-
Notifications
You must be signed in to change notification settings - Fork 7
/
chapter3b.tex
1847 lines (1765 loc) · 97.6 KB
/
chapter3b.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Multiple Integrals}
%Begin Section 3.1
In this chapter we develop the theory of integration for scalar functions.
In single-variable calculus, differentiation and integration are thought of as inverse operations. For instance, to
integrate a function $f(x)$ it is necessary to find the antiderivative of $f$, that is, another function $F(x)$
whose derivative is $f(x)$. Is there a similar way of defining integration of real-valued functions of two or
more variables? The answer is yes, as we will see shortly. Recall also that the definite integral of a
nonnegative function $f(x) \ge 0$ represented the area ``under'' the curve $y=f(x)$. As we will now see, the
\emph{double integral} of a nonnegative real-valued function $f(x,y) \ge 0$ represents the \emph{volume} ``under'' the
surface $z=f(x,y)$.\index{multiple integral}\index{integral!multiple}
\section{Double Integrals}
Let $R = [a, b] \times [c, d] \subseteq \bbR^2$ be a rectangle, and $f:R \to \bbR$ be continuous.
Let $P = \set{ x_0, \dots, x_M, y_0, \dots, y_M}$ where $a = x_0 < x_1 < \cdots < x_M = b$ and $c = y_0 < y_1 < \cdots < y_M = d$.
The set $P$ determines a partition of $R$ into a grid of (non-overlapping) rectangles $R_{i,j} = [x_i, x_{i+1}] \times [y_j, y_{j+1}]$ for $0 \leq i < M$ and $0 \leq j < N$.
Given $P$, choose a collection of points $\marc = \set{\xi_{i,j}}$ so that $\xi_{i,j} \in R_{i,j}$ for all $i, j$.
\begin{definition}
The \negrito{Riemann sum} of $f$ with respect to the partition $P$ and points $\marc$ is defined by
\begin{equation*}
\mathcal R(f, P, \marc)
\defeq \sum_{i=0}^{M-1} \sum_{j = 0}^{N-1}
f(\xi_{i, j}) \area(R_{i,j})
= \sum_{i=0}^{M-1} \sum_{j = 0}^{N-1}
f(\xi_{i, j}) (x_{i+1} - x_i) (y_{j+1} - y_j)
\end{equation*}
\end{definition}
\begin{definition}
The \negrito{mesh size} of a partition $P$ is defined by
\begin{equation*}
\norm{P} = \max \set{ x_{i+1} - x_i \st 0 \leq i < M} \cup \set{y_{j+1} - y_j \st 0 \leq j \leq N }.
\end{equation*}
\end{definition}
\begin{definition}
The \negrito{Riemann integral} of $f$ over the rectangle $R$ is defined by
\begin{equation*}
\int_R f(x, y) \, dx \, dy
\defeq
\lim_{\norm{P} \to 0}
\mathcal R( f, P, \marc ),
\end{equation*}
provided the limit exists and is independent of the choice of the points $\marc$.
A function is said to be \negrito{Riemann integrable} over $R$ if the Riemann integral exists and is finite.
\end{definition}
\begin{remark}
A few other popular notation conventions used to denote the integral are
\begin{equation*}
\iint_R f \, dA,
\quad
\iint_R f \, dx \, dy,
\quad
\iint_R f \, dx_1 \, dx_2,
\quad\text{and}\quad
\iint_R f.
\end{equation*}
\end{remark}
\begin{remark}
The double integral represents the volume of the region under the graph of $f$.
Alternately, if $f(x, y)$ is the density of a planar body at point $(x, y)$, the double integral is the total mass.
\end{remark}
\begin{theorem}
Any bounded continuous function is Riemann integrable on a bounded rectangle.
\end{theorem}
\begin{remark}
Most bounded functions we will encounter will be Riemann integrable.
Bounded functions with reasonable discontinuities (e.g. finitely many jumps) are usually Riemann integrable on bounded rectangle.
An example of a ``badly discontinuous'' function that is not Riemann integrable is the function $f(x, y) = 1$ if $x, y \in \mathbb{Q}$ and $0$ otherwise.
%s \emph{provided} they are bounded or don't grow ``too fast'' near their singularities.
\end{remark}
Now suppose $U \subseteq \bbR^2$ is an nice bounded%
\footnote{%
We will subsequently always assume $U$ is ``nice''. Namely, $U$ is open, connected and the boundary of $U$ is a piecewise differentiable curve.
More precisely, we need to assume that the ``area'' occupied by the boundary of $U$ is $0$.
While you might suspect this should be true for all open sets, it isn't!
There exist open sets of \emph{finite area} whose boundary occupies an infinite area!}
domain, and $f:U \to \bbR$ is a function.
Find a bounded rectangle $R \supseteq U$, and as before let $P$ be a partition of $R$ into a grid of rectangles.
Now we define the Riemann sum by only summing over all rectangles $R_{i,j}$ that are completely contained inside $U$.
Explicitly, let
\begin{equation*}
\chi_{i,j}
= \begin{cases}
1 & R_{i,j} \subseteq U\\
0 & \text{otherwise}.
\end{cases}
\end{equation*}
and define
\begin{equation*}
\mathcal R(f, P, \marc, U)
%\defeq \sum_{i=0}^{M-1} \sum_{j = 0}^{N-1}
% \chi_{i,j} f(\xi_{i, j}) \area(R_{i,j})
\defeq \sum_{i=0}^{M-1} \sum_{j = 0}^{N-1} \chi_{i,j}
f(\xi_{i, j}) (x_{i+1} - x_i) (y_{j+1} - y_j).
\end{equation*}
\begin{definition}
The \negrito{Riemann integral} of $f$ over the domain $U$is defined by
\begin{equation*}
\int_U f(x, y) \, dx \, dy
\defeq
\lim_{\norm{P} \to 0}
\mathcal R( f, P, \marc, U ),
\end{equation*}
provided the limit exists and is independent of the choice of the points $\marc$.
A function is said to be \negrito{Riemann integrable} over $R$ if the Riemann integral exists and is finite.
\end{definition}
\begin{theorem}
Any bounded continuous function is Riemann integrable on a bounded region.
\end{theorem}
\begin{remark}
As before, most reasonable bounded functions we will encounter will be Riemann integrable.
\end{remark}
To deal with unbounded functions over unbounded domains, we use a limiting process.
\begin{definition}
Let $U \subseteq \bbR^2$ be a domain (which is not necessarily bounded) and $f:U \to \bbR$ be a (not necessarily bounded) function.
We say $f$ is integrable if
\begin{equation*}
\lim_{R \to \infty} \int_{U \cap B(0, R)} \chi_R \abs{f} \, dA
\end{equation*}
exists and is finite.
Here $\chi_R(x) = 1$ if $\abs{f(x)} < R$ and $0$ otherwise.
\end{definition}
\begin{proposition}
If $f$ is integrable on the domain $U$, then
\begin{equation*}
\lim_{R \to \infty} \int_{U \cap B(0, R)} \chi_R f \, dA
\end{equation*}
exists and is finite.
\end{proposition}
\begin{remark}
If $f$ is integrable, then the above limit is independent of how you expand your domain.
Namely, you can take the limit of the integral over $U \cap [-R, R]^2$ instead, and you will still get the same answer.
\end{remark}
\begin{definition}
If $f$ is integrable we define
\begin{equation*}
\int_U f \, dx \, dy = \lim_{R \to \infty} \int_{U \cap B(0, R)} \chi_R f \, dA
\end{equation*}
\end{definition}
\section{Iterated integrals and Fubini's theorem}
Let $f(x,y)$ be a continuous function such that $f(x,y) \ge 0$ for all $(x,y)$ on the \textbf{rectangle}
$R = \lbrace (x,y): a \le x \le b ,\, c \le y \le d \rbrace$ in $\bbR^2$. We will often write this as
$R = \lbrack a,b \rbrack \times \lbrack c,d \rbrack$. For any number $x*$ in the interval $\lbrack a,b \rbrack$, slice
the surface $z=f(x,y)$ with the plane $x=x*$ parallel to the $yz$-plane.
Then the trace of the surface in that plane is the \emph{curve} $f(x*,y)$, where $x*$ is fixed and only $y$
varies. The area $A$ under that curve (i.e. the area of the region between the curve and the $xy$-plane) as $y$ varies
over the interval $\lbrack c,d \rbrack$ then depends only on the value of $x*$. So using the variable $x$ instead of
$x*$, let $A(x)$ be that area (see Figure \ref{fig:iterint}).
\begin{figure}[h]
\begin{center}
\begin{tikzpicture}
\usetikzlibrary{arrows}
\definecolor{planecolor}{HTML}{FFB270}
\definecolor{surfcolor}{HTML}{006146}
\filldraw [opacity=0.5,fill=blue!60,line width=0.7pt] (0.65,2.2) to[out=-20,in=110] (3.35,0.8) -- (3.35,-0.85) --
(0.65,-0.85) -- (0.65,2.2);
\shade [opacity=0.1,ball color=red!40] (0,1.55) to[out=-20,in=110] (2.7,0.15) -- (3.7,1.15) to[out=110,in=-20]
(1,2.55) -- (0,1.55);
\draw [black!60,line width=0.3pt] (0,0) -- (0.65,0,0);
\draw [dashed,black!60,line width=0.3pt] (0.65,0) -- (3.35,0,0);
\draw [black!60,line width=0.3pt,-latex] (3.35,0) -- (5,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,3,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,0,5);
\pgfputat{\pgfpointxyz{4.9}{0.2}{0}}{\pgfbox[center,center]{\small $y$}};
\pgfputat{\pgfpointxyz{0.2}{2.9}{0}}{\pgfbox[center,center]{\small $z$}};
\pgfputat{\pgfpointxyz{0.2}{0}{4.8}}{\pgfbox[center,center]{\small $x$}};
\pgfputat{\pgfpointxyz{0.05}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}};
\draw [dashed,line width=0.2pt] (-0.5,-0.5) -- (1,-0.5) --(1.5,0);
\draw [dashed,line width=0.2pt] (-1.5,-1.5) -- (0,-1.5);
\draw [dashed,line width=0.2pt] (3.7,-0.5) -- (4.2,0);
\draw [line width=0.2pt] (1,-0.5) -- (3.7,-0.5) -- (2.7,-1.5) -- (0,-1.5) -- (1,-0.5);
\draw [dashed,line width=0.1pt] (0,-1.5) -- (0,1.55);
\draw [dashed,line width=0.1pt] (1,-0.5) -- (1,2.55);
\draw [dashed,line width=0.1pt] (3.7,-0.5) -- (3.7,1.15);
\draw [dashed,line width=0.1pt] (2.7,-1.5) -- (2.7,0.15);
\node [above] at (2.3,-0.5) {\small $A(x)$};
\node [below] at (2.0,-1.5) {\small $R$};
\draw [black!60,line width=0.1pt] (-0.85,-0.85) -- (0.5,-0.85);
\draw [black!60,line width=0.1pt] (0.65,-0.85) -- (3.35,-0.85);
\draw [line width=0.7pt] (0.65,2.2) to[out=-20,in=110] (3.35,0.8);
\node [left] at (-0.5,-0.5) {\small $a$};
\node [left] at (-0.85,-0.85) {\small $x$};
\node [left] at (-1.5,-1.5) {\small $b$};
\node [above] at (1.5,0) {\small $c$};
\node [above] at (4.2,0) {\small $d$};
\node [right] at (2.8,2.5) {\small $z = f(x,y)$};
\end{tikzpicture}\vspace{-4mm}
\end{center}
\caption[]{\quad The area $A(x)$ varies with $x$}
\label{fig:iterint}
\end{figure}\vspace{-2mm}
Then $A(x) = \dint_c^d f(x,y)\,dy$ since we are treating $x$ as fixed, and only $y$ varies. This makes sense since
for a fixed $x$ the function $f(x,y)$ is a continuous function of $y$ over the interval $\lbrack c,d \rbrack$, so
we know that the area under the curve is the definite integral. The area $A(x)$ is a function of $x$, so by the
``slice'' or cross-section method from single-variable calculus we know that the volume $V$ of the \emph{solid} under
the surface $z=f(x,y)$ but above the $xy$-plane over the rectangle $R$ is the integral over $\lbrack a,b \rbrack$ of
that cross-sectional area $A(x)$:
\begin{equation}\label{eqn:voliterx}
V ~=~ \dint_a^b A(x)\,dx ~=~ \dint_a^b \left[ \dint_c^d f(x,y)\,dy \right] \,dx
\end{equation}
We will always refer to this volume as ``the volume under the surface''.
The above expression uses what are called \textbf{iterated integrals}. First the function $f(x,y)$ is integrated as a
function of $y$, treating the variable $x$ as a constant (this is called \emph{integrating with respect to $y$}). That
is what occurs in the ``inner'' integral between the square brackets in equation (\ref{eqn:voliterx}). This is the
first iterated integral.\index{integral!iterated}
Once that integration is performed, the result is then an expression involving only $x$, which can then be
\emph{integrated with respect to $x$}. That is what occurs in the ``outer'' integral above (the second iterated
integral). The final result is\index{double integral}\index{iterated integral}\index{integral!double}
then a number (the volume). This process of going through two iterations of integrals is called \emph{double
integration}, and the last expression in equation (\ref{eqn:voliterx}) is called a \textbf{double integral}.
Notice that integrating $f(x,y)$ with respect to $y$ is the inverse operation of taking the partial
derivative of $f(x,y)$ with respect to $y$. Also, we could just as easily have taken the area of cross-sections under
the surface which were parallel to the $xz$-plane, which would then depend only on the variable $y$, so that the volume
$V$ would be
\begin{equation}\label{eqn:volitery}
V ~=~ \dint_c^d \left[ \dint_a^b f(x,y)\,dx \right] \,dy ~.
\end{equation}
It turns out that in general due to Fubini's Theorem the order of the
iterated integrals does not matter. Also, we will usually discard the brackets and simply write
\begin{equation}\label{eqn:volint}
V ~=~ \dint_c^d \dint_a^b f(x,y)\,dx \,dy ~,
\end{equation}
where it is understood that the fact that $dx$ is written before $dy$ means that the function $f(x,y)$ is first
integrated with respect to $x$ using the ``inner'' limits of integration $a$ and $b$, and then the resulting function
is integrated with respect to $y$ using the ``outer'' limits of integration $c$ and $d$. This order of integration can
be changed if it is more convenient.\index{$\iint$}
Let $U \subseteq \bbR^2$ be a domain.
\begin{definition}
For $x \in \bbR$, define
\begin{equation*}
S_x U = \set{y \st (x, y) \in U}
\quad\text{and}\quad
T_y U = \set{x \st (x, y) \in U}
\end{equation*}
\end{definition}
\begin{example}
If $U = [a, b] \times [c, d]$ then
\begin{equation*}
S_x U =
\begin{cases}
[c,d] & x \in [a, b]\\
\emptyset & x \not\in [a, b]
\end{cases}
\quad\text{and}\quad
T_y U = \begin{cases}
[a, b] & y \in [c, d]\\
\emptyset & y \not\in [c,d].
\end{cases}
\end{equation*}
\end{example}
For domains we will consider, $S_x U$ and $T_y U$ will typically be an interval (or a finite union of intervals).
\begin{definition}
Given a function $f:U \to \bbR$, we define the two \emph{iterated} integrals by
\begin{equation*}
\int_{x \in \bbR} \paren[\Big]{ \int_{y \in S_xU} f(x, y) \, dy } \, dx
\quad\text{and}\quad
\int_{y \in \bbR} \paren[\Big]{ \int_{x \in T_y U} f(x, y) \, dx } \, dy,
\end{equation*}
with the convention that an integral over the empty set is $0$.
(We included the parenthesis above for clarity; and will drop them as we become more familiar with iterated integrals.)
\end{definition}
Suppose $f(x, y)$ represents the density of a planar body at point $(x, y)$.
For any $x \in \bbR$,
\begin{equation*}
\int_{y \in S_xU} f(x, y) \, dy
\end{equation*}
represents the mass of the body contained in the vertical line through the point $(x, 0)$.
It's only natural to expect that if we integrate this with respect to $y$, we will get the total mass, which is the double integral.
By the same argument, we should get the same answer if we had sliced it horizontally first and then vertically.
Consequently, we expect both iterated integrals to be equal to the double integral.
This is true, under a finiteness assumption.
\begin{theorem}[Fubini's theorem]
Suppose $f:U \to \bbR$ is a function such that either
\begin{equation}\label{eqnFubiniFiniteness}
\int_{x \in \bbR} \paren[\Big]{ \int_{y \in S_xU} \abs{f(x, y)} \, dy } \, dx < \infty
\quad\text{or}\quad
\int_{y \in \bbR} \paren[\Big]{ \int_{x \in T_y U} \abs{f(x, y)} \, dx } \, dy < \infty,
\end{equation}
then $f$ is integrable over $U$ and
\begin{equation*}
\int_U f \, dA
= \int_{x \in \bbR} \paren[\Big]{ \int_{y \in S_xU} f(x, y) \, dy } \, dx
= \int_{y \in \bbR} \paren[\Big]{ \int_{x \in T_y U} f(x, y) \, dx } \, dy.
\end{equation*}
\end{theorem}
Without the assumption~\eqref{eqnFubiniFiniteness} the iterated integrals need not be equal, even though both may exist and be finite.
\begin{example}
Define
\begin{equation*}
f(x, y)
= -\partial_x \partial_y \tan\inv\paren[\big]{\frac{y}{x}}
= \frac{x^2 - y^2}{(x^2 + y^2)^2}.
\end{equation*}
Then
\begin{equation*}
\int_{x = 0}^1 \int_{y = 0}^1 f(x, y) \, dy \, dx = \frac{\pi}{4}
\quad\text{and}\quad
\int_{y = 0}^1 \int_{x = 0}^1 f(x, y) \, dx \, dy = -\frac{\pi}{4}
\end{equation*}
\end{example}
\begin{example}
Let $f(x, y) = (x - y) / (x + y)^3$ if $x, y > 0$ and $0$ otherwise, and $U = (0, 1)^2$.
The iterated integrals of $f$ over $U$ both exist, but are not equal.
\end{example}
\begin{example}
Define
\begin{equation*}
f(x, y) = \begin{cases}
1 & y \in (x, x+1) \text{ and } x \geq 0\\
-1 & y \in (x-1, x) \text{ and } x \geq 0\\
0 & \text{otherwise}.
\end{cases}
\end{equation*}
Then the iterated integrals of $f$ both exist and are not equal.
\end{example}
\begin{exa}\label{exmp:volplane}
Find the volume $V$ under the plane $z=8x+6y$ over the rectangle $R = \lbrack 0,1 \rbrack \times \lbrack 0,2 \rbrack$.
\end{exa}
\begin{solu} We see that $f(x,y)=8x+6y \ge 0$ for $0 \le x \le 1$ and $0 \le y \le 2$, so:
\begin{align*}
V ~&=~ \dint_0^2 \dint_0^1 (8x+6y)\,dx \,dy\\
&=~ \dint_0^2 \left( 4x^2 + 6xy \,\Big|_{x=0}^{x=1} \right) \,dy\\
&=~ \dint_0^2 (4+6y) \,dy\\
&=~ 4y+3y^2 \,\Big|_0^2\\
&=~ 20
\end{align*}
Suppose we had switched the order of integration. We can verify that we still get the same answer:
\begin{align*}
V ~&=~ \dint_0^1 \dint_0^2 (8x+6y)\,dy \,dx\\
&=~ \dint_0^1 \left( 8xy + 3y^2 \,\Big|_{y=0}^{y=2} \right) \,dx\\
&=~ \dint_0^1 (16x+12) \,dx\\
&=~ 8x^2 + 12x \,\Big|_0^1\\
&=~ 20
\end{align*}
\end{solu}
\begin{exa}
Find the volume $V$ under the surface $z=e^{x+y}$ over the rectangle $R = \lbrack 2,3 \rbrack \times \lbrack 1,2
\rbrack$.
\end{exa}
\begin{solu} We know that $f(x,y)=e^{x+y} > 0$ for all $(x,y)$, so
\begin{align*}
V ~&=~ \dint_1^2 \dint_2^3 e^{x+y} \,dx \,dy\\
&=~ \dint_1^2 \left( e^{x+y} \,\Big|_{x=2}^{x=3} \right) \,dy\\
&=~ \dint_1^2 (e^{y+3} - e^{y+2}) \,dy\\
&=~ e^{y+3} - e^{y+2} \,\Big|_1^2\\
&=~ e^5 - e^4 - ( e^4 - e^3 ) ~=~ e^5 - 2e^4 + e^3
\end{align*}
\end{solu}
Recall that for a general function $f(x)$, the integral $\dint_a^b f(x)\, dx$ represents the difference of the area
below the curve $y=f(x)$ but above the $x$-axis when $f(x) \ge 0$, and the area above the curve but below the $x$-axis
when $f(x) \le 0$. Similarly, the double integral of any continuous function $f(x,y)$ represents the difference of the
volume below the surface $z=f(x,y)$ but above the $xy$-plane when $f(x,y) \ge 0$, and the volume above the surface but
below the $xy$-plane when $f(x,y) \le 0$. Thus, our method of double integration by means of iterated integrals can
be used to evaluate the double integral of \emph{any} continuous function over a rectangle, regardless of whether
$f(x,y) \ge 0$ or not.
\vspace{3mm}
\begin{exa}
Evaluate $\displaystyle\dint_0^{2\pi} \displaystyle\dint_0^{\pi} \sin (x+y) \,dx\,dy$.
\end{exa}
\begin{solu} Note that $f(x,y) = \sin (x+y)$ is both positive and negative over the rectangle
$\lbrack 0,\pi \rbrack \times \lbrack 0,2\pi \rbrack$. We can still evaluate the double integral:
\begin{align*}
\dint_0^{2\pi} \dint_0^{\pi} \sin (x+y) \,dx\,dy
~&=~ \dint_0^{2\pi} \left( -\cos (x+y) \,\Big|_{x=0}^{x=\pi} \right) \,dy\\
&=~ \dint_0^{2\pi} (-\cos (y+\pi) + \cos y) \,dy\\
&=~ -\sin (y+\pi) + \sin y \,\Big|_0^{2\pi} ~=~ -\sin 3\pi + \sin 2\pi - (-\sin \pi + \sin 0)\\
&=~ 0
\end{align*}
\end{solu}
\startexercises\label{sec3dot1}
\probs{A}
\par\noindent For Exercises 1-4, find the volume under the surface $z=f(x,y)$ over the rectangle $R$.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{2}
\item $f(x,y) = 4xy$, $R= \lbrack 0,1 \rbrack \times \lbrack 0,1 \rbrack$
\item $f(x,y) = e^{x+y}$, $R= \lbrack 0,1 \rbrack \times \lbrack -1,1 \rbrack$
\end{multicols}
\begin{multicols}{2}
\item $f(x,y) = x^3 + y^2$, $R= \lbrack 0,1 \rbrack \times \lbrack 0,1 \rbrack$
\item $f(x,y) = x^4 + xy + y^3$, $R= \lbrack 1,2 \rbrack \times \lbrack 0,2 \rbrack$
\end{multicols}
\suspend{enumerate}
\par\noindent For Exercises 5-12, evaluate the given double integral.
\resume{enumerate}[{[\bfseries 1.]}]
\begin{multicols}{2}
\item $\displaystyle\dint_0^1 \displaystyle\dint_1^2 (1-y)x^2 \,dx\,dy$
\item $\displaystyle\dint_0^1 \displaystyle\dint_0^2 x(x+y) \,dx\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_0^2 \displaystyle\dint_0^1 (x+2) \,dx\,dy$
\item $\displaystyle\dint_{-1}^2 \displaystyle\dint_{-1}^1 x(xy+ \sin x) \,dx\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_0^{\pi /2} \displaystyle\dint_0^1 xy \cos (x^2 y) \,dx\,dy$
\item $\displaystyle\dint_0^{\pi} \displaystyle\dint_0^{\pi /2} \sin x \cos (y-\pi) \,dx\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_0^2 \displaystyle\dint_1^4 xy \,dx\,dy$
\item $\displaystyle\dint_{-1}^1 \displaystyle\dint_{-1}^2 1 \,dx\,dy$
\end{multicols}
\item Let $M$ be a constant. Show that $\dint_c^d \dint_a^b M\,dx\,dy = M(d-c)(b-a)$.
\end{enumerate}
%Begin Section 3.2
\section{Double Integrals Over a General Region}
In the previous section we got an idea of what a double integral over a rectangle represents. We can now define
the double integral of a real-valued function $f(x,y)$ over more general regions in $\bbR^2$.
Suppose that we have a region $R$ in the $xy$-plane that is bounded on the left by the vertical line $x=a$, bounded
on the right by the vertical line $x=b$ (where $a < b$), bounded below by a curve $y=\ssub{g}{1}(x)$, and bounded
above by a curve $y=\ssub{g}{2}(x)$, as in Figure \ref{fig:doubleintslices}(a). We will assume that
$\ssub{g}{1}(x)$ and $\ssub{g}{2}(x)$ do not intersect on the open interval $(a,b)$ (they could intersect at the
endpoints $x=a$ and $x=b$, though).\index{integral!double}\index{double integral}
\begin{figure}[h]
\centering
\subfloat[][Vertical slice: $\dint_a^b \dint_{\ssub{g}{1}(x)}^{\ssub{g}{2}(x)} f(x,y)\,dy\,dx$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\usetikzlibrary{arrows}
\draw [black!60,line width=0.3pt,-latex] (-1,0) -- (5,0);
\draw [black!60,line width=0.3pt,-latex,anchor=base] (0,-1) -- (0,5)
node[black,shift={(0,-0.4)}] at (1,0) {$a$}
node[black,shift={(0,-0.4)}] at (4.2,0) {$b$};
\pgfputat{\pgfpointxyz{4.9}{0.2}{0}}{\pgfbox[center,center]{$x$}}
\pgfputat{\pgfpointxyz{0.2}{4.9}{0}}{\pgfbox[center,center]{$y$}}
\pgfputat{\pgfpointxyz{-0.2}{-0.2}{0}}{\pgfbox[center,center]{$0$}}
\filldraw [black,line width=1.2pt,fill=black!10] (1,1.5) -- (1,2.5) to[out=70,in=180] (2.5,4) to[out=0,in=130]
(4.2,3) -- (4.2,1) to[out=140,in=-10] (3,1.5) to[out=180,in=0] (2,1) to[out=180,in=-45] (1,1.5);
\node [above] at (3,4) {$y = \ssub{g}{2}(x)$};
\node [below] at (2.5,1) { $y = \ssub{g}{1}(x)$};
\node [right] at (4.3,2) {$R$};
\draw [dashed] (1,0) -- (1,1.5);
\draw [dashed] (4.2,0) -- (4.2,1);
\draw (2,1) -- (2,3.9);
\end{tikzpicture}}
\qquad\qquad
\subfloat[][Horizontal slice: $\dint_c^d \dint_{\ssub{h}{1}(y)}^{\ssub{h}{2}(y)} f(x,y)\,dx\,dy$]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\draw [black!60,line width=0.3pt,-latex] (-1,0) -- (5,0);
\draw [black!60,line width=0.3pt,-latex] (0,-1) -- (0,5);
\pgfputat{\pgfpointxyz{4.9}{0.2}{0}}{\pgfbox[center,center]{\small $x$}}
\pgfputat{\pgfpointxyz{0.2}{4.9}{0}}{\pgfbox[center,center]{\small $y$}}
\pgfputat{\pgfpointxyz{-0.2}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}}
\filldraw [rotate around={-90:(2.5,2.5)},black,line width=1.2pt,fill=black!10] (1,1.5) -- (1,2.5) to[out=70,in=180]
(2.5,4) to[out=0,in=130] (4.2,3) -- (4.2,1) to[out=140,in=-10] (3,1.5) to[out=180,in=0] (2,1) to[out=180,in=-45]
(1,1.5);
\node [above] at (0.7,1.5) {\small $x = \ssub{h}{1}(y)$};
\node [above] at (4.4,1) {\small $x = \ssub{h}{2}(y)$};
\node [below] at (2,0.7) {\small $R$};
\node [left] at (0,0.8) {\small $c$};
\node [left] at (0,4) {\small $d$};
\draw [dashed] (0,0.8) -- (1.1,0.8);
\draw [dashed] (0,4) -- (1.5,4);
\draw [rotate around={-90:(2.5,2.5)}] (2,1) -- (2,3.9);
\end{tikzpicture}}
\caption[]{\quad Double integral over a nonrectangular region $R$}
\label{fig:doubleintslices}
\end{figure}
Then using the slice method from the previous section, the double integral of a real-valued function $f(x,y)$
over the region $R$, denoted by $\displaystyle\iint\limits_{R} f(x,y)\,dA$, is given by\index{$\iint\limits_{R}$}
\begin{equation}\label{eqn:doubleintvert}
\iint\limits_{R} f(x,y)\,dA ~=~ \dint_a^b \left[ \dint_{\ssub{g}{1}(x)}^{\ssub{g}{2}(x)} f(x,y)\,dy \right] \,dx
\end{equation}
This means that we take vertical slices in the region $R$ between the curves $y=\ssub{g}{1}(x)$ and $y=\ssub{g}{2}(x)$.
The symbol $dA$ is sometimes called an \emph{area element} or \emph{infinitesimal}, with the $A$ signifying area.
Note that $f(x,y)$ is first integrated with respect to $y$, with functions of $x$ as the limits of
integration. This makes sense since the result of the first iterated integral will have to be a function of $x$
alone, which then allows us to take the second iterated integral with respect to $x$.\index{area element}
Similarly, if we have a region $R$ in the $xy$-plane that is bounded on the left by a curve $x=\ssub{h}{1}(y)$,
bounded on the right by a curve $x=\ssub{h}{2}(y)$, bounded below by the horizontal line $y=c$, and bounded above by
the horizontal line $y=d$ (where $c < d$), as in Figure \ref{fig:doubleintslices}(b) (assuming that
$\ssub{h}{1}(y)$ and $\ssub{h}{2}(y)$ do not intersect on the open interval $(c,d)$), then taking horizontal slices
gives
\begin{equation}\label{eqn:doubleinthoriz}
\iint\limits_{R} f(x,y)\,dA ~=~ \dint_c^d \left[ \dint_{\ssub{h}{1}(y)}^{\ssub{h}{2}(y)} f(x,y)\,dx \right] \,dy
\end{equation}
Notice that these definitions
include the case when the region $R$ is a rectangle. Also, if $f(x,y) \ge 0$ for all $(x,y)$ in the region $R$,
then $\iint\limits_{R} f(x,y)\,dA$ is the volume under the surface $z=f(x,y)$ over the region $R$.
\vspace{3mm}
\begin{exa}\label{exmp:volplanenr}
Find the volume $V$ under the plane $z=8x+6y$ over the region $R = \lbrace (x,y): 0 \le x \le 1,~ 0 \le y \le 2x^2
\rbrace$.
\end{exa}
\piccaption[]{}\parpic[r]{\begin{tikzpicture}
\usetikzlibrary{arrows}
\draw [black!60,line width=0.3pt,-latex] (-0.5,0) -- (2,0);
\draw [black!60,line width=0.3pt,-latex] (0,-0.5) -- (0,2.5);
\pgfputat{\pgfpointxyz{1.9}{0.2}{0}}{\pgfbox[center,center]{\small $x$}}
\pgfputat{\pgfpointxyz{0.2}{2.4}{0}}{\pgfbox[center,center]{\small $y$}}
\pgfputat{\pgfpointxyz{-0.2}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}}
\filldraw [black,line width=1.2pt,fill=black!10] (0,0) parabola (1,2) -- (1,0) -- (0,0);
\node [left] at (1,2) {\small $y = 2x^2$};
\node [right] at (1,1) {\small $R$};
\node [below] at (1,0) {\small $1$};
\draw (0.6,0) -- (0.6,0.72);
\end{tikzpicture}}
\begin{solu} The region $R$ is shown in Figure 3.2.2. Using vertical slices we get:
\begin{align*}
V ~&=~ \iint\limits_{R} (8x+6y)\,dA\\
&=~ \dint_0^1 \left[ \dint_{0}^{2x^2} (8x+6y)\,dy \right] \,dx\\
&=~ \dint_0^1 \left( 8xy + 3y^2 \,\Big|_{y=0}^{y=2x^2} \right) \,dx\\
&=~ \dint_0^1 ( 16x^3 + 12x^4 )\,dx\\
&=~ 4x^4 + \tfrac{12}{5}x^5 \,\Big|_0^1 ~=~ 4 + \tfrac{12}{5} ~=~ \tfrac{32}{5} ~=~ 6.4
\end{align*}
\piccaption[]{}\parpic[r]{\begin{tikzpicture}
\usetikzlibrary{arrows}
\draw [black!60,line width=0.3pt,-latex] (-0.5,0) -- (2,0);
\draw [black!60,line width=0.3pt,-latex] (0,-0.5) -- (0,2.5);
\pgfputat{\pgfpointxyz{1.9}{0.2}{0}}{\pgfbox[center,center]{\small $x$}}
\pgfputat{\pgfpointxyz{0.2}{2.4}{0}}{\pgfbox[center,center]{\small $y$}}
\pgfputat{\pgfpointxyz{-0.2}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}}
\filldraw [black,line width=1.2pt,fill=black!10] (0,0) parabola (1,2) -- (1,0) -- (0,0);
\node [left] at (0,2.15) {\small $2$};
\node [left] at (0.8,1.2) {\small $x = \sqrt{y/2}$};
\node [right] at (1,1) {\small $R$};
\node [below] at (1,0) {\small $1$};
\draw (0.6,0.72) -- (1,0.72);
\draw [dashed] (0,2.15) -- (1,2.15);
\end{tikzpicture}}
\par\noindent We get the same answer using horizontal slices (see Figure 3.2.3):
\begin{align*}
V ~&=~ \iint\limits_{R} (8x+6y)\,dA\\
&=~ \dint_0^2 \left[ \dint_{\sqrt{y/2}}^{1} (8x+6y)\,dx \right] \,dy\\
&=~ \dint_0^2 \left( 4x^2 + 6xy \,\Big|_{x=\sqrt{y/2}}^{x=1} \right) \,dy\\
&=~ \dint_0^2 ( 4 + 6y - (2y + \tfrac{6}{\sqrt{2}}y\sqrt{y}\,))\,dy ~=~
\dint_0^2 ( 4 + 4y - 3\sqrt{2}y^{3/2} )\,dy\\
&=~ 4y + 2y^2 - \tfrac{6\sqrt{2}}{5}y^{5/2} \,\Big|_0^2 ~=~ 8 + 8 - \tfrac{6\sqrt{2}\sqrt{32}}{5} ~=~
16 - \tfrac{48}{5} ~=~ \tfrac{32}{5} ~=~ 6.4
\end{align*}
\end{solu}
\begin{exa}\label{exmp:tetra}
Find the volume $V$ of the solid bounded by the three coordinate planes and the plane $2x+y+4z=4$.
\end{exa}
\begin{figure}[h]
\centering
\subfloat[][]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\filldraw [black,fill=black!10] (4,0,0) -- (0,1,0) -- (0,0,2) -- (4,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (5,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,2,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,0,3);
\pgfputat{\pgfpointxyz{4.9}{0.2}{0}}{\pgfbox[center,center]{\small $y$}};
\pgfputat{\pgfpointxyz{0.2}{1.9}{0}}{\pgfbox[center,center]{\small $z$}};
\pgfputat{\pgfpointxyz{0.2}{0}{2.8}}{\pgfbox[center,center]{\small $x$}};
\pgfputat{\pgfpointxyz{0.05}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}};
\node [below] at (4,0,0) {\small $(0,4,0)$};
\node [left] at (0,1,0) {\small $(0,0,1)$};
\node [below right] at (0,0,2) {\small $(2,0,0)$};
\node [above] at (2,0.7) {\small $2x+y+4z=4$};
\draw [dashed] (0,0,1) -- (2,0,1) -- (0,0.5,1) -- (0,0,1);
\end{tikzpicture}}
\qquad\qquad
\subfloat[][]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\draw [black!60,line width=0.3pt,-latex] (-0.5,0) -- (2.5,0);
\draw [black!60,line width=0.3pt,-latex] (0,-0.5) -- (0,4.5);
\pgfputat{\pgfpointxyz{2.4}{0.2}{0}}{\pgfbox[center,center]{\small $x$}}
\pgfputat{\pgfpointxyz{0.2}{4.4}{0}}{\pgfbox[center,center]{\small $y$}}
\pgfputat{\pgfpointxyz{-0.2}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}}
\filldraw [black,line width=1.2pt,fill=black!10] (0,0) -- (0,4) -- (2,0) -- (0,0);
\node [above right] at (1,2) {\small $y = -2x+4$};
\node [left] at (1,1) {\small $R$};
\node [below] at (2,0) {\small $2$};
\node [left] at (0,4) {\small $4$};
\draw (1,0) -- (1,2);
\end{tikzpicture}}
\caption[]{}
\label{fig:volplane}
\end{figure}
\begin{solu} The solid is shown in Figure \ref{fig:volplane}(a) with a typical vertical slice.
The volume $V$ is given by
$\iint\limits_{R} f(x,y)\,dA$, where $f(x,y) = z = \frac{1}{4}(4-2x-y)$ and the region $R$, shown in Figure
\ref{fig:volplane}(b), is $R = \lbrace (x,y): 0 \le x \le 2,~ 0 \le y \le -2x+4 \rbrace$. Using vertical
slices in $R$ gives
\begin{align*}
V ~&=~ \iint\limits_{R} \tfrac{1}{4}(4-2x-y)\,dA\\
&=~ \dint_0^2 \left[ \dint_{0}^{-2x+4} \tfrac{1}{4}(4-2x-y)\,dy \right] \,dx\\
&=~ \dint_0^2 \left( -\tfrac{1}{8}(4-2x-y)^2 \,\Big|_{y=0}^{y=-2x+4} \right) \,dx\\
&=~ \dint_0^2 \tfrac{1}{8}(4-2x)^2\,dx\\
&=~ -\tfrac{1}{48}(4-2x)^3 \,\Big|_0^2 ~=~ \tfrac{64}{48} ~=~ \tfrac{4}{3}
\end{align*}
\end{solu}
For a general region $R$, which may not be one of the types of regions we have considered so far, the double integral
$\iint\limits_{R} f(x,y)\,dA$ is defined as follows. Assume that $f(x,y)$ is a nonnegative real-valued function
and that $R$ is a bounded region in $\bbR^2$, so it
can be enclosed in some rectangle $\lbrack a,b \rbrack \times \lbrack c,d \rbrack$. Then divide that rectangle
into a grid of subrectangles. Only consider the subrectangles that are enclosed completely within the region $R$, as
shown by the shaded subrectangles in Figure \ref{fig:subrect}(a). In any such subrectangle
$\lbrack \ssub{x}{i},\ssub{x}{i+1} \rbrack \times \lbrack \ssub{y}{j},\ssub{y}{j+1} \rbrack$, pick a point
$(\ssub{x}{i*},\ssub{y}{j*})$. Then the volume under the surface $z=f(x,y)$ over that subrectangle is approximately
$f(\ssub{x}{i*},\ssub{y}{j*})\,\Delta \ssub{x}{i} \,\Delta \ssub{y}{j}$, where $\Delta \ssub{x}{i} = \ssub{x}{i+1} -
\ssub{x}{i}$, $\Delta \ssub{y}{j} = \ssub{y}{j+1} - \ssub{y}{j}$, and $f(\ssub{x}{i*},\ssub{y}{j*})$ is the height
and $\Delta \ssub{x}{i} \,\Delta \ssub{y}{j}$ is the base area of a parallelepiped, as shown in Figure
\ref{fig:subrect}(b). Then the total volume under the surface is approximately the sum of the volumes of all such
parallelepipeds, namely
\begin{equation}\label{eqn:approxvol}
\sum_j \sum_i f(\ssub{x}{i*},\ssub{y}{j*})\,\Delta \ssub{x}{i} \,\Delta \ssub{y}{j} ~,
\end{equation}
where the summation occurs over the indices of the subrectangles inside $R$. If we take smaller and smaller
subrectangles, so that the length of the largest diagonal of the subrectangles goes to $0$, then the subrectangles
begin to fill more and more of the region $R$, and so the above sum approaches
the actual volume under the surface $z=f(x,y)$ over the region $R$. We then \emph{define}
$\iint\limits_{R} f(x,y)\,dA$ as the limit of that double summation (the limit is taken over all subdivisions of the
rectangle $\lbrack a,b \rbrack \times \lbrack c,d \rbrack$ as the largest diagonal of the subrectangles goes to $0$).
\begin{figure}[h]
\centering
\subfloat[][\quad Subrectangles inside the region $R$]{
\begin{tikzpicture}[every node/.style={font=\small}]
\usetikzlibrary{arrows}
\draw [black!60,line width=0.3pt,-latex,anchor=base] (-0.5,0) -- (6,0)
node[black,shift={(0,-0.4)}] at (0.25,0) {$a$}
node[black,shift={(0,-0.4)}] at (5.25,0) {$b$}
node[black,shift={(0,-0.4)}] at (3,0) {$\ssub{x}{i}$}
node[black,shift={(0,-0.4)}] at (3.55,0) {$\ssub{x}{i+1}$};
\draw [black!60,line width=0.3pt,-latex] (0,-0.5) -- (0,6);
\pgfputat{\pgfpointxyz{5.9}{0.2}{0}}{\pgfbox[center,center]{$x$}}
\pgfputat{\pgfpointxyz{0.2}{5.9}{0}}{\pgfbox[center,center]{$y$}}
\pgfputat{\pgfpointxyz{-0.2}{-0.2}{0}}{\pgfbox[center,center]{$0$}}
\fill [fill=black!10] (2.5,5) -- (2.5,4) -- (3,4) -- (3,3) -- (1,3) -- (1,1) -- (3,1) -- (3,1.2) -- (3.8,1.2) --
(3.8,1.66) -- (4.5,1.66) -- (4.5,3) -- (4.8,3) -- (4.8,3.5) -- (4.5,3.5) -- (4.5,4.3) -- (3.8,4.3) -- (3,4.3) --
(3,5) -- (2.5,5);
\draw (0.25,0.5) -- (5.25,0.5) -- (5.25,5.5) -- (0.25,5.5) -- (0.25,0.5);
\draw (0.25,1) -- (5.25,1);
\draw (0.25,1.2) -- (5.25,1.2);
\draw (0.25,1.66) -- (5.25,1.66);
\draw (0.25,3) -- (5.25,3);
\draw (0.25,3.5) -- (5.25,3.5);
\draw (0.25,4) -- (5.25,4);
\draw (0.25,4.3) -- (5.25,4.3);
\draw (0.25,5) -- (5.25,5);
\draw (1,0.5) -- (1,5.5);
\draw (1.2,0.5) -- (1.2,5.5);
\draw (2,0.5) -- (2,5.5);
\draw (2.5,0.5) -- (2.5,5.5);
\draw (3,0.5) -- (3,5.5);
\draw (3.5,0.5) -- (3.5,5.5);
\draw (3.8,0.5) -- (3.8,5.5);
\draw (4.5,0.5) -- (4.5,5.5);
\draw (4.8,0.5) -- (4.8,5.5);
\draw [black,line width=1.2pt] (1,3) arc (90:270:0.5 and 1) -- (3,1) arc (-90:90:2 and 2) -- (2.5,5)
arc (90:270:0.5 and 0.5) -- (2.5,4) arc (90:-90:0.5 and 0.5) -- (1,3);
\node [left] at (0,5.5) {$d$};
\node [left] at (0,0.5) {$c$};
\node [left] at (0,1.66) {$\ssub{y}{j}$};
\node [left] at (0,3) {$\ssub{y}{j+1}$};
\draw [dashed] (3,0) -- (3,0.5);
\draw [dashed] (3.5,0) -- (3.5,0.5);
\draw [dashed] (0,1.66) -- (0.25,1.66);
\draw [dashed] (0,3) -- (0.25,3);
\fill (3.2,2) circle (1.2pt);
\node [above] at (3.2,2) {$(\ssub{x}{i*},\ssub{y}{j*})$};
\end{tikzpicture}}
\qquad\qquad
\subfloat[][\quad Parallelepiped over a subrectangle, with volume
$f(\ssub{x}{i*},\ssub{y}{j*})\,\Delta \ssub{x}{i} \,\Delta \ssub{y}{j}$]{
\begin{tikzpicture}
\usetikzlibrary{arrows}
\definecolor{planecolor}{HTML}{FFB270}
\definecolor{surfcolor}{HTML}{006146}
\shade [opacity=0.1,ball color=red!40] (-1,1.55) to[out=-20,in=110] (1.2,0.55) -- (2.2,1.55) to[out=110,in=-20]
(0,2.55) -- (-1,1.55);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (3.2,0,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,3,0);
\draw [black!60,line width=0.3pt,-latex] (0,0) -- (0,0,5.5);
\pgfputat{\pgfpointxyz{3.1}{0.2}{0}}{\pgfbox[center,center]{\small $y$}};
\pgfputat{\pgfpointxyz{0.2}{2.9}{0}}{\pgfbox[center,center]{\small $z$}};
\pgfputat{\pgfpointxyz{0.2}{0}{5.3}}{\pgfbox[center,center]{\small $x$}};
\pgfputat{\pgfpointxyz{0.05}{-0.2}{0}}{\pgfbox[center,center]{\small $0$}};
\draw [scale=0.37,rotate around={-135:(0,0)},line width=1.2pt,xshift=-50pt,yshift=25pt] (1,3) arc (90:270:0.5 and 1)
-- (3,1) arc (-90:90:2 and 2) -- (2.5,5) arc (90:270:0.5 and 0.5) -- (2.5,4) arc (90:-90:0.5 and 0.5) -- (1,3);
\draw [dashed,line width=0.2pt] (1.6,0) -- (0.1,-1.5);
\draw [dashed,line width=0.2pt] (2,0) -- (0.5,-1.5);
\draw [dashed,line width=0.2pt] (-1.5,-1.5) -- (0.5,-1.5);
\draw [dashed,line width=0.2pt] (-1.25,-1.25) -- (0.75,-1.25);
\draw [line width=0.2pt] (0.1,-1.5) -- (0.1,1.8);
\draw [line width=0.2pt] (0.5,-1.5) -- (0.5,1.8);
\draw [dashed,line width=0.2pt] (0.35,-1.25) -- (0.35,2.05);
\draw [line width=0.2pt] (0.75,-1.5) -- (0.75,2.05);
\draw [line width=0.2pt] (0.75,2.05) -- (0.35,2.05) -- (0.1,1.8) -- (0.5,1.8) -- (0.75,2.05);
\draw [line width=0.2pt] (0.1,-1.5) -- (0.5,-1.5) -- (0.75,-1.25);
\node [below] at (1.8,-1.5) {\small $R$};
\node [left] at (-1.2,-1.2) {\small $\ssub{x}{i}$};
\node [left] at (-1.5,-1.5) {\small $\ssub{x}{i+1}$};
\node [above] at (1.6,0) {\small $\ssub{y}{j}$};
\node [above] at (2.2,0) {\small $\ssub{y}{j+1}$};
\node [right] at (1.8,2.5) {\small $z = f(x,y)$};
\node [above] at (0.55,1.95) {\small $\Delta \ssub{y}{j}$};
\node [left] at (0.22,1.92) {\small $\Delta \ssub{x}{i}$};
\fill (0.35,-1.4) circle (1.2pt);
\node [below] at (0.55,-1.4) {\small $(\ssub{x}{i*},\ssub{y}{j*})$};
\fill (0.35,1.9) circle (1.2pt);
\node [right] at (0.7,1.9) {\small $f(\ssub{x}{i*},\ssub{y}{j*})$};
\end{tikzpicture}}
\caption[]{\quad Double integral over a general region $R$}
\label{fig:subrect}
\end{figure}
A similar definition can be made for a function $f(x,y)$ that is not necessarily always nonnegative: just replace
each mention of volume by the negative volume in the description above when $f(x,y) < 0$.
In the case of a region of the type shown in Figure \ref{fig:doubleintslices}, using the definition
of the Riemann integral from single-variable calculus, our definition of $\iint\limits_{R} f(x,y)\,dA$
reduces to a sequence of two iterated integrals.
Finally, the region $R$ does not have to be\index{improper integral}\index{integral!improper}
bounded. We can evaluate \emph{improper} double integrals (i.e. over an unbounded region, or over a region which
contains points where the function $f(x,y)$ is not defined) as a sequence of iterated improper single-variable
integrals.
\begin{exa}
Evaluate $\displaystyle\dint_1^{\infty} \displaystyle\dint_0^{1/{x^2}} 2y \,dy\,dx$.
\end{exa}
\begin{solu}
\begin{align*}
\dint_1^{\infty} \displaystyle\dint_0^{1/{x^2}} 2y \,dy\,dx ~&=~
\dint_1^{\infty} \left(y^2 \,\Big|_{y=0}^{y=1/{x^2}} \right) \,dx\\
&=~ \dint_1^{\infty} x^{-4}\,dx
~=~ -\tfrac{1}{3} x^{-3} \,\Big|_{1}^{\infty} ~=~ 0 - (-\tfrac{1}{3}) ~=~ \tfrac{1}{3}
\end{align*}
\end{solu}
\startexercises\label{sec3dot2}
\probs{A}
\par\noindent For Exercises 1-6, evaluate the given double integral.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{2}
\item $\displaystyle\dint_0^1 \displaystyle\dint_{\sqrt{x}}^1 24x^2 y \,dy\,dx$
\item $\displaystyle\dint_0^{\pi} \displaystyle\dint_0^y \sin x \,dx\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_1^2 \displaystyle\dint_0^{\ln x} 4x \,dy\,dx$
\item $\displaystyle\dint_0^2 \displaystyle\dint_0^{2y} e^{y^2} \,dx\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_0^{\pi /2} \displaystyle\dint_0^y \cos x \,\sin y \,dx\,dy$
\item $\displaystyle\dint_0^{\infty} \displaystyle\dint_0^{\infty} xye^{-(x^2 + y^2 )} \,dx\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_0^2 \displaystyle\dint_0^y 1 \,dx\,dy$
\item $\displaystyle\dint_0^1 \displaystyle\dint_0^{x^2} 2 \,dy\,dx$
\end{multicols}
\item Find the volume $V$ of the solid bounded by the three coordinate planes and the plane $x+y+z=1$.
\item Find the volume $V$ of the solid bounded by the three coordinate planes and the plane $3x+2y+5z=6$.
\suspend{enumerate}
\probs{B}
\resume{enumerate}[{[\bfseries 1.]}]
\item Explain why the double integral $\iint\limits_{R} 1\,dA$ gives the area of the region $R$. For simplicity,
you can assume that $R$ is a region of the type shown in Figure \ref{fig:doubleintslices}(a).
\suspend{enumerate}
\probs{C}
\resume{enumerate}[{[\bfseries 1.]}]
\piccaption[]{}\parpic[r]{\begin{tikzpicture}
\usetikzlibrary{arrows}
\filldraw [black,fill=black!10,line width=1pt] (2,0,0) -- (0,1,0) -- (0,0,3) -- (2,0,0);
\draw [dashed,line width=1pt] (0.2,0,0) -- (2,0,0);
\draw [dashed,line width=1pt] (0,0.2,0) -- (0,1,0);
\draw [dashed,line width=1pt] (0,0,0.3) -- (0,0,3);
\node [above] at (0.8,0,0) {\small $b$};
\node [right] at (0,0.5,0) {\small $c$};
\node [right] at (0,0,1.3) {\small $a$};
\draw [line width=0.5pt] (0,0.2,0) -- (0.2,0.2,0) -- (0.2,0,0) -- (0,0,0) -- (0,0.2,0);
\draw [line width=0.5pt] (0,0.2,0) -- (0,0.2,0.3) -- (0,0,0.3) -- (0,0,0);
\draw [line width=0.5pt] (0,0,0.3) -- (0.2,0,0.3) -- (0.2,0,0);
\end{tikzpicture}}
\item Prove that the volume of a tetrahedron with mutually perpendicular adjacent sides of lengths $a$, $b$, and $c$,
as in Figure 3.2.6, is $\frac{abc}{6}$. (\emph{Hint: Mimic Example \ref{exmp:tetra}, and recall from\\Section 1.5 how
three noncollinear points determine a plane.})
\item Show how Exercise 12 can be used to solve Exercise 10.
\end{enumerate}
%Begin Section 3.3
\section{Triple Integrals}
Our definition of a double integral of a real-valued function $f(x,y)$ over a region $R$ in $\bbR^2$ can be
extended to define a \emph{triple integral} of a real-valued function $f(x,y,z)$ over a \emph{solid} $S$ in
$\bbR^3$. We simply proceed as before: the solid $S$ can be enclosed in some rectangular parallelepiped, which is
then divided into subparallelepipeds. In each subparallelepiped inside $S$, with sides of lengths $\Delta x$,
$\Delta y$ and $\Delta z$, pick a point $(\ssub{x}{*},\ssub{y}{*},\ssub{z}{*})$. Then define the triple
integral of $f(x,y,z)$ over $S$, denoted by $\iiint\limits_{S} f(x,y,z)\,dV$, by\index{$\iiint\limits_{S}$}
\begin{equation}
\iiint\limits_{S} f(x,y,z)\,dV ~=~
\lim \sum \sum \sum f(\ssub{x}{*},\ssub{y}{*},\ssub{z}{*})\,\Delta x\,\Delta y\,\Delta z ~,
\end{equation}
where the limit is over all divisions of the rectangular parallelepiped enclosing $S$ into subparallelepipeds whose
largest diagonal is going to $0$, and the triple summation is over all the subparallelepipeds inside $S$. It can be
shown that this limit does not depend on the choice of the rectangular parallelepiped enclosing $S$. The symbol $dV$
is often called the \emph{volume element}.\index{volume element}
Physically,\index{integral!triple}\index{triple integral}
what does the triple integral represent? We saw that a double integral could be thought of as the volume under a
two-dimensional surface. It turns out that the triple integral simply generalizes this idea: it can be thought of as
representing the \emph{hypervolume} under a three-dimensional \emph{hypersurface} $w=f(x,y,z)$ whose graph lies in
$\Real{4}$. In general, the word ``volume'' is\index{hypervolume}\index{hypersurface}
often used as a general term to signify the same concept for any $n$-dimensional object (e.g. length in $\Real{1}$,
area in $\bbR^2$). It may be hard to get a grasp on the
concept of the ``volume'' of a four-dimensional object, but at least we now know how to calculate that volume!
In the case where $S$ is a rectangular parallelepiped
$\lbrack \ssub{x}{1},\ssub{x}{2} \rbrack \times \lbrack \ssub{y}{1},\ssub{y}{2} \rbrack \times \lbrack
\ssub{z}{1},\ssub{z}{2} \rbrack$, that is, $S = \lbrace (x,y,z): \ssub{x}{1} \le x \le \ssub{x}{2},~
\ssub{y}{1} \le y \le \ssub{y}{2},~\ssub{z}{1} \le z \le \ssub{z}{2} \rbrace$, the triple integral is a sequence
of three iterated integrals, namely
\begin{equation}
\iiint\limits_{S} f(x,y,z)\,dV ~=~
\dint_{\ssub{z}{1}}^{\ssub{z}{2}} \dint_{\ssub{y}{1}}^{\ssub{y}{2}} \dint_{\ssub{x}{1}}^{\ssub{x}{2}} f(x,y,z)\,
dx\,dy\,dz ~,
\end{equation}
where the order of integration does not matter. This is the simplest case.
A more complicated case is where $S$ is a solid which is bounded below by a surface $z=\ssub{g}{1}(x,y)$, bounded above
by a surface $z=\ssub{g}{2}(x,y)$, $y$ is bounded between two curves $\ssub{h}{1}(x)$ and $\ssub{h}{2}(x)$, and $x$
varies between $a$ and $b$. Then
\begin{equation}\label{eqn:vsolid}
\iiint\limits_{S} f(x,y,z)\,dV ~=~
\dint_{a}^{b} \dint_{\ssub{h}{1}(x)}^{\ssub{h}{2}(x)} \dint_{\ssub{g}{1}(x,y)}^{\ssub{g}{2}(x,y)} f(x,y,z)\,
dz\,dy\,dx ~.
\end{equation}
Notice in this case that the first iterated integral will result in a function of $x$ and $y$ (since its limits
of integration are functions of $x$ and $y$), which then leaves you with a double integral of a type that we learned
how to evaluate in Section 3.2. There are, of course, many variations on this case (for example, changing the roles of
the variables $x$, $y$, $z$), so as you can probably tell, triple integrals can be quite tricky. At this point, just
learning how to evaluate a triple integral, regardless of what it represents, is the most important thing. We will see
some other ways in which triple integrals are used later in the text.
\vspace{3mm}
\begin{exa}
Evaluate $\displaystyle\dint_0^3 \displaystyle\dint_0^2 \displaystyle\dint_0^1 (xy+z) \,dx\,dy\,dz$.
\end{exa}
\begin{solu}
\begin{align*}
\dint_0^3 \dint_0^2 \dint_0^1 (xy+z) \,dx\,dy\,dz ~&=~
\dint_0^3 \dint_0^2 \left( \tfrac{1}{2}x^2 y + xz \, \Big|_{x=0}^{x=1} \right) \,dy\,dz\\
&=~ \dint_0^3 \dint_0^2 \left( \tfrac{1}{2}y + z \right) \,dy\,dz\\
&=~ \dint_0^3 \left( \tfrac{1}{4}y^2 + yz \,\Big|_{y=0}^{y=2} \right) \,dz\\
&=~ \dint_0^3 (1+2z) \,dz\\
&=~ z + z^2 \,\Big|_0^3 ~=~ 12
\end{align*}
\end{solu}
\begin{exa}
Evaluate $\displaystyle\dint_0^1 \displaystyle\dint_0^{1-x} \displaystyle\dint_0^{2-x-y} (x+y+z)\,dz\,dy\,dx$.
\end{exa}
\begin{solu}
\begin{align*}
\dint_0^1 \dint_0^{1-x} \dint_0^{2-x-y} (x+y+z) \,dz\,dy\,dx ~&=~
\dint_0^1 \dint_0^{1-x} \left( (x+y)z+ \tfrac{1}{2}z^2 \, \Big|_{z=0}^{z=2-x-y} \right) \,dy\,dx\\
&=~ \dint_0^1 \dint_0^{1-x} \left( (x+y)(2-x-y) + \tfrac{1}{2}(2-x-y)^2 \right) \,dy\,dx\\
&=~ \dint_0^1 \dint_0^{1-x} \left( 2 - \tfrac{1}{2}x^2 - xy - \tfrac{1}{2}y^2 \right) \,dy\,dx\\
&=~ \dint_0^1 \left( 2y-\tfrac{1}{2}x^2 y -xy- \tfrac{1}{2}xy^2 - \tfrac{1}{6}y^3 \,\Big|_{y=0}^{y=1-x} \right) \,dx\\
&=~ \dint_0^1 \left( \tfrac{11}{6} - 2x + \tfrac{1}{6}x^3 \right) \,dx\\
&=~ \tfrac{11}{6}x - x^2 + \tfrac{1}{24}x^4 \,\Big|_0^1 ~=~ \tfrac{7}{8}
\end{align*}
\end{solu}
Note that the volume $V$ of a solid in $\bbR^3$ is given by
\begin{equation}
V ~=~ \iiint\limits_{S} 1\,dV ~.
\end{equation}
Since the function being integrated is the constant $1$, then the above triple integral reduces to a double integral of
the types that we considered in the previous section if the solid is bounded above by some surface $z=f(x,y)$ and
bounded below by the $xy$-plane $z=0$. There are many other possibilities. For example, the solid could be bounded
below and above by surfaces $z=\ssub{g}{1}(x,y)$ and $z=\ssub{g}{2}(x,y)$, respectively, with $y$ bounded between
two curves $\ssub{h}{1}(x)$ and $\ssub{h}{2}(x)$, and $x$ varies between $a$ and $b$. Then
\begin{displaymath}
V = \iiint\limits_{S} 1\,dV =
\dint_{a}^{b} \dint_{\ssub{h}{1}(x)}^{\ssub{h}{2}(x)} \dint_{\ssub{g}{1}(x,y)}^{\ssub{g}{2}(x,y)} 1\,dz\,dy\,dx =
\dint_{a}^{b} \dint_{\ssub{h}{1}(x)}^{\ssub{h}{2}(x)} \left( \ssub{g}{2}(x,y) - \ssub{g}{1}(x,y) \right) \,dy\,dx
\end{displaymath}
just like in equation (\ref{eqn:vsolid}). See Exercise 10 for an example.
\startexercises\label{sec3dot3}
\probs{A}
\par\noindent For Exercises 1-8, evaluate the given triple integral.
\begin{enumerate}[\bfseries 1.]
\begin{multicols}{2}
\item $\displaystyle\dint_0^3 \displaystyle\dint_0^2 \displaystyle\dint_0^1 xyz \,dx\,dy\,dz$
\item $\displaystyle\dint_0^1 \displaystyle\dint_0^x \displaystyle\dint_0^y xyz \,dz\,dy\,dx$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_0^{\pi} \displaystyle\dint_0^x \displaystyle\dint_0^{xy} x^2 \sin z \,dz\,dy\,dx$
\item $\displaystyle\dint_0^1 \displaystyle\dint_0^z \displaystyle\dint_0^y ze^{y^2} \,dx\,dy\,dz$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_1^e \displaystyle\dint_0^y \displaystyle\dint_0^{1/y} x^2 z \,dx\,dz\,dy$
\item $\displaystyle\dint_1^2 \displaystyle\dint_0^{y^2} \displaystyle\dint_0^{z^2} yz \,dx\,dz\,dy$
\end{multicols}
\begin{multicols}{2}
\item $\displaystyle\dint_1^2 \displaystyle\dint_2^4 \displaystyle\dint_0^3 1 \,dx\,dy\,dz$
\item $\displaystyle\dint_0^1 \displaystyle\dint_0^{1-x} \displaystyle\dint_0^{1-x-y} 1 \,dz\,dy\,dx$
\end{multicols}
\item Let $M$ be a constant. Show that $\dint_{\ssub{z}{1}}^{\ssub{z}{2}} \dint_{\ssub{y}{1}}^{\ssub{y}{2}}
\dint_{\ssub{x}{1}}^{\ssub{x}{2}} M\,dx\,dy\,dz = M(\ssub{z}{2} - \ssub{z}{1})(\ssub{y}{2} - \ssub{y}{1})
(\ssub{x}{2} - \ssub{x}{1})$.
\suspend{enumerate}
\probs{B}
\resume{enumerate}[{[\bfseries 1.]}]
\item Find the volume $V$ of the solid $S$ bounded by the three coordinate planes, bounded above by the plane
$x+y+z=2$, and bounded below by the plane $z=x+y$.
\suspend{enumerate}
\probs{C}
\resume{enumerate}[{[\bfseries 1.]}]
\item Show that $\displaystyle\dint_a^b \displaystyle\dint_a^z \displaystyle\dint_a^y f(x)\,dx\,dy\,dz =
\displaystyle\dint_a^b \tfrac{(b-x)^2 }{2} f(x)\,dx$. (\emph{Hint: Think of how changing the order of integration in
the triple integral changes the limits of integration.})
\end{enumerate}
%Begin Section 3.4
\section{Change of Variables in Multiple Integrals}
Given the difficulty of evaluating multiple integrals, the reader may be wondering if it is possible to simplify
those integrals using a suitable substitution for the variables. The answer is yes, though it is a bit more complicated
than the substitution method which you learned in single-variable calculus.\index{change of variable}
Recall that if you are given, for example, the definite integral
\begin{displaymath}
\dint_1^2 x^3 \sqrt{x^2 - 1}\,dx ~,
\end{displaymath}
then you would make the substitution
\begin{align*}
u &= x^2 - 1 ~\Rightarrow~ x^2 = u + 1\\
du &= 2x\,dx\\
\intertext{which changes the limits of integration}
x &= 1 ~\Rightarrow~ u = 0\\
x &= 2 ~\Rightarrow~ u = 3
\end{align*}
so that we get
\begin{align*}
\dint_1^2 x^3 \sqrt{x^2 - 1}\,dx ~&=~ \dint_1^2 \tfrac{1}{2}x^2 \cdot 2x \sqrt{x^2 - 1}\,dx\\
&=~ \dint_0^3 \tfrac{1}{2}(u+1)\sqrt{u}\,du\\
&=~ \tfrac{1}{2} \dint_0^3 \left( u^{3/2} + u^{1/2} \right)\,du ~~,~\text{which can be easily integrated to give}\\
&=~ \tfrac{14\sqrt{3}}{5} ~.
\end{align*}
Let us take a different look at what happened when we did that substitution, which will give some motivation for how
substitution works in multiple integrals. First, we let $u = x^2 - 1$. On the interval of integration
$\lbrack 1,2 \rbrack$, the function $x \mapsto x^2 - 1$ is strictly increasing (and maps $\lbrack 1,2 \rbrack$ onto
$\lbrack 0,3 \rbrack$) and hence has an inverse function (defined on the interval $\lbrack 0,3 \rbrack$). That
is, on $\lbrack 0,3 \rbrack$ we can define $x$ as a function of $u$, namely
\begin{displaymath}
x ~=~ g(u) ~=~ \sqrt{u+1} ~.
\end{displaymath}
Then substituting that expression for $x$ into the function $f(x) = x^3 \sqrt{x^2 - 1}$ gives
\begin{displaymath}
f(x) ~=~ f(g(u)) ~=~ (u+1)^{3/2} \sqrt{u} ~,
\end{displaymath}
and we see that
\begin{align*}
\frac{dx}{du} ~=~ g\,'(u) ~\Rightarrow~ dx ~&=~ g\,'(u)\,du\\
dx ~&=~ \tfrac{1}{2} (u+1)^{-1/2}\,du ~,
\end{align*}
so since
\begin{align*}
g(0) = 1 ~\Rightarrow~ 0 = g^{-1} (1)\\
g(3) = 2 ~\Rightarrow~ 3 = g^{-1} (2)\\
\end{align*}
then performing the substitution as we did earlier gives
\begin{align*}
\dint_1^2 f(x)\,dx ~&=~ \dint_1^2 x^3 \sqrt{x^2 - 1}\,dx\\
&=~ \dint_0^3 \tfrac{1}{2}(u+1)\sqrt{u}\,du ~~,~\text{which can be written as}\\
&=~ \dint_0^3 (u+1)^{3/2} \sqrt{u} \, \cdot \tfrac{1}{2} (u+1)^{-1/2}\,du ~~,~\text{which means}\\
\dint_1^2 f(x)\,dx ~&=~ \dint_{g^{-1}(1)}^{g^{-1}(2)} f(g(u))\,g\,'(u)\,du ~.
\end{align*}
In general, if $x = g(u)$ is a one-to-one, differentiable function from an interval $\lbrack c,d \rbrack$ (which you can
think of as being on the ``$u$-axis'') onto an interval $\lbrack a,b \rbrack$ (on the $x$-axis), which means that
$g\,'(u) \ne 0$ on the interval $(c,d)$, so that $a=g(c)$ and $b=g(d)$, then $c=g^{-1}(a)$ and $d=g^{-1}(b)$, and
\begin{equation}
\dint_a^b f(x)\,dx ~=~ \dint_{g^{-1}(a)}^{g^{-1}(b)} f(g(u))\,g\,'(u)\,du ~.
\end{equation}
This is called the \emph{change of variable} formula for integrals of single-variable functions, and it is what you were
implicitly using when doing integration by substitution. This formula turns out to be a special case of a more general