Skip to content

Latest commit

 

History

History
335 lines (280 loc) · 7.83 KB

README.md

File metadata and controls

335 lines (280 loc) · 7.83 KB

Label Studio Converter

WebsiteDocsTwitterJoin Slack Community

Table of Contents

Introduction

Label Studio Format Converter helps you to encode labels into the format of your favorite machine learning library.

Examples

JSON

Running from the command line:

pip install -U label-studio-converter
python label-studio-converter export -i exported_tasks.json -c examples/sentiment_analysis/config.xml -o output_dir -f CSV

Running from python:

from label_studio_converter import Converter

c = Converter('examples/sentiment_analysis/config.xml')
c.convert_to_json('examples/sentiment_analysis/completions/', 'tmp/output.json')

Getting output file: tmp/output.json

[
  {
    "reviewText": "Good case, Excellent value.",
    "sentiment": "Positive"
  },
  {
    "reviewText": "What a waste of money and time!",
    "sentiment": "Negative"
  },
  {
    "reviewText": "The goose neck needs a little coaxing",
    "sentiment": "Neutral"
  }
]

Use cases: any tasks

CSV

Running from the command line:

python label_studio_converter/cli.py --input examples/sentiment_analysis/completions/ --config examples/sentiment_analysis/config.xml --output output_dir --format CSV --csv-separator $'\t'

Running from python:

from label_studio_converter import Converter

c = Converter('examples/sentiment_analysis/config.xml')
c.convert_to_csv('examples/sentiment_analysis/completions/', 'output_dir', sep='\t', header=True)

Getting output file tmp/output.tsv:

reviewText	sentiment
Good case, Excellent value.	Positive
What a waste of money and time!	Negative
The goose neck needs a little coaxing	Neutral

Use cases: any tasks

CoNLL 2003

Running from the command line:

python label_studio_converter/cli.py --input examples/named_entity/completions/ --config examples/named_entity/config.xml --output tmp/output.conll --format CONLL2003

Running from python:

from label_studio_converter import Converter

c = Converter('examples/named_entity/config.xml')
c.convert_to_conll2003('examples/named_entity/completions/', 'tmp/output.conll')

Getting output file tmp/output.conll

-DOCSTART- -X- O
Showers -X- _ O
continued -X- _ O
throughout -X- _ O
the -X- _ O
week -X- _ O
in -X- _ O
the -X- _ O
Bahia -X- _ B-Location
cocoa -X- _ O
zone, -X- _ O
...

Use cases: text tagging

COCO

Running from the command line:

python label_studio_converter/cli.py --input examples/image_bbox/completions/ --config examples/image_bbox/config.xml --output tmp/output.json --format COCO --image-dir tmp/images

Running from python:

from label_studio_converter import Converter

c = Converter('examples/image_bbox/config.xml')
c.convert_to_coco('examples/image_bbox/completions/', 'tmp/output.conll', output_image_dir='tmp/images')

Output images could be found in tmp/images

Getting output file tmp/output.json

{
  "images": [
    {
      "width": 800,
      "height": 501,
      "id": 0,
      "file_name": "tmp/images/62a623a0d3cef27a51d3689865e7b08a"
    }
  ],
  "categories": [
    {
      "id": 0,
      "name": "Planet"
    },
    {
      "id": 1,
      "name": "Moonwalker"
    }
  ],
  "annotations": [
    {
      "id": 0,
      "image_id": 0,
      "category_id": 0,
      "segmentation": [],
      "bbox": [
        299,
        6,
        377,
        260
      ],
      "ignore": 0,
      "iscrowd": 0,
      "area": 98020
    },
    {
      "id": 1,
      "image_id": 0,
      "category_id": 1,
      "segmentation": [],
      "bbox": [
        288,
        300,
        132,
        90
      ],
      "ignore": 0,
      "iscrowd": 0,
      "area": 11880
    }
  ],
  "info": {
    "year": 2019,
    "version": "1.0",
    "contributor": "Label Studio"
  }
}

Use cases: image object detection

Pascal VOC XML

Running from the command line:

python label_studio_converter/cli.py --input examples/image_bbox/completions/ --config examples/image_bbox/config.xml --output tmp/voc-annotations --format VOC --image-dir tmp/images

Running from python:

from label_studio_converter import Converter

c = Converter('examples/image_bbox/config.xml')
c.convert_to_voc('examples/image_bbox/completions/', 'tmp/output.conll', output_image_dir='tmp/images')

Output images can be found in tmp/images

Corresponding annotations could be found in tmp/voc-annotations/*.xml:

<?xml version="1.0" encoding="utf-8"?>
<annotation>
<folder>tmp/images</folder>
<filename>62a623a0d3cef27a51d3689865e7b08a</filename>
<source>
<database>MyDatabase</database>
<annotation>COCO2017</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>Label Studio</name>
</owner>
<size>
<width>800</width>
<height>501</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>Planet</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>299</xmin>
<ymin>6</ymin>
<xmax>676</xmax>
<ymax>266</ymax>
</bndbox>
</object>
<object>
<name>Moonwalker</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>288</xmin>
<ymin>300</ymin>
<xmax>420</xmax>
<ymax>390</ymax>
</bndbox>
</object>
</annotation>

Use cases: image object detection

YOLO to Label Studio converter

Usage:

label-studio-converter import yolo -i /yolo/root/directory -o ls-tasks.json

Help:

label-studio-converter import yolo -h

usage: label-studio-converter import yolo [-h] -i INPUT [-o OUTPUT]
                                          [--to-name TO_NAME]
                                          [--from-name FROM_NAME]
                                          [--out-type OUT_TYPE]
                                          [--image-root-url IMAGE_ROOT_URL]
                                          [--image-ext IMAGE_EXT]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        directory with YOLO where images, labels, notes.json
                        are located
  -o OUTPUT, --output OUTPUT
                        output file with Label Studio JSON tasks
  --to-name TO_NAME     object name from Label Studio labeling config
  --from-name FROM_NAME
                        control tag name from Label Studio labeling config
  --out-type OUT_TYPE   annotation type - "annotations" or "predictions"
  --image-root-url IMAGE_ROOT_URL
                        root URL path where images will be hosted, e.g.:
                        http://example.com/images or s3://my-bucket
  --image-ext IMAGE_EXT
                        image extension to search: .jpg, .png

YOLO export folder example:

yolo-folder
  images
   - 1.jpg
   - 2.jpg
   - ...
  labels
   - 1.txt
   - 2.txt

  classes.txt

classes.txt example

Airplane
Car

Contributing

We would love to get your help for creating converters to other models. Please feel free to create pull requests.

License

This software is licensed under the Apache 2.0 LICENSE © Heartex. 2020