-
Notifications
You must be signed in to change notification settings - Fork 7
/
chapter7b.tex
1736 lines (1441 loc) · 71.7 KB
/
chapter7b.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Applications of Tensor}
\section{Common Definitions in Tensor Notation\label{subCommonDefinitions}}
The trace of a matrix $\vector{A}$ representing a rank-2
tensor is:
\begin{equation}
\mathrm{tr}\left(\vector{A}\right)=A_{ii}
\end{equation}
For a $3\times3$ matrix representing a rank-2 tensor in
a 3D space, the determinant is:
\begin{equation}
\mathrm{det}\left(\vector{A}\right)=\begin{vmatrix}\begin{array}{ccc}
A_{11} & A_{12} & A_{13}\\
A_{21} & A_{22} & A_{23}\\
A_{31} & A_{32} & A_{33}
\end{array}\end{vmatrix}=\epsilon_{ijk}A_{1i}A_{2j}A_{3k}=\epsilon_{ijk}A_{i1}A_
{j2}A_{k3}
\end{equation}
where the last two equalities represent the expansion of the determinant
by row and by column. Alternatively
\begin{equation}
\mathrm{det}\left(\vector{A}\right)=\dfrac{1}{3!}\epsilon_{ijk}\epsilon_{lmn}A_{
il}A_{jm}A_{kn}
\end{equation}
For an $n\times n$ matrix representing a rank-2 tensor
in $\bbR^n$, the determinant is:
\begin{equation}
\mathrm{det}\left(\vector{A}\right)=\epsilon_{i_{1}\cdots i_{n}}A_{1i_{1}}\ldots
A_{ni_{n}}=\epsilon_{i_{1}\cdots i_{n}}A_{i_{1}1}\ldots
A_{i_{n}n}=\dfrac{1}{n!}\epsilon_{i_{1}\cdots i_{n}}\,\epsilon_{j_{1}\cdots
j_{n}}A_{i_{1}j_{1}}\ldots A_{i_{n}j_{n}}
\end{equation}
The inverse of a matrix $\vector{A}$ representing a rank-2
tensor is:
\begin{equation}
\left[\vector{A}^{-1}\right]_{ij}=\dfrac{1}{2\,\mathrm{det}\left(\vector{A}
\right)}\epsilon_{jmn}\,\epsilon_{ipq}A_{mp}A_{nq}
\end{equation}
The multiplication of a matrix $\vector{A}$ by a vector
$\vector{b}$ as defined in linear algebra is:
\begin{equation}
\left[\vector{A}\vector{b}\right]_{i}=A_{ij}b_{j}
\end{equation}
It should be noticed that here we are using matrix notation. The multiplication
operation, according to the symbolic notation of tensors, should be
denoted by a dot between the tensor and the vector, i.e.
$\vector{A}\vector{\cdot b}$.\footnote{The matrix multiplication in matrix
notation is equivalent to a dot
product operation in tensor notation.}
The multiplication of two $n\times n$ matrices $\vector{A}$
and $\vector{B}$ as defined in linear algebra is:
\begin{equation}
\left[\vector{A}\vector{B}\right]_{ik}=A_{ij}B_{jk}\label{eqMatrixMultiplication
}
\end{equation}
Again, here we are using matrix notation; otherwise a dot should be
inserted between the two matrices.
The dot product of two vectors is:
\begin{equation}
\vector{A}\cdot\vector{B=}\delta_{ij}A_{i}B_{j}=A_{i}B_{i}\label{eqDotProduct}
\end{equation}
The readers are referred to $\S$ \ref{secInnerProduct} for a more
general definition of this type of product that includes higher rank
tensors.
The cross product of two vectors is:
\begin{equation}
\left[\vector{A}\times\vector{B}\right]_{i}=\epsilon_{ijk}A_{j}B_{k}\label{
EqCrossProduct}
\end{equation}
The scalar triple product of three vectors is:
\begin{equation}
\vector{A}\cdot\left(\vector{B}\times\vector{C}\right)=\begin{vmatrix}
\begin{array}{ccc}
A_{1} & A_{2} & A_{3}\\
B_{1} & B_{2} & B_{3}\\
C_{1} & C_{2} & C_{3}
\end{array}\end{vmatrix}=\epsilon_{ijk}A_{i}B_{j}C_{k}\label{
EqScalarTripleProduct}
\end{equation}
The vector triple product of three vectors is:
\begin{equation}
\left[\vector{A}\times\left(\vector{B}\times\vector{C}\right)\right]_{i}
=\epsilon_{ijk}\epsilon_{klm}A_{j}B_{l}C_{m}
\end{equation}
%
%
%
% \section{Scalar Invariants of Tensors}
%
% In the following we list and write in tensor notation a
% number of invariants of low rank tensors which have special importance
% due to their widespread applications in vector and tensor calculus.
% All These invariants are scalars.
%
% The value of a scalar (rank-0 tensor), which consists of
% a magnitude and a sign, is invariant under coordinate transformation.
%
% An invariant of a vector (rank-1 tensor) under coordinate
% transformations is its magnitude, i.e. length (the direction is also
% invariant but it is not scalar!).\footnote{In fact the magnitude alone is
% invariant under coordinate transformations
% even for pseudo vectors because it is a scalar.}
%
% The main three independent scalar invariants of a rank-2
% tensor $\vector{A}$ under change of basis are:
% \begin{equation}
% I=\mathrm{tr}\left(\vector{A}\right)=A_{ii}
% \end{equation}
% \begin{equation}
% II=\mathrm{tr}\left(\vector{A}^{2}\right)=A_{ij}A_{ji}
% \end{equation}
% \begin{equation}
% III=\mathrm{tr}\left(\vector{A}^{3}\right)=A_{ij}A_{jk}A_{ki}
% \end{equation}
%
%
% Different forms of the three invariants of a rank-2 tensor
% $\vector{A}$, which are also widely used, are:
% \begin{equation}
% I_{1}=I=A_{ii}
% \end{equation}
% \begin{equation}
% I_{2}=\dfrac{1}{2}\left(I^{2}-II\right)=\dfrac{1}{2}\left(A_{ii}A_{jj}-A_{ij}A_{ji
% }\right)
% \end{equation}
% \begin{equation}
% I_{3}=\mathrm{det}\left(\vector{A}\right)=\dfrac{1}{3!}\left(I^{3}-3I\,\,
% II+2III\right)=\dfrac{1}{3!}\epsilon_{ijk}\epsilon_{pqr}A_{ip}A_{jq}A_{kr}
% \end{equation}
%
%
% The invariants $I$, $II$ and $III$ can similarly be
% defined in terms of the invariants $I_{1}$, $I_{2}$ and $I_{3}$
% as follow:
% \begin{equation}
% I=I_{1}
% \end{equation}
% \begin{equation}
% II=I_{1}^{2}-2I_{2}
% \end{equation}
% \begin{equation}
% III=I_{1}^{3}-3I_{1}I_{2}+3I_{3}
% \end{equation}
%
%
% Since the determinant of a matrix representing a rank-2
% tensor is invariant, then if the determinant vanishes in one coordinate
% system it will vanish in all coordinate systems and vice versa. Consequently,
% if a rank-2 tensor is invertible in a particular coordinate system,
% it is invertible in all coordinate systems.
%
% Ten joint invariants between two rank-2 tensors, $\vector{A}$
% and $\vector{B}$, can be formed; these are:
% $\mathrm{tr}\left(\vector{A}\right)$,
% $\mathrm{tr}\left(\vector{B}\right)$, $\mathrm{tr}\left(\vector{A}^{2}\right)$,
% $\mathrm{tr}\left(\vector{B}^{2}\right)$,
% $\mathrm{tr}\left(\vector{A}^{3}\right)$,
% $\mathrm{tr}\left(\vector{B}^{3}\right)$,
% $\mathrm{tr}\left(\vector{A}\cdot\vector{B}\right)$,
% $\mathrm{tr}\left(\vector{A}^{2}\cdot\vector{B}\right)$,
% $\mathrm{tr}\left(\vector{A}\cdot\vector{B}^{2}\right)$
% and $\mathrm{tr}\left(\vector{A}^{2}\cdot\vector{B}^{2}\right)$.
\section{Common Differential Operations in Tensor Notation}
Here we present the most common differential operations
as defined by tensor notation. These operations are mostly based on
the various types of interaction between the vector differential operator
nabla $\nabla$ with tensors of different ranks as well as interaction
with other types of operation like dot and cross products.
The operator $\nabla$ is essentially a spatial partial differential
operator defined in Cartesian coordinate systems by:
\begin{equation}
\nabla_{i}=\dfrac{\partial}{\partial x_{i}}
\end{equation}
The gradient of a differentiable scalar function of position
$f$ is a vector given by:
\begin{equation}
\left[\nabla f\right]_{i}=\nabla_{i}f=\dfrac{\partial f}{\partial
x_{i}}=\partial_{i}f=f_{,i}\label{eqGrad}
\end{equation}
The gradient of a differentiable vector function of position
$\vector{A}$ (which is the outer product, as defined in $\S$
\ref{subTensorMultiplication},
between the $\nabla$ operator and the vector) is a rank-2 tensor
defined by:
\begin{equation}
\left[\nabla\vector{A}\right]_{ij}=\partial_{i}A_{j}\label{eqGrad2}
\end{equation}
The gradient operation is distributive but not commutative
or associative:
\begin{equation}
\nabla\left(f+h\right)=\nabla f+\nabla h
\end{equation}
\begin{equation}
\nabla f\ne f\nabla
\end{equation}
\begin{equation}
\left(\nabla f\right)h\ne\nabla\left(fh\right)
\end{equation}
where $f$ and $h$ are differentiable scalar functions of position.
The divergence of a differentiable vector $\vector{A}$
is a scalar given by:
\begin{equation}
\nabla\cdot\vector{A}=\delta_{ij}\dfrac{\partial A_{i}}{\partial
x_{j}}=\dfrac{\partial A_{i}}{\partial
x_{i}}=\nabla_{i}A_{i}=\partial_{i}A_{i}=A_{i,i}\label{eqDiv}
\end{equation}
The divergence operation can also be viewed as taking the gradient
of the vector followed by a contraction. Hence, the divergence of
a vector is invariant because it is the trace of a rank-2 tensor.\footnote{It
may also be argued that the divergence of a vector is a scalar
and hence it is invariant.}
The divergence of a differentiable rank-2 tensor $\vector{A}$
is a vector defined in one of its forms by:
\begin{equation}
\left[\nabla\cdot\vector{A}\right]_{i}=\partial_{j}A_{ji}\label{eqDiv2}
\end{equation}
and in another form by
\begin{equation}
\left[\nabla\cdot\vector{A}\right]_{j}=\partial_{i}A_{ji}\label{eqDiv3}
\end{equation}
These two different forms can be given, respectively, in symbolic
notation by:
\begin{equation}
\nabla\cdot\vector{A}\,\,\,\,\,\,\,\,\,\,\&\,\,\,\,\,\,\,\,\,\,
\nabla\cdot\vector{A}^{T}
\end{equation}
where $\vector{A}^{T}$ is the transpose of $\vector{A}$. More generally,
the divergence of a tensor of rank $n\ge2$, which is a tensor of
rank-($n-1$), can be defined in several forms, which are different
in general, depending on the combination of the contracted indices.
The divergence operation is distributive but not commutative
or associative:
\begin{equation}
\nabla\cdot\left(\vector{A}+\vector{B}\right)=\nabla\cdot\vector{A}
+\nabla\cdot\vector{B}
\end{equation}
\begin{equation}
\nabla\cdot\vector{A}\ne\vector{A}\cdot\nabla
\end{equation}
\begin{equation}
\nabla\cdot\left(f\vector{A}\right)\ne\nabla f\cdot\vector{A}
\end{equation}
where $\vector{A}$ and $\vector{B}$ are differentiable tensor functions
of position.
The curl of a differentiable vector $\vector{A}$ is a
vector given by:
\begin{equation}
\left[\nabla\times\vector{A}\right]_{i}=\epsilon_{ijk}\dfrac{\partial
A_{k}}{\partial
x_{j}}=\epsilon_{ijk}\nabla_{j}A_{k}=\epsilon_{ijk}\partial_{j}A_{k}=\epsilon_{
ijk}A_{k,j}\label{EqCurl}
\end{equation}
The curl operation may be generalized to tensors of rank
$>1$, and hence the curl of a differentiable rank-2 tensor $\vector{A}$
can be defined as a rank-2 tensor given by:
\begin{equation}
\left[\nabla\times\vector{A}\right]_{ij}=\epsilon_{imn}\partial_{m}A_{nj}
\end{equation}
The curl operation is distributive but not commutative
or associative:
\begin{equation}
\nabla\times\left(\vector{A}+\vector{B}\right)=\nabla\times\vector{A}
+\nabla\times\vector{B}
\end{equation}
\begin{equation}
\nabla\times\vector{A}\ne\vector{A}\times\nabla
\end{equation}
\begin{equation}
\nabla\times\left(\vector{A\times
B}\right)\ne\left(\nabla\times\vector{A}\right)\times\vector{B}
\end{equation}
The Laplacian scalar operator, also called the harmonic
operator, acting on a differentiable scalar $f$ is given by:
\begin{equation}
\Delta f=\nabla^{2}f=\delta_{ij}\dfrac{\partial^{2}f}{\partial x_{i}\partial
x_{j}}=\dfrac{\partial^{2}f}{\partial x_{i}\partial
x_{i}}=\nabla_{ii}f=\partial_{ii}f=f_{,ii}\label{eqLaplacian}
\end{equation}
The Laplacian operator acting on a differentiable vector
$\vector{A}$ is defined for each component of the vector similar
to the definition of the Laplacian acting on a scalar, that is
\begin{equation}
\left[\nabla^{2}\vector{A}\right]_{i}=\partial_{jj}A_{i}\label{eqLaplacian2}
\end{equation}
The following scalar differential operator is commonly
used in science (e.g. in fluid dynamics):
\begin{equation}
\vector{A}\cdot\nabla=A_{i}\nabla_{i}=A_{i}\dfrac{\partial}{\partial
x_{i}}=A_{i}\partial_{i}\label{eqANabla}
\end{equation}
where $\vector{A}$ is a vector. As indicated earlier, the order of
$A_{i}$ and $\partial_{i}$ should be respected.
The following vector differential operator also has common
applications in science:
\begin{equation}
\left[\vector{A}\times\nabla\right]_{i}=\epsilon_{ijk}A_{j}\partial_{k}
\end{equation}
The differentiation of a tensor increases its rank by one,
by introducing an extra covariant index, unless it implies a contraction
in which case it reduces the rank by one. Therefore the gradient of
a scalar is a vector and the gradient of a vector is a rank-2 tensor
($\partial_{i}A_{j}$), while the divergence of a vector is a scalar
and the divergence of a rank-2 tensor is a vector ($\partial_{j}A_{ji}$
or $\partial_{i}A_{ji}$). This may be justified by the fact that
$\nabla$ is a vector operator. On the other hand the Laplacian operator
does not change the rank since it is a scalar operator; hence the
Laplacian of a scalar is a scalar and the Laplacian of a vector is
a vector.
\section{Common Identities in Vector and Tensor Notation}
Here we present some of the widely used identities of vector
calculus in the traditional vector notation and in its equivalent
tensor notation. In the following bullet points, $f$ and $h$ are
differentiable scalar fields; $\vector{A}$, $\vector{B}$, $\vector{C}$
and $\vector{D}$ are differentiable vector fields; and
$\vector{r}=x_{i}\vector{e}_{i}$
is the position vector.
\begin{eqnarray}
\nabla\cdot\vector{r} & = & n\nonumber \\
& \Updownarrow\\
\partial_{i}x_{i} & = & n\nonumber
\end{eqnarray}
where $n$ is the space dimension.
\begin{eqnarray}
\nabla\times\vector{r} & = & \vector{0}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\partial_{j}x_{k} & = & 0\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\left(\vector{a}\cdot\vector{r}\right) & = & \vector{a}\nonumber \\
& \Updownarrow\\
\partial_{i}\left(a_{j}x_{j}\right) & = & a_{i}\nonumber
\end{eqnarray}
where $\vector{a}$ is a constant vector.
\begin{eqnarray}
\nabla\cdot\left(\nabla f\right) & = & \nabla^{2}f\nonumber \\
& \Updownarrow\\
\partial_{i}\left(\partial_{i}f\right) & = & \partial_{ii}f\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\cdot\left(\nabla\times\vector{A}\right) & = & 0\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\partial_{i}\partial_{j}A_{k} & = & 0\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\times\left(\nabla f\right) & = & \vector{0}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\partial_{j}\partial_{k}f & = & 0\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\left(fh\right) & = & f\nabla h+h\nabla f\nonumber \\
& \Updownarrow\\
\partial_{i}\left(fh\right) & = & f\partial_{i}h+h\partial_{i}f\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\cdot\left(f\vector{A}\right) & = &
f\nabla\cdot\vector{A}+\vector{A}\cdot\nabla f\nonumber \\
& \Updownarrow\\
\partial_{i}\left(fA_{i}\right) & = &
f\partial_{i}A_{i}+A_{i}\partial_{i}f\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\times\left(f\vector{A}\right) & = & f\nabla\times\vector{A}+\nabla
f\times\vector{A}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\partial_{j}\left(fA_{k}\right) & = &
f\epsilon_{ijk}\partial_{j}A_{k}+\epsilon_{ijk}\left(\partial_{j}f\right)A_{k}
\nonumber
\end{eqnarray}
\begin{alignat}{3}
\vector{A}\cdot\left(\vector{B}\times\vector{C}\right) & = &
\,\vector{C}\cdot\left(\vector{A}\times\vector{B}\right) & = &
\,\vector{B}\cdot\left(\vector{C}\times\vector{A}\right)\nonumber \\
& \Updownarrow & & \Updownarrow\\
\epsilon_{ijk}A_{i}B_{j}C_{k} & = & \epsilon_{kij}C_{k}A_{i}B_{j} & = &
\epsilon_{jki}B_{j}C_{k}A_{i}\nonumber
\end{alignat}
\begin{eqnarray}
\vector{A}\times\left(\vector{B}\times\vector{C}\right) & = &
\vector{B}\left(\vector{A}\cdot\vector{C}\right)-\vector{C}\left(\vector{A}
\cdot\vector{B}\right)\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}A_{j}\epsilon_{klm}B_{l}C_{m} & = &
B_{i}\left(A_{m}C_{m}\right)-C_{i}\left(A_{l}B_{l}\right)\nonumber
\end{eqnarray}
\begin{eqnarray}
\vector{A}\times\left(\nabla\times\vector{B}\right) & = &
\left(\nabla\vector{B}\right)\cdot\vector{A}-\vector{A}\cdot\nabla\vector{B}
\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\epsilon_{klm}A_{j}\partial_{l}B_{m} & = &
\left(\partial_{i}B_{m}\right)A_{m}-A_{l}\left(\partial_{l}B_{i}\right)\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\times\left(\nabla\times\vector{A}\right) & = &
\nabla\left(\nabla\cdot\vector{A}\right)-\nabla^{2}\vector{A}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\epsilon_{klm}\partial_{j}\partial_{l}A_{m} & = &
\partial_{i}\left(\partial_{m}A_{m}\right)-\partial_{ll}A_{i}\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\left(\vector{A}\cdot\vector{B}\right) & = &
\vector{A}\times\left(\nabla\times\vector{B}\right)+\vector{B}
\times\left(\nabla\times\vector{A}\right)+\left(\vector{A}
\cdot\nabla\right)\vector{B}+\left(\vector{B}\cdot\nabla\right)\vector{A}
\nonumber \\
& \Updownarrow\\
\partial_{i}\left(A_{m}B_{m}\right) & = &
\epsilon_{ijk}A_{j}\left(\epsilon_{klm}\partial_{l}B_{m}\right)+\epsilon_{ijk}B_
{j}\left(\epsilon_{klm}\partial_{l}A_{m}\right)+\left(A_{l}\partial_{l}\right)B_
{i}+\left(B_{l}\partial_{l}\right)A_{i}\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\cdot\left(\vector{A}\times\vector{B}\right) & = &
\vector{B}\cdot\left(\nabla\times\vector{A}\right)-\vector{A}
\cdot\left(\nabla\times\vector{B}\right)\nonumber \\
& \Updownarrow\\
\partial_{i}\left(\epsilon_{ijk}A_{j}B_{k}\right) & = &
B_{k}\left(\epsilon_{kij}\partial_{i}A_{j}\right)-A_{j}\left(\epsilon_{jik}
\partial_{i}B_{k}\right)\nonumber
\end{eqnarray}
\begin{eqnarray}
\nabla\times\left(\vector{A}\times\vector{B}\right) & = &
\left(\vector{B}\cdot\nabla\right)\vector{A}+\left(\nabla\cdot\vector{B}
\right)\vector{A}-\left(\nabla\cdot\vector{A}\right)\vector{B}-\left(\vector{A}
\cdot\nabla\right)\vector{B}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\epsilon_{klm}\partial_{j}\left(A_{l}B_{m}\right) & = &
\left(B_{m}\partial_{m}\right)A_{i}+\left(\partial_{m}B_{m}\right)A_{i}
-\left(\partial_{j}A_{j}\right)B_{i}-\left(A_{j}\partial_{j}\right)B_{i}
\nonumber
\end{eqnarray}
\begin{eqnarray}
\left(\vector{A}\times\vector{B}\right)\cdot\left(\vector{C}\times\vector{D}
\right) & = & \begin{vmatrix}\begin{array}{cc}
\vector{A}\cdot\vector{C} & \vector{A}\cdot\vector{D}\\
\vector{B}\cdot\vector{C} & \vector{B}\cdot\vector{D}
\end{array}\end{vmatrix}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}A_{j}B_{k}\epsilon_{ilm}C_{l}D_{m} & = &
\left(A_{l}C_{l}\right)\left(B_{m}D_{m}\right)-\left(A_{m}D_{m}\right)\left(B_{l
}C_{l}\right)\nonumber
\end{eqnarray}
\begin{eqnarray}
\left(\vector{A}\times\vector{B}\right)\times\left(\vector{C}\times\vector{D}
\right) & = &
\left[\vector{D}\cdot\left(\vector{A}\times\vector{B}\right)\right]\vector{C}
-\left[\vector{C}\cdot\left(\vector{A}\times\vector{B}\right)\right]\vector{D}
\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\epsilon_{jmn}A_{m}B_{n}\epsilon_{kpq}C_{p}D_{q} & = &
\left(\epsilon_{qmn}D_{q}A_{m}B_{n}\right)C_{i}-\left(\epsilon_{pmn}C_{p}A_{m}B_
{n}\right)D_{i}\nonumber
\end{eqnarray}
In vector and tensor notations, the condition for a vector
field $\vector{A}$ to be solenoidal is:
\begin{eqnarray}
\nabla\cdot\vector{A} & = & 0\nonumber \\
& \Updownarrow\\
\partial_{i}A_{i} & = & 0\nonumber
\end{eqnarray}
In vector and tensor notations, the condition for a vector
field $\vector{A}$ to be irrotational is:
\begin{eqnarray}
\nabla\times\vector{A} & = & \vector{0}\nonumber \\
& \Updownarrow\\
\epsilon_{ijk}\partial_{j}A_{k} & = & 0\nonumber
\end{eqnarray}
\section{Integral Theorems in Tensor Notation}
The divergence theorem for a differentiable vector field
$\vector{A}$ in vector and tensor notation is:
\begin{eqnarray}
\iiint_{V}\nabla\cdot\vector{A}\,d\tau & = &
\iint_{S}\vector{A}\cdot\vector{n}\,d\sigma\nonumber \\
& \Updownarrow\\
\dint_{V}\partial_{i}A_{i}d\tau & = & \dint_{S}A_{i}n_{i}d\sigma\nonumber
\end{eqnarray}
where $V$ is a bounded region in an $n$D space enclosed by a generalized
surface $S$, $d\tau$ and $d\sigma$ are generalized volume and surface
elements respectively, $\vector{n}$ and $n_{i}$ are unit normal
to the surface and its $i^{th}$ component respectively, and the index
$i$ ranges over $1,\ldots,n$.
The divergence theorem for a differentiable rank-2 tensor
field $\vector{A}$ in tensor notation for the first index is given
by:
\begin{equation}
\dint_{V}\partial_{i}A_{il}d\tau=\dint_{S}A_{il}n_{i}d\sigma
\end{equation}
The divergence theorem for differentiable tensor fields
of higher ranks $\vector{A}$ in tensor notation for the index $k$
is:
\begin{equation}
\dint_{V}\partial_{k}A_{ij\ldots k\ldots m}d\tau=\dint_{S}A_{ij\ldots k\ldots
m}n_{k}d\sigma
\end{equation}
Stokes theorem for a differentiable vector field $\vector{A}$
in vector and tensor notation is:
\begin{eqnarray}
\iint_{S}\left(\nabla\times\vector{A}\right)\cdot\vector{n}\,d\sigma & = &
\dint_{C}\vector{A}\cdot d\vector{r}\nonumber \\
& \Updownarrow\\
\dint_{S}\epsilon_{ijk}\partial_{j}A_{k}n_{i}d\sigma & = &
\dint_{C}A_{i}dx_{i}\nonumber
\end{eqnarray}
where $C$ stands for the perimeter of the surface $S$ and $d\vector{r}$
is the vector element tangent to the perimeter.
Stokes theorem for a differentiable rank-2 tensor field
$\vector{A}$ in tensor notation for the first index is:
\begin{equation}
\dint_{S}\epsilon_{ijk}\partial_{j}A_{kl}n_{i}d\sigma=\dint_{C}A_{il}dx_{i}
\end{equation}
Stokes theorem for differentiable tensor fields of higher
ranks $\vector{A}$ in tensor notation for the index $k$ is:
\begin{equation}
\dint_{S}\epsilon_{ijk}\partial_{j}A_{lm\ldots k\ldots
n}n_{i}d\sigma=\dint_{C}A_{lm\ldots k\ldots n}dx_{k}
\end{equation}
\section{Examples of Using Tensor Techniques to Prove
Identities\label{subProvingIdentities}}
$\nabla\cdot\vector{r}=n$:
\begin{equation}
\begin{aligned}\nabla\cdot\vector{r} & =\partial_{i}x_{i} &
\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{eqDiv})}\\
& =\delta_{ii} & & \text{(Eq. \ref{eqdxn})}\\
& =n & & \text{(Eq. \ref{eqdxn})}
\end{aligned}
\end{equation}
$\nabla\times\vector{r}=\vector{0}$:
\begin{equation}
\begin{aligned}\left[\nabla\times\vector{r}\right]_{i} &
=\epsilon_{ijk}\partial_{j}x_{k} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &
\text{(Eq. \ref{EqCurl})}\\
& =\epsilon_{ijk}\delta_{kj} & & \text{(Eq. \ref{eqdxdelta})}\\
& =\epsilon_{ijj} & & \text{(Eq. \ref{EqIndexReplace})}\\
& =0 & & \text{(Eq. \ref{eqEpsilon3Definition})}
\end{aligned}
\end{equation}
Since $i$ is a free index the identity is proved for all components.
$\nabla\left(\vector{a}\cdot\vector{r}\right)=\vector{a}$:
\begin{equation}
\begin{aligned}\left[\nabla\left(\vector{a}\cdot\vector{r}\right)\right]_{i} &
=\partial_{i}\left(a_{j}x_{j}\right) & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
& \text{(Eqs. \ref{eqGrad} \& \ref{eqDotProduct})}\\
& =a_{j}\partial_{i}x_{j}+x_{j}\partial_{i}a_{j} & & \text{(product rule)}\\
& =a_{j}\partial_{i}x_{j} & & \text{(\ensuremath{a_{j}} is constant)}\\
& =a_{j}\delta_{ji} & & \text{(Eq. \ref{eqdxdelta})}\\
& =a_{i} & & \text{(Eq. \ref{EqIndexReplace})}\\
& =\left[\vector{a}\right]_{i} & & \text{(definition of index)}
\end{aligned}
\end{equation}
Since $i$ is a free index the identity is proved for all components.
$\nabla\cdot\left(\nabla f\right)=\nabla^{2}f$:
\begin{equation}
\begin{aligned}\nabla\cdot\left(\nabla f\right) & =\partial_{i}\left[\nabla
f\right]_{i} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{eqDiv})}\\
& =\partial_{i}\left(\partial_{i}f\right) & & \text{(Eq. \ref{eqGrad})}\\
& =\partial_{i}\partial_{i}f & & \text{(rules of differentiation)}\\
& =\partial_{ii}f & & \text{(definition of 2nd derivative)}\\
& =\nabla^{2}f & & \text{(Eq. \ref{eqLaplacian})}
\end{aligned}
\end{equation}
$\nabla\cdot\left(\nabla\times\vector{A}\right)=0$:
\begin{equation}
\begin{aligned}\nabla\cdot\left(\nabla\times\vector{A}\right) &
=\partial_{i}\left[\nabla\times\vector{A}\right]_{i} &
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{eqDiv})}\\
& =\partial_{i}\left(\epsilon_{ijk}\partial_{j}A_{k}\right) & & \text{(Eq.
\ref{EqCurl})}\\
& =\epsilon_{ijk}\partial_{i}\partial_{j}A_{k} & &
\text{(\ensuremath{\partial}\ not acting on \ensuremath{\epsilon})}\\
& =\epsilon_{ijk}\partial_{j}\partial_{i}A_{k} & & \text{(continuity
condition)}\\
& =-\epsilon_{jik}\partial_{j}\partial_{i}A_{k} & & \text{(Eq.
\ref{EqEpsilonCycle})}\\
& =-\epsilon_{ijk}\partial_{i}\partial_{j}A_{k} & & \text{(relabeling dummy
indices \ensuremath{i} and \ensuremath{j})}\\
& =0 & & \text{(since
\ensuremath{\epsilon_{ijk}\partial_{i}\partial_{j}A_{k}=-\epsilon_{ijk}\partial_
{i}\partial_{j}A_{k}})}
\end{aligned}
\end{equation}
This can also be concluded from line three by arguing that: since
by the continuity condition $\partial_{i}$ and $\partial_{j}$ can
change their order with no change in the value of the term while a
corresponding change of the order of $i$ and $j$ in $\epsilon_{ijk}$
results in a sign change, we see that each term in the sum has its
own negative and hence the terms add up to zero (see Eq.
\ref{eqPermutingTwoFactors}).
$\nabla\times\left(\nabla f\right)=\vector{0}$:
\begin{equation}
\begin{aligned}\left[\nabla\times\left(\nabla f\right)\right]_{i} &
=\epsilon_{ijk}\partial_{j}\left[\nabla f\right]_{k} &
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{EqCurl})}\\
& =\epsilon_{ijk}\partial_{j}\left(\partial_{k}f\right) & & \text{(Eq.
\ref{eqGrad})}\\
& =\epsilon_{ijk}\partial_{j}\partial_{k}f & & \text{(rules of
differentiation)}\\
& =\epsilon_{ijk}\partial_{k}\partial_{j}f & & \text{(continuity condition)}\\
& =-\epsilon_{ikj}\partial_{k}\partial_{j}f & & \text{(Eq.
\ref{EqEpsilonCycle})}\\
& =-\epsilon_{ijk}\partial_{j}\partial_{k}f & & \text{(relabeling dummy
indices \ensuremath{j} and \ensuremath{k})}\\
& =0 & & \text{(since
\ensuremath{\epsilon_{ijk}\partial_{j}\partial_{k}f=-\epsilon_{ijk}\partial_{j}
\partial_{k}f})}
\end{aligned}
\end{equation}
This can also be concluded from line three by a similar argument to
the one given in the previous point. Because $\left[\nabla\times\left(\nabla
f\right)\right]_{i}$
is an arbitrary component, then each component is zero.
$\nabla\left(fh\right)=f\nabla h+h\nabla f$:
\begin{equation}
\begin{aligned}\left[\nabla\left(fh\right)\right]_{i} &
=\partial_{i}\left(fh\right) & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq.
\ref{eqGrad})}\\
& =f\partial_{i}h+h\partial_{i}f & & \text{(product rule)}\\
& =\left[f\nabla h\right]_{i}+\left[h\nabla f\right]_{i} & & \text{(Eq.
\ref{eqGrad})}\\
& =\left[f\nabla h+h\nabla f\right]_{i} & & \text{(Eq.
\ref{eqIndexDistributive1})}
\end{aligned}
\end{equation}
Because $i$ is a free index the identity is proved for all components.
$\nabla\cdot\left(f\vector{A}\right)=f\nabla\cdot\vector{A}+\vector{A}
\cdot\nabla f$:
\begin{equation}
\begin{aligned}\nabla\cdot\left(f\vector{A}\right) &
=\partial_{i}\left[f\vector{A}\right]_{i} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, &
\text{(Eq. \ref{eqDiv})}\\
& =\partial_{i}\left(fA_{i}\right) & & \text{(definition of index)}\\
& =f\partial_{i}A_{i}+A_{i}\partial_{i}f & & \text{(product rule)}\\
& =f\nabla\cdot\vector{A}+\vector{A}\cdot\nabla f & & \text{(Eqs. \ref{eqDiv}
\& \ref{eqANabla})}
\end{aligned}
\end{equation}
$\nabla\times\left(f\vector{A}\right)=f\nabla\times\vector{A}+\nabla
f\times\vector{A}$:
\begin{equation}
\begin{aligned}\left[\nabla\times\left(f\vector{A}\right)\right]_{i} &
=\epsilon_{ijk}\partial_{j}\left[f\vector{A}\right]_{k} &
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{EqCurl})}\\
& =\epsilon_{ijk}\partial_{j}\left(fA_{k}\right) & & \text{(definition of
index)}\\
&
=f\epsilon_{ijk}\partial_{j}A_{k}+\epsilon_{ijk}\left(\partial_{j}f\right)A_{k}
& & \text{(product rule \& commutativity)}\\
& =f\epsilon_{ijk}\partial_{j}A_{k}+\epsilon_{ijk}\left[\nabla
f\right]_{j}A_{k} & & \text{(Eq. \ref{eqGrad})}\\
& =\left[f\nabla\times\vector{A}\right]_{i}+\left[\nabla
f\times\vector{A}\right]_{i} & & \text{(Eqs. \ref{EqCurl} \&
\ref{EqCrossProduct})}\\
& =\left[f\nabla\times\vector{A}+\nabla f\times\vector{A}\right]_{i} & &
\text{(Eq. \ref{eqIndexDistributive1})}
\end{aligned}
\end{equation}
Because $i$ is a free index the identity is proved for all components.
$\vector{A}\cdot\left(\vector{B}\times\vector{C}\right)=\vector{C}
\cdot\left(\vector{A}\times\vector{B}\right)=\vector{B}\cdot\left(\vector{C}
\times\vector{A}\right)$:
\begin{equation}
\begin{aligned}\vector{A}\cdot\left(\vector{B}\times\vector{C}\right) &
=\epsilon_{ijk}A_{i}B_{j}C_{k} & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq.
\ref{EqScalarTripleProduct})}\\
& =\epsilon_{kij}A_{i}B_{j}C_{k} & & \text{(Eq. \ref{EqEpsilonCycle})}\\
& =\epsilon_{kij}C_{k}A_{i}B_{j} & & \text{(commutativity)}\\
& =\vector{C}\cdot\left(\vector{A}\times\vector{B}\right) & & \text{(Eq.
\ref{EqScalarTripleProduct})}\\
& =\epsilon_{jki}A_{i}B_{j}C_{k} & & \text{(Eq. \ref{EqEpsilonCycle})}\\
& =\epsilon_{jki}B_{j}C_{k}A_{i} & & \text{(commutativity)}\\
& =\vector{B}\cdot\left(\vector{C}\times\vector{A}\right) & & \text{(Eq.
\ref{EqScalarTripleProduct})}
\end{aligned}
\end{equation}
The negative permutations of these identities can be similarly obtained
and proved by changing the order of the vectors in the cross products
which results in a sign change.
$\vector{A}\times\left(\vector{B}\times\vector{C}\right)=\vector{B}\left(\mathbf
{A}\cdot\vector{C}\right)-\vector{C}\left(\vector{A}\cdot\vector{B}\right)$:
\begin{equation}
\begin{aligned}\left[\vector{A}\times\left(\vector{B}\times\vector{C}
\right)\right]_{i} &
=\epsilon_{ijk}A_{j}\left[\vector{B}\times\vector{C}\right]_{k} & \,\,\,\,\,\, &
\text{(Eq. \ref{EqCrossProduct})}\\
& =\epsilon_{ijk}A_{j}\epsilon_{klm}B_{l}C_{m} & & \text{(Eq.
\ref{EqCrossProduct})}\\
& =\epsilon_{ijk}\epsilon_{klm}A_{j}B_{l}C_{m} & & \text{(commutativity)}\\
& =\epsilon_{ijk}\epsilon_{lmk}A_{j}B_{l}C_{m} & & \text{(Eq.
\ref{EqEpsilonCycle})}\\
& =\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)A_{j}B_{l}C_{m} &
& \text{(Eq. \ref{EqEpsilonDelta})}\\
& =\delta_{il}\delta_{jm}A_{j}B_{l}C_{m}-\delta_{im}\delta_{jl}A_{j}B_{l}C_{m}
& & \text{(distributivity)}\\
&
=\left(\delta_{il}B_{l}\right)\left(\delta_{jm}A_{j}C_{m}\right)-\left(\delta_{
im}C_{m}\right)\left(\delta_{jl}A_{j}B_{l}\right) & & \text{(commutativity and
grouping)}\\
& =B_{i}\left(A_{m}C_{m}\right)-C_{i}\left(A_{l}B_{l}\right) & & \text{(Eq.
\ref{EqIndexReplace})}\\
&
=B_{i}\left(\vector{A}\cdot\vector{C}\right)-C_{i}\left(\vector{A}\cdot\vector{B
}\right) & & \text{(Eq. \ref{eqDotProduct})}\\
&
=\left[\vector{B}\left(\vector{A}\cdot\vector{C}\right)\right]_{i}-\left[\mathbf
{C}\left(\vector{A}\cdot\vector{B}\right)\right]_{i} & & \text{(definition of
index)}\\
&
=\left[\vector{B}\left(\vector{A}\cdot\vector{C}\right)-\vector{C}\left(\vector{
A}\cdot\vector{B}\right)\right]_{i} & & \text{(Eq. \ref{eqIndexDistributive1})}
\end{aligned}
\end{equation}
Because $i$ is a free index the identity is proved for all components.
Other variants of this identity {[}e.g.
$\left(\vector{A}\times\vector{B}\right)\times\vector{C}${]}
can be obtained and proved similarly by changing the order of the
factors in the external cross product with adding a minus sign.
$\vector{A}\times\left(\nabla\times\vector{B}\right)=\left(\nabla\vector{B}
\right)\cdot\vector{A}-\vector{A}\cdot\nabla\vector{B}$:
\begin{equation}
\begin{aligned}\left[\vector{A}\times\left(\nabla\times\vector{B}\right)\right]_
{i} & =\epsilon_{ijk}A_{j}\left[\nabla\times\vector{B}\right]_{k} &
\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{EqCrossProduct})}\\
& =\epsilon_{ijk}A_{j}\epsilon_{klm}\partial_{l}B_{m} & & \text{(Eq.
\ref{EqCurl})}\\
& =\epsilon_{ijk}\epsilon_{klm}A_{j}\partial_{l}B_{m} & &
\text{(commutativity)}\\
& =\epsilon_{ijk}\epsilon_{lmk}A_{j}\partial_{l}B_{m} & & \text{(Eq.
\ref{EqEpsilonCycle})}\\
&
=\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)A_{j}\partial_{l}B_{m
} & & \text{(Eq. \ref{EqEpsilonDelta})}\\
&
=\delta_{il}\delta_{jm}A_{j}\partial_{l}B_{m}-\delta_{im}\delta_{jl}A_{j}
\partial_{l}B_{m} & & \text{(distributivity)}\\
& =A_{m}\partial_{i}B_{m}-A_{l}\partial_{l}B_{i} & & \text{(Eq.
\ref{EqIndexReplace})}\\
& =\left(\partial_{i}B_{m}\right)A_{m}-A_{l}\left(\partial_{l}B_{i}\right) & &
\text{(commutativity \& grouping)}\\
&
=\left[\left(\nabla\vector{B}\right)\cdot\vector{A}\right]_{i}-\left[\vector{A}
\cdot\nabla\vector{B}\right]_{i} & & \\
&
=\left[\left(\nabla\vector{B}\right)\cdot\vector{A}-\vector{A}\cdot\nabla\mathbf
{B}\right]_{i} & & \text{(Eq. \ref{eqIndexDistributive1})}
\end{aligned}
\end{equation}
Because $i$ is a free index the identity is proved for all components.
$\nabla\times\left(\nabla\times\vector{A}\right)=\nabla\left(\nabla\cdot\vector{
A}\right)-\nabla^{2}\vector{A}$:
\begin{equation}
\begin{aligned}\left[\nabla\times\left(\nabla\times\vector{A}\right)\right]_{i}
& =\epsilon_{ijk}\partial_{j}\left[\nabla\times\vector{A}\right]_{k} &
\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{EqCurl})}\\
& =\epsilon_{ijk}\partial_{j}\left(\epsilon_{klm}\partial_{l}A_{m}\right) & &
\text{(Eq. \ref{EqCurl})}\\
& =\epsilon_{ijk}\epsilon_{klm}\partial_{j}\left(\partial_{l}A_{m}\right) & &
\text{(\ensuremath{\partial} not acting on \ensuremath{\epsilon})}\\
& =\epsilon_{ijk}\epsilon_{lmk}\partial_{j}\partial_{l}A_{m} & & \text{(Eq.
\ref{EqEpsilonCycle} \& definition of derivative)}\\
&
=\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)\partial_{j}\partial_
{l}A_{m} & & \text{(Eq. \ref{EqEpsilonDelta})}\\
&
=\delta_{il}\delta_{jm}\partial_{j}\partial_{l}A_{m}-\delta_{im}\delta_{jl}
\partial_{j}\partial_{l}A_{m} & & \text{(distributivity)}\\
& =\partial_{m}\partial_{i}A_{m}-\partial_{l}\partial_{l}A_{i} & & \text{(Eq.
\ref{EqIndexReplace})}\\
& =\partial_{i}\left(\partial_{m}A_{m}\right)-\partial_{ll}A_{i} & &
\text{(\ensuremath{\partial}\ shift, grouping \& Eq. \ref{eqLaplacianSymbol})}\\
&
=\left[\nabla\left(\nabla\cdot\vector{A}\right)\right]_{i}-\left[\nabla^{2}
\vector{A}\right]_{i} & & \text{(Eqs. \ref{eqDiv}, \ref{eqGrad} \&
\ref{eqLaplacian2})}\\
&
=\left[\nabla\left(\nabla\cdot\vector{A}\right)-\nabla^{2}\vector{A}\right]_{i}
& & \text{(Eqs. \ref{eqIndexDistributive1})}
\end{aligned}
\end{equation}
Because $i$ is a free index the identity is proved for all components.
This identity can also be considered as an instance of the identity
before the last one, observing that in the second term on the right
hand side the Laplacian should precede the vector, and hence no independent
proof is required.
$\nabla\left(\vector{A}\cdot\vector{B}\right)=\vector{A}
\times\left(\nabla\times\vector{B}\right)+\vector{B}
\times\left(\nabla\times\vector{A}\right)+\left(\vector{A}
\cdot\nabla\right)\vector{B}+\left(\vector{B}\cdot\nabla\right)\vector{A}$:
We start from the right hand side and end with the left hand
side{\footnotesize{}
\begin{eqnarray}
\left[\vector{A}\times\left(\nabla\times\vector{B}\right)+\vector{B}
\times\left(\nabla\times\vector{A}\right)+\left(\vector{A}
\cdot\nabla\right)\vector{B}+\left(\vector{B}\cdot\nabla\right)\vector{A}\right]
_{i} & =\nonumber \\
\left[\vector{A}\times\left(\nabla\times\vector{B}\right)\right]_{i}+\left[
\vector{B}\times\left(\nabla\times\vector{A}\right)\right]_{i}+\left[
\left(\vector{A}\cdot\nabla\right)\vector{B}\right]_{i}+\left[\left(\vector{B}
\cdot\nabla\right)\vector{A}\right]_{i} & = & \,\,\text{(Eq.
\ref{eqIndexDistributive1})}\nonumber \\
\epsilon_{ijk}A_{j}\left[\nabla\times\vector{B}\right]_{k}+\epsilon_{ijk}B_{j}
\left[\nabla\times\vector{A}\right]_{k}+\left(A_{l}\partial_{l}\right)B_{i}
+\left(B_{l}\partial_{l}\right)A_{i} & = & \,\,\text{(Eqs. \ref{EqCrossProduct},
\ref{eqDiv} \& indexing)}\nonumber \\
\epsilon_{ijk}A_{j}\left(\epsilon_{klm}\partial_{l}B_{m}\right)+\epsilon_{ijk}B_
{j}\left(\epsilon_{klm}\partial_{l}A_{m}\right)+\left(A_{l}\partial_{l}\right)B_
{i}+\left(B_{l}\partial_{l}\right)A_{i} & = & \,\,\text{(Eq.
\ref{EqCurl})}\nonumber \\
\epsilon_{ijk}\epsilon_{klm}A_{j}\partial_{l}B_{m}+\epsilon_{ijk}\epsilon_{klm}
B_{j}\partial_{l}A_{m}+\left(A_{l}\partial_{l}\right)B_{i}+\left(B_{l}\partial_{
l}\right)A_{i} & = & \,\,\text{(commutativity)}\nonumber \\
\epsilon_{ijk}\epsilon_{lmk}A_{j}\partial_{l}B_{m}+\epsilon_{ijk}\epsilon_{lmk}
B_{j}\partial_{l}A_{m}+\left(A_{l}\partial_{l}\right)B_{i}+\left(B_{l}\partial_{
l}\right)A_{i} & = & \,\,\text{(Eq. \ref{EqEpsilonCycle})}\nonumber \\
\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)A_{j}\partial_{l}B_{m}
+\left(\delta_{il}\delta_{jm}-\delta_{im}\delta_{jl}\right)B_{j}\partial_{l}A_{m
}+\left(A_{l}\partial_{l}\right)B_{i}+\left(B_{l}\partial_{l}\right)A_{i} & = &
\,\,\text{(Eq. \ref{EqEpsilonDelta})}\\
\hspace*{-1.5cm}\left(\delta_{il}\delta_{jm}A_{j}\partial_{l}B_{m}-\delta_{im}
\delta_{jl}A_{j}\partial_{l}B_{m}\right)+\left(\delta_{il}\delta_{jm}B_{j}
\partial_{l}A_{m}-\delta_{im}\delta_{jl}B_{j}\partial_{l}A_{m}\right)+\left(A_{l
}\partial_{l}\right)B_{i}+\left(B_{l}\partial_{l}\right)A_{i} & = &
\,\,\text{(distributivity)}\nonumber \\
\delta_{il}\delta_{jm}A_{j}\partial_{l}B_{m}-A_{l}\partial_{l}B_{i}+\delta_{il}
\delta_{jm}B_{j}\partial_{l}A_{m}-B_{l}\partial_{l}A_{i}+\left(A_{l}\partial_{l}
\right)B_{i}+\left(B_{l}\partial_{l}\right)A_{i} & = & \,\,\text{(Eq.
\ref{EqIndexReplace})}\nonumber \\
\delta_{il}\delta_{jm}A_{j}\partial_{l}B_{m}-\left(A_{l}\partial_{l}\right)B_{i}
+\delta_{il}\delta_{jm}B_{j}\partial_{l}A_{m}-\left(B_{l}\partial_{l}\right)A_{i
}+\left(A_{l}\partial_{l}\right)B_{i}+\left(B_{l}\partial_{l}\right)A_{i} & = &
\,\,\text{(grouping)}\nonumber \\
\delta_{il}\delta_{jm}A_{j}\partial_{l}B_{m}+\delta_{il}\delta_{jm}B_{j}
\partial_{l}A_{m} & = & \,\,\text{(cancellation)}\nonumber \\
A_{m}\partial_{i}B_{m}+B_{m}\partial_{i}A_{m} & = & \,\,\text{(Eq.
\ref{EqIndexReplace})}\nonumber \\
\partial_{i}\left(A_{m}B_{m}\right) & = & \,\,\text{(product rule)}\nonumber \\
& = &
\left[\nabla\left(\vector{A}\cdot\vector{B}\right)\right]_{i}\,\text{(Eqs.
\ref{eqGrad} \& \ref{eqDiv})}\nonumber
\end{eqnarray}
}Because $i$ is a free index the identity is proved for all components.
$\nabla\cdot\left(\vector{A}\times\vector{B}\right)=\vector{B}
\cdot\left(\nabla\times\vector{A}\right)-\vector{A}
\cdot\left(\nabla\times\vector{B}\right)$:
\begin{equation}
\begin{aligned}\nabla\cdot\left(\vector{A}\times\vector{B}\right) &
=\partial_{i}\left[\vector{A}\times\vector{B}\right]_{i} &
\,\,\,\,\,\,\,\,\,\,\,\,\,\, & \text{(Eq. \ref{eqDiv})}\\
& =\partial_{i}\left(\epsilon_{ijk}A_{j}B_{k}\right) & & \text{(Eq.
\ref{EqCrossProduct})}\\
& =\epsilon_{ijk}\partial_{i}\left(A_{j}B_{k}\right) & &
\text{(\ensuremath{\partial}\ not acting on \ensuremath{\epsilon})}\\
& =\epsilon_{ijk}\left(B_{k}\partial_{i}A_{j}+A_{j}\partial_{i}B_{k}\right) &
& \text{(product rule)}\\