forked from mckunkel/CLAS12_Proposal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Meson_Proposal.tex
150 lines (129 loc) · 5.41 KB
/
Meson_Proposal.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
\documentclass[11pt,a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{authblk}
\usepackage[english]{babel}
\usepackage{fancyhdr}
\usepackage{subfig}
\usepackage{floatrow}
\usepackage{float}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{slashed}
\usepackage{graphicx}
\usepackage{todonotes}
\usepackage[toc,page]{appendix}
\usepackage{hyperref}
\usepackage{placeins}
\usepackage{cleveref}
\usepackage{multirow}
\hypersetup{
colorlinks,
citecolor=purple,
filecolor=black,
linkcolor=blue,
urlcolor=black
}
\newcommand*\samethanks[1][\value{footnote}]{\footnotemark[#1]}
\title{Transition Form Factor of the $\eta^{\prime}$ Meson with CLAS12}
\date{}
\author[1]{M. C. Kunkel\thanks{Contact person, email: [email protected]}\thanks{Spokesperson}}
%\author[2]{M. J. Amaryan}
\author[3]{L. Guo}
\author[1]{C. Hanhart}
\author[4]{B. Kubis}
\author[1]{D. Lersch}
\author[1]{J. Ritman} %\samethanks
\author[1]{S. Schadmand}
\author[1]{X. Song}
\author[1]{A. Wirzba}
\affil[1]{Forschungszentrum J\"ulich, J\"ulich (Germany)}
%\affil[2]{Old Dominion University (U.S.A.)}
\affil[3]{Florida International University (U.S.A.)}
\affil[4]{University of Bonn (Germany)}
\renewcommand\Authands{, }
\fancypagestyle{firststyle}
{
\fancyhf{}
\renewcommand{\headrulewidth}{0pt}
\fancyhead[C]{\Large A CLAS Proposal for PAC44}
}
\newlength{\figwidth}
\setlength{\figwidth}{0.9\columnwidth}
\newlength{\qfigheight}
\setlength{\qfigheight}{0.25\textheight}
\newlength{\hfigheight}
\setlength{\hfigheight}{0.5\textheight}
\def\piz{\pi^{0}}
\def\pizT{$\pi^{0} \ $}
\def\pizDal{$\pi^{0} \rightarrow e^+e^- \gamma $}
\def\etaT{$\eta $}
\def\etaDal{$\eta \rightarrow e^+e^- \gamma $}
\def\omT{$\omega $}
\def\omDal{$\omega \rightarrow e^+e^- \piz $}
\def\etaP{\eta^{\prime}}
\def\etaTP{$\eta^{\prime} $}
\def\etaPDal{$\eta^{\prime} \rightarrow e^+e^- \gamma $}
\def\phiT{$\phi $}
\def\phiDal{$\phi \rightarrow e^+e^- \eta $}
\def\phiDalT{\phi \rightarrow e^+e^- \eta }
\def\epemT{$ e^+e^- $}
\def\pipiT{$\pi^+\pi^-$}
\def\epem{e^+e^-}
\def\phiPR{$ep\to e'p \phi \rightarrow p e^+e^- \eta$}
\def\etaPR{$ep\to e'p \etaP \rightarrow p e^+e^- \gamma$}
\def\grpath{figures}
\newcommand{\abbr}[1]{\textsc{\texttt{#1}}}
%\input{variables}
% Document starts
\begin{document}
\begin{titlepage}
\begin{center}
\LARGE{COVER SHEET} \newline \newline
\end{center}
\begin{flushleft}
Name: Transition Form Factor of the $\eta^{\prime}$ Meson with CLAS12 \newline \newline
Spokesperson: Michael C. Kunkel \newline \newline
Contact: [email protected] \newline \newline
Proposed Run-Time: 80 Days \newline \newline
Proposed RunGroup: A \newline \newline
Equipment: Standard CLAS \newline \newline
Trigger: Standard CLAS Electron Trigger \newline \newline
Settings: 75\% Torus field \newline \newline
Similar Proposals:
\begin{itemize}
\item E12-11-005: Meson spectroscopy with low Q2 electron scattering in CLAS12
\item E12-06-108: Hard Exclusive Electroproduction of pi0 and eta with CLAS12
\item E12-12-001: Timelike Compton Scattering and J/psi photoproduction on the proton in e+e- pair production with CLAS12 at 11 GeV
\end{itemize}
Impact of Run-Group:
\end{flushleft}
\end{titlepage}
\maketitle
\thispagestyle{firststyle}
\begin{abstract}
Dalitz decays are radiative decays in which the photon is virtual and subsequently produces an electron positron pair, $P\rightarrow l^+l^-X$. Such decays serve as an important tool used to reveal the internal structure of hadrons and the interaction mechanisms between photons and hadrons. Furthermore, assuming point-like particles, the electromagnetic interaction is calculable within QED by the Kroll-Wada formula. Transition form factors quantify modifications of the point-like photon-meson vertex due to the transitions and interactions of the meson. The transition form factor can be characterized as $\left| F(q^2)\right|$, where $q^2$ is the square of the invariant mass of the lepton pair, and can be determined by comparing QED predictions to the experimentally measured rate. The goal of of this analysis is to determine the transition form factor for the $\etaP$ meson. This measurement will aide in limiting the largest uncertainty of the Standard Model prediction for hadronic quantum corrections in the muon anomaly.
\\
\indent From previous CLAS analyses using the g12 data set, it was shown that measurements of the time-like transition form factor were achievable, but without the statistical precision needed to be competitive. Therefore, we propose to use CLAS12 to focus on the dilepton decay channels from the reactions $ep\rightarrow e^{\prime}p\etaP$, where $\etaP \to e^+e^- \gamma$. Preliminary studies using the CLAS12 simulation suite have shown that a beam time of 80 days, at full luminosity, will accumulate a data sample at least one order of magnitude larger in statistics than the most current $\etaP \to e^+e^- \gamma$ measurement.
\end{abstract}
\tableofcontents
\input{Intro}
\input{Kinematics}
\input{Current_Measurement}
\input{Measurement}
%\input{Manpower}
\input{BeamTime_Request}
%\input{Summary}
\newpage
\clearpage
\phantomsection
\addcontentsline{toc}{section}{BIBLIOGRAPHY}
\bibliographystyle{unsrt}
\bibliography{Meson}
\newpage
\addcontentsline{toc}{section}{APPENDICES}
\let\oldaddtocontents\addtocontents \renewcommand{\addtocontents}[2]{}
\begin{appendices}
\input{Appendix}
\end{appendices}
\end{document}