Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bug: data yields into incorrect table when nesting manually #2109

Open
wants to merge 1 commit into
base: devel
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 77 additions & 2 deletions tests/pipeline/test_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import shutil
import threading
from time import sleep
from typing import Any, List, Tuple, cast
from typing import Any, Dict, Iterable, List, Sequence, Tuple, cast
from tenacity import retry_if_exception, Retrying, stop_after_attempt

import pytest
Expand All @@ -35,7 +35,7 @@
from dlt.common.schema.exceptions import TableIdentifiersFrozen
from dlt.common.schema.typing import TColumnSchema
from dlt.common.schema.utils import new_column, new_table
from dlt.common.typing import DictStrAny
from dlt.common.typing import DictStrAny, TDataItem
from dlt.common.utils import uniq_id
from dlt.common.schema import Schema

Expand Down Expand Up @@ -2877,3 +2877,78 @@ def test_push_table_with_upfront_schema() -> None:
copy_pipeline = dlt.pipeline(pipeline_name="push_table_copy_pipeline", destination="duckdb")
info = copy_pipeline.run(data, table_name="events", schema=copy_schema)
assert copy_pipeline.default_schema.version_hash != infer_hash

def test_nested_inserts_correct_target() -> None:
@dlt.resource(
primary_key="id",
columns={"id": {"data_type": "bigint"}},
)
def my_resource():
yield [
{
"id": 1000,
"fields": [
{"id": "a", "value": 1},
{"id": "b", "value": 2},
{"id": "c", "value": 3},
]
},
{
"id": 2000,
"fields": [
{"id": "a", "value": 4},
{"id": "b", "value": 5},
{"id": "c", "value": 6},
]
},
]

@dlt.transformer(
data_from=my_resource,
write_disposition="replace",
# parallelized=True,
primary_key="id",
merge_key="id"
)
def things(
my_resources: List[TDataItem],
) -> Iterable[TDataItem]:


for my_resource in my_resources:
fields: List[Dict] = my_resource.pop("fields")
yield my_resource
for field in fields:
#id = field.pop("id")
id = field["id"]
table_name = f"things_{id}"
field = { "my_resource_id": my_resource["id"] } | field
yield dlt.mark.with_hints(
item=field,
hints=dlt.mark.make_hints(
table_name=table_name,
write_disposition="replace",
)
)

@dlt.source()
def my_source(
) -> Sequence[DltResource]:
return (
things
)

pipeline_name = "pipe_" + uniq_id()
pipeline = dlt.pipeline(pipeline_name=pipeline_name, destination="duckdb")
info = pipeline.run(my_source())
assert_load_info(info)
rows = load_tables_to_dicts(pipeline, "things_c", exclude_system_cols=True)
print(rows)
assert_data_table_counts(pipeline, {"things": 1, "things_a": 1, "things_b": 1, "things_c": 1 })
assert pipeline.last_trace.last_normalize_info.row_counts == {
"_dlt_pipeline_state": 1,
"things": 2,
"things_a": 2,
"things_b": 2,
"things_c": 2,
}
Loading