{bmatrix}\tau (1) & \tau (2) & \cdots & \tau (n) \\ 1 & 2 & \cdots & n \\ \end{bmatrix}.$$
\vspace{2cm}
\begin{figure}[htb]
$$\psset{unit=2pc}\psline[linewidth=2pt](-1, 0)(1, 0)(0, 1.4142135623730950488016887242097)(-1,0)
\psline[linestyle=dotted](0,1.4142135623730950488016887242097)(0,0)
\uput[u](0, 1.4142135623730950488016887242097){1}
\psline[linestyle=dotted](-1,0)(.5,
0.70710678118654752440084436210485) \uput[l](-1, 0){2}
\psline[linestyle=dotted](1,0)(-.5,
0.70710678118654752440084436210485) \uput[r](1,0){3}
$$\vspace{1cm}\caption{$S_3$ are rotations and reflexions.} \label{fig:S_3}
\end{figure}
\begin{exa}
The set $S_3$ has $3! = 6$ elements, which are given below.
\begin{enumerate}
\item $\idefun: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ with
$$\idefun = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}.$$
\item $\tau_1: \{1, 2, 3\} \rightarrow \{1, 2, 3\} $ with
$$\tau_1 = \begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}.$$
\item $\tau_2: \{1, 2, 3\} \rightarrow \{1, 2, 3\} $ with
$$\tau_2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}.$$
\item $\tau_3: \{1, 2, 3\} \rightarrow \{1, 2, 3\} $ with
$$\tau_3 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}.$$
\item $\sigma_1: \{1, 2, 3\} \rightarrow \{1, 2, 3\} $ with
$$\sigma_1 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}.$$
\item $\sigma_2: \{1, 2, 3\} \rightarrow \{1, 2, 3\} $ with
$$\sigma_2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}.$$
\end{enumerate}
\label{ex:S_3}\end{exa}
\begin{exa}
The compositions $\tau_1 \circ \sigma_1$ and $\sigma_1\circ
\tau_1$ can be found as follows.
$$ \tau_1 \circ \sigma_1 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}\circ
\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1
\end{bmatrix} = \begin{bmatrix}1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \tau_2 .$$
(We read from right to left $1 \rightarrow 2 \rightarrow 3$ (``1
goes to 2, 2 goes to 3, so 1 goes to 3''), etc. Similarly
$$ \sigma_1 \circ \tau_1 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1
\end{bmatrix}\circ\begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}
= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} =
\tau_3.$$Observe in particular that $\sigma_1 \circ \tau_1 \neq \tau_1 \circ \sigma_1 .$
Finding all the other products we deduce the following
``multiplication table'' (where the ``multiplication'' operation
is really composition of functions).
$$\begin{array}{|c||c|c|c|c|c|c|}
\hline \circ & \idefun & \tau_1 & \tau_2 & \tau_3 & \sigma_1 & \sigma_2\\
\hline \hline \idefun & \idefun & \tau_1 & \tau_2 & \tau_3 & \sigma_1 & \sigma_2 \\
\hline \tau_1 & \tau_1 & \idefun & \sigma_1 &\sigma_2 & \tau_2 & \tau_3 \\
\hline \tau_2 & \tau_2 & \sigma_2 & \idefun & \sigma_1 & \tau_3&\tau_1 \\
\hline \tau_3 & \tau_3 & \sigma_1& \sigma_2 & \idefun &\tau_1 & \tau_2 \\
\hline \sigma_2 & \sigma_2 & \tau_2& \tau_3& \tau_1& \idefun & \sigma_1 \\
\hline \sigma_1 & \sigma_1 & \tau_3 & \tau_1 & \tau_2& \sigma_2 &\idefun \\
\hline
\end{array}$$
\label{ex:tau}\end{exa}
The permutations in example \ref{ex:S_3} can be conveniently
interpreted as follows. Consider an equilateral triangle with
vertices labelled $1$, $2$ and $3$, as in figure \ref{fig:S_3}.
Each $\tau_a$ is a reflexion (``flipping'') about the line joining
the vertex $a$ with the midpoint of the side opposite $a$. For
example $\tau_1$ fixes $1$ and flips $2$ and $3$. Observe that two
successive flips return the vertices to their original position
and so $(\forall a\in\{1, 2, 3\})(\tau_a ^2 = \idefun)$.
Similarly, $\sigma_1$ is a rotation of the vertices by an angle of
$120^\circ$. Three successive rotations restore the vertices to
their original position and so $\sigma_1 ^3 = \idefun$.
\begin{exa}
To find $\tau_1^{-1}$ take the representation of $\tau_1$ and
exchange the rows:
$$ \tau_1^{-1} = \begin{bmatrix}1 & 3 & 2 \\ 1 & 2 & 3 \\ \end{bmatrix}.$$
This is more naturally written as
$$ \tau_1^{-1} = \begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 2 \\ \end{bmatrix}.$$
Observe that $\tau_1^{-1} = \tau _1$.
\end{exa}
\begin{exa}
To find $\sigma_1^{-1}$ take the representation of $\sigma_1$ and
exchange the rows:
$$ \sigma_1^{-1} = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 3 \\ \end{bmatrix}.$$
This is more naturally written as
$$ \sigma_1^{-1} = \begin{bmatrix}1 & 2 & 3 \\ 3 & 1 & 2 \\ \end{bmatrix}.$$
Observe that $\sigma_1^{-1} = \sigma_2$.
\end{exa}
\section{Cycle Notation} We now present a
shorthand notation for permutations by introducing the idea of a
{\em cycle}. Consider in $S_9$ the permutation
$$\tau = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 1 & 3 & 6 & 9 & 7 & 8 & 4 & 5 \end{bmatrix}.$$ We start with
1. Since 1 goes to 2 and 2 goes back to 1, we write $(12)$. Now we
continue with 3. Since 3 goes to 3, we write $(3)$. We continue
with 4. As 4 goes 6, 6 goes to 7, 7 goes 8, and 8 goes back to 4,
we write $(4678)$. We consider now $5$ which goes to 9 and 9 goes
back to 5, so we write $(59)$. We have written $\tau$ as a product
of disjoint cycles
$$\tau = (12)(3)(4678)(59).$$This prompts the following
definition.
\begin{df}
Let $l\geq 1$ and let $i_1,\ldots,i_l\in\{1,2,\ldots n\}$ be
distinct. We write $(i_1\ i_2\ \ldots\ i_l)$ for the element
$\sigma\in S_n$ such that $\sigma(i_r)=i_{r+1}, \ \ 1\leq r<l$,
$\sigma(i_l)=i_1$ and $\sigma(i)=i$ for
$i\not\in\{i_1,\ldots,i_l\}$. We say that $(i_1\ i_2\ \ldots\
i_l)$ is a \negrito{cycle of length $l$}. The \negrito{order} of a cycle
is its length. Observe that if $\tau$ has order $l$ then $\tau^l =
\idefun$.\end{df}
\begin{rem}
Observe that $(i_2\ \ldots\ i_l\ i_1)=(i_1\ \ldots\ i_l)$ etc.,
and that $(1)=(2)=\cdots=(n)= \idefun$. In fact, we have
$$(i_1\ \ldots\ i_l)=(j_1\ \ldots\ j_m)$$ if and only if (1) $l=m$
and if (2) $l>1$: $\exists a$ such that $\forall k$: $i_k =
j_{k+a \mod l}$. Two cycles $(i_1,\ldots,i_l)$ and
$(j_1,\ldots,j_m)$ are disjoint if $\{i_1, \ldots ,
i_l\}\cap\{j_1, \ldots , j_m\}=\varnothing$. Disjoint cycles
commute and if $\tau = \sigma_1\sigma_2 \cdots \sigma_t$ is the
product of disjoint cycles of length $l_1, l_2, \ldots , l_t$
respectively, then $\tau$ has order
$$ \lcm{l_1, l_2, \ldots , l_t}.$$
\end{rem}
\begin{exa}
A cycle decomposition for $\alpha\in S_9,$
$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 8 & 7 & 6 & 2 & 3 & 4 & 5 & 9 \end{bmatrix}$$ is
$$(285)(3746).$$ The order of $\alpha$ is $\lcm{3, 4} = 12$.
\label{ex:alpha}\end{exa}
\begin{exa}
The cycle decomposition $\beta = (123)(567)$ in $S_9$ arises from
the permutation
$$\beta = \begin{bmatrix}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 1 & 4 & 6 & 7 & 5 & 8 & 9 \\ \end{bmatrix}.$$ Its order is
$\lcm{3,3} = 3$. \label{ex:beta}\end{exa}
\begin{exa}
Find a shuffle of a deck of $13$ cards that requires $42$ repeats
to return the cards to their original order.
\end{exa}
\begin{solu}Here is one (of many possible ones). Observe that $7 + 6
= 13$ and $7\times 6 = 42$. We take the permutation
$$(1\ 2\ 3\ 4\ 5\ 6\ 7)(8\ 9\ 10\ 11\ 12\ 13)$$which has order 42.
This corresponds to the following shuffle: For $$i\in \{1, 2, 3,
4, 5, 6, 8, 9, 10, 11, 12\},$$ take the $i$th card to the ($i +
1$)th place, take the $7$th card to the first position and the
13th card to the $8$th position. Query: Of all possible shuffles
of 13 cards, which one takes the longest to restitute the cards to
their original position?
\end{solu}
\begin{exa}
Let a shuffle of a deck of 10 cards be made as follows: The top
card is put at the bottom, the deck is cut in half, the bottom
half is placed on top of the top half, and then the resulting
bottom card is put on top. How many times must this shuffle be
repeated to get the cards in the initial order? Explain.
\end{exa}
\begin{solu}Putting the top card at the bottom corresponds to
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\cr
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 1 \cr
\end{bmatrix}.
$$ Cutting this new arrangement in half and putting the lower half on top corresponds to
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\cr
7 & 8 & 9 & 10 & 1 & 2 & 3 & 4 & 5 & 6 \cr
\end{bmatrix}.
$$
Putting the bottom card of this new arrangement on top corresponds
to
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\cr
6 & 7 & 8 & 9 & 10 & 1 & 2 & 3 & 4 & 5 \cr
\end{bmatrix} = (1\ 6)(2\ 7)(3\ 8)(4\ 9)(5\ 10).
$$The order of this permutation is ${\textrm lcm} (2, 2, 2, 2, 2) = 2$, so
in 2 shuffles the cards are restored to their original position.
\end{solu}
The above examples illustrate the general case, given in the
following theorem.
\begin{thm}
Every permutation in $S_n$ can be written as a product of disjoint
cycles.\label{thm:permu_is_prod_cycles}
\end{thm}
\begin{proof}
Let $\tau \in S_n, a_1\in\{1, 2, \ldots, n\}$. Put $\tau ^k (a_1)
= a_{k + 1}, k \geq 0$. Let $a_1, a_2, \ldots , a_s$ be the
longest chain with no repeats. Then we have $\tau (a_s) = a_1$. If
the $\{a_1, a_2, \ldots , a_s\}$ exhaust $\{1, 2, \ldots, n\}$
then we have $\tau = (a_1\ a_2\ \ldots\ a_s)$. If not, there exist
$b_1\in \{1, 2, \ldots, n\} \setminus\{a_1, a_2, \ldots , a_s\}$.
Again, we find the longest chain of distinct $b_1, b_2, \ldots,
b_t$ such that $\tau (b_k) = b_{k + 1}, k = 1, \ldots, t -1$ and
$\tau (b_t) = b_1.$ If the $\{a_1, a_2, \ldots , a_s, b_1, b_2,
\ldots, b_t\}$ exhaust all the $\{1, 2, \ldots, n\}$ we have $\tau
= (a_1\ a_2\ \ldots\ a_s)( b_1\ b_2\ \ldots\ b_t)$. If not we
continue the process and find $$\tau = (a_1\ a_2\ \ldots\ a_s)(
b_1\ b_2\ \ldots\ b_t)(c_1\ldots )\ldots . $$This process stops
because we have only $n$ elements.
\end{proof}
\begin{df}
A \negrito{transposition} is a cycle of length $2$.\footnote{A cycle
of length $2$ should more appropriately be called a \negrito{bicycle}.}
\end{df}
\begin{exa}
The cycle $(23468)$ can be written as a product of transpositions
as follows
$$(23468) = (28)(26)(24)(23).$$ Notice that this decomposition as
the product of transpositions is not unique. Another decomposition
is $$(23468) = (23)(34)(46)(68).$$
\end{exa}
\begin{lemma}
Every permutation is the product of transpositions.
\label{lem:permu_is_prod_bicycles}\end{lemma}
\begin{proof}
It is enough to observe that
$$ (a_1\ a_2\ \ldots\ a_s) = (a_1\ a_s)(a_1\ a_{s - 1}) \cdots (a_1\ a_2)
$$and appeal to Theorem \ref{thm:permu_is_prod_cycles}.
\end{proof}
Let $\sigma\in S_n$ and let $(i, j)\in \{1, 2, \ldots, n\}^2, \ \
i\neq j$. Since $\sigma$ is a permutation, $\exists (a, b)\in \{1,
2, \ldots, n\}^2, \ \ a\neq b$, such that $\sigma (j) - \sigma
(i) = b - a$. This means that $$ \left|\prod_{1\leq i<j\leq n}
\frac{\sigma(i)-\sigma(j)}{i-j}\right| = 1 . $$
\begin{df} Let $\sigma\in S_n$. We define the \negrito{sign} $\sgn\sigma$ of $\sigma$ as
$$\sgn{\sigma} = \prod_{1\leq i<j\leq n}
\frac{\sigma(i)-\sigma(j)}{i-j} = (-1)^{\sigma}.$$ If
$\sgn{\sigma} = 1$, then we say that $\sigma$ is an \negrito{even permutation}, and if $\sgn{\sigma} = -1$ we say that $\sigma$ is
an \negrito{odd permutation}.
\end{df}
\begin{rem}
Notice that in fact $$\sgn{\sigma} =(-1)^{{\textbf I}(\sigma)},$$where
${\textbf I}(\sigma)=\#\{(i,j)\,|\,1\leq i<j\leq n\;{\textrm and
}\;\sigma(i)>\sigma(j)\}$, i.e., ${\textbf I}(\sigma)$ is the number
of inversions that $\sigma$ effects to the identity permutation
$\idefun$.\end{rem}
\begin{exa}
The transposition $(1\ 2)$ has one inversion.
\end{exa}
\begin{lemma}
For any transposition $(k\ l)$ we have $\sgn{(k\ l)} = -1$.
\end{lemma}
\begin{proof}
Let $\tau$ be transposition that exchanges $k$ and $l$, and assume
that $k<l$:
$$
\tau=
\begin{bmatrix}
1 & \dots & k-1 & k & \dots & l-1 & l & l+1 & \dots & n \\
1 & \dots & k-1 & l & \dots & l-1 & k & l+1 & \dots & n
\end{bmatrix}
$$
Let us count the number of inversions of $\tau$:
\begin{itemize}
\item The pairs $(i,j)$ with $i\in\{1, 2, \ldots, k - 1\}\cup\{l, l + 1, \ldots, n\}$ and $i<j$
do not suffer an inversion;
\item The pair $(k,j)$ with $k<j$ suffers an inversion if and only if
$j\in \{k+1, k + 2, \ldots , l\}$, making $l-k$
inversions;
\item If $i\in\{k+1, k + 2, \ldots , l-1\}$ and $i<j$, $(i,j)$
suffers an
inversion if and only if $j=l$, giving $l-1-k$ inversions.
\end{itemize}
This gives a total of ${\textbf I}(\tau)=(l-k)+(l-1-k)=2(l-k-1)+1$
inversions when $k < l$. Since this number is odd, we have
$\sgn{\tau}=(-1)^{{\textbf I}(\tau)}=-1$. In general we see that the
transposition $(k\ l)$ has $2|k - l| - 1$ inversions.
\end{proof}
\begin{thm} \label{thm:signum_is_a_homomorphism} Let $(\sigma, \tau)\in S_n
^2$. Then
$$ \sgn{\tau\sigma} = \sgn{\tau}\sgn{\sigma}. $$
\end{thm}
\begin{proof}
We have
$$\begin{array}{lll}
\sgn{\sigma\tau} & = & \prod_{1\leq i<j\leq n}
\frac{(\sigma\tau)(i)-(\sigma\tau)(j)}{i-j} \\ & = &
\left(\prod_{1\leq i<j\leq n}
\frac{\sigma(\tau(i))-\sigma(\tau(j))}
{\tau(i)-\tau(j)}\right)\cdot \left(\prod_{1\leq i<j\leq n}
\frac{\tau(i)-\tau(j)}{i-j}\right). \end{array}
$$
The second factor on this last equality is clearly $\sgn{\tau}$,
we must shew that the first factor is $\sgn{\sigma}$. Observe now
that for $1\leq a<b\leq n$ we have
$$
\frac{\sigma(a)-\sigma(b)}{a-b}=\frac{\sigma(b)-\sigma(a)}{b-a}.
$$Since
$\sigma$ and $\tau$ are permutations, $\exists b \neq a, \ \tau
(i) = a, \tau (j) = b$ and so $\sigma\tau (i) = \sigma (a),
\sigma\tau (j) = b$. Thus
$$ \frac{\sigma(\tau(i))-\sigma(\tau(j))}
{\tau(i)-\tau(j)} = \frac{\sigma (a) - \sigma (b)}{a - b} $$ and
so
$$\prod_{1\leq
i<j\leq n} \frac{\sigma(\tau(i))-\sigma(\tau(j))}
{\tau(i)-\tau(j)} = \prod_{1\leq a<b\leq n}
\frac{\sigma(a)-\sigma(b)} {a - b} = \sgn{\sigma}.$$
\end{proof}
\begin{cor}
The identity permutation is even. If $\tau\in S_n$, then
$\sgn{\tau} = \sgn{\tau^{-1}}$.
\label{cor:idefun_is_even}\end{cor}
\begin{proof}
Since there are no inversions in $\idefun$, we have $\sgn{\idefun}
= (-1)^0 = 1$. Since $\tau\tau^{-1} = \idefun$, we must have $1 =
\sgn{\idefun} = \sgn{\tau\tau^{-1}} = \sgn{\tau}\sgn{\tau^{-1}} =
(-1)^\tau (-1)^{\tau^{-1}}$ by Theorem
\ref{thm:signum_is_a_homomorphism}. Since the values on the
righthand of this last equality are $\pm 1$, we must have
$\sgn{\tau}=\sgn{\tau^{-1}}$.
\end{proof}
\begin{lemma}
We have $\sgn{1\ 2\ \ldots\ l)}=(-1)^{l-1}$.
\label{lem:inv_in_1_through_l}\end{lemma}
\begin{proof}
Simply observe that the number of inversions of $(1\ 2\ \ldots\
l)$ is $l- 1$.
\end{proof}
\begin{lemma} \label{lem:signum_through_cycles}
Let $(\tau, (i_1\ \ldots\ i_l)\in S_n ^2$. Then
$$
\tau(i_1\ \ldots\ i_l)\tau^{-1} = (\tau(i_1)\ \ldots\
\tau(i_l)),$$ and if $\sigma\in S_n$ is a cycle of length $l$
then
$$\sgn{\sigma}=(-1)^{l-1}$$.\\
\end{lemma}
\begin{proof}
For $1\leq k<l$ we have $(\tau(i_1\ \ldots\
i_l)\tau^{-1})(\tau(i_k)) = \tau((i_1\ \ldots\ i_l)(i_k)) =
\tau(i_{k+1})$. On a $(\tau(i_1\ \ldots\ i_l)\tau^{-1})(\tau(i_l))
= \tau((i_1\ \ldots\ i_l)(i_l)) = \tau(i_1)$. For
$i\not\in\{\tau(i_1)\ \ldots\ \tau(i_l)\}$ we have
$\tau^{-1}(i)\not\in\{i_1\ \ldots\ i_l\}$ whence $(i_1\ \ldots\
i_l)(\tau^{-1}(i))=\tau^{-1}(i)$ etc.
\bigskip
Furthermore, write $\sigma=(i_1\ \ldots\ i_l)$. Let $\tau\in S_n$
be such that $\tau(k)=i_k$ for $1\leq k\leq l$. Then
$\sigma=\tau(1\ 2\ \ldots\ l)\tau^{-1}$ and so we must have
$\sgn{\sigma} = \sgn{\tau}\sgn{(1\ 2\ \ldots\ l)}\sgn{\tau^{-1}}$,
which equals $\sgn{(1\ 2\ \ldots\ l)}$ by virtue of Theorem
\ref{thm:signum_is_a_homomorphism} and Corollary
\ref{cor:idefun_is_even}. The result now follows by appealing to
Lemma \ref{lem:inv_in_1_through_l}
\end{proof}
\begin{cor}\label{cor:signum_through_bikes}
Let $\sigma=\sigma_1\sigma_2\cdots\sigma_r$ be a product of
disjoint cycles, each of length $l_1,\ldots,l_r$, respectively.
Then
$$
\sgn{\sigma} = (-1)^{\sum_{i=1}^r (l_i-1)}.
$$Hence, the product of two even permutations is even, the product
of two odd permutations is even, and the product of an even
permutation and an odd permutation is odd.
\end{cor}
\begin{proof}
This follows at once from Theorem
\ref{thm:signum_is_a_homomorphism} and Lemma
\ref{lem:signum_through_cycles}.
\end{proof}
\begin{exa}
The cycle $(4678)$ is an odd cycle; the cycle $(1)$ is an even
cycle; the cycle $(12345)$ is an even cycle.
\end{exa}
\begin{cor}\label{cor:permu_is_prod_of_bikes}
Every permutation can be decomposed as a product of
transpositions. This decomposition is not necessarily unique, but
its parity is unique.
\end{cor}
\begin{proof}
This follows from Theorem \ref{thm:permu_is_prod_cycles}, Lemma
\ref{lem:permu_is_prod_bicycles}, and Corollary
\ref{cor:signum_through_bikes}.
\end{proof}
\begin{exa}[The $15$ puzzle] Consider a grid with $16$ squares, as shewn in (\ref{eq:15_puzzle_1}), where $15$ squares are numbered $1$ through $15$ and the 16th slot is
empty.
\begin{equation}\label{eq:15_puzzle_1}
\begin{array}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11
& 12 \\ \hline 13 & 14 & 15 & \\ \hline
\end{array}\end{equation}
In this grid we may successively exchange the empty slot with any
of its neighbours, as for example
\begin{equation}\label{eq:15_puzzle_2}
\begin{array}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11
& 12 \\ \hline 13 & 14 & & 15 \\ \hline
\end{array}.
\end{equation}We ask whether through a series of valid moves we may arrive at the following position.
\begin{equation}\label{eq:15_puzzle_3}
\begin{array}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11
& 12 \\ \hline 13 & 15 & 14 & \\ \hline
\end{array}
\end{equation}
\end{exa}
\begin{solu}Let us shew that this is impossible. Each time we move a
square to the empty position, we make transpositions on the set
$\{1,2,\ldots,16\}$. Thus at each move, the permutation is
multiplied by a transposition and hence it changes sign. Observe
that the permutation corresponding to the square in
(\ref{eq:15_puzzle_3}) is $(14\ 15)$ (the positions 14th and 15th
are transposed) and hence it is an odd permutation. But we claim
that the empty slot can only return to its original position after
an even permutation. To see this paint the grid as a checkerboard:
\begin{equation}\label{eq:15_puzzle_4}
\begin{array}{|c|c|c|c|} \hline
B & R & B & R\\ \hline R & B & R & B \\ \hline B & R & B & R\\
\hline R & B & R & B \\ \hline
\end{array}
\end{equation}
We see that after each move, the empty square changes from black
to red, and thus after an odd number of moves the empty slot is on
a red square. Thus the empty slot cannot return to its original
position in an odd number of moves. This completes the proof.
\end{solu}
\section*{\psframebox{Homework}}
\begin{pro}
Decompose the permutation
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \cr
2 & 3 & 4 & 1 & 5 & 8 & 6 & 7 & 9 \end{bmatrix}$$as a product of
disjoint cycles and find its order. \begin{answer} This is clearly
$(1\ 2\ 3 \ 4)(6\ 8\ 7) $ of order ${\textrm lcm} (4, 3) = 12$.
\end{answer}
\end{pro}
\section{Determinants} There are many ways of
developing the theory of determinants. We will choose a way that
will allow us to deduce the properties of determinants with ease,
but has the drawback of being computationally cumbersome. In the
next section we will shew that our way of defining determinants is
equivalent to a more computationally friendly one.
\bigskip
It may be pertinent here to quickly review some properties of
permutations. Recall that if $\sigma \in S_n$ is a cycle of length
$l$, then its signum $\sgn{\sigma} = \pm 1$ depending on the
parity of $l - 1$. For example, in $S_7$, $$\sigma = (1 \ 3 \ 4 \
7 \ 6)
$$has length $5$, and the parity of $5 - 1 = 4$ is even, and so we
write $\sgn{\sigma} = +1$. On the other hand, $$\tau = (1 \ 3 \ 4
\ 7 \ 6 \ 5) $$has length $6$, and the parity of $6 - 1 = 5$ is
odd, and so we write $\sgn{\tau} = -1$.
\bigskip
Recall also that if $(\sigma, \tau)\in S_n ^2$, then
$$ \sgn{\tau\sigma} = \sgn{\tau}\sgn{\sigma}. $$ Thus from the
above two examples
$$\sigma\tau = (1 \ 3 \ 4 \
7 \ 6)(1 \ 3 \ 4 \ 7 \ 6\ 5)
$$has signum $\sgn{\sigma} \sgn{\tau} = (+1)(-1) = -1$. Observe in
particular that for the identity permutation $\idefun\in S_n$ we
have $\sgn{\idefun} = +1$.
\begin{df}
Let $A\in\mat{n\times n}{ \bbR}, A = [a_{ij}]$ be a square matrix.
The \negrito{determinant of $A$} is defined and denoted by the sum $$
\det A = \sum _{\sigma \in S_n} \sgn{\sigma} a_{1\sigma
(1)}a_{2\sigma (2)} \cdots a_{n\sigma (n)}.$$ \index{determinant}
\end{df}
\begin{rem}
The determinantal sum has $n!$ summands.
\end{rem}
\begin{exa}
If $n = 1$, then $S_1$ has only one member, $\idefun$, where
$\idefun (1) = 1$. Since $\idefun$ is an even permutation, $\sgn{
\idefun} = (+1)$ Thus if $A = (a_{11})$, then
$$\det A
= a_{11}$$.
\end{exa}
\begin{exa}
If $n = 2$, then $S_2$ has $2! = 2$ members, $\idefun$ and
$\sigma =
(1 \ 2)$. Observe that $\sgn{\sigma} = -1$. Thus if $$A = \begin{bmatrix}a_{11} & a_{12} \cr a_{21} & a_{22}\cr
\end{bmatrix}$$ then
$$\det A = \sgn{\idefun}a_{1\idefun (1)}a_{2\idefun (2)} + \sgn{\sigma}a_{1\sigma (1)}a_{2\sigma (2)} = a_{11}a_{22} - a_{12}a_{21}. $$
\end{exa}
\begin{exa}
From the above formula for $2\times 2$ matrices it follows that
$$\begin{array}{lll}\det A & = & \det \begin{bmatrix} 1 & 2 \cr 3 & 4 \cr \end{bmatrix} \\ & = & (1)(4) - (3)(2) = -2,\end{array} $$
$$\begin{array}{lll}\det B & = & \det \begin{bmatrix} -1 & 2 \cr 3 & 4 \cr
\end{bmatrix}(-1)(4) - (3)(2)\\ & = & -10, \end{array}$$ and $$ \det (A + B) = \det \begin{bmatrix} 0 & 4 \cr 6 & 8 \cr \end{bmatrix}
= (0)(8) - (6)(4) = -24.$$Observe in particular that $\det (A + B) \neq \det A + \det B$.
\end{exa}
\begin{exa}
If $n = 3$, then $S_2$ has $3! = 6$ members:
$$\idefun, \tau_1 = (2 \ 3), \tau_2 = (1 \ 3), \tau_3 = (1 \ 2), \sigma_1 = (1 \ 2 \ 3), \sigma_2 = (1 \ 3 \ 2). $$.
Observe that $\idefun, \sigma_1, \sigma_2$ are even, and $\tau_1,
\tau_2, \tau_3$ are odd. Thus if $$A = \begin{bmatrix}a_{11} &
a_{12} & a_{13} \cr a_{21} & a_{22} & a_{23}\cr a_{31} & a_{32} &
a_{33}\cr
\end{bmatrix}$$then
$$\begin{array}{lll}\det A & = & \sgn{\idefun}a_{1\idefun (1)}a_{2\idefun (2)}a_{3\idefun (3)} + \sgn{\tau_1}a_{1\tau_1 (1)}a_{2\tau_1 (2)}a_{3\tau_1
(3)}\\
& & \quad + \sgn{\tau_2}a_{1\tau_2 (1)}a_{2\tau_2 (2)}a_{3\tau_2
(3)} + \sgn{\tau_3}a_{1\tau_3 (1)}a_{2\tau_3 (2)}a_{3\tau_3 (3)}
\\
& & \quad + \sgn{\sigma_1}a_{1\sigma_1 (1)}a_{2\sigma_1
(2)}a_{3\sigma_1 (3)} + \sgn{\sigma_2}a_{1\sigma_2
(1)}a_{2\sigma_2 (2)}a_{3\sigma_2 (3)}
\\
& = & a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{13}a_{22}a_{31}\\
& & \qquad - a_{13}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}. \\
\end{array}
$$
\end{exa}
\begin{thm}[Row-Alternancy of Determinants]\label{thm:alternating_determinants}
Let $A \in \mat{n\times n}{ \bbR}, A = [a_{ij}]$. If $B \in
\mat{n\times n}{ \bbR}, B = [b_{ij}]$ is the matrix obtained by
interchanging the $s$-th row of $A$ with its $t$-th row, then $\det
B = -\det A$.
\end{thm}
\begin{proof}
Let $\tau$ be the transposition
$$\tau =
\begin{bmatrix} s & t \cr \tau (t) & \tau (s) \cr
\end{bmatrix}.
$$Then $\sigma\tau (a) = \sigma (a)$ for $a\in\{1, 2, \ldots , n\}\setminus
\{s,t\}$. Also, $\sgn{\sigma\tau} = \sgn{\sigma}\sgn{\tau} =
-\sgn{\sigma}$. As $\sigma$ ranges through all permutations of
$S_n$, so does
$\sigma\tau$, hence
$$\begin{array}{lll}\det B & = & \sum _{\sigma\in S_n}\sgn{\sigma} b_{1\sigma (1)}b_{2\sigma (2)}\cdots
b_{s\sigma (s)}\cdots b_{t\sigma (t)} \cdots b_{n\sigma (n)} \\ &
= & \sum _{\sigma\in S_n}\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma
(2)}\cdots a_{st}\cdots a_{ts} \cdots a_{n\sigma (n)} \\
& = & -\sum _{\sigma\in S_n}\sgn{\sigma\tau }a_{1\sigma\tau
(1)}a_{2\sigma\tau (2)}\cdots a_{s\sigma\tau
(s)}\cdots a_{t\sigma\tau (t)} \cdots a_{n\sigma\tau (n)} \\
& = & -\sum _{\lambda \in S_n} \sgn{\lambda } a_{1\lambda
(1)}a_{2\lambda (2)} \cdots a_{n\lambda (n)} \\
& = & -\det A.
\end{array} $$
\end{proof}
\begin{cor}If $A_{(r:k)}, 1 \leq k \leq n$ denote the rows of $A$
and $\sigma \in S_n$, then $$\det \begin{bmatrix} A_{(r:\sigma
(1))} \cr A_{(r:\sigma (2))} \cr \vdots \cr A_{(r:\sigma (n))}\cr
\end{bmatrix} = (\sgn{\sigma})\det A. $$An analogous result holds
for columns. \label{cor:alternating_determinants}\end{cor}
\begin{proof}
Apply the result of Theorem \ref{thm:alternating_determinants}
multiple times.
\end{proof}
\begin{thm} \label{thm:determinant_of_transpose}
Let $A \in \mat{n\times n}{ \bbR}, A = [a_{ij}]$. Then $$\det A^T =
\det A.$$
\end{thm}
\begin{proof}
Let $C = A^T$. By definition $$\begin{array}{lll}\det A^T & = &
\det C \\ & = & \sum _{\sigma \in S_n} \sgn{\sigma} c_{1\sigma
(1)}c_{2\sigma (2)} \cdots c_{n\sigma (n)} \\ & = & \sum
_{\sigma \in S_n} \sgn{\sigma} a_{\sigma (1)1}a_{\sigma (2)2}
\cdots a_{\sigma (n)n}. \end{array}$$But the product $a_{\sigma
(1)1}a_{\sigma (2)2} \cdots a_{\sigma (n)n}$ also appears in $\det
A$ with the same signum $\sgn{\sigma}$, since the permutation
$$ \begin{bmatrix}\sigma (1) & \sigma (2) & \cdots & \sigma (n)\cr 1 & 2 & \cdots & n \cr
\end{bmatrix}$$is the inverse of the permutation
$$ \begin{bmatrix}1 & 2 & \cdots & n \cr \sigma (1) & \sigma (2) & \cdots & \sigma (n)\cr
\end{bmatrix}.$$
\end{proof}
\begin{cor}[Column-Alternancy of Determinants]\label{cor:alternating_determinants_1}
Let $A \in \mat{n\times n}{ \bbR}, A = [a_{ij}]$. If $C \in
\mat{n\times n}{ \bbR}, C = [c_{ij}]$ is the matrix obtained by
interchanging the $s$-th column of $A$ with its $t$-th column, then
$\det C = -\det A$.
\end{cor}
\begin{proof}
This follows upon combining Theorem
\ref{thm:alternating_determinants} and Theorem
\ref{thm:determinant_of_transpose}.
\end{proof}
\begin{thm}[Row Homogeneity of Determinants]\label{thm:row_homogeneity_of_determinants}
Let $A \in \mat{n\times n}{ \bbR}, A = [a_{ij}]$ and $\alpha\in
\bbR$. If $B \in \mat{n\times n}{ \bbR}, B = [b_{ij}]$ is the
matrix obtained by multiplying the $s$-th row of $A$ by $\alpha$,
then
$$\det B = \alpha \det A.
$$
\end{thm}
\begin{proof}
Simply observe that $$\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma
(2)}\cdots \alpha a_{s\sigma (s)} \cdots a_{n\sigma (n)} = \alpha
\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma (2)}\cdots a_{s\sigma (s)}
\cdots a_{n\sigma (n)}.
$$
\end{proof}
\begin{cor}[Column Homogeneity of Determinants]\label{cor:column_homogeneity_of_determinants}
If $C \in \mat{n\times n}{ \bbR}, C = (C_{ij})$ is the matrix
obtained by multiplying the $s$-th column of $A$ by $\alpha$, then
$$\det C = \alpha \det A.
$$
\end{cor}
\begin{proof}
This follows upon using Theorem \ref{thm:determinant_of_transpose}
and Theorem \ref{thm:row_homogeneity_of_determinants}.
\end{proof}
\begin{rem}
It follows from Theorem \ref{thm:row_homogeneity_of_determinants}
and Corollary \ref{cor:column_homogeneity_of_determinants} that if a
row (or column) of a matrix consists of $0_{\bbR}$s only, then the
determinant of this matrix is $0_{\bbR}$.
\end{rem}
\begin{exa}
$$\det
\begin{bmatrix} x & 1 & a \cr x^2 & 1 & b \cr x^3 & 1 & c
\cr\end{bmatrix} = x\det\begin{bmatrix} 1 & 1 & a \cr x & 1 & b
\cr x^2 & 1 & c \cr\end{bmatrix}. $$
\end{exa}
\begin{cor}
$$\det (\alpha A) = \alpha ^n\det A.$$
\end{cor}
\begin{proof}
Since there are $n$ columns, we are able to pull out one factor of
$\alpha$ from each one.
\end{proof}
\begin{exa}
Recall that a matrix $A$ is \negrito{skew-symmetric} if $A =
-A^T$. Let $A \in\mat{2001}{\bbR}$ be
skew-symmetric. Prove that $\det A = 0.$
\end{exa}\begin{solu}We have $$\det A = \det (-A^T) = (-1)^{2001}\det A^T = -\det A,$$
and so $2\det A = 0,$ from where $\det A = 0$.
\end{solu}
\begin{lemma}[Row-Linearity and Column-Linearity of Determinants]
Let $A \in \mat{n\times n}{ \bbR}, A = [a_{ij}]$. For a fixed row
$s$, suppose that $a_{sj} = b_{sj} + c_{sj}$ for each $j \in [1;n]$.
Then
$$\begin{array}{l}\tiny{\det \begin{bmatrix} a_{11}& a_{12}& \cdots &
a_{1n} \cr a_{21}& a_{22}& \cdots & a_{2n} \cr \vdots & \vdots
& \cdots & \vdots & \vdots \cr a_{(s - 1)1}& a_{(s - 1)2}& \cdots
& a_{(s -1)n} \cr b_{s1} + c_{s1}& b_{s2} +c_{s2}& \cdots & b_{sn}
+c_{sn} \cr a_{(s+1)1}& a_{(s+1)2}& \cdots & a_{(s+1)n} \cr
\vdots & \vdots & \cdots & \vdots & \vdots \cr a_{n1}& a_{n2}&
\cdots & a_{nn} \cr
\end{bmatrix} } \vspace{2mm}\\ \tiny{= \det \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \cr
a_{21}& a_{22}& \cdots & a_{2n} \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr a_{(s - 1)1}& a_{(s - 1)2}& \cdots & a_{(s
-1)n} \cr b_{s1}& b_{s2}& \cdots & b_{sn} \cr a_{(s+1)1}&
a_{(s+1)2}& \cdots & a_{(s+1)n} \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr a_{n1}& a_{n2}& \cdots & a_{nn} \cr
\end{bmatrix}}\vspace{2mm}\\ \qquad \tiny{+ \det \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n}
\cr a_{21}& a_{22}& \cdots & a_{2n} \cr \vdots & \vdots &
\cdots & \vdots & \vdots \cr a_{(s - 1)1}& a_{(s - 1)2}& \cdots &
a_{(s -1)n} \cr c_{s1}& c_{s2}& \cdots & c_{sn} \cr a_{(s + 1)1}&
a_{(s+1)2}& \cdots & a_{(s+1)n} \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr a_{n1}& a_{n2}& \cdots & a_{nn} \cr
\end{bmatrix}}.
\end{array} $$
\label{lem:row_linearity_of_determinants}
An analogous result holds for columns.
\end{lemma}
\begin{proof}
Put $$\tiny{S = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n}
\cr a_{21}& a_{22}& \cdots & a_{2n} \cr \vdots & \vdots &
\cdots & \vdots & \vdots \cr a_{(s - 1)1}& a_{(s - 1)2}& \cdots &
a_{(s -1)n} \cr b_{s1} + c_{s1}& b_{s2} +c_{s2}& \cdots & b_{sn}
+c_{sn} \cr a_{(s+1)1}& a_{(s+1)2}& \cdots & a_{(s+1)n} \cr \vdots
& \vdots & \cdots & \vdots & \vdots \cr a_{n1}& a_{n2}& \cdots &
a_{nn} \cr
\end{bmatrix},} $$
$$\tiny{T = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \cr
a_{21}& a_{22}& \cdots & a_{2n} \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr a_{(s - 1)1}& a_{(s - 1)2}& \cdots & a_{(s
-1)n} \cr b_{s1}& b_{s2}& \cdots & b_{sn} \cr a_{(s+1)1}&
a_{(s+1)2}& \cdots & a_{(s+1)n} \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr a_{n1}& a_{n2}& \cdots & a_{nn} \cr
\end{bmatrix}} $$ and $$\tiny{U = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n}
\cr a_{21}& a_{22}& \cdots & a_{2n} \cr \vdots & \vdots &
\cdots & \vdots & \vdots \cr a_{(s - 1)1}& a_{(s - 1)2}& \cdots &
a_{(s -1)n} \cr c_{s1}& c_{s2}& \cdots & c_{sn} \cr a_{(s + 1)1}&
a_{(s+1)2}& \cdots & a_{(s+1)n} \cr \vdots & \vdots & \cdots &
\vdots & \vdots \cr a_{n1}& a_{n2}& \cdots & a_{nn} \cr
\end{bmatrix}.} $$Then
$${\footnotesize \begin{array}{lll}\det S & = & \sum _{\sigma\in S_n}\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma (2)}\cdots a_{(s-1)\sigma (s - 1)}(b_{s\sigma
(s)}\\ & & \qquad + c_{s\sigma (s)})a_{(s+1)\sigma (s + 1)}
\cdots a_{n\sigma (n)} \\ & = &
\sum _{\sigma\in S_n}\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma (2)}\cdots a_{(s-1)\sigma (s - 1)}b_{s\sigma
(s)}a_{(s+1)\sigma (s + 1)} \cdots a_{n\sigma (n)} \\ & & +
\sum _{\sigma\in S_n}\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma
(2)}\cdots a_{(s-1)\sigma (s - 1)}c_{s\sigma
(s)}a_{(s+1)\sigma (s + 1)} \cdots a_{n\sigma (n)} \\
& = & \det T + \det U.
\end{array} } $$
By applying the above argument to $A^T$, we obtain the result for
columns.
\end{proof}
\begin{lemma}
If two rows or two columns of $A \in \mat{n\times n}{ \bbR}, A =
[a_{ij}]$ are identical, then $\det A = 0_{\bbR}$.
\label{lem:determinant_with_two_identical_rows}\end{lemma}
\begin{proof}
Suppose $a_{sj} = a_{tj}$ for $s\neq t$ and for all $j\in [1;n]$.
In particular, this means that for any $\sigma\in S_n$ we have
$a_{s\sigma (t)} = a_{t\sigma (t)}$ and $a_{t\sigma (s)} =
a_{s\sigma (s)}$. Let $\tau$ be the transposition
$$\tau =
\begin{bmatrix} s & t \cr \tau (t) & \tau (s) \cr
\end{bmatrix}.
$$Then $\sigma\tau (a) = \sigma (a)$ for $a\in\{1, 2, \ldots , n\}\setminus
\{s,t\}$. Also, $\sgn{\sigma\tau} = \sgn{\sigma}\sgn{\tau} =
-\sgn{\sigma}$. As $\sigma$ runs through all even permutations,
$\sigma\tau$ runs through all odd permutations, and viceversa.
Therefore
$$\begin{array}{lll}det A & = & \sum _{\sigma \in S_n}\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma (2)}\cdots a_{s\sigma
(s)}\cdots a_{t\sigma (t)} \cdots a_{n\sigma (n)} \\
& = & \sum _{\stackrel{\sigma \in S_n}{\sgn{\sigma} =
1}}\left(\sgn{\sigma} a_{1\sigma (1)}a_{2\sigma (2)}\cdots
a_{s\sigma (s)}\cdots a_{t\sigma (t)} \cdots a_{n\sigma (n)}\right.\\
& & \left. \quad + \sgn{\sigma\tau} a_{1\sigma\tau
(1)}a_{2\sigma\tau (2)}\cdots a_{s\sigma\tau (s)}\cdots
a_{t\sigma\tau (t)} \cdots
a_{n\sigma\tau (n)}\right) \\
& = & \sum _{\stackrel{\sigma \in S_n}{\sgn{\sigma} =
1}}\sgn{\sigma}\left( a_{1\sigma (1)}a_{2\sigma (2)}\cdots
a_{s\sigma (s)}\cdots a_{t\sigma (t)} \cdots a_{n\sigma (n)}\right.\\
& & \left. \quad - a_{1\sigma (1)}a_{2\sigma (2)}\cdots
a_{s\sigma (t)}\cdots a_{t\sigma (s)} \cdots
a_{n\sigma (n)}\right) \\
& = & \sum _{\stackrel{\sigma \in S_n}{\sgn{\sigma} =
1}}\sgn{\sigma}\left( a_{1\sigma (1)}a_{2\sigma (2)}\cdots
a_{s\sigma (s)}\cdots a_{t\sigma (t)} \cdots a_{n\sigma (n)}\right.\\
& & \left. \quad - a_{1\sigma (1)}a_{2\sigma (2)}\cdots
a_{t\sigma (t)}\cdots a_{s\sigma (s)} \cdots
a_{n\sigma (n)}\right) \\
& = & 0_{\bbR}.
\end{array}$$
Arguing on $A^T$ will yield the analogous result for the columns.
\end{proof}
\begin{cor}
If two rows or two columns of $A \in \mat{n\times n}{ \bbR}, A =
[a_{ij}]$ are proportional, then $\det A = 0_{\bbR}$.
\label{cor:determinant_with_two_proportional_rows}\end{cor}
\begin{proof}
Suppose $a_{sj} = \alpha a_{tj}$ for $s\neq t$ and for all $j\in
[1;n]$. If $B$ is the matrix obtained by pulling out the factor
$\alpha$ from the $s$-th row then $\det A = \alpha \det B$. But now
the $s$-th and the $t$-th rows in $B$ are identical, and so $\det B
= 0_{\bbR}$. Arguing on $A^T$ will yield the analogous result for
the columns.
\end{proof}
\begin{exa}
$$\det \begin{bmatrix} 1 & a & b \cr 1 & a & c \cr 1 & a & d \cr \end{bmatrix} =
a\det \begin{bmatrix} 1 & 1 & b \cr 1 & 1 & c \cr 1 & 1 & d \cr
\end{bmatrix} = 0, $$since on the last determinant the first two columns are
identical.
\end{exa}
\begin{thm}[Multilinearity of Determinants]\label{thm:multilinearity_of_determinants}
Let $A \in \mat{n\times n}{ \bbR}, A = [a_{ij}]$ and $\alpha\in
\bbR$. If $X \in \mat{n\times n}{ \bbR}, X = (x_{ij})$ is the
matrix obtained by the row transvection $R_s + \alpha R_t
\rightarrow R_s$ then $\det X = \det A$. Similarly, if $Y \in
\mat{n\times n}{ \bbR}, Y = (y_{ij})$ is the matrix obtained by the
column transvection $C_s + \alpha C_t \rightarrow C_s$ then $\det Y
= \det A$.
\end{thm}
\begin{proof}
For the row transvection it suffices to take $b_{sj} = a_{sj}$,
$c_{sj} = \alpha a_{tj}$ for $j\in [1;n]$ in Lemma
\ref{lem:row_linearity_of_determinants}. With the same notation as
in the lemma, $T = A$, and so, $$\det X = \det T + \det U = \det A
+ \det U.
$$But $U$ has its $s$-th and $t$-th rows proportional ($s\neq t$),
and so by Corollary \ref{cor:determinant_with_two_proportional_rows}
$\det U = 0_{\bbR}.$ Hence $\det X = \det A.$ To obtain the result
for column transvections it suffices now to also apply Theorem
\ref{thm:determinant_of_transpose}.
\end{proof}
\begin{exa}
Demonstrate, {\em without actually calculating the determinant}
that $$\det\begin{bmatrix}2 & 9 & 9 \cr 4 & 6 & 8 \cr 7 & 4 & 1
\cr
\end{bmatrix}$$is divisible by $13$.
\end{exa}
\begin{solu}Observe that $299, 468$ and $741$ are all divisible by
13. Thus $$\det\begin{bmatrix}2 & 9 & 9 \cr 4 & 6 & 8 \cr 7 & 4 &
1 \cr \end{bmatrix} \stackrel{C_3 + 10C_2 + 100C_1 \rightarrow
C_3}{ = }\det\begin{bmatrix}2 & 9 & 299 \cr 4 & 6 & 468 \cr 7 & 4
& 741 \cr \end{bmatrix} = 13\det\begin{bmatrix}2 & 9 & 23 \cr 4 &
6 & 36 \cr 7 & 4 & 57 \cr \end{bmatrix},$$which shews that the
determinant is divisible by $13$.
\end{solu}
\begin{thm}
The determinant of a triangular matrix (upper or lower) is the
product of its diagonal elements.
\end{thm}
\begin{proof}
Let $A\in\mat{n\times n}{ \bbR}, A = [a_{ij}]$ be a triangular
matrix. Observe that if $\sigma \neq \idefun$ then $a_{i\sigma
(i)}a_{\sigma(i)\sigma^2(i)} = 0_{\bbR}$ occurs in the product
$$a_{1\sigma (1)}a_{2\sigma (2)}
\cdots a_{n\sigma (n)}. $$Thus $$\begin{array}{lll}\det A & = &
\sum _{\sigma \in S_n}\sgn{\sigma}a_{1\sigma (1)}a_{2\sigma
(2)}\cdots a_{n\sigma (n)}\\ & = & \sgn{\idefun}a_{1\idefun
(1)}a_{2\idefun (2)}\cdots a_{n\idefun (n)} = a_{11}a_{22} \cdots
a_{nn}. \end{array}
$$
\end{proof}
\begin{exa}
The determinant of the $n\times n$ identity matrix ${\textbf I}_n$ over
a field $\bbR$ is $$\det {\textbf I}_n = 1_{\bbR}. $$
\end{exa}
\begin{exa}
Find $$\det\begin{bmatrix} 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 8 & 9
\cr
\end{bmatrix}.$$
\end{exa}
\begin{solu}We have $$\begin{array}{lll}\det\begin{bmatrix} 1 & 2 &
3 \cr 4 & 5 & 6 \cr 7 & 8 & 9 \cr
\end{bmatrix} & \grstep{\stackrel{C_2 - 2C_1 \rightarrow C_2}{C_3 - 3C_1 \rightarrow C_3}}
& \det\begin{bmatrix} 1 & 0 & 0 \cr 4 & -3 & -6 \cr 7 & -6 &
-12\cr
\end{bmatrix} \\
& = & (-3)(-6)\det\begin{bmatrix} 1 & 0 & 0 \cr 4 & 1 & 1 \cr 7 &
2 & 2\cr
\end{bmatrix} \\
& = & 0,
\end{array}$$
since in this last matrix the second and third columns are
identical and so Lemma
\ref{lem:determinant_with_two_identical_rows} applies.
\end{solu}
\begin{thm}
Let $(A, B)\in (\mat{n\times n}{ \bbR})^2$. Then $$\det (AB) =
(\det A)(\det B).
$$
\label{thm:product_of_determinants}\end{thm}
\begin{proof}
Put $D = AB, D = (d_{ij}), d_{ij} = \sum _{k = 1} ^n
a_{ik}b_{kj}$. If $A_{(c:k)}, D_{(c:k)}, 1 \leq k \leq n$ denote
the columns of $A$ and $D$, respectively, observe that $$
D_{(c:k)} = \sum _{l = 1} ^n b_{lk}A_{(c:l)}, \ \ 1 \leq k
\leq n.
$$
Applying Corollary \ref{cor:column_homogeneity_of_determinants}
and Lemma \ref{lem:row_linearity_of_determinants} multiple times,
we obtain
$$\begin{array}{lll}\det D & = & \det (D_{(c:1)}, D_{(c:2)}, \ldots , D_{(c:n)}) \\ &
=& \sum _{j_1 = 1} ^n\sum _{j_2 = 1} ^n \cdots \sum _{j_n = 1} ^n
b_{1j_1}b_{2j_2}\cdots b_{nj_n}\\ & & \quad \cdot\det
(A_{(c:j_1)}, A_{(c:j_2)}, \ldots , A_{(c:j_n)}). \end{array}
$$
By Lemma \ref{lem:determinant_with_two_identical_rows}, if any two
of the $A_{(c:j_l)}$ are identical, the determinant on the right
vanishes. So each one of the $j_l$ is different in the
non-vanishing terms and so the map
$$\fun{\sigma}{l}{j_l}{\{1, 2, \ldots , n\}}{\{1, 2, \ldots , n\}}
$$is a permutation. Here $j_l = \sigma (l)$. Therefore, for the non-vanishing $$\det (A_{(c:j_1)}, A_{(c:j_2)},
\ldots , A_{(c:j_n)})$$ we have in view of Corollary
\ref{cor:alternating_determinants}, $$\begin{array}{lll}\det
(A_{(c:j_1)}, A_{(c:j_2)}, \ldots , A_{(c:j_n)}) & = &
(\sgn{\sigma})\det (A_{(c:1)}, A_{(c:2)}, \ldots , A_{(c:n)}) \\ &
= &(\sgn{\sigma})\det A.\end{array}$$We deduce that
$$\begin{array}{lll}\det (AB) & = & \det D \\ & = & \sum _{j_n = 1} ^n
b_{1j_1}b_{2j_2}\cdots b_{nj_n}\det (A_{(c:j_1)}, A_{(c:j_2)},
\ldots , A_{(c:j_n)})\\
& = & (\det A) \sum _{\sigma\in S_n} (\sgn{\sigma}) b_{1\sigma
(1)}b_{2\sigma (2)}\cdots b_{n\sigma (n)}\\
& = & (\det A)(\det B),
\end{array}$$as we wanted to shew.
\end{proof}
By applying the preceding theorem multiple times we obtain
\begin{cor}
If $A\in\mat{n\times n}{ \bbR}$ and if $k$ is a positive integer
then $$ \det A^k = (\det A)^k.
$$
\end{cor}
\begin{cor}
If $A\in\gl{n}{ \bbR}$ and if $k$ is a positive integer then $\det
A \neq 0_{\bbR}$ and
$$ \det A^{-k} = (\det A)^{-k}.
$$
\end{cor}
\begin{proof}
We have $AA^{-1} = {\textbf I}_n$ and so by Theorem
\ref{thm:product_of_determinants} $(\det A)(\det A^{-1}) = 1_{\bbR
}$, from where the result follows.
\end{proof}
\section*{\psframebox{Homework}}
\begin{pro}
Let $$\Omega =
\det
\begin{bmatrix} bc & ca & ab \cr a & b & c \cr a^2 & b^2 & c^2 \cr\end{bmatrix}
.
$$Without expanding either determinant, prove that
$$\Omega = \det
\begin{bmatrix} 1 & 1 & 1 \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3
\cr\end{bmatrix}.
$$
\begin{answer} Multiplying the first column of the given matrix by $a$,
its second column by $b$, and its third column by $c$, we obtain
$$abc\Omega = \begin{bmatrix} abc & abc & abc \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3 \cr\end{bmatrix}. $$ We may factor out
$abc$ from the first row of this last matrix thereby obtaining
$$abc\Omega = abc\det
\begin{bmatrix} 1 & 1 & 1 \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3
\cr\end{bmatrix}. $$Upon dividing by $abc$,
$$\Omega = \det
\begin{bmatrix} 1 & 1 & 1 \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3
\cr\end{bmatrix}.
$$
\end{answer}
\end{pro}
\begin{pro}
Demonstrate that $$\Omega = \det\begin{bmatrix} a - b - c & 2a &
2a \cr 2b & b - c - a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix} = (a + b + c)^3.
$$
\begin{answer} Performing $R_1 + R_2 + R_3 \rightarrow R_1$ we have
$$\begin{array}{l}
\Omega = \det\begin{bmatrix} a - b - c & 2a & 2a \cr 2b & b - c -
a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix}\vspace{2mm}\\ \qquad = \det\begin{bmatrix} a + b + c & a + b + c & a + b + c \cr 2b
& b - c - a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix}.\end{array}$$ Factorising $(a + b + c)$ from the first row of
this last determinant, we have
$$\Omega = (a + b + c)\det\begin{bmatrix} 1 & 1 & 1 \cr 2b
& b - c - a & 2b \cr 2c & 2c & c - a - b \cr
\end{bmatrix}. $$Performing $C_2 - C_1 \rightarrow C_2$ and $C_3 - C_1 \rightarrow
C_3$,
$$\Omega = (a + b + c)\det\begin{bmatrix} 1 & 0 & 0 \cr 2b
& -b - c - a & 0 \cr 2c & 0 & -c - a - b \cr
\end{bmatrix}. $$This last matrix is triangular, hence $$\Omega = (a + b + c)(-b - c - a)(-c -a - b) = (a + b + c)^3, $$
as wanted.
\end{answer}
\end{pro}
\begin{pro} After the indicated column operations on a $3\times 3$
matrix $A$ with $\det A = -540$, matrices $A_1, A_2, \ldots , A_5$
are successively obtained:
$$A \stackrel{C_1 + 3C_2 \rightarrow C_1}{\rightarrow} A_1
\stackrel{C_2 \leftrightarrow C_3}{\rightarrow} A_2 \stackrel{3C_2
- C_1 \rightarrow C_2}{\rightarrow} A_3 \stackrel{C_1 - 3C_2
\rightarrow C_1}{\rightarrow} A_4 \stackrel{2C_1 \rightarrow
C_1}{\rightarrow} A_5$$ Determine the numerical values
of $\det A_1, \det A_2, \det A_3, \det A_4$ and $\det A_5.$
\begin{answer} $\det A_1 = \det A = -540$ by multilinearity. $\det A_2 = -\det
A_1 = 540$ by alternancy. $\det A_3 = 3\det A_2 = 1620$ by both