forked from facebookresearch/imu2clip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdownstream.py
182 lines (155 loc) · 6.27 KB
/
downstream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
# LICENSE file in the root directory of this source tree.
import random
import json
from datetime import datetime
import torch
import pytorch_lightning as pl
from lib.imu_models import MW2StackRNNPooling
from lib.classification_head import Head, ZeroShotClassification
from lib.clip_model import ClipPLModel
from lib.train_modules import ClassificationModule
from lib.data_modules import SupervisedEgo4dDataModule
from argparse import ArgumentParser
import yaml
def train_downstream(configs):
random.seed(1234)
# Load Model Parameters
model_hparams = configs.get("model_hparams", {})
model_name = model_hparams.get("model_name")
model_suffix = model_hparams.get("model_suffix", "")
imu_encoder_name = model_hparams.get("imu_encoder_name")
window_sec = model_hparams.get("window_sec")
target_fps = model_hparams.get("target_fps")
# Params for the trainer
train_hparams = configs.get("train_hparams", {})
list_modalities = train_hparams.get("list_modalities")
limit_train_batches = train_hparams.get("limit_train_batches")
batch_size = train_hparams.get("batch_size")
max_epochs = train_hparams.get("max_epochs")
gpus = train_hparams.get("gpus")
num_workers_for_dm = train_hparams.get("num_workers_for_dm")
test_only = train_hparams.get("test_only")
zero_shot = train_hparams.get("zero_shot")
trainer_strategy = train_hparams.get("trainer_strategy")
freeze_modality = train_hparams.get("freeze_modality")
path_load_pretrained_imu_encoder = train_hparams.get(
"path_load_pretrained_imu_encoder"
)
# Paths, etc.
path_root_save_dir = f"./saved/{model_name}"
list_modalities.sort()
str_modality_initials = "".join([m[0] for m in list_modalities])
model_identifier = (
f"{model_name}_{str_modality_initials}_ie_{imu_encoder_name}_w_{window_sec}"
)
if model_suffix != "":
model_identifier += "_" + model_suffix
else:
model_identifier += "_%d" % (int(datetime.now().timestamp() % 10000))
path_save_checkpoint = f"{path_root_save_dir}/{model_identifier}.ckpt"
result_path = f"./results/{model_identifier}"
# Initialize the data module
dataset_params = {
"window_sec": window_sec,
"target_fps": target_fps,
"list_modalities": list_modalities,
}
datamodule = SupervisedEgo4dDataModule(
batch_size=batch_size,
num_workers=num_workers_for_dm,
pin_memory=True,
drop_last=True,
dataset_params=dataset_params,
)
# get embeddings from label texts
text_encoder = ClipPLModel(freeze=True)
label_texts = list(datamodule.lable_dict.keys())
encoder = MW2StackRNNPooling(size_embeddings=512)
if path_load_pretrained_imu_encoder:
# Load the parameters
encoder.load_state_dict(torch.load(path_load_pretrained_imu_encoder))
print("loaded pretrained imu model")
if freeze_modality:
encoder.eval()
encoder.freeze()
if zero_shot:
# Initialize the training module for the classification model
model = ClassificationModule(
model=ZeroShotClassification(
encoder=encoder, text_encoder=text_encoder, label_texts=label_texts
)
)
else:
# Initialize the training module for the classification model
model = ClassificationModule(
model=Head(
encoder=encoder, size_embeddings=512, n_classes=datamodule.n_classes
)
)
# Checkpoint settings
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor="val_loss",
dirpath=path_root_save_dir,
filename=f"{model_identifier}" + "-{epoch:02d}-{val_loss:.2f}",
save_top_k=3,
mode="min",
)
# Initialize Trainer
trainer = pl.Trainer(
max_epochs=max_epochs,
gpus=gpus,
limit_train_batches=limit_train_batches,
enable_checkpointing=True,
callbacks=[checkpoint_callback],
)
if not test_only:
# Start training
print("Start training ...")
trainer.fit(model, datamodule=datamodule)
# Save the checkpoint & encoder to a temp folder
print("Saving the checkpoint ...")
trainer.save_checkpoint(path_save_checkpoint)
else:
print("Skipping training ...")
print("Start testing ...")
metrics = trainer.test(model, datamodule, ckpt_path=None if test_only else "best")
result_path += f"_results.json"
with open(result_path, "w") as f:
json.dump({"metrics": metrics, "configs": configs}, f, indent=4)
return metrics
if __name__ == "__main__":
parser = ArgumentParser()
# Main parameters are defined in a YAML file
parser.add_argument(
"--path_configs", default="./configs/train_downstream/default.yaml"
)
# Override-params for a quick resource allocation adjustment or for debugging purposes
# If it is *not* None, the values in args override the values in the YAML file.
parser.add_argument("--gpus", default=None)
parser.add_argument("--max_epochs", default=None)
parser.add_argument("--num_workers_for_dm", default=None)
parser.add_argument("--test_only", default=None)
parser.add_argument("--zero_shot", default=None)
parser.add_argument("--path_load_pretrained_imu_encoder", default=None)
args = parser.parse_args()
# Load the YAML file
with open(args.path_configs) as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
# Override the configs with args, if requested
if args.gpus is not None:
configs["train_hparams"]["gpus"] = int(args.gpus)
if args.num_workers_for_dm is not None:
configs["train_hparams"]["num_workers_for_dm"] = int(args.num_workers_for_dm)
if args.max_epochs is not None:
configs["train_hparams"]["max_epochs"] = int(args.max_epochs)
if args.test_only is not None:
configs["train_hparams"]["test_only"] = eval(args.test_only)
if args.zero_shot is not None:
configs["train_hparams"]["zero_shot"] = eval(args.zero_shot)
if args.path_load_pretrained_imu_encoder is not None:
configs["train_hparams"][
"path_load_pretrained_imu_encoder"
] = args.path_load_pretrained_imu_encoder
print(configs)
train_downstream(configs)