-
Notifications
You must be signed in to change notification settings - Fork 52
/
read_emg.py
316 lines (264 loc) · 13.2 KB
/
read_emg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import re
import os
import numpy as np
import random
import scipy
import json
import copy
import sys
import pickle
import string
import logging
from functools import lru_cache
from copy import copy
import torch
from data_utils import load_audio, get_emg_features, FeatureNormalizer, phoneme_inventory, read_phonemes, TextTransform
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_list('remove_channels', [], 'channels to remove')
flags.DEFINE_list('silent_data_directories', ['./emg_data/silent_parallel_data'], 'silent data locations')
flags.DEFINE_list('voiced_data_directories', ['./emg_data/voiced_parallel_data','./emg_data/nonparallel_data'], 'voiced data locations')
flags.DEFINE_string('testset_file', 'testset_largedev.json', 'file with testset indices')
flags.DEFINE_string('text_align_directory', 'text_alignments', 'directory with alignment files')
def remove_drift(signal, fs):
b, a = scipy.signal.butter(3, 2, 'highpass', fs=fs)
return scipy.signal.filtfilt(b, a, signal)
def notch(signal, freq, sample_frequency):
b, a = scipy.signal.iirnotch(freq, 30, sample_frequency)
return scipy.signal.filtfilt(b, a, signal)
def notch_harmonics(signal, freq, sample_frequency):
for harmonic in range(1,8):
signal = notch(signal, freq*harmonic, sample_frequency)
return signal
def subsample(signal, new_freq, old_freq):
times = np.arange(len(signal))/old_freq
sample_times = np.arange(0, times[-1], 1/new_freq)
result = np.interp(sample_times, times, signal)
return result
def apply_to_all(function, signal_array, *args, **kwargs):
results = []
for i in range(signal_array.shape[1]):
results.append(function(signal_array[:,i], *args, **kwargs))
return np.stack(results, 1)
def load_utterance(base_dir, index, limit_length=False, debug=False, text_align_directory=None):
index = int(index)
raw_emg = np.load(os.path.join(base_dir, f'{index}_emg.npy'))
before = os.path.join(base_dir, f'{index-1}_emg.npy')
after = os.path.join(base_dir, f'{index+1}_emg.npy')
if os.path.exists(before):
raw_emg_before = np.load(before)
else:
raw_emg_before = np.zeros([0,raw_emg.shape[1]])
if os.path.exists(after):
raw_emg_after = np.load(after)
else:
raw_emg_after = np.zeros([0,raw_emg.shape[1]])
x = np.concatenate([raw_emg_before, raw_emg, raw_emg_after], 0)
x = apply_to_all(notch_harmonics, x, 60, 1000)
x = apply_to_all(remove_drift, x, 1000)
x = x[raw_emg_before.shape[0]:x.shape[0]-raw_emg_after.shape[0],:]
emg_orig = apply_to_all(subsample, x, 689.06, 1000)
x = apply_to_all(subsample, x, 516.79, 1000)
emg = x
for c in FLAGS.remove_channels:
emg[:,int(c)] = 0
emg_orig[:,int(c)] = 0
emg_features = get_emg_features(emg)
mfccs = load_audio(os.path.join(base_dir, f'{index}_audio_clean.flac'),
max_frames=min(emg_features.shape[0], 800 if limit_length else float('inf')))
if emg_features.shape[0] > mfccs.shape[0]:
emg_features = emg_features[:mfccs.shape[0],:]
assert emg_features.shape[0] == mfccs.shape[0]
emg = emg[6:6+6*emg_features.shape[0],:]
emg_orig = emg_orig[8:8+8*emg_features.shape[0],:]
assert emg.shape[0] == emg_features.shape[0]*6
with open(os.path.join(base_dir, f'{index}_info.json')) as f:
info = json.load(f)
sess = os.path.basename(base_dir)
tg_fname = f'{text_align_directory}/{sess}/{sess}_{index}_audio.TextGrid'
if os.path.exists(tg_fname):
phonemes = read_phonemes(tg_fname, mfccs.shape[0])
else:
phonemes = np.zeros(mfccs.shape[0], dtype=np.int64)+phoneme_inventory.index('sil')
return mfccs, emg_features, info['text'], (info['book'],info['sentence_index']), phonemes, emg_orig.astype(np.float32)
class EMGDirectory(object):
def __init__(self, session_index, directory, silent, exclude_from_testset=False):
self.session_index = session_index
self.directory = directory
self.silent = silent
self.exclude_from_testset = exclude_from_testset
def __lt__(self, other):
return self.session_index < other.session_index
def __repr__(self):
return self.directory
class SizeAwareSampler(torch.utils.data.Sampler):
def __init__(self, emg_dataset, max_len):
self.dataset = emg_dataset
self.max_len = max_len
def __iter__(self):
indices = list(range(len(self.dataset)))
random.shuffle(indices)
batch = []
batch_length = 0
for idx in indices:
directory_info, file_idx = self.dataset.example_indices[idx]
with open(os.path.join(directory_info.directory, f'{file_idx}_info.json')) as f:
info = json.load(f)
if not np.any([l in string.ascii_letters for l in info['text']]):
continue
length = sum([emg_len for emg_len, _, _ in info['chunks']])
if length > self.max_len:
logging.warning(f'Warning: example {idx} cannot fit within desired batch length')
if length + batch_length > self.max_len:
yield batch
batch = []
batch_length = 0
batch.append(idx)
batch_length += length
# dropping last incomplete batch
class EMGDataset(torch.utils.data.Dataset):
def __init__(self, base_dir=None, limit_length=False, dev=False, test=False, no_testset=False, no_normalizers=False):
self.text_align_directory = FLAGS.text_align_directory
if no_testset:
devset = []
testset = []
else:
with open(FLAGS.testset_file) as f:
testset_json = json.load(f)
devset = testset_json['dev']
testset = testset_json['test']
directories = []
if base_dir is not None:
directories.append(EMGDirectory(0, base_dir, False))
else:
for sd in FLAGS.silent_data_directories:
for session_dir in sorted(os.listdir(sd)):
directories.append(EMGDirectory(len(directories), os.path.join(sd, session_dir), True))
has_silent = len(FLAGS.silent_data_directories) > 0
for vd in FLAGS.voiced_data_directories:
for session_dir in sorted(os.listdir(vd)):
directories.append(EMGDirectory(len(directories), os.path.join(vd, session_dir), False, exclude_from_testset=has_silent))
self.example_indices = []
self.voiced_data_locations = {} # map from book/sentence_index to directory_info/index
for directory_info in directories:
for fname in os.listdir(directory_info.directory):
m = re.match(r'(\d+)_info.json', fname)
if m is not None:
idx_str = m.group(1)
with open(os.path.join(directory_info.directory, fname)) as f:
info = json.load(f)
if info['sentence_index'] >= 0: # boundary clips of silence are marked -1
location_in_testset = [info['book'], info['sentence_index']] in testset
location_in_devset = [info['book'], info['sentence_index']] in devset
if (test and location_in_testset and not directory_info.exclude_from_testset) \
or (dev and location_in_devset and not directory_info.exclude_from_testset) \
or (not test and not dev and not location_in_testset and not location_in_devset):
self.example_indices.append((directory_info,int(idx_str)))
if not directory_info.silent:
location = (info['book'], info['sentence_index'])
self.voiced_data_locations[location] = (directory_info,int(idx_str))
self.example_indices.sort()
random.seed(0)
random.shuffle(self.example_indices)
self.no_normalizers = no_normalizers
if not self.no_normalizers:
self.mfcc_norm, self.emg_norm = pickle.load(open(FLAGS.normalizers_file,'rb'))
sample_mfccs, sample_emg, _, _, _, _ = load_utterance(self.example_indices[0][0].directory, self.example_indices[0][1])
self.num_speech_features = sample_mfccs.shape[1]
self.num_features = sample_emg.shape[1]
self.limit_length = limit_length
self.num_sessions = len(directories)
self.text_transform = TextTransform()
def silent_subset(self):
result = copy(self)
silent_indices = []
for example in self.example_indices:
if example[0].silent:
silent_indices.append(example)
result.example_indices = silent_indices
return result
def subset(self, fraction):
result = copy(self)
result.example_indices = self.example_indices[:int(fraction*len(self.example_indices))]
return result
def __len__(self):
return len(self.example_indices)
@lru_cache(maxsize=None)
def __getitem__(self, i):
directory_info, idx = self.example_indices[i]
mfccs, emg, text, book_location, phonemes, raw_emg = load_utterance(directory_info.directory, idx, self.limit_length, text_align_directory=self.text_align_directory)
raw_emg = raw_emg / 20
raw_emg = 50*np.tanh(raw_emg/50.)
if not self.no_normalizers:
mfccs = self.mfcc_norm.normalize(mfccs)
emg = self.emg_norm.normalize(emg)
emg = 8*np.tanh(emg/8.)
session_ids = np.full(emg.shape[0], directory_info.session_index, dtype=np.int64)
audio_file = f'{directory_info.directory}/{idx}_audio_clean.flac'
text_int = np.array(self.text_transform.text_to_int(text), dtype=np.int64)
result = {'audio_features':torch.from_numpy(mfccs).pin_memory(), 'emg':torch.from_numpy(emg).pin_memory(), 'text':text, 'text_int': torch.from_numpy(text_int).pin_memory(), 'file_label':idx, 'session_ids':torch.from_numpy(session_ids).pin_memory(), 'book_location':book_location, 'silent':directory_info.silent, 'raw_emg':torch.from_numpy(raw_emg).pin_memory()}
if directory_info.silent:
voiced_directory, voiced_idx = self.voiced_data_locations[book_location]
voiced_mfccs, voiced_emg, _, _, phonemes, _ = load_utterance(voiced_directory.directory, voiced_idx, False, text_align_directory=self.text_align_directory)
if not self.no_normalizers:
voiced_mfccs = self.mfcc_norm.normalize(voiced_mfccs)
voiced_emg = self.emg_norm.normalize(voiced_emg)
voiced_emg = 8*np.tanh(voiced_emg/8.)
result['parallel_voiced_audio_features'] = torch.from_numpy(voiced_mfccs).pin_memory()
result['parallel_voiced_emg'] = torch.from_numpy(voiced_emg).pin_memory()
audio_file = f'{voiced_directory.directory}/{voiced_idx}_audio_clean.flac'
result['phonemes'] = torch.from_numpy(phonemes).pin_memory() # either from this example if vocalized or aligned example if silent
result['audio_file'] = audio_file
return result
@staticmethod
def collate_raw(batch):
batch_size = len(batch)
audio_features = []
audio_feature_lengths = []
parallel_emg = []
for ex in batch:
if ex['silent']:
audio_features.append(ex['parallel_voiced_audio_features'])
audio_feature_lengths.append(ex['parallel_voiced_audio_features'].shape[0])
parallel_emg.append(ex['parallel_voiced_emg'])
else:
audio_features.append(ex['audio_features'])
audio_feature_lengths.append(ex['audio_features'].shape[0])
parallel_emg.append(np.zeros(1))
phonemes = [ex['phonemes'] for ex in batch]
emg = [ex['emg'] for ex in batch]
raw_emg = [ex['raw_emg'] for ex in batch]
session_ids = [ex['session_ids'] for ex in batch]
lengths = [ex['emg'].shape[0] for ex in batch]
silent = [ex['silent'] for ex in batch]
text_ints = [ex['text_int'] for ex in batch]
text_lengths = [ex['text_int'].shape[0] for ex in batch]
result = {'audio_features':audio_features,
'audio_feature_lengths':audio_feature_lengths,
'emg':emg,
'raw_emg':raw_emg,
'parallel_voiced_emg':parallel_emg,
'phonemes':phonemes,
'session_ids':session_ids,
'lengths':lengths,
'silent':silent,
'text_int':text_ints,
'text_int_lengths':text_lengths}
return result
def make_normalizers():
dataset = EMGDataset(no_normalizers=True)
mfcc_samples = []
emg_samples = []
for d in dataset:
mfcc_samples.append(d['audio_features'])
emg_samples.append(d['emg'])
if len(emg_samples) > 50:
break
mfcc_norm = FeatureNormalizer(mfcc_samples, share_scale=True)
emg_norm = FeatureNormalizer(emg_samples, share_scale=False)
pickle.dump((mfcc_norm, emg_norm), open(FLAGS.normalizers_file, 'wb'))
if __name__ == '__main__':
FLAGS(sys.argv)
d = EMGDataset()
for i in range(1000):
d[i]