-
Notifications
You must be signed in to change notification settings - Fork 7
/
chapter1.tex
2610 lines (2256 loc) · 103 KB
/
chapter1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Multidimensional Vectors}
\section{Vectors Space}
In this section we
introduce an algebraic structure for $\bbR^n$, the vector space in $n$-dimensions.
We assume that you are familiar with the geometric
interpretation of members of $\bbR^2$ and $\bbR^3$ as the
rectangular coordinates of
points in a plane and three-dimensional space, respectively.
Although $\bbR^n$ cannot be visualized geometrically if $n\ge4$, geometric
ideas from $\bbR$, $\bbR^2$, and $\bbR^3$ often help us to
interpret the properties of $\bbR^n$ for arbitrary $n$.
\begin{df}
The $n$-dimensional space, $\reals^n$, is defined as the set
$$ \reals^n = \left\{ \left(x_1, x_2, \dots , x_n\right): x_k \in \reals\right\}. $$
\end{df}
Elements $\vector{v} \in \bbR^n$ will be called \negrito{vectors} and will be written in boldface $\vector{v} $. In the blackboard the
vectors generally are written with an arrow $\vec{v}$.
\begin{df}
If $\vector{x}$ and $\vector{y}$ are two vectors in $\reals^n$ their
\negrito{vector sum} $\vector{x} + \vector{y}$ is defined by the
coordinatewise addition
\begin{equation}\vector{x} + \vector{y} = \left(x_1 + y_1, x_2 + y_2, \dots, x_n + y_n \right). \label{eq:vector_addition}\end{equation}
\end{df}
Note that the symbol ``$+$'' has two distinct meanings in \eqref{eq:vector_addition}: on the
left, ``$+$'' stands for the newly defined addition of members of
$\bbR^n$ and, on the right, for the usual addition of real numbers.
The vector with all components $0$ is called the \negrito{zero vector} and is denoted by $\mathbf{0}$. It has
the property that $\vector{v} + \mathbf{0} = \vector{v}$ for every vector $\vector{v}$; in other words, $\mathbf{0}$ is the identity element
for vector addition.
\begin{df}A real number $\lambda\in\reals$ will be called a \negrito{scalar}.
If $\lambda\in\reals$ and $\vector{x}\in\reals^n$ we define \negrito{
scalar multiplication} of a vector and a scalar by the
coordinatewise multiplication \begin{equation}\lambda\vector{x} = \left(\lambda x_1, \lambda x_2,
\dots, \lambda x_n \right).
\label{eq:scalar_multiplication}\end{equation}
\end{df}
The space $\reals^n$ with the operations of sum and scalar multiplication defined above will be called $n$ dimensional vector space.
The vector $(-1)\vector{x}$ is also denoted by $-\vector{x}$ and is called the \negrito{negative} or \negrito{opposite}
of $\vector{x}$
We leave the proof of the following theorem to the reader
\begin{thm}\label{thmtype:5.1.2}
If $\vector{x},$ $\vector{z},$ and $\vector{y}$ are in $\bbR^n$
and
$\lambda, \lambda_1$ and $\lambda_2$ are real numbers$,$ then
\begin{dingautolist}{202}
\item % (a)
$\vector{x}+\vector{z}=\vector{z}+\vector{x}$ $($vector addition
is commutative$).$
\item % (b)
$(\vector{x}+\vector{z})+\vector{y}=\vector{x}+(\vector{z}+\vector{y})$
$($vector addition is associative$).$
\item % (c)
There is a unique vector $\mathbf{0},$ called the zero vector$,$
such that $\vector{x}+\mathbf{0}=\vector{x}$ for all $\vector{x}$ in
$\bbR^n.$
\item % (d)
For each $\vector{x}$ in $\bbR^n$ there is a unique vector
$-\vector{x}$ such that $\vector{x}+(-\vector{x})=\mathbf{0}.$
\item % (e)
$\lambda_1(\lambda_2\vector{x})=(\lambda_1 \lambda_2)\vector{x}.$
\item % (f)
$(\lambda_1+\lambda_2)\vector{x}=\lambda_1\vector{x}+\lambda_2\vector{x}.$
\item % (g)
$\lambda(\vector{x}+\vector{z})=\lambda\vector{x}+\lambda\vector{z}.$
\item % (h)
$1\vector{x}=\vector{x}.$
\end{dingautolist}
\end{thm}
Clearly, $\mathbf{0}=(0,0, \dots,0)$ and, if
$\vector{x}=(x_1,x_2, \dots,x_n)$, then
$$
-\vector{x}=
(-x_1,-x_2, \dots,-x_n).
$$
We write $\vector{x}+(-\vector{z})$ as
$\vector{x}-\vector{z}$. The vector $\mathbf{0}$ is called the \negrito{origin\/}.
In a more general context, a nonempty set $V$,
together with
two operations $+,\cdot$ is
said to be a \negrito{vector space} if it has the
properties listed
in Theorem~\ref{thmtype:5.1.2}. The members of a vector space are called
\negrito{vectors}.
When we wish to note that we are
regarding a
member of $\bbR^n$ as part of this algebraic structure, we will
speak of it as a vector; otherwise, we will speak of it as a point.
\begin{df}
The \negrito{canonical ordered basis} for $\reals^n$ is the collection of
vectors
$$\{\vector{e}_1, \vector{e}_2,\ldots,
\vector{e}_n,\}$$ with
$$ \vector{e}_k = \underbrace{\left(0, \dots, 1, \dots, 0\right)}_{
\text{a $1$
in the $k$ slot and $0$'s everywhere else}}.$$
\end{df}
Observe that \begin{equation}
\sum _{k = 1} ^n v_k\vector{e}_k = \left(v_1,
v_2, \dots, v_n\right). \label{eq:span2}
\end{equation}
This means that any vector can be written as sums of scalar multiples of the standard basis. We will discuss this fact more deeply in the next section.
\begin{df}
Let $\point{a}, \point{b}$ be distinct points in $\reals^n$ and let $\vector{x}=\point{b}-\point{a}\neq
\vector{0}$,. The \negrito{parametric line}
passing through $\point{a}$ in the direction of $\vector{x}$ is the
set
$$ \left\{\point{r}\in\reals^n:\point{r}=\point{a}+t\vector{x} \right\}. $$
\end{df}
% The vector $\vector{x}$ in $\reals^n$ is called the
\begin{exa}
Find the parametric equation of the line passing through the points $(1, 2, 3)$ and $\left(-2, -1, 0\right)$.
\end{exa}
\begin{solu} The line follows the direction $$ \left(1 - (-2), 2 - (-1), 3 - 0\right) = \left(3, 3, 3\right).
$$ The desired equation is $$\left(x, y, z\right) = \left(1, 2, 3\right) + t\left(3, 3, 3\right). $$
Equivalently
$$\left(x, y, z\right) = \left(-2, -1, 2\right) + t\left(3, 3, 3\right). $$
\end{solu}
\subsection*{Length, Distance, and Inner Product}
\begin{df}
Given vectors $\vector{x}, \vector{y} $ of $\reals^n$, their \negrito{inner product} or \negrito{
dot product} is defined as $$ \dotprod{x}{y} = \sum _{k=1} ^n x_ky_k.$$
\end{df}
\begin{thm}
For $\vector{x}, \vector{y}, \vector{z} \in \reals^n$, and $\alpha$ and $\beta$ real numbers, we have>
\begin{dingautolist}{202}
\item $(\alpha \vector{x}+\beta \vector{y}) \bp \vector{z}= \alpha (\vector{x}\bp \vector{z})+\beta (\vector{y}\bp \vector{z})$
\item $\vector{x}\bp \vector{y}= \vector{y} \bp \vector{x}$
\item $\vector{x}\bp \vector{x}\geq 0$
\item $\vector{x}\bp \vector{x}= 0$ if and only if $\vector{x}=\vector{0}$
\end{dingautolist}
\end{thm}
The proof of this theorem is simple and will be left as exercise for the reader.
The \negrito{norm} or \negrito{length} of a vector $\vector{x}$, denoted as $\norm{\vector{x}}$, is defined as
\[\norm{\vector{x}}=\sqrt{ \dotprod{x}{x}} \]
\begin{df}
Given vectors $\vector{x}, \vector{y} $ of $\reals^n$, their \negrito{
distance} is
\[d(\vector{x},\vector{y})=\norm{\vector{x}-\vector{y}}=\sqrt{\dotprod{(x-y)}{
(x-y)}}=\sum_{i=1}^n \left(x_i-y_i \right)^2\]
\label{def:lenght}
\end{df}
If $n=1$, the previous definition of length reduces to the familiar absolute
value, for $n=2$ and $n=3$, the length
and distance of Definition~\ref{def:lenght} reduce to the familiar
definitions for the two and three dimensional space.
\begin{df} A vector $\vector{x}$ is called \negrito{unit vector}
\[ \norm{\vector{x}}=1.\]
\end{df}
\begin{df} Let $\vector{x}$ be a non-zero vector, then the associated
\negrito{versor} (or normalized vector) denoted $\hat {\vector{x}}$ is the unit vector
\[ \hat{\vector{x}}=\dfrac{\vector{x}}{\norm{\vector{x}}}.\]
\end{df}
We now establish one of the most useful inequalities in analysis.
\begin{thm}[Cauchy-Bunyakovsky-Schwarz Inequality] Let
$\vector{x}$ and $\vector{y}$ be any two vectors in $\reals^n$.
Then we have
$$
|\dotprod{x}{y}| \leq \norm{\vector{x}}\norm{\vector{y}} .$$\label{thm:cauchy_schwarz}
\end{thm}
\begin{proof}
Since the norm of any vector is non-negative, we have $$
\begin{array}{lll} \norm{\vector{x} + t\vector{y}} \geq 0 & \iff &
(\vector{x} + t\vector{y})\bp (\vector{x} +t\vector{y}) \geq 0 \\ &
\iff & \dotprod{x}{x} + 2t\dotprod{x}{y} + t^2\dotprod{y}{y} \geq 0
\\ & \iff & \norm{\vector{x}}^2 + 2t\dotprod{x}{y} +
t^2\norm{\vector{y}}^2 \geq 0.
\end{array}$$ This last expression is a quadratic polynomial in
$t$ which is always non-negative. As such its discriminant must be
non-positive, that is, $$ (2\dotprod{x}{y})^2 -
4(\norm{\vector{x}}^2)(\norm{\vector{y}}^2) \leq 0 \iff
|\dotprod{x}{y}| \leq \norm{\vector{x}}\norm{\vector{y}} ,
$$giving the theorem.
\end{proof}
The Cauchy-Bunyakovsky-Schwarz inequality can be written as
\begin{equation} \left|\sum _{k = 1} ^n x_k y_k \right| \leq
\left(\sum _{k = 1} ^nx_k ^2\right)^{1/2} \left(\sum _{k = 1} ^ny_k
^2\right)^{1/2}, \label{eq:cbs_sum_form}\end{equation} for real
numbers $x_k, y_k$.
\begin{thm}[Triangle Inequality] Let
$\vector{x}$ and $\vector{y}$ be any two vectors in $\reals^n$.
Then we have
$$\norm{\vector{x} + \vector{y}} \leq \norm{\vector{x}} + \norm{\vector{y}}.$$
\label{defdesitriangular}
\end{thm}
\begin{proof}
$$\begin{array}{lll}
||\vector{x} + \vector{y}||^2 & = & (\vector{x} + \vector{y})\bp (\vector{x} + \vector{y}) \\
& = & \vector{x}\bp\vector{x} + 2\vector{x}\bp\vector{y} +
\vector{y}\bp\vector{y} \\
& \leq & ||\vector{x}||^2 + 2||\vector{x}||||\vector{y}|| +
||\vector{y}||^2 \\
& = & (||\vector{x}|| + ||\vector{y}||)^2,
\end{array}$$from where the desired result follows.
\end{proof}
\begin{corollary}\label{defdesitriangular2}
If $\mathbf{x},$ $\mathbf{y},$ and
$\mathbf{z}$ are in $\bbR^n,$ then
$$
|\mathbf{x}-\mathbf{y}|\le
|\mathbf{x}-\mathbf{z}|+|\mathbf{z}-\mathbf{y}|.
$$
\end{corollary}
\begin{proof} Write
$$
\mathbf{x}-\mathbf{y}=(\mathbf{x}-\mathbf{z})+(\mathbf{z}-\mathbf{y}),
$$
and apply Theorem~\ref{defdesitriangular}.
\end{proof}
\begin{df}
Let $\vector{x}$ and $\vector{y}$ be two non-zero vectors in $\reals^n$. Then the angle
$\anglebetween{x}{y}$ between them is given by the relation $$\cos
\anglebetween{x}{y} =
\dfrac{\dotprod{x}{y}}{\norm{\vector{x}}\norm{\vector{y}}}.
$$This expression agrees with the geometry in the case of the dot
product for $\reals^2$ and $\reals^3$.
\end{df}
\begin{df}
Let $\vector{x}$ and $\vector{y}$ be two non-zero vectors in $\reals^n$. This vectors are said orthogonal if the angle between them is 90 degrees. Equivalently, if:
$\vector{x} \bp \vector{y}=0$
\end{df}
% \begin{exa}
% Assume that $a_k, b_k, c_k, k = 1, \ldots, n$, are positive real
% numbers. Shew that
% $$\left(\sum _{k = 1} ^n a_kb_kc_k\right)^{4}
% \leq \left(\sum _{k = 1} ^n a_k ^4\right)\left(\sum _{k = 1} ^n b_k
% ^4\right) \left(\sum _{k = 1} ^n c_k ^2\right)^{2}.$$\end{exa}
% \begin{solu}Using CBS on $\sum _{k = 1} ^n (a_kb_k)c_k$ once we obtain
% $$\sum _{k = 1} ^n a_kb_kc_k
% \leq \left(\sum _{k = 1} ^n a_k ^2b_k ^2\right)^{1/2} \left(\sum _{k
% = 1} ^n c_k ^2\right)^{1/2}.
% $$Using CBS again on $\left(\sum _{k = 1} ^n a_k ^2b_k ^2\right)^{1/2}$ we obtain
% $$
% \begin{array}{lll}
% \sum _{k = 1} ^n a_kb_kc_k & \leq &
% \left(\sum _{k = 1} ^n a_k ^2 b_k ^2\right)^{1/2}
% \left(\sum _{k = 1} ^n c_k ^2\right)^{1/2} \\
% & \leq & \left(\sum _{k = 1} ^n a_k ^4\right)^{1/4}
% \left(\sum _{k = 1} ^n b_k ^4\right)^{1/4}
% \left(\sum _{k = 1} ^n c_k ^2\right)^{1/2}, \\
% \end{array}
% $$which gives the required inequality.
% \end{solu}
Let $P_0 = (p_1, p_2, \dots, p_n)$, and $\vector{n} = (n_1, n_2,\dots ,n_n)$
be a nonzero vector.
\begin{df}
The hyperplane defined by the point $P_0$ and the vector $\vector{n}$ is defined as the set of points
$P:(x_1, , x_2,\dots ,x_n)\in \bbR^n$,
such that the vector drawn from $P_0$ to $P$ is perpendicular to $\vector{n}$.
\[\displaystyle \vector{n} \bp (\vector{P} -\vector{P} _{0})=0.\]
\end{df}
Recalling that two vectors are perpendicular if and only if their dot product is
zero, it follows that the desired hyperplane can be described as the set of all points $P$ such that
\[\displaystyle \vector{n} \bp (\vector{P} -\vector{P} _{0})=0.\]
Expanded this becomes
\[\displaystyle n_1(x_1-p_1)+n_2(x_2-p_2)+\cdots+n_n(x_n-p_n)=0,\]
which is the point-normal form of the equation of a hyperplane. This is just a linear equation
\[\displaystyle n_1x_1+n_2x_2+\cdots n_nx_n+d=0,\]
where
\[\displaystyle d=-(n_1p_1+n_2p_2+\cdots + n_np_{n}).\]
% Conversely, it is easily shown that if a, b, c and d are constants and a, b, and c are not all zero, then the graph of the equation
%
% {\displaystyle ax+by+cz+d=0,}
% is a plane having the vector n = (a, b, c) as a normal.[2] This familiar equation for a plane is called the general form of the equation of the plane.[3]
%
%
% We now use the CBS inequality to establish another important
% inequality. We need some preparatory work.
% \begin{lem}\label{lem:for-AMGM}Let $a_k>0$, $q_k>0$, with $\sum _{k=1} ^n q_k =
% 1$. Then $$ \lim _{x\to 0} \log\left(\sum _{k=1} ^n q_ka_k
% ^x\right)^{1/x} = \sum _{k=1} ^n q_k\log a_k.
% $$
% \end{lem}
% \begin{proof}
% Recall that $\log (1+x) \sim x$ as $x\to 0$. Thus
% $$\begin{array}{lll} \lim _{x\to 0} \log\left(\sum _{k=1} ^n q_ka_k
% ^x\right)^{1/x} & = & \lim _{x\to
% 0} \dfrac{\log\left(\sum _{k=1} ^n q_ka_k ^x\right)}{x}\\
% & = & \lim _{x\to
% 0} \dfrac{\sum _{k=1} ^n q_k(a_k ^x-1)}{x}\\
% & = & \lim _{x\to
% 0} \sum _{k=1} ^n q_k\dfrac{(a_k ^x-1)}{x}\\
% & = & \sum _{k=1} ^n q_k\log a_k.
% \end{array}$$
% \end{proof}
% \begin{thm}[Arithmetic Mean-Geometric Mean Inequality]\label{thm:arith_geom_meanbyCBS} Let $a_k\geq 0$. Then
% $$ \sqrt[n]{a_1a_2\cdots a_n} \leq \dfrac{a_1+a_2+\cdot + a_n}{n}. $$
% \end{thm}
% \begin{proof}
% If $b_k \geq 0$, then by CBS
% \begin{equation}
% \dfrac{1}{n}\sum _{k=1} ^n b_k \geq \left(\dfrac{1}{n}\sum _{k=1} ^n
% \sqrt{b_k} \right)^2. \label{eq:cons-of-CBS}
% \end{equation}
% Successive applications of (\ref{eq:cons-of-CBS}) yield the monotone
% decreasing sequence
% $$ \dfrac{1}{n}\sum _{k=1} ^n a_k \geq \left(\dfrac{1}{n}\sum _{k=1} ^n
% \sqrt{a_k} \right)^2 \geq \left(\dfrac{1}{n}\sum _{k=1} ^n
% \sqrt[4]{a_k} \right)^4 \geq \ldots , $$ which by Lemma
% \ref{lem:for-AMGM} has limit
% $$\exp \left(\dfrac{1}{n}\sum _{k=1} ^n \log a_k \right) = \sqrt[n]{a_1a_2\cdots a_n}, $$
% giving
% $$ \sqrt[n]{a_1a_2\cdots a_n} \leq \dfrac{a_1+a_2+\cdot + a_n}{n}, $$
% as wanted.
% \end{proof}
%
% \begin{exa} For any positive integer $n
% > 1$ we have
% $$1\cdot 3 \cdot 5 \cdots \cdot (2n - 1) < n^n.$$ For, by AMGM,
% $$1\cdot 3 \cdot 5 \cdots \cdot (2n - 1) < \left(\dfrac{1 + 3 + 5 + \cdots + (2n -
% 1)}{n}\right)^n = \left(\dfrac{n^2}{n}\right)^n = n^n.$$Notice that
% since the factors are unequal we have strict inequality.
% \end{exa}
% \begin{df}
% Let $x_1 > 0, x_2 > 0, \ldots , x_n >
% 0$. Their \negrito{harmonic mean} is given by
% $$\dfrac{n}{
% \dfrac{1}{a_1} + \dfrac{1}{a_2} + \cdots + \dfrac{1}{a_n}}.
% $$
% \end{df}
% As a corollary to AMGM we obtain
% \begin{cor}[Harmonic Mean-Geometric Mean Inequality] Let $y_1> 0, y_2 > 0, \ldots , y_n >
% 0$. Then
% $$\dfrac{n}{
% \dfrac{1}{b_1} + \dfrac{1}{b_2} + \cdots + \dfrac{1}{y_n }} \leq
% (b_1b_2\cdots y_n )^{1/n}.$$ \label{cor:harm_geom_mean}
% \end{cor}
% \begin{proof}
% This follows by putting $a_k = \dfrac{1}{b_k}$ in Theorem
% \ref{thm:arith_geom_meanbyCBS} . For then $$
% \left(\dfrac{1}{b_1}\dfrac{1}{b_2}\cdots\dfrac{1}{y_n }\right)^{1/n}
% \leq \dfrac{\dfrac{1}{b_1} + \dfrac{1}{b_2} + \cdots +
% \dfrac{1}{y_n }}{n}.
% $$
% \end{proof}
% Combining Theorem \ref{thm:arith_geom_meanbyCBS} and Corollary
% \ref{cor:harm_geom_mean}, we deduce \begin{cor}[Harmonic
% Mean-Arithmetic Mean Inequality] \label{cor:harm_arith_mean} Let
% $y_1> 0, y_2 > 0, \ldots , y_n > 0$. Then
% $$\dfrac{n}{
% \dfrac{1}{b_1} + \dfrac{1}{b_2} + \cdots + \dfrac{1}{y_n }} \leq
% \dfrac{b_1+b_2+\cdots + y_n }{n}.$$
%
% \end{cor}
% \begin{exa}
% Let $a_k > 0,$ and $s = x_1 + x_2 + \cdots + a_n$. Prove that
% $$\sum _{k = 1} ^n \dfrac{s}{s -
% a_k} \geq \dfrac{n^2}{n - 1}$$and
% $$\sum _{k = 1} ^n \dfrac{a_k}{s - a_k} \geq \dfrac{n}{n - 1}.$$
% \end{exa}
% \begin{solu} Put $b_k = \dfrac{s}{s - a_k}$. Then $$ \sum _{k = 1} ^n
% \dfrac{1}{b_k} = \sum _{k = 1} ^n \dfrac{s - a_k}{s} = n - 1
% $$ and from Corollary
% \ref{cor:harm_arith_mean},
% $$ \dfrac{n}{n - 1} \leq \dfrac{\sum _{k = 1} ^n \dfrac{s}{s -
% a_k}}{n},
% $$from where the first inequality is proved.
%
% \bigskip
%
% Since $\dfrac{s}{s - a_k} - 1 = \dfrac{a_k}{s - a_k},$ we have
% $$\begin{array}{lll}\sum _{k = 1} ^n \dfrac{a_k}{s - a_k} & = &
% \sum _{k = 1} ^n \left(\dfrac{s}{s - a_k} - 1\right) \\
% & = & \sum _{k = 1} ^n \left(\dfrac{s}{s - a_k}\right) - n \\
% & \geq & \dfrac{n^2}{n - 1} - n \\
% & = & \dfrac{n}{n - 1}.\end{array}$$
% \end{solu}
%
% \bigskip
%
% \section*{\psframebox{Exercises}}
% \begin{multicols}{2}\columnseprule 1pt \columnsep 25pt\multicoltolerance=900
%
% \bigskip
%
% \begin{problem}
% The \negrito{Arithmetic Mean Geometric Mean Inequality} says that if
% $a_k \geq 0$ then $$(a_1a_2\cdots a_n)^{1/n} \leq \dfrac{x_1 + x_2 +
% \cdots + a_n}{n}. $$ Equality occurs if and only if $x_1 = x_2 =
% \ldots = a_n.$ In this exercise you will follow the steps of a proof
% by George P\'{o}lya.
% \begin{enumerate}
% \item Prove that $\forall x\in\reals , \ x \leq e^{x - 1}.$
% \item Put $$A_k = \dfrac{na_k}{x_1 + x_2 + \cdots + a_n},$$ and $G_n =
% a_1a_2\cdots a_n$. Prove that $$A_1A_2\cdots A_n =
% \dfrac{n^nG_n}{(x_1 + x_2 + \cdots + x_n )^n},$$ and that
% $$A_1 + A_2 + \cdots + A_n = n.$$
% \item Deduce that
% $$G_n \leq \left(\dfrac{x_1 + x_2 + \cdots +
% a_n}{n}\right)^n.$$
% \item Prove the AMGM inequality by assembling the results above.
% \end{enumerate}
% \begin{answer}\noindent
% \begin{enumerate}
% \item Put $f:\reals \rightarrow \reals$, $f(x) = e^{x - 1} - x.$ Clearly $f(1)
% = e^0 - 1 = 0$. Now,
% $$f'(x) = e^{x - 1} - 1,$$
% $$f''(x) = e^{x - 1}.$$
% If $f'(x) = 0$ then $e^{x - 1} = 1$ implying that $x = 1$. Thus $f$
% has a single minimum point at $x = 1$. Thus for all real numbers $x$
% $$ 0 = f(1) \leq f(x) = e^{x - 1} - x,$$which gives the desired
% result.
% \item Easy Algebra!
% \item Easy Algebra!
% \item By the preceding results, we have
% $$A_1 \leq \exp (A_1 - 1),$$
% $$A_2 \leq \exp (A_2 - 1),$$
% $$\dots$$
% $$A_n \leq \exp (A_n - 1).$$Since all the quantities involved are
% non-negative, we may multiply all these inequalities together, to
% obtain,
% $$A_1A_2\cdots A_n \leq \exp (A_1 + A_2 + \cdots + A_n - n).$$In
% view of the observations above, the preceding inequality is
% equivalent to
% $$\dfrac{n^nG_n}{(x_1 + x_2 + \cdots + x_n )^n} \leq \exp (n - n) = e^0 =
% 1.$$We deduce that
% $$G_n \leq \left(\dfrac{x_1 + x_2 + \cdots +
% a_n}{n}\right)^n,$$which is equivalent to
% $$(a_1a_2\cdots a_n)^{1/n} \leq \dfrac{x_1 + x_2 + \cdots + a_n}{n}. $$
% Now, for equality to occur, we need each of the inequalities $A_k
% \leq \exp (A_k - 1)$ to hold. This occurs, in view of the preceding
% lemma, if and only if $A_k = 1, \ \forall k$, which translates into
% $x_1 = x_2 = \ldots = a_n$. This completes the proof.
%
% \end{enumerate}
%
%
% \end{answer}
%
% \end{problem}
% \begin{problem}
% Demonstrate that if $x_{1},x_{2}, \ldots ,x_{n},$ are strictly
% positive real numbers then
% $$\left(x_{1}+x_{2}+ \ldots +x_{n}\right)\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+ \ldots +\dfrac{1}{x_{n}}%
% \right)\geq n^{2}.$$
% \begin{answer}By CBS,
% $$\begin{array}{lll}\left(x_{1}+x_{2}+ \ldots +x_{n}\right)\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+ \ldots +\dfrac{1}{x_{n}}%
% \right)& \geq & \left(\stackunder{i=1}{\stackrel{n}{\sum }}\sqrt{x_{i}}\dfrac{1}{\sqrt{x_{i}}%
% }\right)^{2} \\
% & = & n^2.\end{array}$$
%
% \end{answer}
% \end{problem}
% \begin{problem}[USAMO 1978]
% Let $a,b,c,d,e$ be real numbers such that
% $$a+b+c+d+e=8, \qquad a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=16.$$Maximise the value of $e$.
%
% \begin{answer}
% By CBS, $$\begin{array}{lll}\left(a+b+c+d\right)^{2}\leq
% \left(1+1+1+1\right)\left(a^{2}+b^{2}+c^{2}+d^{2}\right) & = &
% 4\left(a^{2}+b^{2}+c^{2}+d^{2}\right).\end{array}$$ Hence,
% $$\left(8-e\right)^{2}\leq 4\left(16-e^{2}\right)\iff
% e\left(5e-16\right)\leq 0\iff 0\leq e\leq \dfrac{16}{5}.$$ The
% maximum value $e=\dfrac{16}{5}$ is reached when
% $a=b=c=d=\dfrac{6}{5}.$
%
% \end{answer}
% \end{problem}
%
% \begin{problem} Find all positive real numbers $$a_1\leq a_2\leq \ldots \leq a_n
% $$ such that
% $$\sum _{k=1} ^n a_k =96, \qquad \sum _{k=1} ^n a_k ^2 =144, \qquad \sum _{k=1} ^n a_k ^3 =216. $$
% \begin{answer}
% Observe that $96\cdot 216=144^2$ and by CBS,
% $$ \sum _{k=1} ^n a_k ^2 \leq \left( \sum _{k=1} ^n a_k ^3 \right)\left( \sum _{k=1} ^n a_k \right). $$
% As there is equality, $$ (a_1, a_2, \ldots , a_n) = t (x_1 ^3, a_2
% ^3, \ldots , a_n^3)$$for some real number $t$. Hence $x_1 = x_2 =
% \ldots = a_n=a$, from where $na=96$, $na^2=144$ gives
% $a=\dfrac{3}{2}$ y $n=32$.
% \end{answer}
% \end{problem}
%
% \begin{problem}
% Demonstrate that for integer $n>1$ we have, $$
% n!<\left(\dfrac{n+1}{2}\right)^n.
% $$
% \begin{answer}
% Applying the AM-GM inequality, for $1,2,\ldots , n$:
% $$ n!^{1/n}= (1\cdot 2 \cdots n)^{1/n}< \dfrac{1+2+\cdots + n}{n} = \dfrac{n+1}{2},
% $$with strict inequality for
% $n>1$.
% \end{answer}
% \end{problem}
%
%
% \begin{problem} Let $f(x) = (a + x)^5(a - x)^3, \ x\in
% [-a; a].$ Find the maximum value of de $f$ using the AM-GM
% inequality.
% \begin{answer}If $x\in [-a; a]$, then $a + x \geq 0$ and $a - x \geq 0$, and thus we may use AM-GM with $n = 8$,
% $x_1 = x_2 = \cdots = a_5 = \dfrac{a + x}{5}$ and $a_6 = a_7 = a_8 =
% \dfrac{a - x}{3}.$ We deduce that
% $$\left(\dfrac{a + x}{5}\right)^5 \left(\dfrac{a - x}{3}\right)^3 \leq \left(\dfrac{5\left(\dfrac{a + x}{5}\right) + 3\left(\dfrac{a - x}{3}\right) }{8}\right)^8
% = \left(\dfrac{a}{4}\right)^8, $$
% from where
% $$f(x) \leq \dfrac{5^53^3a^8}{4^8},$$with equality if and only if
% $\dfrac{a + x}{5} = \dfrac{a - x}{3}$. \end{answer}
% \end{problem}
%
%
% \begin{problem}Prove that the sequence \mbox{$x_n = \left(1 + \dfrac{1}{n}\right)^{n}$}, $n = 1,
% 2, \ldots$ is strictly increasing. \begin{answer} Applying AM-GM to
% the set of $n + 1$ numbers
% $$1, 1 +
% \dfrac{1}{n}, 1 + \dfrac{1}{n}, \ldots , 1 + \dfrac{1}{n},$$has
% arithmetic mean
% $$1 + \dfrac{1}{n + 1}$$ and geometric mean
% $$\left(1 +
% \dfrac{1}{n}\right)^{n/(n + 1)}.$$Therefore,
% $$1 +
% \dfrac{1}{n + 1} > \left(1 + \dfrac{1}{n}\right)^{n/(n + 1)},$$
% that is
% $$\left(1 +
% \dfrac{1}{n + 1}\right)^{n + 1} > \left(1 +
% \dfrac{1}{n}\right)^{n},$$ which means
% $$x_{n + 1} > x_n,$$giving the assertion.
% \end{answer}
% \end{problem}
%
% \end{multicols}
%
%
\section{Basis and Change of Basis}
\subsection{Linear Independence and Spanning Sets}
\begin{df}
Let $\lambda_i \in \bbR, 1\leq i\leq n$. Then
the vectorial sum
$$\sum_{j = 1} ^n \lambda_j\vector{ x}_j$$ is said to be a \negrito{linear
combination} of the vectors $\vector{ x}_i \in \bbR ^n, 1 \leq i \leq n.$
\end{df}
\begin{df}
The vectors $\vector{ x}_i \in \bbR ^n, 1 \leq i \leq n,$ are \negrito{linearly
dependent} or \negrito{tied} if
$$\exists (\lambda_1, \lambda_2, \cdots , \lambda_n) \in \bbR ^n \setminus \{{\mathbf 0}\} \ \ {\text{ such \ that}\ }
\sum_{j = 1} ^n \lambda_j\vector{ x}_j = \vector{0},$$that is, if there is a
non-trivial linear combination of them adding to the zero vector.
\end{df}\begin{df}
The vectors $\vector{ x}_i \in \bbR ^n, 1 \leq i \leq n,$ are \negrito{linearly
independent} or \negrito{free} if they are not linearly dependent. That
is, if $\lambda_i \in \bbR, 1\leq i \leq n $
then
$$\sum_{j = 1} ^n \lambda_j\vector{ x}_j = \vector{0} \implies \lambda_1 = \lambda_2= \cdots = \lambda_n = 0.$$
\end{df}
\begin{rem}
A family of vectors is linearly independent if and only if the
only linear combination of them giving the zero-vector is the
trivial linear combination.
\end{rem}
\begin{exa}
$$\left\{\coord{1 , 2 , 3}, \coord{4 , 5 , 6}, \coord{7 , 8 ,
9}\right\}$$is a tied family of vectors in $\bbR^3$, since
$$(1)\coord{1 , 2 , 3} + (-2) \coord{4 , 5 , 6} + (1)\coord{7 , 8 ,
9} = \coord{0 , 0 , 0}.$$
\end{exa}
\begin{df}
A family of vectors $\{\vector{x}_1, \vector{x}_2, \ldots , \vector{x}_k, \ldots, \}
\subseteq \bbR ^n$ is said to \negrito{span} or \negrito{generate} $\bbR ^n$ if every
$\vector{x}\in \bbR ^n$ can be written as a linear combination of the
$\vector{x}_j$'s. \index{spanning set}
\end{df}
\begin{exa}
Since \begin{equation}
\sum _{k = 1} ^n v_k\vector{e}_k = \left(v_1,
v_2, \dots, v_n\right). \label{eq:span2}
\end{equation}
This means that the canonical basis generate $\bbR ^n$.
\end{exa}
\begin{thm}
If $\{\vector{x}_1, \vector{x}_2, \ldots , \vector{x}_k, \ldots, \} \subseteq \bbR ^n$
spans $\bbR ^n$, then any superset $$\{\vector{y}, \vector{x}_1, \vector{x}_2, \ldots ,
\vector{x}_k, \ldots, \} \subseteq \bbR ^n$$ also spans $\bbR ^n$.
\end{thm}
\begin{proof}
This follows at once from
$$ \sum _{i = 1} ^l \lambda _i \vector{x}_i = 0\vector{y} + \sum _{i = 1} ^l \lambda _i \vector{x}_i.$$
\end{proof}
\begin{exa}
The family of vectors $$\left\{\vector{i} = \coord{1, 0 ,
0}, \vector{j} = \coord{0, 1, 0}, \vector{k} = \coord{0,
0, 1}\right\}$$ spans $\bbR^3$ since given $\coord{a, b,
c}\in\bbR^3$ we may write $$\coord{a, b, c} = a\vector{i} + b\vector{j} +
c\vector{k} .$$ \label{exa:ijk}\end{exa}
\begin{exa}
Prove that the family of vectors $$\left\{\vector{t}_1 = \coord{1, 0 ,
0}, \vector{t}_2 = \coord{1, 1, 0}, \vector{t}_3 = \coord{1,
1, 1}\right\}$$ spans $\bbR^3$.\label{triagbasisr3}\end{exa}
\begin{solu}This follows from the identity
$$\coord{a, b, c} = (a - b)\coord{1, 0, 0} + (b - c)\coord{1, 1, 0} + c\coord{1, 1, 1} = (a - b)\vector{t}_1 + (b - c)\vector{t}_2 + c\vector{t}_3.$$
\end{solu}
\subsection{Basis}
\begin{df}
A family $E=\{\vector{x}_1, \vector{x}_2, \ldots , \vector{x}_k, \ldots\} \subseteq
\bbR ^n$ is said to be a \negrito{basis} of $\bbR ^n$ if
\begin{dingautolist}{202}
\item are linearly
independent,
\item they span $\bbR ^n$. \index{basis}
\end{dingautolist}
\end{df}
\begin{exa}
The family $$ \vector{e}_i =\left(0 ,\dots , 0, 1, 0, \dots , 0
\right),$$ where there is a $1$ on the $i$-th slot and
$0$'s on the other $n - 1$ positions, is a basis for $\bbR
^n$.
\end{exa}
\begin{thm}
All basis of $\bbR ^n$ have the same number of vectors.
\end{thm}
\begin{df}
The \negrito{dimension} of $\bbR ^n$ is the number of elements of any of its basis, $n$.
\end{df}
\begin{thm}\label{thm:base_matrix_is_invertible}
Let $\{\vector{x}_1, \ldots , \vector{x}_n\}$ be a family of vectors in $\bbR^n$. Then
the $\vector{x}$'s form a basis if and only if the $n\times n$ matrix $A$
formed by taking the $\vector{x}$'s as the columns of $A$ is invertible.
\end{thm}
\begin{proof}
Since we have the right number of vectors, it is enough to prove
that the $\vector{x}$'s are linearly independent. But if $X =
\coord{\lambda_1 , \lambda_2 , \dots , \lambda_n}$, then $$\lambda_1\vector{x}_1 + \cdots
+ \lambda_n\vector{x}_n = AX.
$$If $A$ is invertible, then $AX = {\mathbf 0}_n \implies X = A^{-1}{\mathbf 0} = {\mathbf
0}$, meaning that $\lambda_1 = \lambda_2 = \cdots \lambda_n = 0$, so the $\vector{x}$'s
are linearly independent.
\bigskip
The reciprocal will be left as a exercise.
\end{proof}
\begin{df} \mbox{}
\begin{dingautolist}{202}
\item A basis $E=\{\vector{x}_1, \vector{x}_2, \dots , \vector{x}_k\}$ of vectors in $R^n$ is called \negrito{orthogonal} if
\[\vector{x}_i \bp \vector{x}_j = 0\]
for all $i\neq j$.
\item An orthogonal basis of vectors is called \negrito{orthonormal} if all vectors in $E$ are unit vectors, i.e, have norm equal to 1.
\end{dingautolist}
\end{df}
\subsection{Coordinates}
\begin{thm}
Let $E=\{\vector{e}_1, \vector{e}_2, \ldots, \vector{e}_n\}$ be a basis for a
vector space $\bbR^n$. Then any $\vector{x}\in \bbR^n$ has a unique
representation $$\vector{x} = a_1\vector{e}_1 + a_2\vector{e}_2 + \cdots +
a_n\vector{e}_n. $$ \label{thm:unique_rep_in_basis}\end{thm}
\begin{proof}
Let $$\vector{x} = b_1\vector{e}_1 + b_2\vector{e}_2 + \cdots + y_n \vector{e}_n
$$be another representation of $\vector{x}$. Then $$\vector{0} =
(x_1 - b_1)\vector{e}_1 + (x_2 - b_2)\vector{e}_2 + \cdots + (x_n -
y_n )\vector{e}_n. $$Since $\{\vector{e}_1, \vector{e}_2, \ldots, \vector{e}_n\}$
forms a basis for $\bbR^n$, they are a linearly independent family. Thus
we must have $$ x_1 - y_1= x_2 - y_2 = \cdots = x_n - y_n = 0_{\bbR
},
$$ that is
$$x_1 = b_1; x_2 = b_2; \cdots ;x_n = y_n , $$proving uniqueness.
\end{proof}
\begin{df}
An \negrito{ordered basis} $E=\{\vector{e}_1, \vector{e}_2, \ldots, \vector{e}_n\}$ of a
vector space $\bbR^n$ is a basis where the order of the $\vector{x}_k$ has
been fixed. Given an ordered basis $\{\vector{e}_1, \vector{e}_2, \ldots,
\vector{e}_n\}$ of a vector space $\bbR^n$, Theorem
\ref{thm:unique_rep_in_basis} ensures that there are unique $(a_1,
a_2, \ldots, a_n)\in \bbR ^n$ such that
$$\vector{x} = a_1\vector{e}_1 + a_2\vector{e}_2 + \cdots +
a_n\vector{e}_n. $$ The $a_k$'s are called the \negrito{coordinates} of
the vector $\vector{x}$.
We will denote the coordinates the vector $\vector{x}$ on the basis $E$ by
\[[\vector{x}]_E\]
or simply $[\vector{x}]$.
\end{df}
\begin{exa} The standard ordered basis for $\bbR^3$ is $E = \{\vector{i}, \vector{j}, \vector{k}\}$.
The vector $\coord{1, 2, 3}\in \bbR^3$ for example, has
coordinates $(1, 2, 3)_E$. If the order of the basis were
changed to the ordered basis $F =
\{\vector{i}, \vector{k}, \vector{j}\}$, then $\coord{1, 2,
3}\in \bbR^3$ would have coordinates $(1, 3, 2)_F$.
\end{exa}
\begin{rem}
Usually, when we give a coordinate representation for a vector
$\vector{x}\in \bbR^n$, we assume that we are using the standard basis.
\end{rem}
\begin{exa}
Consider the vector $\coord{1, 2, 3}\in \bbR^3$ (given in
standard representation). Since
$$ \coord{1, 2, 3} = -1\coord{1, 0,
0} -1 \coord{1, 1,
0} + 3\coord{1, 1,
1}, $$under the
ordered basis $\dis{E = \left\{\coord{1, 0,
0}, \coord{1, 1,
0}, \coord{1, 1,
1}\right\}}$, $\coord{1, 2, 3} $ has coordinates $(-1, -1,
3)_{E}$. We write
$$ \coord{1, 2, 3} = \coord{-1, -1, 3}_{E}. $$
\end{exa}
\begin{exa}
The vectors of $$E= \left\{\coord{1 , 1}, \coord{1,
2}\right\}$$are non-parallel, and so form a basis for
$\bbR^2$. So do the vectors $$F = \left\{\coord{2 ,
1}, \coord{1, -1}\right\}.$$Find the coordinates of $\coord{3,
4}_{E}$ in the base $F$.
\end{exa}
\begin{solu}We are seeking $x, y$ such that
$$ 3\coord{1, 1} + 4\coord{1 , 2} = x\colvec{2 \\ 1} + y\colvec{1 \\ -1}
\implies \begin{bmatrix}1 & 1 \cr 1 & 2 \end{bmatrix}\colvec{3 \\
4} =
\begin{bmatrix}2 & 1 \cr 1 & -1 \cr
\end{bmatrix}\coord{x , y}_{F} . $$
Thus $$\begin{array}{lll} \coord{x,
y}_{F} & = &
\begin{bmatrix}2 & 1 \cr 1 & -1 \cr
\end{bmatrix}^{-1}\begin{bmatrix}1 & 1 \cr 1 & 2 \end{bmatrix}\colvec{3 \\
4} \vspace{2mm}\\
& = & \begin{bmatrix} \dfrac{1}{3} & \dfrac{1}{3} \cr \dfrac{1}{3} & -\dfrac{2}{3} \cr \end{bmatrix} \begin{bmatrix}1 & 1 \cr 1 & 2 \end{bmatrix}\colvec{3 \\
4} \vspace{2mm} \\
& = & \begin{bmatrix}\dfrac{2}{3} & 1 \cr -\dfrac{1}{3} & -1 \cr \end{bmatrix}\colvec{3 \\
4} \vspace{2mm}\\
& = & \colvec{6 \\ -5}_{F}.
\end{array}$$
Let us check by expressing both vectors in the standard basis of
$\bbR^2$:
$$\coord{3 , 4}_{E} = 3\coord{1, 1} + 4\coord{1 , 2} = \coord{7, 11},$$
$$\coord{6 , -5}_{F} = 6\coord{2, 1} - 5\coord{1 , -1} = \coord{7, 11}.$$
\end{solu}
\bigskip
In general let us consider basis $E$ ,
$F$ for the same vector space $\bbR^n$. We want to convert
$X_{E}$ to $Y_{F}$. We let $A$ be the
matrix formed with the column vectors of $E$ in the
given order an $B$ be the matrix formed with the column vectors of
$F$ in the given order. Both $A$ and $B$ are
invertible matrices since the $E,F$ are basis, in view
of Theorem \ref{thm:base_matrix_is_invertible}. Then we must have
$$AX _{E} = BY_{F} \implies Y_{F} =
B^{-1}AX_{E}.
$$Also, $$X _{E} = A^{-1}BY_{F} . $$
This prompts the following definition.
\begin{df}
Let ${E} = \{\vector{x}_1, \vector{x}_2, \ldots, \vector{x}_n\}$ and
${F} = \{\vector{y}_1, \vector{y}_2, \ldots, \vector{y}_n\}$ be two
ordered basis for a vector space $\bbR^n$. Let $A\in \mat{n\times n}{
\bbR }$ be the matrix having the $\vector{x}$'s as its columns and let
$B\in \mat{n\times n}{ \bbR }$ be the matrix having the $\vector{y}$'s as
its columns. The matrix $P = B^{-1}A$ is called the \negrito{transition
matrix} from ${E}$ to ${F}$ and the matrix
$P^{-1} = A^{-1}B$ is called the \negrito{transition matrix} from
${F}$ to ${E}$. \index{matrix!transition}
\end{df}
\begin{exa}
Consider the basis of $\bbR^3$ $$ E= \left\{\coord{1 , 1 ,
1}, \coord{1 , 1 , 0}, \coord{1 , 0 , 0} \right\},
$$
$$ F = \left\{\coord{1 , 1 ,
-1}, \coord{1 , -1 , 0}, \coord{2 , 0 , 0} \right\}.
$$Find the transition matrix from ${E}$ to $F$ and also the transition matrix from ${F}$ to
${E}$. Also find the coordinates of $\coord{1,
2 , 3}_{E}$ in terms of $F$.
\end{exa}
\begin{solu}Let $$A = \begin{bmatrix} 1 & 1 & 1 \cr 1 & 1 & 0 \cr 1&
0 & 0 \cr
\end{bmatrix}, \ \ B = \begin{bmatrix} 1 & 1 & 2 \cr 1 & -1 & 0 \cr
-1 & 0 & 0 \cr
\end{bmatrix}.$$
The transition matrix from ${E}$ to ${F}$
is
$$\begin{array}{lll}P & = & B^{-1}A \vspace{2mm}\\
& = &\begin{bmatrix} 1 & 1 & 2 \cr 1 & -1 & 0 \cr -1 & 0 & 0 \cr
\end{bmatrix}^{-1}\begin{bmatrix} 1 & 1 & 1 \cr 1 & 1 & 0 \cr 1&
0 & 0 \cr
\end{bmatrix}\vspace{2mm}\\ & = & \begin{bmatrix} 0 & 0 & -1 \cr 0 & -1 & -1 \cr \dfrac{1}{2} & \dfrac{1}{2} & 1 \cr \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \cr 1 & 1 & 0 \cr 1&
0 & 0 \cr
\end{bmatrix} \vspace{2mm}\\ & = & \begin{bmatrix} -1 & 0 & 0 \cr -2 & -1 & -0 \cr 2 & 1 & \dfrac{1}{2} \end{bmatrix}. \end{array} $$
The transition matrix from ${F}$ to ${E}$
is $$P^{-1} = \begin{bmatrix} -1 & 0 & 0 \cr -2 & -1 & 0 \cr 2 &
1 & \dfrac{1}{2} \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 0 & 0
\cr 2 & -1 & 0 \cr 0 & 2 & 2 \cr\end{bmatrix}.
$$Now,
$$ Y_{F} = \begin{bmatrix} -1 & 0 & 0 \cr -2 & -1 & 0 \cr 2 &
1 & \dfrac{1}{2} \end{bmatrix}\colvec{1\\
2 \\ 3}_{E} = \colvec{-1 \\ -4 \\
\dfrac{11}{2}}_{F}. $$ As a check, observe that in the
standard basis for $\bbR^3$
$$ \colvec{1,
2 , 3}_{E} = 1\colvec{1, 1, 1} + 2\colvec{1, 1,
0 } + 3\colvec{1, 0 , 0} = \colvec{6, 3 , 1},
$$
$$ \colvec{-1,
-4 , \dfrac{11}{2}}_{F} = -1\colvec{1, 1, -1} - 4\colvec{1, -1,
0 } + \dfrac{11}{2}\colvec{2, 0 , 0} = \colvec{6, 3 , 1}.
$$
\end{solu}
\section{Linear Transformations and Matrices}
\begin{df}
A \negrito{linear
transformation} or \negrito{homomorphism} \index{linear transformation}
\index{linear homomorphism} between $\bbR^n$ and $\bbR^m$
$$\fun{L}{\vector{x}}{L(\vector{x})}{\bbR^n}{\bbR^m},$$is a function which
is \begin{itemize} \item {\textbf Additive:} $L(\vector{x} + \vector{y}) = L(\vector{x})
+ L(\vector{y}),$ \item {\textbf Homogeneous:} $L(\lambda\vector{x}) = \lambda
L(\vector{x}),$ for $\lambda\in \bbR.$
\end{itemize}
\end{df}
\begin{rem}
It is clear that the above two conditions can be summarized
conveniently into $$L(\vector{x} + \lambda\vector{y}) = L(\vector{x}) + \lambda
L(\vector{y}). $$
\end{rem}
Assume that $\{\vector{x}_i\}_{i\in [1;n]}$ is an ordered basis for $\bbR^n$, and $E = \{\vector{y}_i\}_{i\in [1;m]}$ an
ordered basis for $\bbR^m$.
Then
$$ \begin{array}{ccccc}L(\vector{x}_1) & = & a_{11}\vector{y}_1 + a_{21}\vector{y}_2 + \cdots +
a_{m1}\vector{y}_m & = & \colvec{a_{11} \\ a_{21} \\ \vdots \\
a_{m1}}_E
\\
L(\vector{x}_2) & = & a_{12}\vector{y}_1 + a_{22}\vector{y}_2 +
\cdots + a_{m2}\vector{y}_m & = & \colvec{a_{12} \\ a_{22} \\ \vdots \\
a_{m2}}_E \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
L(\vector{x}_n) & = &
a_{1n}\vector{y}_1 + a_{2n}\vector{y}_2 + \cdots +
a_{mn}\vector{y}_m & = & \colvec{a_{1n} \\ a_{2n} \\ \vdots \\
a_{mn}}_E\\
\end{array}. $$
\begin{df}
The $m\times n$ matrix $$ M_L = \begin{bmatrix} a_{11} & a_{12} &
\cdots & a_{1m} \cr a_{21} & a_{12} & \cdots & a_{2n} \cr \vdots &
\vdots & \vdots & \vdots \cr
a_{m1} &
a_{m2} & \cdots & a_{mn} \cr
\end{bmatrix}
$$formed by the column vectors above is called the \negrito{matrix representation of the linear map $L$ with respect to
the basis $\{\vector{x}_i\}_{i\in [1;m]}, \{\vector{y}_i\}_{i\in [1;n]}$.}
\end{df}
\todoin{verificar}
\begin{exa}
Consider $L:\bbR^3 \rightarrow \bbR^3$,
$$L\coord{x , y , z} = \coord{x - y - z , x + y + z , z } .$$
Clearly $L$ is a linear transformation.
\begin{enumerate}
\item Find the
matrix corresponding to $L$ under the standard ordered basis.
\item Find
the matrix corresponding to $L$ under the ordered basis $\coord{1 , 0 ,
0}, \coord{1 , 1 , 0}, \coord{1 , 0
, 1},$ for both the domain and the image of $L$.
\end{enumerate}
\end{exa}
\begin{solu}
\begin{enumerate}
\item The matrix will be a $3\times 3$ matrix. We have $L\coord{ 1 , 0 , 0 } = \coord{ 1 , 1 ,
0 }$, $L\coord{ 0 , 1 , 0 } = \coord{ -1 , 1 , 0}$, and $L\coord{0 ,
0, 1} = \coord{-1 , 1 , 1}$, whence the desired matrix is
$$\begin{bmatrix} 1 & -1 & -1 \cr 1 & 1 & 1 \cr 0 & 0 & 1 \cr\end{bmatrix}.$$
\item Call this basis ${E}$. We have
$$L\coord{ 1 , 0 , 0 } = \coord{ 1 , 1 ,
0 } = 0 \coord{ 1 , 0 ,
0 } + 1\coord{ 1 , 1 ,
0 } + 0\coord{ 1 , 0 ,
1 } = \coord{ 0 , 1 ,
0 }_{E},$$ $$L\coord{ 1, 1 , 0 } = \coord{ 0 , 2 , 0} = -2\coord{ 1 , 0 ,
0 } + 2\coord{ 1 , 1 ,
0 } + 0\coord{ 1 , 0 ,
1 } = \coord{ -2 , 2 ,
0 }_{E},$$ and $$L\coord{1 ,
0, 1} = \coord{0 , 2 , 1} = -3\coord{ 1 , 0 ,
0 } + 2\coord{ 1 , 1 ,
0 }+ 1\coord{ 1 , 0 ,
1} = \coord{ -3 , 2 ,
1 }_{E},$$ whence the desired matrix is
$$\begin{bmatrix} 0 & -2 & -3 \cr 1 & 2 & 2 \cr 0 & 0 & 1 \cr\end{bmatrix}.$$
\end{enumerate}
\end{solu}
\begin{df}
The column rank of A is the dimension of the space generated by the collums of A, while the row rank of A is the dimension of the space generated by the rows of A.
\end{df}