-
Notifications
You must be signed in to change notification settings - Fork 7
/
curv.tex
1061 lines (905 loc) · 41.7 KB
/
curv.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Curvilinear Coordinates} \label{sec:curvilinear2}
\label{chapter:curv}
\todoin{some obs from Applicable Differential Geometry}
\section{Curvilinear Coordinates}
The location of a point $P$ in space can be represented in many different
ways. Three systems commonly used in applications are the \emph{ rectangular
cartesian system of Coordinates} $(x,y,z)$, the \emph{ cylindrical polar
system of Coordinates} $(r,\phi,z)$ and the
\emph{ spherical system of Coordinates} $(r,\varphi,\phi)$.
The last two are the best examples
of \emph{ orthogonal curvilinear} systems of coordinates
$(u_{1},u_{2},u_{3})$ .
\begin{df}
A function $\vector{u}:U \to V$ is called a (differentiable) \negrito{coordinate change} if
\begin{itemize}
\item $\vector{u}$ is bijective
\item $\vector{u}$ is differentiable
\item $\D\vector{u}$ is invertible at every point.
\end{itemize}
\end{df}
\begin{figure}[h]
\centering
\includegraphics[width=7cm]{./figs/coordinates.eps}
% coordinates.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=
\caption{Coordinate System}
\label{fig:coord2}
\end{figure}
% Let $(u_{1},u_{2},u_{3})$ be the coordinates of $P$ in a general curvilinear
% system of coordinates. If the curves $u_{1}$, $u_{2}$, and $u_{3}$ are mutually
% perpendicular, the system $(u_{1},u_{2},u_{3})$ is an \emph{ orthogonal
% curvilinear system of Coordinates} .
In the tridimensional case, suppose that $(x, y, z)$ are expressible as single-valued functions $\vector{u}$ of the
variables $(u_1, u_2, u_3)$. Suppose also that $(u_1, u_2, u_3)$ can be
expressed as single-valued functions of $(x,y,z)$.
Through each point $P:(a,b,c)$ of the space we have three surfaces: $u_1 = c_1$, $u_2 = c_2$ and $u_3 = c_3$, where the constants $c_i$ are given by $c_i=u_i(a,b,c)$
If say $u_{2}$ and $u_{3}$ are held fixed and $u_{1}$
is made to vary, a \emph{ path} results. Such path is called a $u_{1}$
\emph{ curve}. $u_{2}$ and $u_{3}$ curves can be constructed in analogous
manner.
\begin{center}
\begin{tikzpicture}[x=(10:3cm),y=(90:3cm),z=(215:2.75cm),
>=Triangle,
%*/.tip=Circle,
domain=0:1, samples=50, variable=\t]
\coordinate (O) at (0,0,0);
\shade [left color=blue, right color=blue!15!white, shading angle=135]
(O) \foreach \x/\y in{\t/0,1/\t,1-\t/1,0/1-\t}{
-- plot [smooth] (non-linear cs:x=\x, y=\y) };
\shade [left color=red, right color=red!15!white, shading angle=45]
(O) \foreach \x/\z in{\t/0,1/\t,1-\t/1,0/1-\t}{
-- plot [smooth] (non-linear cs:x=\x, z=\z) };
\shade[left color=cyan, right color=cyan!15!white, shading angle=225]
(O) \foreach \y/\z in{\t/0,1/\t,1-\t/1,0/1-\t}{
-- plot [smooth] (non-linear cs:y=\y, z=\z) };
\draw [thick, draw=blue, -*] (O) -- plot [domain=0:1.125, smooth]
(non-linear cs:x=\t) node [right] {$u_2$};
\draw [thick, draw=blue, -*] (O) -- plot [domain=0:1.125, smooth]
(non-linear cs:y=\t) node [above] {$u_3$};
\draw [thick, draw=blue, -*] (O) -- plot [domain=0:1.125, smooth]
(non-linear cs:z=\t) node [below] {$u_1$};
% \draw [thick, ->] (O) -- (5/4,0,0) node [at end, right] {$q_2$ axis};
% \draw [thick, ->] (O) -- (0,5/4,0) node [at end, above] {$q_3$ axis};
% \draw [thick, ->] (O) -- (0,0,5/4) node [at end, left] {$q_1$ axis};
\node at (1/2,1/2,0) {$u_1=\mbox{const}$};
\node at (0,1/2,2/3) {$u_2=\mbox{const}$};
\node at (3/4,0,3/4) {$u_3=\mbox{const}$};
\end{tikzpicture}
\end{center}
The system $(u_1,u_2,u_3)$ is said to be a \negrito{curvilinear coordinate system}.
\begin{exa}
The parabolic cylindrical coordinates are defined in terms of the
Cartesian coordinates by:
\begin{align*}
x &= \sigma \tau \\
y &= \frac{1}{2} \left( \tau^2 - \sigma^2 \right) \\
z &= z
\end{align*}
The constant surfaces are the plane
\[z=z_1\]
and the parabolic cylinders
\[2 y = \frac{x^2}{\sigma^2} - \sigma^2\]
and
\[2 y = -\frac{x^2}{\tau^2} + \tau^2\]
\end{exa}
\begin{figure}[!h]
\centering
\includegraphics[width=8cm]{./figs/ParabolicCylindricalCoordinates.eps}
% ParabolicCylindricalCoordinates.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=
\end{figure}
\subsection*{Coordinates I}
The surfaces $u_2 = u_2(P)$ and $u_3 = u_3(P)$
intersect in a curve, along which only $u_1$
varies.
\begin{center}
\begin{tikzpicture}
\draw [->,thick] (0,0) -- (0.2,1.1) node [above] {$\versor e_3$};
\draw [->,thick] (0,0) -- (.8,-.8) node [left] {$\versor e_2$};
\draw [->,thick] (0,0) -- (-1.2,-.1) node [above] {$\versor e_1$};
\fill (0,0) circle (1.5pt) node [right] {$P$};
\draw plot [smooth,tension=.6] coordinates {(0,0) (.6,1.2) (1,1.7)};
\draw plot [smooth,tension=.8] coordinates {(0,0) (.8,-.5) (2,-.5)};
\draw plot [smooth,tension=.8] coordinates {(0,0) (-1.2,-.25) (-2,-.6)};
\node at (1.8,.5) {$u_1 = u_1(P)$};
\node at (-1,-1) {$u_3 = u_3(P)$};
\node at (-1.2,1) {$u_2 = u_2(P)$};
\begin{scope}[shift={(3.5,0)}]
\draw plot [smooth,tension=.8] coordinates {(0,0) (2,.5) (3.5,.6)};
% \draw[->] (2,-1.5) -- (.8, .2) node[left,midway] {$\mathbf r(Q)$};
\draw[->] (2,-1.5) -- (2.8,.55)node[right,midway] {$\mathbf r(P)$};
% \fill (2,-1.5) circle (1.5pt) node [right] {$O$};
\fill (2.8,.6) circle (1.5pt) node [above] {$P$};
\fill (.15, .62) circle (0.05pt) node [above] {$u_i \text{ curve }$};
\draw[->,thick] (2.8,.6) -- (1.6,.55) node [above,midway] {$\versor e_i$};
\end{scope}
\end{tikzpicture}
\end{center}
Let $\versor e_1$ be the unit vector tangential to the curve at $P$. Let $\versor e_2,\, \versor e_3$ be unit vectors
tangential to curves along which only $u_2, u_3$ vary.
Clearly
\[\versor e_i=\dfrac{\partial \mathbf r}{\partial u_1}/\norm{\dfrac{\partial \mathbf r}{\partial u_i}}.\]
And if we define $h_i = |\partial \mathbf r/\partial u_i|$ then
\begin{align*}
\dfrac{\partial \mathbf r}{\partial u_i} &= \versor e_i \cdot h_i
\end{align*}
The quantities
$h_i$ are often known as the \negrito{length scales} for the coordinate system.\\
% For an orthogonal system we must have $\versor e_i = \versor e^i$ (left diagram above).
% Let $Q$ be a neighborhood point to $P$ on the curve along
% which only $u_i$ varies (right diagram above).
%
% We have
% \begin{align*}
% \dfrac{\partial \mathbf r}{\partial u_i}
% &= \lim_{P \to Q}\dfrac{(\mathbf r(Q) - \mathbf r(P))}{\delta u_i}\\[.2cm]
% &= \lim_{P \to Q} \dfrac{(\mathbf r(Q) - \mathbf r(P))}{PQ}\cdot \lim_{P \to Q}\left(\dfrac{PQ}{\delta u_i}\right)\\
% &= \lim_{Q \to P} \dfrac{\vec{PQ}}{PQ} \cdot \lim_{P \to Q}\left(\dfrac{PQ}{\delta u_i}\right)\\
% &= \versor e_i \cdot h_i
% \end{align*}
%
\subsection*{Coordinates II}
Let $(\versor e^i,\versor e^2,\versor e^3)$ be unit vectors at $P$ in the directions normal to
$u_1 = u_1(P),\,u_2 = u_2(P),u_3 = u_3(P)$
respectively, such that $u_1, u_2, u_3$ increase in the directions $\versor e^1, \versor e^2,\hat a_3.$ Clearly we must have
\[
\versor e^i = \nabla(u_i)/|\nabla u_i|
\]
% These vectors are tangent to the curves parametrized by $u_1, u_1, u_3$ respectively when the other two variables are being fixed.
\begin{df}
If $(\versor e^1, \versor e^2,\versor e^3)$ are mutually orthogonal, the coordinate system is said to be an \negrito{orthogonal}
curvilinear coordinate system.
\end{df}
In an orthogonal system we have
\[
\versor e_i = \versor e^i = \dfrac{\partial \mathbf r/\partial u_i}{|\partial \mathbf r/\partial u_i|} = \nabla u_i / |\nabla u_i| \quad \mbox{ for $i=1,2,3$}
\]
So we associate to a general curvilinear coordinate system two sets of
basis vectors for every point:
\[\{\versor e_1,\versor e_2, \versor e_3\}\]
is the
\negrito{covariant basis}, and
\[\{\versor e^1,
\versor e^2, \versor e^3\} \]
is the
\negrito{contravariant basis}.
\begin{figure}[h!]
\centering
\includegraphics[width=8.5cm]{./figs/bases.eps}
% bases.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=
\caption{Covariant and Contravariant Basis}
\end{figure}
% The covariant and contravariant
% basis vectors types have identical direction for orthogonal curvilinear
% coordinate systems, but as usual have inverted units with respect to
% each other.
Note the following important equality:
\[\versor e^i\cdot\versor e_j = \delta^i_j.\]
\begin{exa}
\textbf{Cylindrical coordinates} $(r,\theta,z)$:
\begin{align*}
x &= r \cos \theta & r &= \sqrt{x^2 + y^2}\\
y &= r \sin \theta & \theta &= \tan^{-1} \left( \dfrac{y}{x} \right)\\
z &= z & z &= z
\end{align*}
\vspace{3mm}where $~0 \le \theta \le \pi~~$ if $~~y \ge 0~~$ and $~~\pi < \theta < 2\pi~~$ if $~~y < 0$
For cylindrical coordinates $(r,\theta,z)$, and constants $\ssub{r}{0}$, $\ssub{\theta}{0}$ and $\ssub{z}{0}$, we see
from Figure \ref{fig:cylcoordsurf}
that the surface $r = \ssub{r}{0}$ is a cylinder of radius $\ssub{r}{0}$ centered along the $z$-axis, the surface
$\theta = \ssub{\theta}{0}$ is a half-plane emanating from the $z$-axis, and the surface $z = \ssub{z}{0}$ is a plane
parallel to the $xy$-plane.
\begin{figure}[h]
\centering
\subfloat[][$r = \ssub{r}{0}$]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\definecolor{insideo}{HTML}{798084}
\definecolor{insidei}{HTML}{F0F0F0}
\definecolor{outer}{HTML}{006146}
\definecolor{inner}{HTML}{9EF0A6}
\shade [left color=insideo,right color=insideo,middle color=insidei] (1,1) arc (0:180:1 and .5) --
(-1,1) arc (180:360:1 and .5);
\shadedraw [left color=outer,right color=outer,middle color=inner] (-1,-1) arc (180:360:1 and .5) -- (1,1) --
(1,1) arc (360:180:1 and .5) -- (-1,-1);
\draw (1,1) arc (0:180:1 and .5);
\draw [dashed,line width=0.2pt] (1,-1) arc (0:180:1 and .5);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (2,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,-1.5) -- (0,2,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,0,4);
\pgfputat{\pgfpointxyz{1.9}{0.2}{0}}{\pgfbox[center,center]{\small $y$}};
\pgfputat{\pgfpointxyz{0.2}{1.9}{0}}{\pgfbox[center,center]{\small $z$}};
\pgfputat{\pgfpointxyz{0.2}{0}{3.8}}{\pgfbox[center,center]{\small $x$}};
\pgfputat{\pgfpointxyz{0.1}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}};
\draw [dashed,line width=0.2pt] (0,1) -- (1,1);
\draw [dashed,line width=0.2pt] (-1,-1) -- (1,-1);
\node [above] at (0.5,1) {\small $\ssub{r}{0}$};
\end{tikzpicture}}
\qquad\qquad
\subfloat[][$\theta = \ssub{\theta}{0}$]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\fill [red!30] (0,-.5) -- (1,-1.5) -- (1,.5) -- (0,1.5) -- (0,-.5);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (2,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,-.5) -- (0,2,0);
\draw [black!60,dashed,line width=0.3pt] (0,-1.5) -- (0,-.5);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,0,4);
\pgfputat{\pgfpointxyz{1.9}{0.2}{0}}{\pgfbox[center,center]{\small $y$}};
\pgfputat{\pgfpointxyz{0.2}{1.9}{0}}{\pgfbox[center,center]{\small $z$}};
\pgfputat{\pgfpointxyz{0.2}{0}{3.8}}{\pgfbox[center,center]{\small $x$}};
\pgfputat{\pgfpointxyz{-0.2}{0.1}{0}}{\pgfbox[center,center]{\small $0$}};
\draw [line width=0.2pt] (0,-.5) -- (1,-1.5) -- (1,.5) -- (0,1.5) -- (0,-.5);
\draw [dashed,line width=0.2pt] (0,0) -- (1,-1);
\draw [dashed,line width=0.2pt,-latex] (-0.7,-0.7) arc (225:315:1 and .7);
\node [below] at (-0.3,-.8) {\small $\ssub{\theta}{0}$};
\end{tikzpicture}}
\qquad\qquad
\subfloat[][$z = \ssub{z}{0}$]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\definecolor{planecolor}{HTML}{FFB270}
\fill [planecolor] (-1.8,.9) -- (-1.1,1.6) -- (1.8,1.6) -- (1.1,.9) -- (-1.8,.9);
\draw [line width=0.2pt] (-1.8,.9) -- (-1.1,1.6) -- (1.8,1.6) -- (1.1,.9) -- (-1.8,.9);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (2,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,-1.5) -- (0,2,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,0,4);
\pgfputat{\pgfpointxyz{1.9}{0.2}{0}}{\pgfbox[center,center]{\small $y$}};
\pgfputat{\pgfpointxyz{0.2}{1.9}{0}}{\pgfbox[center,center]{\small $z$}};
\pgfputat{\pgfpointxyz{0.2}{0}{3.8}}{\pgfbox[center,center]{\small $x$}};
\pgfputat{\pgfpointxyz{0.1}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}};
\fill (0,1.2) circle (1pt);
\node [left] at (0,1.2) {\small $\ssub{z}{0}$};
\end{tikzpicture}}
\caption[]{\quad Cylindrical coordinate surfaces}
\label{fig:cylcoordsurf}
\end{figure}
The unit vectors $\hat r, \hat \theta,\hat k$ at any point $P$ are perpendicular to the surfaces $r =$ constant, $\theta =$ constant, $z =$ constant
through $P$ in the directions of increasing $r, \theta, z$. Note that the direction of the unit vectors $\hat r,\hat \theta$ vary from point to point, unlike the corresponding Cartesian unit vectors.
\end{exa}
\section{Line and Volume Elements in Orthogonal Coordinate Systems}
\begin{definition}[Line Element]
Since $\mathbf r = \mathbf r(u_1,u_2,u_3)$,
the \emph{line element}
$\d \mathbf r$ is given by
\begin{align*}
\d\mathbf r
&= \dfrac{\partial \mathbf r}{\partial u_1} \,\d u_1
+ \dfrac{\partial \mathbf r}{\partial u_2} \,\d u_2
+ \dfrac{\partial \mathbf r}{\partial u_3} \,\d u_3\\
&= h_1\d u_1\versor {e_1}
+ h_2\d u_2\versor {e_2}
+ h_3\d u_3\versor{e_3}
\end{align*}
\end{definition}
If the system is orthogonal, then it follows that
\[
(\d s)^2 = (\d \mathbf r)\cdot (\d \mathbf r) = h_1^2(\d u_1)^2 +
h_2^2(\d u_2)^2 +h_3^2(\d u_3)^2
\]
In what follows we will assume we have an orthogonal system so that
\[
\versor e_i = \versor e^i = \dfrac{\partial \mathbf r/\partial u_i}{|\partial \mathbf r/\partial u_i|} = \nabla u_i / |\nabla u_i| \quad \mbox{ for $i=1,2,3$}
\]
In particular, line elements along curves of intersection of $u_i$ surfaces have lengths $h_1\d u_1,\, h_2\d u_2,\, h_3\d u_3$ respectively.\\
\begin{definition}[Volume Element]
In $\bbR^3$, the volume element is given by
\[\d V = \dx\,\dy\,\dz.\]
In a coordinate systems
$x=x(u_1,u_2,u_3), y=y(u_1,u_2,u_3), z=z(u_1,u_2,u_3)$, the volume element is:
\[\d V = \left|\dfrac{\partial (x,y,z)}{\partial (u_1,u_2,u_3)}\right|\,\d u_1\,\d u_2\,\d u_3.\]
\end{definition}
\begin{prop} In an orthogonal system we have
\begin{align*}
\d V &= (h_1\d u_1)(h_2 \d u_2)(h_3 \d u_3)\\
&= h_1h_2h_3\,\d u_1\d u_2\d u_3
\end{align*}
\end{prop}
% \begin{center}
% \includegraphics[width=6cm]{fig20.jpg}
% \end{center}
In this section we find the expression of the line and volume elements in some classics orthogonal coordinate systems.
\textbf{(i) Cartesian Coordinates $(x,y,z)$}
\begin{align*}
\d V &= \d x\d y \d z\\
\d \mathbf r &= \d x\hat i + \d y \hat j + \d z \hat k\\
(\d s)^2 &= (\d\mathbf r)\cdot(\d \mathbf r) = (\d x)^2 + (\d y)^2 + (\d z)^2
\end{align*}
\textbf{(ii) Cylindrical polar coordinates $(r,\theta,z)$}
The coordinates are related to Cartesian by
\[
x = r\cos \theta,\, y = r\sin \theta,\, z = z
\]
% \begin{center}
% \includegraphics[width=7cm]{fig21.jpg}
% \end{center}
We have that $(\d s)^2 = (\d x)^2 + (\d y)^2 + (\d z)^2$, but we can write
\begin{align*}
\d x &= \left(\dfrac{\partial x}{\partial r}\right)\,\d r + \left(\dfrac{\partial x}{\partial \theta}\right)\, \d \theta + \left(\dfrac{\partial x}{\partial z}\right)\,\d z\\
&= (\cos \theta)\,\d r - (r\sin \theta)\,\d \theta \\
\intertext{and}
\d y &= \left(\dfrac{\partial y}{\partial r}\right)\,\d r + \left(\dfrac{\partial y}{\partial \theta}\right)\, \d \theta + \left(\dfrac{\partial y}{\partial z}\right)\,\d z\\
&= (\sin \theta)\,\d r + (r\cos\theta)\d \theta
\end{align*}
Therefore we have
\begin{align*}
(\d s)^2 &= (\d x)^2 + (\d y)^2 + (\d z)^2\\
&= \dots = (\d r)^2 + r^2(\d\theta)^2 + (\d z)^2
\end{align*}
Thus we see that for this coordinate system,
the length scales are
\[
h_1 = 1,\, h_2 = r,\, h_3 = 1
\]
and the element of volume is
\[
d V = r \,\d r\d \theta \d z
\]
\textbf{(iii) Spherical Polar coordinates $(r,\phi,\theta$)}
In this case the relationship between the coordinates is
\[
x = r \sin \phi \cos\theta;\; y = r\sin\phi\sin\theta;\; z = r\cos\phi
\]
% \begin{center}
% \includegraphics[width=8.5cm]{fig22.png}
% \end{center}
Again, we have that $(\d s)^2 = (\d x)^2 + (\d y)^2 + (\d z)^2$ and we know that
\begin{align*}
\d x
&= \dfrac{\partial x}{\partial r}\d r + \dfrac{\partial x}{\partial \theta}\d \theta + \dfrac{\partial x}{\partial \phi}\d \phi\\
&= (\sin\phi\cos\theta)\d r + (-r\sin\phi\sin\theta)\d \theta + r\cos\phi\cos\theta \d \phi
\intertext{and}
\d y
&= \dfrac{\partial y}{\partial r}\d r + \dfrac{\partial y}{\partial \theta}\d \theta + \dfrac{\partial y}{\partial \phi}\d \phi\\
&= \sin\phi\sin\theta \d r + r\sin\phi\cos\theta \d \theta + r\cos\phi\sin\theta \d \phi
\intertext{together with}
\d z
&= \dfrac{\partial z}{\partial r}\d r + \dfrac{\partial z}{\partial \theta}\d \theta + \dfrac{\partial z}{\partial \phi}\d \phi\\
&= (\cos\phi)\d r - (r\sin\phi)\d \phi
\end{align*}
Therefore in this case, we have (after some work)
\begin{align*}
(\d s)^2 &= (\d x)^2 + (\d y)^2 + (\d z)^2\\
&= \dots = (\d r)^2 + r^2(\d \phi)^2 + r^2\sin^2\phi(\d \theta)^2
\end{align*}
Thus the length scales are
\[
h_1 = 1,\, h_2 = r,\, h_3 = r\sin\phi
\]
and the volume element is
\[
\d V = r^2\sin\phi\,\d r\d \phi \d \theta
\]
\begin{exa}
\emph{Find the volume and surface area of a sphere of
radius $a$, and also find the surface area of a cap of the sphere that subtends on angle $\alpha$ at the centre of the sphere.}
\[
d V = r^2 \sin\phi\,\d r \d \phi \d \theta
\]
and an element of surface of a sphere of radius $a$ is (by removing $h_1\d u_1 = \d r$):
\[
\d S = a^2 \sin \phi \,\d \phi\,\d \theta
\]
$\therefore$ total volume is
\begin{align*}
\int_V \,\d V
&= \int_{\theta=0}^{2\pi}\int_{\phi =0}^\pi \int_{r=0}^a r^2\sin\phi\, \d r \d \phi \d \theta \\
&= 2\pi[-\cos\phi]_0^\pi \int_0^a r^2\,\d r\\
&= 4\pi a^3/3\;
\end{align*}
Surface area is
\begin{align*}
\int_S \,\d S
&= \int_{\theta=0}^{2\pi} \int_{\phi =0}^\pi a^2\sin\phi \,\d\phi\,\d\theta\\
&= 2\pi a^2[-\cos\phi]_0^\pi\\
&= 4\pi a^2 \;
\end{align*}
Surface area of cap is
\begin{align*}
\int_{\theta=0}^{2\pi}\int_{\phi=0}^\alpha
a^2\sin\phi \,\d\phi\,\d \theta
&= 2\pi a^2[-\cos\phi]_0^\alpha\\
&= 2\pi a^2(1-\cos\alpha)
\end{align*}
\end{exa}
\section{Gradient in Orthogonal Curvilinear Coordinates}
Let
\[
\nabla \Phi = \lambda_1\versor e_1 + \lambda_2\versor e_2 + \lambda_3\versor e_3
\]
in a general coordinate system, where $\lambda_1,\lambda_2,\lambda_3$ are to be found.
Recall that the element of length is given by
\[
\d \mathbf r = h_1\d u_1\versor e_1 + h_2\d u_2\versor e_2 + h_3\d u_3\versor e_3
\]
Now
\begin{align*}
\d \Phi &= \dfrac{\partial \Phi}{\partial u_1}\d u_1 + \dfrac{\partial \Phi}{\partial u_2}\d u_2 + \dfrac{\partial \Phi}{\partial u_3}\d u_3\\
&= \dfrac{\partial \Phi}{\partial x}\d x + \dfrac{\partial \Phi}{\partial y}\d y + \dfrac{\partial \Phi}{\partial z}\d z\\
&= (\nabla \Phi)\cdot \d \mathbf r
\end{align*}
But, using our expressions for $\nabla \Phi$ and $\d \mathbf r$ above:
\[
(\nabla \Phi)\cdot \d \mathbf r = \lambda_1h_1\d u_1 + \lambda_2h_2\d u_2 + \lambda_3h_3\d u_3
\]
and so we see that
\[
h_i\lambda_i = \dfrac{\partial \Phi}{\partial u_i} \mbox{ ($i = 1,2,3$)}
\]
Thus we have the result that
\begin{prop}[Gradient in Orthogonal Curvilinear Coordinates]
\[
\nabla \Phi = \dfrac{\versor e_1}{h_1}\dfrac{\partial \Phi}{\partial u_1} + \dfrac{\versor e_2}{h_2}\dfrac{\partial \Phi}{\partial u_2} + \dfrac{\versor e_3}{h_3}\dfrac{\partial \Phi}{\partial u_3}
\]
\end{prop}
This proposition allows us to write down $\nabla$ easily for other coordinate systems.
\textbf{(i) Cylindrical polars $(r,\theta,z)$}
Recall that $h_1 = 1,\, h_2 = r,\, h_3 = 1$. Thus
\[
\nabla = \hat r \dfrac{\partial}{\partial r} + \dfrac{\hat
\theta}{r}\dfrac{\partial }{\partial \theta} + \hat z \dfrac{\partial }{\partial z}
\]
\textbf{(ii) Spherical Polars $(r,\phi,\theta)$}
We have $h_1 = 1,\, h_2 = r,\, h_3 = r\sin\phi$, and so
\[
\nabla = \hat r \dfrac{\partial }{\partial r} + \dfrac{\hat \phi}{r}\dfrac{\partial }{\partial \phi} + \dfrac{\hat \theta}{r \sin\phi}\dfrac{\partial }{\partial \theta}
\]
\subsection{Expressions for Unit Vectors}
From the expression for $\nabla$ we have just derived, it is easy to see that
\[
\versor e_i = h_i \nabla u_i
\]
Alternatively, since the unit vectors are orthogonal, if we know two unit vectors we can find the third from the relation
\[
\versor e_1 = \versor e_2 \times \versor e_3 = h_2h_3(\nabla u_2 \times \nabla u_3)
\]
and similarly for the other components, by permuting in a cyclic fashion.
\section{Divergence in Orthogonal Curvilinear Coordinates}
Suppose we have a vector field
\[
\mathbf A = A_1 \versor e_1 + A_2 \versor e_2 + A_3 \versor e_3
\]
Then consider
\begin{align*}
\nabla \cdot (A_1 \versor e_1)
&= \nabla \cdot [A_1h_2h_3(\nabla u_2 \times \nabla u_3)]\\
&= A_1h_2h_3 \nabla \cdot (\nabla u_2 \times \nabla u_3) + \nabla(A_1h_2h_3)\cdot \dfrac{\versor e_1}{h_2h_3}
\end{align*}
using the results established just above. Also we know that
\[
\nabla\cdot (\mathbf B \times \mathbf C) = \mathbf C \cdot \mathrm{curl}\,\mathbf B - \mathbf B \cdot \mathrm{curl}\,\mathbf C
\]
and so it follows that
\[
\nabla\cdot(\nabla u_2 \times \nabla u_3) = (\nabla u_3)\cdot \mathrm{curl}(\nabla u_2) - (\nabla u_2)\cdot \mathrm{curl}(\nabla u_3) = 0
\]
since the curl of a gradient is always zero.
Thus we are left with
\[
\nabla \cdot (A_1\versor e_1) = \nabla (A_1h_2h_3) \cdot \dfrac{\versor e_1}{h_2h_3} = \dfrac{1}{h_1h_2h_3}\dfrac{\partial }{\partial u_1} (A_1h_2h_3)
\]
We can proceed in a similar fashion for the other components, and establish that
\begin{prop}[Divergence in Orthogonal Curvilinear Coordinates]
\[
\nabla \cdot \mathbf A = \dfrac{1}{h_1h_2h_3}\left[\dfrac{\partial }{\partial u_1}(h_2h_3 A_1) + \dfrac{\partial }{\partial u_2}(h_3h_1 A_2) + \dfrac{\partial }{\partial u_3}(h_1h_2A_3)\right]
\]
\end{prop}
Using the above proposition is now easy to write down the divergence in other coordinate systems.
\textbf{(i) Cylindrical polars $(r,\theta,z)$}
Since $h_1 = 1,\, h_2 = r,\, h_3 = 1$ using the above formula we have :
\begin{align*}
\nabla \cdot \mathbf A
&= \dfrac{1}{r}\left[\dfrac{\partial }{\partial r}(r A_1) + \dfrac{\partial }{\partial \theta}(A_2) + \dfrac{\partial }{\partial z}(r A_3)\right]\\[.2cm]
&= \dfrac{\partial A_1}{\partial r} + \dfrac{A_1}{r} + \dfrac{1}{r}\dfrac{\partial A_2}{\partial \theta} +\dfrac{\partial A_3}{\partial z}
\end{align*}
\textbf{(ii) Spherical polars $(r,\phi,\theta)$}
We have $h_1 = 1,\, h_2 = r,\, h_3 = r\sin\phi$. So
\[
\nabla \cdot \mathbf A = \dfrac{1}{r^2\sin\phi} \left[\dfrac{\partial }{\partial r}(r^2 \sin\phi A_1) + \dfrac{\partial }{\partial \phi}(r\sin\phi A_2) + \dfrac{\partial }{\partial \theta}(rA_3)\right]
\]
\section{Curl in Orthogonal Curvilinear Coordinates}
We will calculate the curl of the first component of $\mathbf A$:
\begin{align*}
\nabla \times (A_1 \versor e_1)
&= \nabla \times (A_1h_1\nabla u_1)\\[.2cm]
&= A_1h_2\nabla \times (\nabla u_1) +
\nabla(A_1h_1) \times \nabla u_1\\[.2cm]
&= 0 + \nabla (A_1h_1) \times \nabla u_1\\[.2cm]
&= \left[\dfrac{\versor e_1}{h_1}\dfrac{\partial }{\partial u_1}(A_1h_1) + \dfrac{\versor e_2}{h_2}\dfrac{\partial }{\partial u_2}(A_1h_1) + \dfrac{\versor e_3}{h_3}\dfrac{\partial }{\partial u_3}(A_1h_1)\right] \times \dfrac{\versor e_1}{h_1}\\[.2cm]
&= \dfrac{\versor e_2}{h_1h_3}\dfrac{\partial }{\partial u_3}(h_1A_1) - \dfrac{\versor e_3}{h_1h_2}\dfrac{\partial }{\partial u_2}(h_1A_1)
\end{align*}
(since $\versor e_1 \times \versor e_1 = 0,\, \versor e_2 \times \versor e_1 = -\versor e_3,\, \versor e_3 \times \versor e_1 = \versor e_2$).
We can obviously find curl$(A_2\versor e_2)$ and curl$(A_3\versor e_3)$ in a similar way.
These can be shown to be
\begin{align*}
\nabla \times (A_2 \versor e_2) &=
\dfrac{\versor e_3}{h_2h_1}\dfrac{\partial }{\partial u_1}(h_2A_2) - \dfrac{\versor e_1}{h_2h_3}\dfrac{\partial }{\partial u_3}(h_2A_2)\\
\nabla \times (A_3 \versor e_3) &=
\dfrac{\versor e_1}{h_3h_2}\dfrac{\partial }{\partial u_2}(h_3A_3) - \dfrac{\versor e_2}{h_3h_1}\dfrac{\partial }{\partial u_1}(h_3A_3)
\end{align*}
Adding these three contributions together, we find we can write this in the form of a determinant as
\begin{prop}[Curl in Orthogonal Curvilinear Coordinates]
\[ \mathrm{curl}\,\mathbf A = \dfrac{1}{h_1h_2h_3}
\begin{vmatrix}
h_1\versor e_1 & h_2 \versor e_2 & h_3\versor e_3\\
\partial _{u_1} &\partial _{u_2} &\partial _{u_3}\\
h_1A_1 & h_2A_2 & h_3A_3
\end{vmatrix}
\]
\end{prop}
It's then straightforward to write down the expressions of the curl in various orthogonal coordinate systems.
\textbf{(i) Cylindrical polars}
\[
\mathrm{curl}\,\mathbf A =
\dfrac{1}{r}
\begin{vmatrix}
\hat r & r\hat \theta & \hat z\\
\partial _r & \partial _\theta &\partial _z\\
A_1 & rA_2 & A_3
\end{vmatrix}
\]
\textbf{(ii) Spherical polars}
\[
\mathrm{curl}\,\mathbf A = \dfrac{1}{r^2\sin\phi}
\begin{vmatrix}
\hat r & r\hat \phi & r\sin\phi \hat \theta\\
\partial _r & \partial _\phi & \partial _\theta\\
A_1 & rA_2 & r\sin\phi A_3
\end{vmatrix}
\]
\section{The Laplacian in Orthogonal Curvilinear Coordinates}
From the formulae already established for the gradient and the divergent, we can see that
\begin{prop}[The Laplacian in Orthogonal Curvilinear Coordinates]
\begin{align*}
\nabla^2\Phi
&= \nabla \cdot(\nabla \Phi)\\
&= \dfrac{1}{h_1h_2h_3}\left[\dfrac{\partial }{\partial u_1}(h_2h_3\dfrac{1}{h_1}\dfrac{\partial \Phi}{\partial u_1}) + \dfrac{\partial }{\partial u_2}(h_3h_1\dfrac{1}{h_2}\dfrac{\partial \Phi}{\partial u_2}) + \dfrac{\partial }{\partial u_3}(h_1h_2\dfrac{1}{h_3}\dfrac{\partial \Phi}{\partial u_3})\right]
\end{align*}
\end{prop}
% The formula can then be used to calculate the Laplacian for various coordinate systems.
\textbf{(i) Cylindrical polars $(r,\theta,z)$}
\begin{align*}
\nabla^2\Phi
&= \dfrac{1}{r}\left[\dfrac{\partial }{\partial r}\left(r\dfrac{\partial \Phi}{\partial r}\right) + \dfrac{\partial }{\partial \theta}\left(\dfrac{1}{r}\dfrac{\partial \Phi}{\partial \theta}\right) + \dfrac{\partial }{\partial z}\left(r \dfrac{\partial \Phi}{\partial z}\right)\right]\\[.2cm]
&= \dfrac{\partial ^2\Phi}{\partial r^2} + \dfrac{1}{r}\dfrac{\partial \Phi}{\partial r} + \dfrac{1}{r^2}\dfrac{\partial ^2\Phi}{\partial \theta^2} + \dfrac{\partial ^2\Phi}{\partial z^2}
\end{align*}
\textbf{(ii) Spherical polars $(r,\phi,\theta)$}
\begin{align*}
\nabla^2\Phi
&= \dfrac{1}{r^2\sin\phi}
\left[\dfrac{\partial }{\partial r}\left(r^2\sin\phi \dfrac{\partial \Phi}{\partial r}\right) + \dfrac{\partial }{\partial \phi}\left(\sin\phi \dfrac{\partial \Phi}{\partial \phi}\right) + \dfrac{\partial }{\partial \theta}\left(\dfrac{1}{\sin\phi}\dfrac{\partial \Phi}{\partial \theta}\right)\right]\\[.2cm]
&= \dfrac{\partial ^2\Phi}{\partial r^2} + \dfrac{2}{r}\dfrac{\partial \Phi}{\partial r} + \dfrac{\cot \phi}{r^2}\dfrac{\partial \Phi}{\partial \phi} + \dfrac{1}{r^2}\dfrac{\partial ^2\Phi}{\partial \phi^2} + \dfrac{1}{r^2\sin^2\phi}\dfrac{\partial ^2\Phi}{\partial \theta^2}
\end{align*}
\begin{exa}
In Example \ref{exa:laplposition} we showed that $\nabla \norm{\textbf{r}}^2 = 2\,\textbf{r}$ and
$\Delta \norm{\textbf{r}}^2 = 6$, where $\textbf{r}(x,y,z) = x\,\textbf{i} + y\,\textbf{j} + z\,\textbf{k}$ in
Cartesian coordinates. Verify that we get the same answers if we switch to spherical coordinates.\vspace{1mm}
\par\noindent \emph{Solution:} Since $\norm{\textbf{r}}^2 = x^2 + y^2 + z^2 = \rho^2$ in spherical
coordinates, let $F(\rho,\theta,\phi) = \rho^2$ (so that $F(\rho,\theta,\phi) =
\norm{\textbf{r}}^2$). The gradient of $F$ in spherical coordinates is
\begin{align*}
\nabla F ~&=~ \frac{\partial F}{\partial \rho}\,\textbf{e}_{\rho} ~+~
\frac{1}{\rho \sin \phi}\,\frac{\partial F}{\partial \theta}\,\textbf{e}_{\theta} ~+~
\frac{1}{\rho}\,\frac{\partial F}{\partial \phi}\,\textbf{e}_{\phi}\\
&=~ 2\rho\,\textbf{e}_{\rho} ~+~ \frac{1}{\rho \sin \phi}\,(0)\,\textbf{e}_{\theta} ~+~
\frac{1}{\rho}\,(0)\,\textbf{e}_{\phi}\\
&=~ 2\rho\,\textbf{e}_{\rho} ~=~ 2\rho\,\frac{\textbf{r}}{\norm{\textbf{r}}} ~,~\text{as we showed earlier, so}\\
&=~ 2\rho\,\frac{\textbf{r}}{\rho} ~=~ 2\,\textbf{r} ~,~\text{as expected. And the Laplacian is}\\
\Delta\,F ~&=~ \frac{1}{\rho^2}\,\frac{\partial}{\partial \rho} \left( \rho^2 \,
\frac{\partial F}{\partial \rho} \right) ~+~ \frac{1}{\rho^2 \sin^2 \phi}\,\frac{\partial^2 F}{\partial \theta^2} ~+~
\frac{1}{\rho^2 \sin \phi}\,\frac{\partial}{\partial \phi} \left( \sin \phi \,\frac{\partial F}{\partial \phi}
\right)\\
&=~ \frac{1}{\rho^2}\,\frac{\partial}{\partial \rho} ( \rho^2 \,2\rho ) ~+~ \frac{1}{\rho^2 \sin \phi}\,(0) ~+~
\frac{1}{\rho^2 \sin \phi}\,\frac{\partial}{\partial \phi} \left( \sin \phi \,(0) \right)\\
&=~ \frac{1}{\rho^2}\,\frac{\partial}{\partial \rho} ( 2\rho^3 ) ~+~ 0 ~+~ 0\\
&=~ \frac{1}{\rho^2}\,(6\rho^2 ) ~=~ 6 ~,~\text{as expected.}
\end{align*}
\end{exa}
\begin{table}[h!]
\begin{tabular}{ccl}
\hline \rule{0pt}{4ex}
$\nabla \Phi$& =&$ \displaystyle\dfrac{\versor e_1}{h_1}\dfrac{\partial \Phi}{\partial u_1} + \dfrac{\versor e_2}{h_2}\dfrac{\partial \Phi}{\partial u_2} + \dfrac{\versor e_3}{h_3}\dfrac{\partial \Phi}{\partial u_3}$\\
$ \nabla \cdot \mathbf A$& =&$ \displaystyle\dfrac{1}{h_1h_2h_3}\left[\dfrac{\partial }{\partial u_1}(h_2h_3 A_1) + \dfrac{\partial }{\partial u_2}(h_3h_1 A_2) + \dfrac{\partial }{\partial u_3}(h_1h_2A_3)\right]$\\
$\mathrm{curl}\,\mathbf A$& =& $ \displaystyle\dfrac{1}{h_1h_2h_3}
\begin{vmatrix}
h_1\versor e_1 & h_2 \versor e_2 & h_3\versor e_3\\
\partial _{u_1} &\partial _{u_2} &\partial _{u_3}\\
h_1A_1 & h_2A_2 & h_3A_3
\end{vmatrix}$\\
$\nabla^2\Phi$ &=& $ \displaystyle\dfrac{1}{h_1h_2h_3}\left[\dfrac{\partial }{\partial u_1}(h_2h_3\dfrac{1}{h_1}\dfrac{\partial \Phi}{\partial u_1}) + \dfrac{\partial }{\partial u_2}(h_3h_1\dfrac{1}{h_2}\dfrac{\partial \Phi}{\partial u_2}) + \dfrac{\partial }{\partial u_3}(h_1h_2\dfrac{1}{h_3}\dfrac{\partial \Phi}{\partial u_3})\right]$ \rule{0pt}{4ex} \\
\hline
\end{tabular}
\caption{Vector operators in orthogonal curvilinear coordinates $u_ 1 , u_ 2 , u_ 3.$}
\end{table}
\section{Examples of Orthogonal Coordinates}
\paragraph{Spherical Polar Coordinates}
\((r, \phi, \theta)\in[0,\infty)\times[0,\pi]\times[0,2\pi)\)
\begin{align}
x&=r\sin\phi\cos\theta \\
y&=r\sin\phi\sin\theta \\
z&=r\cos\phi
\end{align}
The scale factors for the Spherical Polar Coordinates are:
\begin{align}
h_1&=1 \\
h_2&=r \\
h_3&=r\sin\phi
\end{align}
\paragraph{Cylindrical Polar Coordinates}
\((r, \theta, z)\in[0,\infty)\times[0,2\pi)\times(-\infty,\infty)\)
\begin{align}
x&=r\cos\theta \\
y&=r\sin\theta \\
z&=z
\end{align}
The scale factors for the Cylindrical Polar Coordinates are:
\begin{align}
h_1&=h_3=1 \\
h_2&=r
\end{align}
\paragraph{Parabolic Cylindrical
Coordinates}
\((u, v, z)\in(-\infty,\infty)\times[0,\infty)\times(-\infty,\infty)\)
\begin{align}
x&=\frac{1}{2}(u^2-v^2)\\
y&=uv\\
z&=z
\end{align}
The scale factors for the Parabolic Cylindrical
Coordinates are:
\begin{align}
h_1&=h_2=\sqrt{u^2+v^2} \\
h_3&=1
\end{align}
\paragraph{Paraboloidal Coordinates}
\((u, v, \theta)\in[0,\infty)\times[0,\infty)\times[0,2\pi)\)
\begin{align}
x&=uv\cos\theta\\
y&=uv\sin\theta\\
z&=\frac{1}{2}(u^2-v^2)
\end{align}
The scale factors for the Paraboloidal Coordinates are:
\begin{align}
h_1&=h_2=\sqrt{u^2+v^2} \\
h_3&=uv
\end{align}
\paragraph{Elliptic Cylindrical
Coordinates}
\((u, v, z)\in[0,\infty)\times[0,2\pi)\times(-\infty,\infty)\)
\begin{align}
x&=a\cosh u \cos v\\
y&=a\sinh u \sin v\\
z&=z
\end{align}
The scale factors for the Elliptic Cylindrical
Coordinates are:
\begin{align}
h_1&=h_2=a\sqrt{\sinh^2u+\sin^2v} \\
h_3&=1
\end{align}
\paragraph{Prolate Spheroidal Coordinates}
\((\xi, \eta, \theta)\in[0,\infty)\times[0,\pi]\times[0,2\pi)\)
\begin{align}
x&=a\sinh\xi\sin\eta\cos\theta\\
y&=a\sinh\xi\sin\eta\sin\theta\\
z&=a\cosh\xi\cos\eta
\end{align}
The scale factors for the Prolate Spheroidal
Coordinates are:
\begin{align}
h_1&=h_2=a\sqrt{\sinh^2\xi+\sin^2\eta} \\
h_3&=a\sinh\xi\sin\eta
\end{align}
\paragraph{Oblate Spheroidal Coordinates}
\((\xi, \eta, \theta)\in[0,\infty)\times\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\times[0,2\pi)\)
\begin{align}
x&=a\cosh\xi\cos\eta\cos\theta\\
y&=a\cosh\xi\cos\eta\sin\theta\\
z&=a\sinh\xi\sin\eta
\end{align}
The scale factors for the Oblate Spheroidal
Coordinates are:
\begin{align}
h_1&=h_2=a\sqrt{\sinh^2\xi+\sin^2\eta} \\
h_3&=a\cosh\xi\cos\eta
\end{align}
\paragraph{Ellipsoidal Coordinates} \begin{align}
& (\lambda, \mu, \nu)\\
& \lambda < c^2 < b^2 < a^2,\\
& c^2 < \mu < b^2 < a^2,\\
& c^2 < b^2 < \nu < a^2,
\end{align}
\(\frac{x^2}{a^2 - q_i} + \frac{y^2}{b^2 - q_i} + \frac{z^2}{c^2 - q_i} = 1\)
where \((q_1,q_2,q_3)=(\lambda,\mu,\nu)\)
The scale factors for the Ellipsoidal
Coordinates are:
\(h_i=\frac{1}{2} \sqrt{\frac{(q_j-q_i)(q_k-q_i)}{(a^2-q_i)(b^2-q_i)(c^2-q_i)}}\)
\paragraph{Bipolar Coordinates}
\((u,v,z)\in[0,2\pi)\times(-\infty,\infty)\times(-\infty,\infty)\)
\begin{align}
x&=\frac{a\sinh v}{\cosh v - \cos u}\\
y&=\frac{a\sin u}{\cosh v - \cos u}\\
z&=z
\end{align}
The scale factors for the Bipolar
Coordinates are:
\begin{align}
h_1&=h_2=\frac{a}{\cosh v - \cos u}\\
h_3&=1
\end{align}
\paragraph{Toroidal Coordinates}
\((u,v,\theta)\in(-\pi,\pi]\times[0,\infty)\times[0,2\pi)\)
\begin{align}
x &= \frac{a\sinh v \cos\theta}{\cosh v - \cos u}\\
y &= \frac{a\sinh v \sin\theta}{\cosh v - \cos u} \\
z &= \frac{a\sin u}{\cosh v - \cos u}
\end{align}
The scale factors for the Toroidal
Coordinates are:
\begin{align}
h_1&=h_2=\frac{a}{\cosh v - \cos u}\\
h_3&=\frac{a\sinh v}{\cosh v - \cos u}
\end{align}
\paragraph{Conical Coordinates}
\begin{align}
& (\lambda,\mu,\nu)\\
& \nu^2 < b^2 < \mu^2 < a^2 \\
& \lambda \in [0,\infty)
\end{align}\begin{align}
x &= \frac{\lambda\mu\nu}{ab}\\
y &= \frac{\lambda}{a}\sqrt{\frac{(\mu^2-a^2)(\nu^2-a^2)}{a^2-b^2}} \\
z &= \frac{\lambda}{b}\sqrt{\frac{(\mu^2-b^2)(\nu^2-b^2)}{a^2-b^2}}
\end{align}
The scale factors for the Conical Coordinates are:
\begin{align}
h_1&=1\\
h_2^2&=\frac{\lambda^2(\mu^2-\nu^2)}{(\mu^2-a^2)(b^2-\mu^2)}\\
h_3^2&=\frac{\lambda^2(\mu^2-\nu^2)}{(\nu^2-a^2)(\nu^2-b^2)}
\end{align}
\section{Alternative Definitions for Grad, Div, Curl}
Let $V$ be a region enclosed by a surface $S$ and let $P$ be a general point of $V$. We established earlier that
\[
\int_V \nabla \theta\,\d V =\int_S \hat n \theta \,\d S
\]
It follows that
\[
\int_V \hat i \cdot \nabla \theta \,\d V =
\int_S (\hat i \cdot \hat n)\theta \,\d S
\]
Now the left hand side of the above equation can be written as
$V\{\overline{\hat i \cdot \nabla \theta}\}$, where the bar denotes the mean value of
this quantity over $V$. Since we are assuming that $\theta$ has continuous
derivates throughout $V$, we can write
\[
\{\overline{\hat i \cdot \nabla\theta}\} = \{\hat i \cdot \nabla \theta\}_Q
\]
for some point $Q$ of $V$. Thus we have that
\[
\{\hat i \cdot \nabla\theta\}_Q = \dfrac{1}{V} \int_S (\hat i \cdot \hat n)\theta \,\d S
\]
Now let $V \to 0$ about $P$. Then $P \to Q$ and we have that at any point $P$ of $V$:
\[
\hat i \cdot \nabla \theta = \lim_{V \to 0}\dfrac{1}{V}\int_S(\hat i \cdot \hat n)\theta\,\d S
\]
Similar results can be established for $\hat j \cdot \nabla \theta$ and $\hat k \cdot \nabla \theta$. Taken together, these imply that
\[
\nabla \theta = \lim_{V \to 0}\dfrac{1}{V} \int_S \hat n \theta\,\d S
\]
This can be regarded an an alternative way of defining $\nabla \theta$, rather than defining it as $(\partial \theta/ \partial x)\hat i + (\partial \theta/\partial u)\hat j + (\partial \theta/\partial z)\hat k$. We can similarly establish that
\begin{align*}
\mathrm{div}\,\mathbf A &= \lim_{V \to 0}\dfrac{1}{V}\int_S(\hat n\cdot \mathbf A)\,\d S\\
\mathrm{curl}\,\mathbf A &= \lim_{V \to 0}\dfrac{1}{V}\int_S(\hat n \times \mathbf A)\,\d S
\end{align*}
which are alternative definitions of the divergence and curl, and are clearly independent of the
choice of coordinates, which is one of the advantages of this approach.
In particular we can see that the divergence is a measure of the flux of a quantity.
\textbf{Equivalence of definitions}
Let’s show that the definition of divergence given here is consistent with the curvilinear formula given
earlier.
Consider $\delta V$ to be the volume of a curvilinear volume element located at the point $P$,
with edges of length $h_1\delta u_1,\, h_2\delta u_2,\, h_3\delta u_3$, and unit vectors aligned as shown in the picture:
% \begin{center}
% \includegraphics[width=6cm]{fig23.jpg}
% \end{center}
The volume of the element $\delta V \approx h_1h_2h_3\,\delta u_1\delta u_2\delta u_3$. We start with our definition
\[
\mathrm{div}\,\mathbf A = \lim_{V \to 0}\dfrac{1}{V}\int_S (\hat n \cdot \mathbf A)\,\d S
\]
and aim to compute explicitly the right-hand-side.
This involves calculating the contributions to $\int_S$ arising from the six faces of the volume element.
If we start with the contribution from the face
$PP'S'S$, this is
\[
-(A_1h_2h_3)_P \delta u_2\delta u_3 + \text{ higher order terms}
\]
The contribution from the face $QQ'R'R$ is
\[
(A_1h_2h_3)_Q\delta u_3\delta u_3 + \text{h.o.t} = \left[(A_1h_2h_3) + \dfrac{\partial }{\partial u_1}(A_1h_2h_3)\delta u_1\right]_P \delta u_2\delta u_3 + \text{h.o.t}
\]
using a Taylor series expansion. Adding together the contributions from these two faces, we get
\[
\left[\dfrac{\partial }{\partial u_1}(A_1h_2h_3)\right]_P \delta u_1\delta u_2\delta u_3 + \text{ h.o.t.}
\]
Similarly the sum of the contributions from the faces $PSRQ,\, P'S'R'Q'$ is
\[
\left[\dfrac{\partial }{\partial u_3}(A_3h_1h_2)\right]_P\delta u_1\delta u_2\delta u_3 + \text{ h.o.t.}
\]
while the combined contributions from $PQQ'P',\, SRR'S'$ is
\[
\left[\dfrac{\partial }{\partial u_2}(A_2h_3h_1)\right]_P\delta u_1\delta u_2\delta u_3 + \text{ h.o.t.}
\]
If we then let $\delta V \to 0$, we have that
\[
\lim_{\delta V \to 0}\dfrac{1}{\delta V}\int_S \hat n \cdot \mathbf A\, \d S
= \dfrac{1}{h_1h_2h_3}\left[\dfrac{\partial }{\partial u_1}(A_1h_2h_3) + \dfrac{\partial }{\partial u_2}(A_2h_3h_1) + \dfrac{\partial }{\partial u_3}(A_3h_1h_2)\right]
\]
and so we can see that the integral expression for div $\mathbf A$ is consistent with the formula
in curvilinear coordinates derived earlier.
%\startexercises
\centerline{\fbox{\textsf{\textbf{\large Exercises}}}}\label{sec4dot6}
\probs{A}
\par\noindent For Exercises 1-6, find the Laplacian of the function $f(x,y,z)$ in Cartesian coordinates.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{3}
\item $f(x,y,z)=x+y+z$
\item $f(x,y,z)=x^5$
\item $f(x,y,z)=(x^2 + y^2 + z^2 )^{3/2}$
\end{multicols}
\begin{multicols}{3}