-
Notifications
You must be signed in to change notification settings - Fork 5
/
recalibration.py
107 lines (90 loc) · 4.1 KB
/
recalibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Code reused from: https://github.com/Jonathan-Pearce/calibration_library
import torch
from torch import nn
import metrics
import numpy as np
import scipy.optimize as opt
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self, model):
super(ModelWithTemperature, self).__init__()
self.model = model
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def forward(self, input):
logits = self.model(input)
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1))
return logits / temperature
# This function probably should live outside of this class, but whatever
def set_temperature(self, valid_loader, lr):
"""
Tune the tempearature of the model (using the validation set).
We're going to set it to optimize NLL.
valid_loader (DataLoader): validation set loader
"""
#self.cuda()
nll_criterion = nn.CrossEntropyLoss()
ece_criterion = metrics.ECELoss()
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
self.model = self.model.cuda()
with torch.no_grad():
for input, label in valid_loader:
#input = input
input = input.cuda()
logits = self.model(input)
logits_list.append(logits)
labels_list.append(label)
logits = torch.cat(logits_list)
labels = torch.cat(labels_list)
logits = logits.cpu()
labels = labels.cpu()
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion.loss(logits.numpy(),labels.numpy(),15)
print('Before temperature - NLL: %.8f, ECE: %f' % (before_temperature_nll, before_temperature_ece))
def ece_eval(tempearature):
loss = ece_criterion.loss(logits.numpy()/tempearature,labels.numpy(),15)
return loss
##########################################################################################################
temperature, ece, _ = opt.fmin_l_bfgs_b(ece_eval, np.array([1.0]), approx_grad=True, bounds=[(0.001,100)])
##########################################################################################################
print("temperature ====>>>>:", temperature[0])
print("ece ============>>>>:", ece)
return ece, temperature[0]
def get_metrics(self, valid_loader):
"""
valid_loader (DataLoader): validation set loader
"""
nll_criterion = nn.CrossEntropyLoss()
ece_criterion = metrics.ECELoss()
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
with torch.no_grad():
for input, label in valid_loader:
input = input
logits = self.model(input)
logits_list.append(logits)
labels_list.append(label)
logits = torch.cat(logits_list)
labels = torch.cat(labels_list)
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion.loss(self.temperature_scale(logits).detach().numpy(),labels.numpy(),15)
print('Optimal temperature: %.8f' % self.temperature.item())
print('After temperature - NLL: %.8f, ECE: %f' % (after_temperature_nll, after_temperature_ece))
#return self
return after_temperature_ece