-
Notifications
You must be signed in to change notification settings - Fork 7
/
chapter3.tex
2178 lines (1989 loc) · 80.1 KB
/
chapter3.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Multiple Integrals}%endchapter
\section{Double Integrals}
Let $R = [a, b] \times [c, d] \subseteq \bbR^2$ be a rectangle, and $f:R \to \bbR$ be continuous.
Let $P = \set{ x_0, \dots, x_M, y_0, \dots, y_M}$ where $a = x_0 < x_1 < \cdots < x_M = b$ and $c = y_0 < y_1 < \cdots < y_M = d$.
The set $P$ determines a partition of $R$ into a grid of (non-overlapping) rectangles $R_{i,j} = [x_i, x_{i+1}] \times [y_j, y_{j+1}]$ for $0 \leq i < M$ and $0 \leq j < N$.
Given $P$, choose a collection of points $\Xi = \set{\xi_{i,j}}$ so that $\xi_{i,j} \in R_{i,j}$ for all $i, j$.
\begin{definition}
The \emph{Riemann sum} of $f$ with respect to the partition $P$ and points $\Xi$ is defined by
\begin{equation*}
\mathcal R(f, P, \Xi)
\defeq \dsum_{i=0}^{M-1} \dsum_{j = 0}^{N-1}
f(\xi_{i, j}) \area(R_{i,j})
= \dsum_{i=0}^{M-1} \dsum_{j = 0}^{N-1}
f(\xi_{i, j}) (x_{i+1} - x_i) (y_{j+1} - y_j)
\end{equation*}
\end{definition}
\newcommand\DrawBlock[3]{
\ifx#1b\relax
\path[draw]
(lm\the\numexpr#2-1\relax) -- ++(0,0,#3) coordinate (blocklf)
(bm\the\numexpr#2-1\relax) -- ++(0,0,#3) coordinate (blocklb)
(lm#2) -- ++(0,0,#3) coordinate (blockrf)
(bm#2) -- ++(0,0,#3) coordinate (blockrb);
\filldraw[fill=white,draw=black]
(lm\the\numexpr#2-1\relax) -- (blocklf) -- (blocklb) -- (blockrb) --
(blockrf) -- (lm#2);
\else
\ifx#1f\relax
\path[draw]
(fm\the\numexpr#2-1\relax) -- ++(0,0,#3) coordinate (blocklf)
(lm\the\numexpr#2-1\relax) -- ++(0,0,#3) coordinate (blocklb)
(fm#2) -- ++(0,0,#3) coordinate (blockrf)
(lm#2) -- ++(0,0,#3) coordinate (blockrb);
\filldraw[fill=white,draw=black]
(fm\the\numexpr#2-1\relax) -- (blocklf) -- (blocklb) -- (blockrb) --
(blockrf) -- (fm#2);
\fi
\fi
\draw (blocklf) -- (blockrf);
}
\begin{tikzpicture}[y={(0:1cm)},x={(225:0.86cm)}, z={(90:1cm)}]
% coordinates for the lower grid
\path
(1,3,0) coordinate (bm0) --
(4,3,0) coordinate (fm0) coordinate[midway] (lm0) --
(4,8,0) coordinate[pos=0.25] (fm1) coordinate[midway] (fm2)
coordinate[pos=0.75] (fm3) coordinate (fm4) --
(1,8,0) coordinate (bm4) coordinate[midway] (lm4)--
(bm0) coordinate[pos=0.25] (bm3) coordinate[midway] (bm2)
coordinate[pos=0.75]
(bm1);
\draw[dashed]
(lm0) --
(lm4) coordinate[pos=0.25] (lm1) coordinate[midway] (lm2)
coordinate[pos=0.75]
(lm3);
% the blocks
\DrawBlock{b}{1}{4}
\DrawBlock{b}{2}{3.7}
\DrawBlock{b}{3}{4.3}
\DrawBlock{b}{4}{5}
\DrawBlock{f}{1}{3.3}
\DrawBlock{f}{2}{3.5}
\DrawBlock{f}{3}{4}
\DrawBlock{f}{4}{4.7}
\foreach \Point/\Height in {lm1/3.7,lm2/4.3,lm3/5}
\draw[ultra thin,dashed,opacity=0.2] (\Point) -- ++(0,0,\Height);
% the lower grid
\foreach \x in {1,2,3}
\draw[dashed] (fm\x) -- (bm\x);
\draw[dashed] (fm0) -- (bm0) -- (bm4);
\draw (fm0) -- (fm4) -- (bm4);
\draw[dashed] (lm0) -- (lm4);
% coordinates for the surface
\coordinate (curvefm0) at ( $ (fm0) + (0,0,4) $ );
\coordinate (curvebm0) at ( $ (bm0) + (0,0,4) $ );
\coordinate (curvebm4) at ( $ (bm4) + (0,0,6) $ );
\coordinate (curvefm4) at ( $ (fm4) + (0,0,5.7) $ );
% the surface
\filldraw[ultra thick,fill=gray!25,fill opacity=0.2]
(curvefm0) to[out=-30,in=210]
(curvefm4) to[out=-4,in=260]
(curvebm4) to[out=215,in=330]
(curvebm0) to[out=240,in=-20]
(curvefm0);
% lines from grid to surface
\draw[very thick,name path=leftline] (curvefm0) -- (fm0);
\draw[very thick] (curvefm4) -- (fm4);
\draw[very thick,name path=rightline] (curvebm4) -- (bm4);
\draw[very thick,dashed] (curvebm0) -- (bm0);
% coordinate system
\coordinate (O) at (0,0,0);
\draw[-latex] (O) -- +(5,0,0) node[above left] {$x$};
\path[name path=yaxis] (O) -- +(0,10,0) coordinate (yaxisfinal) node[above]
{$y$};
\draw[-latex] (O) -- +(0,0,5) node[left] {$z$};
\path[name intersections={of=yaxis and leftline,by={yaxis1}}];
\path[name intersections={of=yaxis and rightline,by={yaxis2}}];
\draw (O) -- (yaxis1);
\draw[densely dashed,opacity=0.1] (yaxis1) -- (yaxis2);
\draw[-latex] (yaxis2) -- (yaxisfinal);
% for debugging
%\foreach \Name in
%curvefm0,curvebm0,curvebm4,curvefm4}
% \node at (\Name) {\Name};
\end{tikzpicture}
\begin{definition}
The \emph{mesh size} of a partition $P$ is defined by
\begin{equation*}
\norm{P} = \max \set{ x_{i+1} - x_i \st 0 \leq i < M} \cup \set{y_{j+1} - y_j \st 0 \leq j \leq N }.
\end{equation*}
\end{definition}
\begin{definition}
The \emph{Riemann integral} of $f$ over the rectangle $R$ is defined by
\begin{equation*}
\dint_R f(x, y) \, dx \, dy
\defeq
\lim_{\norm{P} \to 0}
\mathcal R( f, P, \Xi ),
\end{equation*}
provided the limit exists and is independent of the choice of the points
$\Xi$.
A function is said to be \emph{Riemann integrable} over $R$ if the Riemann
integral exists and is finite.
\end{definition}
\begin{remark}
A few other popular notation conventions used to denote the integral are
\begin{equation*}
\iint_R f \, dA,
\quad
\iint_R f \, dx \, dy,
\quad
\iint_R f \, dx_1 \, dx_2,
\quad\text{and}\quad
\iint_R f.
\end{equation*}
\end{remark}
\begin{remark}
The double integral represents the volume of the region under the graph of
$f$.
Alternately, if $f(x, y)$ is the density of a planar body at point $(x, y)$,
the double integral is the total mass.
\end{remark}
\begin{theorem}
Any bounded continuous function is Riemann integrable on a bounded
rectangle.
\end{theorem}
\begin{remark}
Most bounded functions we will encounter will be Riemann integrable.
Bounded functions with reasonable discontinuities (e.g. finitely many jumps)
are usually Riemann integrable on bounded rectangle.
An example of a ``badly discontinuous'' function that is not Riemann
integrable is the function $f(x, y) = 1$ if $x, y \in \mathbb{Q}$ and $0$
otherwise.
%s \emph{provided} they are bounded or don't grow ``too fast'' near their
singularities.
\end{remark}
Now suppose $U \subseteq \bbR^2$ is an nice bounded%
\footnote{%
We will subsequently always assume $U$ is ``nice''. Namely, $U$ is open,
connected and the boundary of $U$ is a piecewise differentiable curve.
More precisely, we need to assume that the ``area'' occupied by the boundary
of $U$ is $0$.
While you might suspect this should be true for all open sets, it isn't!
There exist open sets of \emph{finite area} whose boundary occupies an
infinite area!}
domain, and $f:U \to \bbR$ is a function.
Find a bounded rectangle $R \supseteq U$, and as before let $P$ be a partition
of $R$ into a grid of rectangles.
Now we define the Riemann sum by only summing over all rectangles $R_{i,j}$
that are completely contained inside $U$.
Explicitly, let
\begin{equation*}
\chi*{i,j}
= \begin{cases}
1 & R_{i,j} \subseteq U\\
0 & \text{otherwise}.
\end{cases}
\end{equation*}
and define
\begin{equation*}
\mathcal R(f, P, \Xi, U)
%\defeq \dsum_{i=0}^{M-1} \dsum_{j = 0}^{N-1}
% \chi*{i,j} f(\xi_{i, j}) \area(R_{i,j})
\defeq \dsum_{i=0}^{M-1} \dsum_{j = 0}^{N-1} \chi*{i,j}
f(\xi_{i, j}) (x_{i+1} - x_i) (y_{j+1} - y_j).
\end{equation*}
\begin{definition}
The \emph{Riemann integral} of $f$ over the \emph{domain $U$} is defined by
\begin{equation*}
\dint_U f(x, y) \, dx \, dy
\defeq
\lim_{\norm{P} \to 0}
\mathcal R( f, P, \Xi, U ),
\end{equation*}
provided the limit exists and is independent of the choice of the points
$\Xi$.
A function is said to be \emph{Riemann integrable} over $R$ if the Riemann
integral exists and is finite.
\end{definition}
\begin{theorem}
Any bounded continuous function is Riemann integrable on a bounded region.
\end{theorem}
\begin{remark}
As before, most reasonable \emph{bounded} functions we will encounter will
be Riemann integrable.
\end{remark}
To deal with unbounded functions over unbounded domains, we use a limiting
process.
\begin{definition}
Let $U \subseteq \bbR^2$ be a domain (which is not necessarily bounded) and
$f:U \to \bbR$ be a (not necessarily bounded) function.
We say $f$ is integrable if
\begin{equation*}
\lim_{R \to \infty} \dint_{U \cap B(0, R)} \chi*R \abs{f} \, dA
\end{equation*}
exists and is finite.
Here $\chi*R(x) = 1$ if $\abs{f(x)} < R$ and $0$ otherwise.
\end{definition}
\begin{proposition}
If $f$ is integrable on the domain $U$, then
\begin{equation*}
\lim_{R \to \infty} \dint_{U \cap B(0, R)} \chi*R f \, dA
\end{equation*}
exists and is finite.
\end{proposition}
\begin{remark}
If $f$ is integrable, then the above limit is independent of how you expand
your domain.
Namely, you can take the limit of the integral over $U \cap [-R, R]^2$
instead, and you will still get the same answer.
\end{remark}
\begin{definition}
If $f$ is integrable we define
\begin{equation*}
\dint_U f \, dx \, dy = \lim_{R \to \infty} \dint_{U \cap B(0, R)} \chi*R
f \, dA
\end{equation*}
\end{definition}
\section{Iterated integrals and Fubini's theorem}
Let $U \subseteq \bbR^2$ be a domain.
\begin{definition}
For $x \in \bbR$, define
\begin{equation*}
S_x U = \set{y \st (x, y) \in U}
\quad\text{and}\quad
T_y U = \set{x \st (x, y) \in U}
\end{equation*}
\end{definition}
\begin{example}
If $U = [a, b] \times [c, d]$ then
\begin{equation*}
S_x U =
\begin{cases}
[c,d] & x \in [a, b]\\
\emptyset & x \not\in [a, b]
\end{cases}
\quad\text{and}\quad
T_y U = \begin{cases}
[a, b] & y \in [c, d]\\
\emptyset & y \not\in [c,d].
\end{cases}
\end{equation*}
\end{example}
For domains we will consider, $S_x U$ and $T_y U$ will typically be an
interval (or a finite union of intervals).
\begin{definition}
Given a function $f:U \to \bbR$, we define the two \emph{iterated} integrals
by
\begin{equation*}
\dint_{x \in \bbR} \paren[\Big]{ \dint_{y \in S_xU} f(x, y) \, dy } \, dx
\quad\text{and}\quad
\dint_{y \in \bbR} \paren[\Big]{ \dint_{x \in T_y U} f(x, y) \, dx } \,
dy,
\end{equation*}
with the convention that an integral over the empty set is $0$.
(We included the parenthesis above for clarity; and will drop them as we
become more familiar with iterated integrals.)
\end{definition}
Suppose $f(x, y)$ represents the density of a planar body at point $(x, y)$.
For any $x \in \bbR$,
\begin{equation*}
\dint_{y \in S_xU} f(x, y) \, dy
\end{equation*}
represents the mass of the body contained in the vertical line through the
point $(x, 0)$.
It's only natural to expect that if we integrate this with respect to $y$, we
will get the total mass, which is the double integral.
By the same argument, we should get the same answer if we had sliced it
horizontally first and then vertically.
Consequently, we expect both iterated integrals to be equal to the double
integral.
This is true, under a finiteness assumption.
\begin{theorem}[Fubini's theorem]
Suppose $f:U \to \bbR$ is a function such that either
\begin{equation}\label{eqnFubiniFiniteness}
\dint_{x \in \bbR} \paren[\Big]{ \dint_{y \in S_xU} \abs{f(x, y)} \, dy }
\, dx < \infty
\quad\text{or}\quad
\dint_{y \in \bbR} \paren[\Big]{ \dint_{x \in T_y U} \abs{f(x, y)} \, dx }
\, dy < \infty,
\end{equation}
then $f$ is integrable over $U$ and
\begin{equation*}
\dint_U f \, dA
= \dint_{x \in \bbR} \paren[\Big]{ \dint_{y \in S_xU} f(x, y) \, dy } \,
dx
= \dint_{y \in \bbR} \paren[\Big]{ \dint_{x \in T_y U} f(x, y) \, dx }
\, dy.
\end{equation*}
\end{theorem}
Without the assumption~\eqref{eqnFubiniFiniteness} the iterated integrals need
not be equal, even though both may exist and be finite.
\begin{example}
Define
\begin{equation*}
f(x, y)
= -\partial_x \partial_y \tan\inv\paren[\big]{\frac{y}{x}}
= \frac{x^2 - y^2}{(x^2 + y^2)^2}.
\end{equation*}
Then
\begin{equation*}
\dint_{x = 0}^1 \dint_{y = 0}^1 f(x, y) \, dy \, dx = \frac{\pi}{4}
\quad\text{and}\quad
\dint_{y = 0}^1 \dint_{x = 0}^1 f(x, y) \, dx \, dy = -\frac{\pi}{4}
\end{equation*}
\end{example}
\begin{example}
Let $f(x, y) = (x - y) / (x + y)^3$ if $x, y > 0$ and $0$ otherwise, and $U
= (0, 1)^2$.
The iterated integrals of $f$ over $U$ both exist, but are not equal.
\end{example}
\begin{example}
Define
\begin{equation*}
f(x, y) = \begin{cases}
1 & y \in (x, x+1) \text{ and } x \geq 0\\
-1 & y \in (x-1, x) \text{ and } x \geq 0\\
0 & \text{otherwise}.
\end{cases}
\end{equation*}
Then the iterated integrals of $f$ both exist and are not equal.
\end{example}
Fubini's Theorem allows us to convert the double integral into
iterated (single) integrals.
\begin{exa}
$$\begin{array}{lll}
\dint _{[0; 1]\times [2; 3]} xy \d{A} & = &
\dint _0 ^1 \left(\dint _2 ^3 xy \d{y}\right)\d{x}\\
& = & \dint _0 ^1 \left(\left[\dfrac{xy^2}{2}\right]_2 ^3\right)
\d{x}\\
& = & \dint _0 ^1 \left(\dfrac{9x}{2} - 2x \right) \d{x}\\
& = & \left[ \dfrac{5x^2}{4} \right] _0 ^1 \\
& = & \dfrac{5}{4}.
\end{array}$$
Notice that if we had integrated first with respect to $x$ we
would have obtained the same result:
$$\begin{array}{lll}
\dint _2 ^3 \left(\dint _0 ^1 xy \d{x}\right)\d{y}& = & \dint _2 ^3
\left(\left[\dfrac{x^2y}{2}\right]_0 ^1\right)
\d{y}\\
& = & \dint _2 ^3 \left(\dfrac{y}{2} \right) \d{x}\\
& = & \left[ \dfrac{y^2}{4} \right] _2 ^3 \\
& = & \dfrac{5}{4}.
\end{array}$$
Also, this integral is ``factorable into $x$ and $y$ pieces''
meaning that
$$\begin{array}{lll}
\dint _{[0; 1]\times [2; 3]} xy \d{A} & = & \left(\dint _0 ^1
x\d{x}\right)\left(\dint _2 ^3 y\d{y}\right)
\\
& = & \left(\dfrac{1}{2}\right)\left(\dfrac{5}{2}\right) \\
& = & \dfrac{5}{4}
\end{array}$$
\end{exa}
\begin{exa}\label{exa:double_int_for_change1}
We have $$\begin{array}{lll}\dint _3 ^4 \dint_0 ^1 (x + 2y)(2x + y) \
\d{x} \d{y} & = & \dint _3 ^4 \dint _0 ^1 (2x^2+5xy+2y^2) \
\d{x}\d{y} \\
& = & \dint_3 ^4 \left(\frac{2}{3}+\frac{5}{2}y+2y^2\right) \ \d{y} \\
& = & \frac{409}{12}.
\end{array}$$
\end{exa}
In the cases when the domain of integration is not a rectangle, we
decompose so that, one variable is kept constant.
\begin{exa}\label{exa:int_triag_region_1}
Find $\dint \limits_D xy \ \d{x}\d{y} $ in the triangle with
vertices $A:(-1,-1)$, $B:(2,-2)$, $C:(1,2)$. \end{exa}\begin{solu}
The lines passing through the given points have equations $L_{AB}:
y = \dfrac{-x - 4}{3}$, $L_{BC}: y = -4x + 6$, $L_{CA}: y =
\dfrac{3x + 1}{2}$. Now, we draw the region {\em carefully}. If we
integrate first with respect to $y$, we must divide the region as in
figure \ref{fig:int_triag_region_1}, because there are two upper
lines which the upper value of $y$ might be. The lower point of the
dashed line is $(1, -5/3)$. The integral is thus $$ \dint _{-1} ^1 x
\left(\dint _{(-x - 4)/3} ^{(3x + 1)/2} y \ \d{y}\right)\d{x}+ \dint
_{1} ^2 x \left(\dint _{(-x - 4)/3} ^{-4x + 6} y \ \d{y}\right)\d{x}=
-\dfrac{11}{8}.
$$
If we integrate first with respect to $x$, we must divide the region
as in figure \ref{fig:int_triag_region_1.1}, because there are two
left-most lines which the left value of $x$ might be. The right
point of the dashed line is $(7/4, -1)$. The integral is thus
$$ \dint _{-2} ^{-1} y \left(\dint _{-4 - 3y} ^{(6 - y)/4} x \ \d{x}\right)\d{y}
+
\dint _{-1} ^2 y \left(\dint _{(2y - 1)/3} ^{(6 - y)/4} x \
\d{x}\right)\d{y} = -\dfrac{11}{8}.
$$
\end{solu}
\vspace*{2cm}
\begin{figure}[htpb]
\begin{minipage}{4.5cm}
$$ \psset{unit=1.5pc}\renewcommand{\pshlabel}[1]{{\tiny
#1}}
\renewcommand{\psvlabel}[1]{{\tiny #1}} \psaxes(0,0)(-3,-3)(3,3)
\psdots[dotscale=1, dotstyle=*](-1,-1)(2,-2)(1,2)(1,-1.66)
\psline(-1,-1)(2,-2)(1,2)(-1,-1)
\psline[linestyle=dashed](1,2)(1,-1.66)
$$ \vspace*{2cm}\hangcaption{Example \ref{exa:int_triag_region_1}. Integration
order $\d{y}\d{x}$.} \label{fig:int_triag_region_1}
\end{minipage}\hfill\begin{minipage}{4.5cm} $$
\psset{unit=1.5pc}\renewcommand{\pshlabel}[1]{{\tiny #1}}
\renewcommand{\psvlabel}[1]{{\tiny #1}} \psaxes(0,0)(-3,-3)(3,3)
\psdots[dotscale=1, dotstyle=*](-1,-1)(2,-2)(1,2)(1.75,-1)
\psline(-1,-1)(2,-2)(1,2)(-1,-1)
\psline[linestyle=dashed](-1,-1)(1.75,-1)
$$\vspace*{2cm}\hangcaption{Example \ref{exa:int_triag_region_1}. Integration
order $\d{x}\d{y}$.} \label{fig:int_triag_region_1.1}
\end{minipage}
\hfill
\begin{minipage}{4.5cm}
$$\psset{unit=1pc}
\renewcommand{\pshlabel}[1]{{\tiny
#1}}
\renewcommand{\psvlabel}[1]{{\tiny
#1}}\rput(-4,0){\psaxes(0,0)(-.5,-.5)(10,7)\psline(6,3)(8,4)(9,6)(7,5)(6,3)
\psline[linestyle=dashed](6.5,4)(8,
4)\psline[linestyle=dashed](7,5)(8.5,5)\psdots[dotstyle=*,dotscale=.8](6,3)(8,
4)(7,5)(9,6)(6.5,4)(8.5,5)}
$$\vspace*{1cm} \footnotesize \hangcaption{Example \ref{exa:int_parall1}.}
\label{fig:int_parall1}
\end{minipage}\end{figure}
\begin{exa}\label{exa:int_parall1}
Consider the region inside the parallelogram $P$ with vertices at
$A:(6, 3)$, $B:(8,4) $, $C:(9,6)$, $D:(7,5) $, as in figure
\ref{fig:int_parall1}. Find
$$\dint \limits_P xy \ \ \d{x} \d{y}. $$
\end{exa} \begin{solu} The lines joining the points have
equations
$$L_{AB}: \ y = \frac{x}{2},
$$ $$L_{BC}: \
y = 2x - 12,
$$ $$L_{CD}: \
y = \frac{x}{2} + \frac{3}{2},
$$ $$L_{DA}: \
y = 2x - 9.
$$
The integral is thus
$$\dint _3 ^4 \dint _{(y + 9)/2} ^{2y} xy\ \d{x}
\d{y} + \dint _4 ^{5} \dint _{(y + 9)/2} ^{(y + 12)/2} xy\ \d{x}
\d{y} +
\dint _5 ^{6} \dint _{2y-3} ^{(y+12)/2} xy\ \d{x} \d{y} = \frac{409}{4}.
$$
\end{solu}
\begin{exa}
Find $$\dint \limits_D \dfrac{y}{x^2 + 1} \d{x}\d{y}$$where $$D = \{(x,
y)\in\reals^2|x \geq 0, x^2 + y^2 \leq
1\}.$$\end{exa}
\begin{solu} The integral is $0$. Observe that if $(x, y)\in D$ then $(x,
-y)\in D$. Also, $f(x, -y) = -f(x, y)$.
\end{solu}
\section*{\psframebox{Homework}}
\begin{multicols}{2}\columnseprule 1pt \columnsep 25pt\multicoltolerance=900
\begin{pro}
Evaluate the iterated integral $\dint _1 ^3 \dint _0 ^x
\dfrac{1}{x}\ \d{y}\d{x}$.
\begin{answer}
$2$
\end{answer}
\end{pro}
\begin{pro}
Let $S$ be the interior and boundary of the triangle with vertices
$(0,0)$, $(2,1)$, and $(2,0)$. Find $\dint \limits_{S} y\d{A}$.
\begin{answer}
$\dfrac{1}{3} $
\end{answer}
\end{pro}
\begin{pro}
Let $$S=\{(x,y)\in \reals^2: x\geq 0,\ y\geq 0,\ 1 \leq
x^2+y^2\leq 4\}.$$ Find $\dint \limits_{S} x^2\d{A}$.
\begin{answer}
$\dfrac{15\pi}{16}$
\end{answer}
\end{pro}
\begin{pro}
Find $$\dint \limits_D xy \d{x}\d{y}$$ where $$D = \{(x, y)\in\reals^2|y \geq
x^2, x \geq
y^2\}.$$
\begin{answer} The integral equals
$$\begin{array}{lll}
\dint \limits_D xy \d{x}\d{y} & = & \dint _0 ^1 x\left(\dint _{x^2}
^{\sqrt{x}} y \ \d{y} \right) \ \d{x}\\
& = & \dint _0 ^1 \dfrac{1}{2}x(x - x^4) \ \d{x}\\
& = & \dfrac{1}{12}.
\end{array}$$
\end{answer}
\end{pro}
\begin{pro}
Find $$\dint \limits_D (x + y)(\sin x)(\sin y) \d{A}$$ where $D =
[0; \pi]^2.$ \begin{answer} The integral equals
$$
\begin{array}{lll}\dint \limits_D x\sin x\sin y \d{x}\d{y} +
\dint \limits_D y\sin x\sin y \d{x}\d{y} & = & 2\left(\dint_0 ^\pi
y\sin
y \ \d{y}\right)\left(\dint_0 ^\pi \sin x \ \d{x}\right) \\
& = & 4\pi.
\end{array}$$
\end{answer}
\end{pro}
\begin{pro}
Find $\dint _0 ^1 \dint _0 ^1 \min (x^2,y^2)\d{x}\d{y}$.
\begin{answer}
The integral is
$$\begin{array}{lll}\dint\limits _{x\leq y} x^2 \d{x}\d{y} + \dint\limits_{y\leq
x} y^2 \d{x}\d{y}
& = & \dint _0 ^1 \dint _0 ^y x^2 \d{x}\d{y} + \dint _0 ^1 \dint _y ^1
y^2 \d{x}\d{y}\\
& = & \dint _0 ^1 \dfrac{y^3}{3}\d{y} + \dint _0 ^1
\left(y^2-y^3\right)\d{y}\\
& = & \dfrac{y^4}{12}\Big| _0 ^1 +
\left(\dfrac{y^3}{3}-\dfrac{y^4}{4}\right) \Big| _0 ^1 \\
& = & \dfrac{1}{12} + \dfrac{1}{3} -\dfrac{1}{4} \\
& = & \dfrac{1}{6}.
\end{array}$$
\end{answer}
\end{pro}
\begin{pro}
Find $\dint _D xy\d{x}\d{y}$ where
$$ D=\{(x,y)\in \reals^2: x>0,y>0, 9<x^2+y^2<16, 1<x^2-y^2<16\}. $$
\begin{answer}
$\dfrac{21}{8}$
\end{answer}
\end{pro}
\begin{pro}
\label{pro:polar-integral2} Evaluate $\dint_{{\cal R}}x\d{A}$ where
${\cal R}$ is the (unoriented) circular segment in figure
\ref{fig:polar-integral2}, which is created by the intersection of
regions
$$\{(x,y)\in\reals^2: x^2+y^2 \leq 16 \}$$ and $$\left\{(x,y)\in\reals^2: y
\geq -\dfrac{\sqrt{3}}{3}x+4\right\}. $$
\begin{answer}
Observe that $$ x^2+y^2=16, y = -\dfrac{\sqrt{3}}{3}x+4\implies
16-x^2=\left(-\dfrac{\sqrt{3}}{3}x+4\right)^2 \implies x = 0,
2\sqrt{3}.
$$The integral is
$$\begin{array}{lll} \dint _0 ^{2\sqrt{3}} \dint _{-\frac{\sqrt{3}}{3}x+4}
^{\sqrt{16-x^2}}x\d{y}\d{x} & = &
\dint _0 ^{2\sqrt{3}}
x\left(\sqrt{16-x^2}+\dfrac{\sqrt{3}}{3}x-4\right) \d{x}\\
& = & -\dfrac{1}{3}(16-x^2)^{3/2}+\dfrac{\sqrt{3}}{9}x^3-2x^2\Big|
_0
^{2\sqrt{3}}\\
& = & \dfrac{8}{3}.
\end{array}$$
\end{answer}
\end{pro}
\end{multicols}
\section{Change of Variables}
We now perform a multidimensional analogue of the change of
variables theorem in one variable.
\begin{thm}
Let $(D, \Delta) \in (\reals^n)^2$ be open, bounded sets in
$\reals^n$ with volume and let $g:\Delta \rightarrow D$ be a
continuously differentiable bijective mapping such that $\det g'(u)
\neq 0$, and both $|\det g'(u)|, \dfrac{1}{|\det g'(u)|}$ are
bounded on $\Delta$. For $f:D \rightarrow \reals$ bounded and
integrable, $f\circ g|\det g'(u)|$ is integrable on $\Delta$ and
$$\dint \cdots \dint _D f = \dint \cdots \dint _\Delta (f\circ g)|\det
g'(u)|,$$ that is
$$\dint \cdots \dint _D f(x_1, x_2, \ldots, x_n) \d{x}_1 \wedge
\d{x}_2 \wedge \ldots \wedge \d{x}_n $$
$$\qquad \qquad \qquad = \dint \cdots \dint _\Delta f(g(u_1, u_2, \ldots, u_n))
|\det g'(u)|\d{u}_1 \wedge \d{u}_2 \wedge \ldots \wedge \d{u}_n .$$
\end{thm}
One normally chooses changes of variables that map into
rectangular regions, or that simplify the integrand. Let us start
with a rather trivial example.
\vspace*{4cm}
\begin{figure}[htpb]
\begin{minipage}{7cm}
$$\psset{unit=1pc}
\renewcommand{\pshlabel}[1]{{\tiny
#1}}
\renewcommand{\psvlabel}[1]{{\tiny #1}}
\rput(-4,0){\psaxes(0,0)(-.5,-.5)(10,7)\pscustom[fillcolor=yellow,
fillstyle=solid]{\psline(0,3)(0,4)(1,4)(1,3)(0,3)}\psdots[dotstyle=*,dotscale=.8
](0,3)(0,4)(1,4)(1,3)}$$
\vspace*{1cm} \footnotesize \hangcaption{Example
\ref{exa:change_of_var_1}. $xy$-plane.} \label{fig:change_of_var_1}
\end{minipage}
\hfill
\begin{minipage}{7cm}
$$\psset{unit=1pc}
\renewcommand{\pshlabel}[1]{{\tiny
#1}}
\renewcommand{\psvlabel}[1]{{\tiny
#1}}\rput(-4,0){\psaxes(0,0)(-.5,-.5)(10,7)\pscustom[fillcolor=yellow,
fillstyle=solid]{\psline(6,3)(8,4)(9,6)(7,5)(6,3)}\psdots[dotstyle=*,dotscale=.8
](6,3)(8,4)(7,5)(9,6)}
$$\vspace*{1cm} \footnotesize \hangcaption{Example \ref{exa:change_of_var_1}.
$uv$-plane.} \label{fig:change_of_var_1}\end{minipage}
\end{figure}
\begin{exa}
Evaluate the integral $$\dint _3 ^4 \dint _0 ^1 (x + 2y)(2x + y)\\
\d{x} \d{y}.
$$
\label{exa:change_of_var_1}\end{exa} \begin{solu} Observe that we
have already computed this integral in example
\ref{exa:double_int_for_change1}. Put
$$u = x + 2y \implies \d{u} = \d{x} + 2\d{y}, $$
$$v = 2x + y \implies \d{v} = 2\d{x} + \d{y}, $$
giving $$\d{u}\wedge\d{v} = -3\d{x}\wedge\d{y}.
$$
Now, $$(u,v) = \begin{bmatrix} 1 & 2 \cr 2 & 1 \cr
\end{bmatrix}\colvec{x
\\ y}
$$is a linear transformation, and hence it maps quadrilaterals into
quadrilaterals. The corners of the rectangle in the area of
integration in the $xy$-plane are $(0,3)$, $(1,3)$, $(1,4)$, and
$(0, 4)$, (traversed counter-clockwise) and they map into $(6, 3)$,
$(7,5) $, $(9,6)$, and $(8,4) $, respectively, in the $uv$-plane
(see figure \ref{fig:change_of_var_1}). The form $\d{x}\wedge\d{y}$
has opposite orientation to $\d{u}\wedge\d{v}$ so we use $$
\d{v}\wedge\d{u} = 3\d{x}\wedge\d{y} $$instead. The integral
sought is
$$ \frac{1}{3}\dint\limits_P uv \ \d{v}\d{u} =
\frac{409}{12},
$$from example \ref{exa:int_parall1}.
\end{solu}
\begin{exa}
The integral
$$\dint _{[0;1]^2} (x^4 - y^4) \d{A}
= \dint _0 ^1 \left( \dfrac{1}{5} - y^4\right)\d{y}
= 0.$$ Evaluate it
using the change of variables $u = x^2 - y^2, v = 2xy.$
\end{exa}
\begin{solu} First we find
$$\d{u}= 2x\d{x}- 2y\d{y},$$
$${\rm d}v = 2y\d{x}+ 2x\d{y},$$and so
$$\d{u}\wedge\d{v} = (4x^2 + 4y^2)\d{x}\wedge \d{y}.$$
We now determine the region $\Delta$ into which the square $D =
[0; 1 ]^2$ is mapped. We use the fact that boundaries will be
mapped into boundaries. Put $$AB = \{(x, 0): 0 \leq x \leq 1\},$$
$$BC = \{(1, y): 0 \leq y \leq 1\},$$ $$CD = \{(1 - x, 1): 0 \leq x
\leq 1\},$$ $$DA = \{(0, 1 - y): 0 \leq y \leq 1\}.$$
On $AB$ we have $u = x, v = 0.$ Since $0 \leq x \leq 1$, $AB$ is
thus mapped into the line segment $0 \leq u \leq 1, v = 0$.
On $BC$ we have $u = 1 - y^2, v = 2y$. Thus $u = 1 -
\dfrac{v^2}{4}$. Hence $BC$ is mapped to the portion of the
parabola $u = 1 - \dfrac{v^2}{4}, 0 \leq v \leq 2.$
On $CD$ we have $u = (1 - x)^2 - 1, v = 2(1 - x).$ This means that
$u = \dfrac{v^2}{4} - 1, 0 \leq v \leq 2.$
Finally, on $DA,$ we have $u = -(1 - y)^2, v = 0.$ Since $0 \leq y
\leq 1$, $DA$ is mapped into the line segment $-1 \leq u \leq 0, v
= 0.$ The region $\Delta$ is thus the area in the $uv$ plane
enclosed by the parabolas $u \leq \dfrac{v^2}{4} - 1, u \leq 1 -
\dfrac{v^2}{4}$ with $ -1 \leq u \leq 1, 0 \leq v \leq 2.$
We deduce that
$$\begin{array}{lll}\dint _{[0;1]^2} (x^4 - y^4) \d{A}& = & \dint _{\Delta}
(x^4 - y^4) \dfrac{1}{4(x^2 + y^2)}
\d{u}\d{v} \\
& = & \dfrac{1}{4}\dint _{\Delta} (x^2 - y^2)
\d{u}\d{v} \\
& = & \dfrac{1}{4}\dint _{\Delta} u
\d{u}\d{v} \\
& = & \dfrac{1}{4}\dint _0 ^2 \left( \dint _{v^2/4 - 1} ^{1 - v^2/4}
u
\d{u}\right)\d{v} \\
& = & 0,
\end{array}$$as before.
\end{solu}
\begin{exa}
Find $$\dint \limits_D e^{(x^3 + y^3)/xy} \ \ \ \d{A}$$ where
$$D = \{(x, y)\in\reals^2|y^2 - 2px \leq 0, x^2 - 2py \leq 0, p\in
]0;+\infty[ \ {\rm fixed}\},$$ using the change of variables $x =
u^2v, \ y = uv^2$.
\end{exa}
\begin{solu} We have $$\d{x} = 2uv\d{u} + u^2\d{v}, $$
$$\d{y} = v^2\d{u} + 2uv\d{v}, $$
$$\d{x} \wedge \d{y} = 3u^2v^2\d{u}\wedge\d{v}. $$
The region transforms into
$$\Delta = \{(u, v)\in\reals^2| 0 \leq u \leq (2p)^{1/3}, \ 0 \leq v \leq
(2p)^{1/3}\}.$$The integral becomes
$$\begin{array}{lll}
\dint \limits_D f(x, y) \d{x}\d{y} & = & \dint \limits_\Delta \exp
\left(\dfrac{u^6v^3 +
u^3v^6}{u^3v^3}\right) (3u^2v^2) \ \d{u}{\rm d}v \\
& = & 3\dint \limits_\Delta e^{u^3}e^{v^3}u^2v^2 \ \d{u}{\rm d}v \\
& = & \dfrac{1}{3}\left(\dint _0 ^{(2p)^{1/3}} 3u^2e^{u^3}\ \d{u}
\right)^2 \\
& = & \dfrac{1}{3}(e^{2p} - 1)^2.
\end{array}$$
As an exercise, you may try the (more natural) substitution $x^3 =
u^2v, y^3 = v^2u$ and verify that the same result is obtained.
\end{solu}
\vspace*{2cm}
\begin{figure}[htpb]
\begin{minipage}{7cm}
$$
\psaxes[linewidth=2pt,arrows={->}](0,0)(0,0)(1.5,1.5)
\pspolygon*[showpoints=true,linecolor=green](0,0)(1,0)(1,1)(0,1)
$$
\vspace*{1cm} \footnotesize \hangcaption{Example
\ref{exa:change_of_var_4}. $xy$-plane.} \label{fig:change_of_var_4}
\end{minipage}
\hfill
\begin{minipage}{7cm}
$$\psaxes[linewidth=2pt,arrows={->},labels=none](0,0)(0,0)(1.9,1.9)
\pspolygon*[showpoints=true,linecolor=green](0,0)(1.5708,0)(0,1.5708)
\uput[d](1.5708,0){\frac{\pi}{2}} \uput[l](0,1.5708){\frac{\pi}{2}}
$$\vspace*{1cm} \footnotesize \hangcaption{Example \ref{exa:change_of_var_4}.
$uv$-plane.} \label{fig:change_of_var_5}\end{minipage}
\end{figure}
\begin{exa}In this problem we will follow an argument of Calabi, Beukers, and
Kock to prove that $\dsum _{n=1}
^{+\infty}\dfrac{1}{n^2}=\dfrac{\pi ^2}{6}$.
\begin{enumerate}
\item
Prove that if $S = \dsum _{n=1} ^{+\infty}\dfrac{1}{n^2}$, then
$\dfrac{3}{4}S = \dsum _{n=1} ^{+\infty}\dfrac{1}{(2n-1)^2}$.
\item Prove that $ \dsum _{n=1} ^{+\infty}\dfrac{1}{(2n-1)^2} = \dint _0 ^1
\dint _0 ^1
\dfrac{\d{x}\d{y}}{1-x^2y^2}$.
\item Use the change of variables $x=\dfrac{\sin u}{\cos v}$, $y=\dfrac{\sin
v}{\cos u}$ in order to evaluate $\dint _0 ^1 \dint _0 ^1
\dfrac{\d{x}\d{y}}{1-x^2y^2}$.
\end{enumerate}
\label{exa:change_of_var_4}
\end{exa}
\begin{solu}
\noindent
\begin{enumerate}
\item Observe that the sum of the even terms is
$$ \dsum _{n=1} ^{+\infty}\dfrac{1}{(2n)^2} = \dfrac{1}{4}\dsum _{n=1}
^{+\infty}\dfrac{1}{n^2} = \dfrac{1}{4}S,
$$a quarter of the sum, hence the sum of the odd terms must be three quarters of
the sum,
$\dfrac{3}{4}S$.
\item Observe that
$$ \dfrac{1}{2n-1} = \dint _0 ^1 x^{2n-2}\d{x} \implies
\left(\dfrac{1}{2n-1}\right)^2 = \left(\dint _0 ^1
x^{2n-2}\d{x}\right)\left(\dint _0 ^1 y^{2n-2}\d{y}\right)= \dint _0 ^1 \dint _0
^1 (xy)^{2n-2}\d{x}\d{y}. $$
Thus
$$\dsum _{n=1} ^{+\infty}\dfrac{1}{(2n-1)^2} = \dsum _{n=1} ^{+\infty} \dint _0
^1 \dint _0 ^1 (xy)^{2n-2}\d{x}\d{y} = \dint _0 ^1 \dint _0 ^1 \dsum _{n=1}
^{+\infty}(xy)^{2n-2}\d{x}\d{y}
=\dint _0 ^1 \dint _0 ^1 \dfrac{\d{x}\d{y}}{1-x^2y^2},$$ as
claimed.\footnote{This exchange of integral and sum needs
justification. We will accept it for our purposes.}
\item If $x=\dfrac{\sin u}{\cos v}$, $y=\dfrac{\sin
v}{\cos u}$, then
$$\d{x} = (\cos u)(\sec v)\d{u} + (\sin u)(\sec v)(\tan v)\d{v}, \quad \d{y} =
(\sec u)(\tan u)(\sin v)\d{u} + (\sec u)(\cos v)\d{v}, $$
from where
$$ \d{x}\wedge\d{y}= \d{u}\wedge\d{v} - (\tan^2u)(\tan^2v)\d{u}\wedge\d{v} =
\left(1-(\tan^2u)(\tan^2v)\right)\d{u}\wedge\d{v}. $$
Also,
$$ 1-x^2y^2 = 1-\dfrac{\sin ^2v}{\cos^2v}\cdot \dfrac{\sin^2v}{\cos^2u}
=1-(\tan^2u)(\tan^2v). $$
This gives
$$ \dfrac{\d{x}\d{y}}{1-x^2y^2}=\d{u}\d{v}. $$
We now have to determine the region that the transformation
$x=\dfrac{\sin u}{\cos v}$, $y=\dfrac{\sin v}{\cos u}$ forms in the
$uv$-plane. Observe that
$$ u=\arctan x\sqrt{\dfrac{1-y^2}{1-x^2}}, \qquad v =\arctan y
\sqrt{\dfrac{1-x^2}{1-y^2}}. $$
This means that the square in the $xy$-plane in figure
\ref{fig:change_of_var_4} is transformed into the triangle in the
$uv$-plane in figure \ref{fig:change_of_var_5}.
We deduce,
$$\dint _0 ^1 \dint _0 ^1
\dfrac{\d{x}\d{y}}{1-x^2y^2} = \dint _0 ^{\pi /2}\dint _0 ^{\pi/2
-v}\d{u}\d{v} =\dint _0 ^{\pi /2}\left(\pi/2 -v\right)\d{v} =
\left(\dfrac{\pi}{2}v -\dfrac{v^2}{2}\right)\Big| _0 ^{\pi/2} =
\dfrac{\pi ^2}{4} - \dfrac{\pi ^2}{8} =\dfrac{\pi ^2}{8}.
$$
Finally,
$$ \dfrac{3}{4}S=\dfrac{\pi ^2}{8} \implies S =\dfrac{\pi ^2}{6}.$$
\end{enumerate}
\end{solu}
\section*{\psframebox{Homework}}
\begin{pro}
Let $D' = \{(u, v)\in\reals^2: u \leq 1, -u \leq v \leq u\}$.
Consider $$\fun{\Phi}{(u, v)}{\left(\frac{u + v}{2}, \frac{u -
v}{2}\right)}{\reals^2}{\reals^2}.$$
\begin{dingautolist}{202}
\item Find the image of $\Phi$ on $D'$, that is, find $D = \Phi
(D')$. \item Find $$\dint_D (x + y)^2e^{x^2 - y^2}\d{A}.$$
\end{dingautolist} \begin{answer}
\begin{dingautolist}{202}
\item Put $x = \frac{u + v}{2}$ and $y = \frac{u - v}{2}$ . Then
$x + y = u$ and $x - y$. Observe that $D'$ is the triangle in the
$uv$ plane bounded by the lines $u = 0, u = 1, v = u, v = -u.$ Its
image under $\Phi$ is the triangle bounded by the equations $x = 0,
y = 0, x + y = 1.$ Clearly also
$$\d{x}\wedge \d{y} = \frac{1}{2}\d{u}\wedge\d{v}.$$
\item From the above
$$\begin{array}{lll}\dint_D (x + y)^2e^{x^2 - y^2}\d{A}
& = & \frac{1}{2}\dint_{D'} u^2e^{uv}\d{u}{\rm d}v \\
& = & \frac{1}{2}\dint _0 ^1 \dint _{-u} ^u u^2 e^{uv} \d{u}\d{v} \\
& = & \frac{1}{2}\dint _0 ^1 u(e^{u^2} - e^{-u^2})\d{u}\\
& = & \frac{1}{4}(e + e^{-1} - 2).
\end{array}$$
\end{dingautolist}
\end{answer}
\end{pro}
\begin{pro}
Using the change of variables $x=u^2-v^2$, $y=2uv$, $u \geq 0$,
$v\geq 0$, evaluate $\dint _R \sqrt{x^2+y^2}\d{A}$, where
$$R=\{(x,y)\in\reals^2: -1\leq x \leq 1, 0 \leq y \leq 2\sqrt{1-|x|}\}$$
\end{pro}
\begin{pro}Using the change of variables $u = x-y$ and $v = x + y$,
evaluate $\dint _R \dfrac{x-y}{x+y}\d{A}$, where
$R$ is the square with vertices at $(0, 2)$, $(1, 1)$, $ (2, 2)$,
$(1, 3)$.
\end{pro}
\begin{pro}
Find $\dint \limits_D f(x, y) \d{A}$ where $$D = \{(x,
y)\in\reals^2|a \leq xy \leq b, y \geq x \geq 0, y^2 - x^2 \leq 1,
(a, b) \in\reals^2, 0 < a < b\}$$ and $f(x, y) = y^4 - x^4$ by using
the change of variables $u = xy, v = y^2 - x^2$.
\begin{answer} Here we argue that
$$\d{u}= y\d{x}+ x\d{y},$$
$${\rm d}v = -2x\d{x}+ 2y\d{y}.$$
Taking the wedge product of differential forms,
$$\d{u}\wedge\d{v} = 2(y^2 + x^2) \d{x}\wedge \d{y}. $$
Hence
$$\begin{array}{lll}f(x, y) \d{x}\wedge \d{y} & = & (y^4 - x^4) \dfrac{1}{2(y^2
+ x^2)}\d{u}\wedge{\rm
d}v\\
& = & \dfrac{1}{2}(y^2 - x^2)\d{u}\wedge{\rm d}v \\
& = & \dfrac{v}{2}\d{u}\wedge{\rm d}v\end{array}$$ The region
transforms into
$$\Delta = [a; b]\times[0;1].$$The integral becomes
$$\begin{array}{lll}
\dint \limits_D f(x, y) \d{x}\wedge\d{y} & = & \dint \limits_\Delta
v \ \d{u}\wedge{\rm d}v \\
& = & \dfrac{1}{2}\left(\dint _a ^b \ \d{u}\right)\left(\dint _0 ^1 v\
\d{v}\right) \\
& = & \dfrac{b - a}{4}.
\end{array}$$
\end{answer}
\end{pro}
\begin{pro}Use the following steps (due to Tom Apostol) in order to
prove that
$$\dsum _{n = 1} ^\infty \frac{1}{n^2} = \frac{\pi ^2}{6}.$$
\begin{dingautolist}{202}
\item Use the series expansion
$$ \frac{1}{1 - t} = 1 + t + t^2 + t^3 + \cdots \ \ \ \ |t| <
1,$$in order to prove (formally) that
$$\dint _0 ^1 \dint _0 ^1 \frac{\d{x}\d{y}}{1 - xy} = \dsum _{n = 1} ^\infty
\frac{1}{n^2}.$$
\item Use the change of variables $u = x + y, v = x - y$ to shew
that
$$\dint _0 ^1 \dint _0 ^1 \frac{\d{x}\d{y}}{1 - xy} =
2\dint _0 ^1 \left(\dint _{-u} ^u\frac{{\rm d}v}{4 - u^2 + v^2}\right)
\d{u}+ 2\dint _1 ^2 \left(\dint _{u - 2} ^{2 - u }\frac{{\rm d}v}{4 -
u^2 + v^2}\right) \d{u}.$$
\item Shew that the above integral reduces to
$$2\dint _0 ^1 \frac{2}{\sqrt{4 - u^2}} \arctan \frac{u}{\sqrt{4 - u^2}} \ \d{u}
+ 2\dint _1 ^2 \frac{2}{\sqrt{4 - u^2}} \arctan \frac{ 2 - u}{\sqrt{4
- u^2}} \ \d{u}.$$ \item Finally, prove that the above integral is
$\frac{\pi^2}{6}$ by using the substitution $\theta = \arcsin
\frac{u}{2}$.
\end{dingautolist}
\begin{answer}\begin{dingautolist}{202} \item Formally,
$$\begin{array}{lll}
\dint _0 ^1 \dint _0 ^1 \frac{\d{x}\d{y}}{1 - xy} & = & \dint _0 ^1
\dint _0 ^1 (1 + xy + x^2y^2 + x^3y^3 + \cdots )\d{x}\d{y} \\
& = & \dint _0 ^1 \left(y + \frac{xy^2}{2} + \frac{x^2y^3}{3} +
\frac{x^3y^4}{4} + \cdots \right)_0 ^1 \ \d{x}\\ & = & \dint _0 ^1 (1
+ \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4} + \cdots )\d{x}\\
& = & 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots
\end{array}$$
\item This change of variables transforms the square $[0; 1]\times
[0;1]$ in the $xy$ plane into the square with vertices at $(0, 0)$,
$(1, 1)$, $(2, 0)$, and $(1, -1)$ in the $uv$ plane. We will split
this region of integration into two disjoint triangles: $T_1$ with
vertices at $(0, 0)$, $(1, 1)$, $(1, -1)$, and $T_2$ with vertices
at $(1, -1)$, $(1, 1)$, $(2, 0)$. Observe that
$$\d{x}\wedge \d{y} = \frac{1}{2}\d{u}\wedge\d{v},$$
and that $u + v = 2x, u - v = 2y$ and so $4xy = u^2 - v^2$. The
integral becomes
$$\begin{array}{lll}
\dint _0 ^1 \dint _0 ^1 \frac{\d{x}\d{y}}{1 - xy} & = &
\frac{1}{2}\dint\limits_{T_1\cup T_2} \frac{\d{u}\wedge {\rm d