forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeautiful_mnist.py
44 lines (37 loc) · 1.62 KB
/
beautiful_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# model based off https://towardsdatascience.com/going-beyond-99-mnist-handwritten-digits-recognition-cfff96337392
from typing import List, Callable
from tinygrad import Tensor, TinyJit, nn, GlobalCounters
from extra.datasets import fetch_mnist
from tqdm import trange
class Model:
def __init__(self):
self.layers: List[Callable[[Tensor], Tensor]] = [
nn.Conv2d(1, 32, 5), Tensor.relu,
nn.Conv2d(32, 32, 5), Tensor.relu,
nn.BatchNorm2d(32), Tensor.max_pool2d,
nn.Conv2d(32, 64, 3), Tensor.relu,
nn.Conv2d(64, 64, 3), Tensor.relu,
nn.BatchNorm2d(64), Tensor.max_pool2d,
lambda x: x.flatten(1), nn.Linear(576, 10)]
def __call__(self, x:Tensor) -> Tensor: return x.sequential(self.layers)
if __name__ == "__main__":
X_train, Y_train, X_test, Y_test = fetch_mnist(tensors=True)
model = Model()
opt = nn.optim.Adam(nn.state.get_parameters(model))
@TinyJit
def train_step() -> Tensor:
with Tensor.train():
opt.zero_grad()
samples = Tensor.randint(512, high=X_train.shape[0])
# TODO: this "gather" of samples is very slow. will be under 5s when this is fixed
loss = model(X_train[samples]).sparse_categorical_crossentropy(Y_train[samples]).backward()
opt.step()
return loss
@TinyJit
def get_test_acc() -> Tensor: return (model(X_test).argmax(axis=1) == Y_test).mean()*100
test_acc = float('nan')
for i in (t:=trange(70)):
GlobalCounters.reset() # NOTE: this makes it nice for DEBUG=2 timing
loss = train_step()
if i%10 == 9: test_acc = get_test_acc().item()
t.set_description(f"loss: {loss.item():6.2f} test_accuracy: {test_acc:5.2f}%")