diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 000000000..e69de29bb diff --git a/404.html b/404.html new file mode 100644 index 000000000..d8407e1f1 --- /dev/null +++ b/404.html @@ -0,0 +1,1440 @@ + + + + + + + + + + + + + + + + + + + OpsML + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+
+ +
+ + + + + + +
+ + +
+ +
+ + + + + + +
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+
+ + + + + +
+
+
+ + + +
+
+ +

404 - Not found

+ +
+
+ + + +
+ + + +
+ + + +
+
+
+
+ + + + + + + + + + + + + + \ No newline at end of file diff --git a/api/index.html b/api/index.html new file mode 100644 index 000000000..89288c38d --- /dev/null +++ b/api/index.html @@ -0,0 +1,241 @@ + + + + + + + Module List – pdoc 14.4.0 + + + + + + + + + + +
+ + pdoc + + +
+
+ + \ No newline at end of file diff --git a/api/opsml/cards/audit.html b/api/opsml/cards/audit.html new file mode 100644 index 000000000..0847b6e76 --- /dev/null +++ b/api/opsml/cards/audit.html @@ -0,0 +1,1999 @@ + + + + + + + opsml.cards.audit API documentation + + + + + + + + + +
+
+

+opsml.cards.audit

+ + + + + + +
  1# mypy: disable-error-code="call-arg"
+  2# Copyright (c) Shipt, Inc.
+  3# This source code is licensed under the MIT license found in the
+  4# LICENSE file in the root directory of this source tree.
+  5
+  6import os
+  7from typing import Any, Dict, List, Optional, cast
+  8
+  9import yaml
+ 10from pydantic import BaseModel, ConfigDict, SerializeAsAny, model_validator
+ 11from rich.console import Console
+ 12from rich.table import Table
+ 13
+ 14from opsml.cards.base import ArtifactCard
+ 15from opsml.helpers.logging import ArtifactLogger
+ 16from opsml.types import (
+ 17    AuditCardMetadata,
+ 18    AuditSectionType,
+ 19    CardType,
+ 20    CardVersion,
+ 21    Comment,
+ 22)
+ 23
+ 24logger = ArtifactLogger.get_logger()
+ 25DIR_PATH = os.path.dirname(__file__)
+ 26AUDIT_TEMPLATE_PATH = os.path.join(DIR_PATH, "templates/audit_card.yaml")
+ 27
+ 28
+ 29# create new python class that inherits from ArtifactCard and is called AuditCard
+ 30class Question(BaseModel):
+ 31    question: str
+ 32    purpose: str
+ 33    response: Optional[str] = None
+ 34
+ 35    model_config = ConfigDict(frozen=False)
+ 36
+ 37
+ 38class AuditSections(BaseModel):
+ 39    business_understanding: Dict[int, SerializeAsAny[Question]]
+ 40    data_understanding: Dict[int, SerializeAsAny[Question]]
+ 41    data_preparation: Dict[int, SerializeAsAny[Question]]
+ 42    modeling: Dict[int, SerializeAsAny[Question]]
+ 43    evaluation: Dict[int, SerializeAsAny[Question]]
+ 44    deployment_ops: Dict[int, SerializeAsAny[Question]]
+ 45    misc: Dict[int, SerializeAsAny[Question]]
+ 46
+ 47    @model_validator(mode="before")
+ 48    @classmethod
+ 49    def load_sections(cls, values: Dict[str, Any]) -> Dict[str, Any]:
+ 50        """Loads audit sections from template if no values are provided"""
+ 51
+ 52        if any(values):
+ 53            return values
+ 54        return cls.load_yaml_template()
+ 55
+ 56    @staticmethod
+ 57    def load_yaml_template() -> AuditSectionType:
+ 58        with open(AUDIT_TEMPLATE_PATH, "r", encoding="utf-8") as stream:
+ 59            try:
+ 60                audit_sections = cast(AuditSectionType, yaml.safe_load(stream))
+ 61            except yaml.YAMLError as exc:
+ 62                raise exc
+ 63        return audit_sections
+ 64
+ 65
+ 66class AuditQuestionTable:
+ 67    """Helper class for creating a rich table to be used with an AuditCard"""
+ 68
+ 69    def __init__(self) -> None:
+ 70        self.table = self.create_table()
+ 71
+ 72    def create_table(self) -> Table:
+ 73        """Create Rich table of Audit"""
+ 74        table = Table(title="Audit Questions")
+ 75        table.add_column("Section", no_wrap=True)
+ 76        table.add_column("Number")
+ 77        table.add_column("Question")
+ 78        table.add_column("Answered", justify="right")
+ 79        return table
+ 80
+ 81    def add_row(self, section_name: str, nbr: int, question: Question) -> None:
+ 82        """Add row to table"""
+ 83        self.table.add_row(
+ 84            section_name,
+ 85            str(nbr),
+ 86            question.question,
+ 87            "Yes" if question.response else "No",
+ 88        )
+ 89
+ 90    def add_section(self) -> None:
+ 91        """Add section"""
+ 92        self.table.add_section()
+ 93
+ 94    def print_table(self) -> None:
+ 95        """Print table"""
+ 96        console = Console()
+ 97        console.print(self.table)
+ 98
+ 99
+100class AuditCard(ArtifactCard):
+101    """
+102    Creates an AuditCard for storing audit-related information about a
+103    machine learning project.
+104
+105    Args:
+106        name:
+107            What to name the AuditCard
+108        repository:
+109            Repository that this card is associated with
+110        contact:
+111            Contact to associate with the AuditCard
+112        info:
+113            `CardInfo` object containing additional metadata. If provided, it will override any
+114            values provided for `name`, `repository`, `contact`, and `version`.
+115
+116            Name, repository, and contact are required arguments for all cards. They can be provided
+117            directly or through a `CardInfo` object.
+118
+119        audit:
+120            AuditSections object containing the audit questions and responses
+121        approved:
+122            Whether the audit has been approved
+123    """
+124
+125    audit: AuditSections = AuditSections()
+126    approved: bool = False
+127    comments: List[SerializeAsAny[Comment]] = []
+128    metadata: AuditCardMetadata = AuditCardMetadata()
+129
+130    def add_comment(self, name: str, comment: str) -> None:
+131        """Adds comment to AuditCard
+132
+133        Args:
+134            name:
+135                Name of person making comment
+136            comment:
+137                Comment to add
+138
+139        """
+140        comment_model = Comment(name=name, comment=comment)
+141
+142        if any(comment_model == _comment for _comment in self.comments):
+143            return  # Exit early if comment already exists
+144
+145        self.comments.insert(0, comment_model)
+146
+147    def create_registry_record(self) -> Dict[str, Any]:
+148        """Creates a registry record for a audit"""
+149
+150        return self.model_dump()
+151
+152    def add_card(self, card: ArtifactCard) -> None:
+153        """
+154        Adds a card uid to the appropriate card uid list for tracking
+155
+156        Args:
+157            card:
+158                Card to add to AuditCard
+159        """
+160        if card.uid is None:
+161            raise ValueError(
+162                f"""Card uid must be provided for {card.card_type}.
+163                Uid must be registered prior to adding to AuditCard."""
+164            )
+165
+166        if card.card_type.lower() not in [
+167            CardType.DATACARD.value,
+168            CardType.MODELCARD.value,
+169            CardType.RUNCARD.value,
+170        ]:
+171            raise ValueError(f"Invalid card type {card.card_type}. Valid card types are: data, model or run")
+172
+173        card_list = getattr(self.metadata, f"{card.card_type.lower()}cards")
+174        card_list.append(CardVersion(name=card.name, version=card.version, card_type=card.card_type))
+175
+176    @property
+177    def business(self) -> Dict[int, Question]:
+178        return self.audit.business_understanding
+179
+180    @property
+181    def data_understanding(self) -> Dict[int, Question]:
+182        return self.audit.data_understanding
+183
+184    @property
+185    def data_preparation(self) -> Dict[int, Question]:
+186        return self.audit.data_preparation
+187
+188    @property
+189    def modeling(self) -> Dict[int, Question]:
+190        return self.audit.modeling
+191
+192    @property
+193    def evaluation(self) -> Dict[int, Question]:
+194        return self.audit.evaluation
+195
+196    @property
+197    def deployment(self) -> Dict[int, Question]:
+198        return self.audit.deployment_ops
+199
+200    @property
+201    def misc(self) -> Dict[int, Question]:
+202        return self.audit.misc
+203
+204    def list_questions(self, section: Optional[str] = None) -> None:
+205        """Lists all Audit Card questions in a rich table
+206
+207        Args:
+208            section:
+209                Section name. Can be one of: business, data_understanding, data_preparation, modeling,
+210                evaluation or misc
+211        """
+212
+213        table = AuditQuestionTable()
+214
+215        if section is not None:
+216            questions = self._get_section(section)
+217            for nbr, question in questions.items():
+218                table.add_row(section_name=section, nbr=nbr, question=question)
+219
+220        else:
+221            for _section in self.audit:
+222                section_name, questions = _section
+223                for nbr, question in questions.items():
+224                    table.add_row(section_name=section_name, nbr=nbr, question=question)
+225
+226                table.add_section()
+227
+228        table.print_table()
+229
+230    def _get_section(self, section: str) -> Dict[int, Question]:
+231        """Gets a section from the audit card
+232
+233        Args:
+234            section:
+235                Section name. Can be one of: business, data_understanding, data_preparation, modeling,
+236                evaluation or misc
+237        Returns:
+238            Dict[int, Question]: A dictionary of questions
+239        """
+240
+241        if not hasattr(self, section):
+242            raise ValueError(
+243                f"""Section {section} not found. Accepted values are: business, data_understanding,
+244                data_preparation, modeling, evaluation, deployment or misc"""
+245            )
+246        _section: Dict[int, Question] = getattr(self, section)
+247        return _section
+248
+249    def answer_question(self, section: str, question_nbr: int, response: str) -> None:
+250        """Answers a question in a section
+251
+252        Args:
+253            section:
+254                Section name. Can be one of: business, data_understanding, data_preparation, modeling, evaluation,
+255                deployment or misc
+256            question_nbr:
+257                Question number
+258            response:
+259                Response to the question
+260
+261        """
+262
+263        _section: Dict[int, Question] = self._get_section(section)
+264
+265        try:
+266            _section[question_nbr].response = response
+267        except KeyError as exc:
+268            logger.error("Question {} not found in section {}", question_nbr, section)
+269            raise exc
+270
+271    @property
+272    def card_type(self) -> str:
+273        return CardType.AUDITCARD.value
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+
+ DIR_PATH = +'/home/steven_forrester/github/opsml/opsml/cards' + + +
+ + + + +
+
+
+ AUDIT_TEMPLATE_PATH = +'/home/steven_forrester/github/opsml/opsml/cards/templates/audit_card.yaml' + + +
+ + + + +
+
+ +
+ + class + Question(pydantic.main.BaseModel): + + + +
+ +
31class Question(BaseModel):
+32    question: str
+33    purpose: str
+34    response: Optional[str] = None
+35
+36    model_config = ConfigDict(frozen=False)
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ question: str + + +
+ + + + +
+
+
+ purpose: str + + +
+ + + + +
+
+
+ response: Optional[str] + + +
+ + + + +
+
+
+ model_config = +{'frozen': False} + + +
+ + + + +
+
+
+ model_fields = + + {'question': FieldInfo(annotation=str, required=True), 'purpose': FieldInfo(annotation=str, required=True), 'response': FieldInfo(annotation=Union[str, NoneType], required=False)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + AuditSections(pydantic.main.BaseModel): + + + +
+ +
39class AuditSections(BaseModel):
+40    business_understanding: Dict[int, SerializeAsAny[Question]]
+41    data_understanding: Dict[int, SerializeAsAny[Question]]
+42    data_preparation: Dict[int, SerializeAsAny[Question]]
+43    modeling: Dict[int, SerializeAsAny[Question]]
+44    evaluation: Dict[int, SerializeAsAny[Question]]
+45    deployment_ops: Dict[int, SerializeAsAny[Question]]
+46    misc: Dict[int, SerializeAsAny[Question]]
+47
+48    @model_validator(mode="before")
+49    @classmethod
+50    def load_sections(cls, values: Dict[str, Any]) -> Dict[str, Any]:
+51        """Loads audit sections from template if no values are provided"""
+52
+53        if any(values):
+54            return values
+55        return cls.load_yaml_template()
+56
+57    @staticmethod
+58    def load_yaml_template() -> AuditSectionType:
+59        with open(AUDIT_TEMPLATE_PATH, "r", encoding="utf-8") as stream:
+60            try:
+61                audit_sections = cast(AuditSectionType, yaml.safe_load(stream))
+62            except yaml.YAMLError as exc:
+63                raise exc
+64        return audit_sections
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ business_understanding: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+
+ data_understanding: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+
+ data_preparation: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+
+ modeling: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+
+ evaluation: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+
+ deployment_ops: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+
+ misc: Dict[int, Annotated[Question, SerializeAsAny()]] + + +
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + load_sections(cls, values: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
48    @model_validator(mode="before")
+49    @classmethod
+50    def load_sections(cls, values: Dict[str, Any]) -> Dict[str, Any]:
+51        """Loads audit sections from template if no values are provided"""
+52
+53        if any(values):
+54            return values
+55        return cls.load_yaml_template()
+
+ + +

Loads audit sections from template if no values are provided

+
+ + +
+
+ +
+
@staticmethod
+ + def + load_yaml_template() -> Dict[str, Dict[int, Dict[str, str]]]: + + + +
+ +
57    @staticmethod
+58    def load_yaml_template() -> AuditSectionType:
+59        with open(AUDIT_TEMPLATE_PATH, "r", encoding="utf-8") as stream:
+60            try:
+61                audit_sections = cast(AuditSectionType, yaml.safe_load(stream))
+62            except yaml.YAMLError as exc:
+63                raise exc
+64        return audit_sections
+
+ + + + +
+
+
+ model_config = +{} + + +
+ + + + +
+
+
+ model_fields = + + {'business_understanding': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'data_understanding': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'data_preparation': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'modeling': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'evaluation': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'deployment_ops': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'misc': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + AuditQuestionTable: + + + +
+ +
67class AuditQuestionTable:
+68    """Helper class for creating a rich table to be used with an AuditCard"""
+69
+70    def __init__(self) -> None:
+71        self.table = self.create_table()
+72
+73    def create_table(self) -> Table:
+74        """Create Rich table of Audit"""
+75        table = Table(title="Audit Questions")
+76        table.add_column("Section", no_wrap=True)
+77        table.add_column("Number")
+78        table.add_column("Question")
+79        table.add_column("Answered", justify="right")
+80        return table
+81
+82    def add_row(self, section_name: str, nbr: int, question: Question) -> None:
+83        """Add row to table"""
+84        self.table.add_row(
+85            section_name,
+86            str(nbr),
+87            question.question,
+88            "Yes" if question.response else "No",
+89        )
+90
+91    def add_section(self) -> None:
+92        """Add section"""
+93        self.table.add_section()
+94
+95    def print_table(self) -> None:
+96        """Print table"""
+97        console = Console()
+98        console.print(self.table)
+
+ + +

Helper class for creating a rich table to be used with an AuditCard

+
+ + +
+
+ table + + +
+ + + + +
+
+ +
+ + def + create_table(self) -> rich.table.Table: + + + +
+ +
73    def create_table(self) -> Table:
+74        """Create Rich table of Audit"""
+75        table = Table(title="Audit Questions")
+76        table.add_column("Section", no_wrap=True)
+77        table.add_column("Number")
+78        table.add_column("Question")
+79        table.add_column("Answered", justify="right")
+80        return table
+
+ + +

Create Rich table of Audit

+
+ + +
+
+ +
+ + def + add_row( self, section_name: str, nbr: int, question: Question) -> None: + + + +
+ +
82    def add_row(self, section_name: str, nbr: int, question: Question) -> None:
+83        """Add row to table"""
+84        self.table.add_row(
+85            section_name,
+86            str(nbr),
+87            question.question,
+88            "Yes" if question.response else "No",
+89        )
+
+ + +

Add row to table

+
+ + +
+
+ +
+ + def + add_section(self) -> None: + + + +
+ +
91    def add_section(self) -> None:
+92        """Add section"""
+93        self.table.add_section()
+
+ + +

Add section

+
+ + +
+
+ +
+ + def + print_table(self) -> None: + + + +
+ +
95    def print_table(self) -> None:
+96        """Print table"""
+97        console = Console()
+98        console.print(self.table)
+
+ + +

Print table

+
+ + +
+
+
+ +
+ + class + AuditCard(opsml.cards.base.ArtifactCard): + + + +
+ +
101class AuditCard(ArtifactCard):
+102    """
+103    Creates an AuditCard for storing audit-related information about a
+104    machine learning project.
+105
+106    Args:
+107        name:
+108            What to name the AuditCard
+109        repository:
+110            Repository that this card is associated with
+111        contact:
+112            Contact to associate with the AuditCard
+113        info:
+114            `CardInfo` object containing additional metadata. If provided, it will override any
+115            values provided for `name`, `repository`, `contact`, and `version`.
+116
+117            Name, repository, and contact are required arguments for all cards. They can be provided
+118            directly or through a `CardInfo` object.
+119
+120        audit:
+121            AuditSections object containing the audit questions and responses
+122        approved:
+123            Whether the audit has been approved
+124    """
+125
+126    audit: AuditSections = AuditSections()
+127    approved: bool = False
+128    comments: List[SerializeAsAny[Comment]] = []
+129    metadata: AuditCardMetadata = AuditCardMetadata()
+130
+131    def add_comment(self, name: str, comment: str) -> None:
+132        """Adds comment to AuditCard
+133
+134        Args:
+135            name:
+136                Name of person making comment
+137            comment:
+138                Comment to add
+139
+140        """
+141        comment_model = Comment(name=name, comment=comment)
+142
+143        if any(comment_model == _comment for _comment in self.comments):
+144            return  # Exit early if comment already exists
+145
+146        self.comments.insert(0, comment_model)
+147
+148    def create_registry_record(self) -> Dict[str, Any]:
+149        """Creates a registry record for a audit"""
+150
+151        return self.model_dump()
+152
+153    def add_card(self, card: ArtifactCard) -> None:
+154        """
+155        Adds a card uid to the appropriate card uid list for tracking
+156
+157        Args:
+158            card:
+159                Card to add to AuditCard
+160        """
+161        if card.uid is None:
+162            raise ValueError(
+163                f"""Card uid must be provided for {card.card_type}.
+164                Uid must be registered prior to adding to AuditCard."""
+165            )
+166
+167        if card.card_type.lower() not in [
+168            CardType.DATACARD.value,
+169            CardType.MODELCARD.value,
+170            CardType.RUNCARD.value,
+171        ]:
+172            raise ValueError(f"Invalid card type {card.card_type}. Valid card types are: data, model or run")
+173
+174        card_list = getattr(self.metadata, f"{card.card_type.lower()}cards")
+175        card_list.append(CardVersion(name=card.name, version=card.version, card_type=card.card_type))
+176
+177    @property
+178    def business(self) -> Dict[int, Question]:
+179        return self.audit.business_understanding
+180
+181    @property
+182    def data_understanding(self) -> Dict[int, Question]:
+183        return self.audit.data_understanding
+184
+185    @property
+186    def data_preparation(self) -> Dict[int, Question]:
+187        return self.audit.data_preparation
+188
+189    @property
+190    def modeling(self) -> Dict[int, Question]:
+191        return self.audit.modeling
+192
+193    @property
+194    def evaluation(self) -> Dict[int, Question]:
+195        return self.audit.evaluation
+196
+197    @property
+198    def deployment(self) -> Dict[int, Question]:
+199        return self.audit.deployment_ops
+200
+201    @property
+202    def misc(self) -> Dict[int, Question]:
+203        return self.audit.misc
+204
+205    def list_questions(self, section: Optional[str] = None) -> None:
+206        """Lists all Audit Card questions in a rich table
+207
+208        Args:
+209            section:
+210                Section name. Can be one of: business, data_understanding, data_preparation, modeling,
+211                evaluation or misc
+212        """
+213
+214        table = AuditQuestionTable()
+215
+216        if section is not None:
+217            questions = self._get_section(section)
+218            for nbr, question in questions.items():
+219                table.add_row(section_name=section, nbr=nbr, question=question)
+220
+221        else:
+222            for _section in self.audit:
+223                section_name, questions = _section
+224                for nbr, question in questions.items():
+225                    table.add_row(section_name=section_name, nbr=nbr, question=question)
+226
+227                table.add_section()
+228
+229        table.print_table()
+230
+231    def _get_section(self, section: str) -> Dict[int, Question]:
+232        """Gets a section from the audit card
+233
+234        Args:
+235            section:
+236                Section name. Can be one of: business, data_understanding, data_preparation, modeling,
+237                evaluation or misc
+238        Returns:
+239            Dict[int, Question]: A dictionary of questions
+240        """
+241
+242        if not hasattr(self, section):
+243            raise ValueError(
+244                f"""Section {section} not found. Accepted values are: business, data_understanding,
+245                data_preparation, modeling, evaluation, deployment or misc"""
+246            )
+247        _section: Dict[int, Question] = getattr(self, section)
+248        return _section
+249
+250    def answer_question(self, section: str, question_nbr: int, response: str) -> None:
+251        """Answers a question in a section
+252
+253        Args:
+254            section:
+255                Section name. Can be one of: business, data_understanding, data_preparation, modeling, evaluation,
+256                deployment or misc
+257            question_nbr:
+258                Question number
+259            response:
+260                Response to the question
+261
+262        """
+263
+264        _section: Dict[int, Question] = self._get_section(section)
+265
+266        try:
+267            _section[question_nbr].response = response
+268        except KeyError as exc:
+269            logger.error("Question {} not found in section {}", question_nbr, section)
+270            raise exc
+271
+272    @property
+273    def card_type(self) -> str:
+274        return CardType.AUDITCARD.value
+
+ + +

Creates an AuditCard for storing audit-related information about a +machine learning project.

+ +
Arguments:
+ +
    +
  • name: What to name the AuditCard
  • +
  • repository: Repository that this card is associated with
  • +
  • contact: Contact to associate with the AuditCard
  • +
  • info: CardInfo object containing additional metadata. If provided, it will override any +values provided for name, repository, contact, and version.

    + +

    Name, repository, and contact are required arguments for all cards. They can be provided +directly or through a CardInfo object.

  • +
  • audit: AuditSections object containing the audit questions and responses
  • +
  • approved: Whether the audit has been approved
  • +
+
+ + +
+
+ audit: AuditSections + + +
+ + + + +
+
+
+ approved: bool + + +
+ + + + +
+
+
+ comments: List[Annotated[opsml.types.card.Comment, SerializeAsAny()]] + + +
+ + + + +
+
+
+ metadata: opsml.types.card.AuditCardMetadata + + +
+ + + + +
+
+ +
+ + def + add_comment(self, name: str, comment: str) -> None: + + + +
+ +
131    def add_comment(self, name: str, comment: str) -> None:
+132        """Adds comment to AuditCard
+133
+134        Args:
+135            name:
+136                Name of person making comment
+137            comment:
+138                Comment to add
+139
+140        """
+141        comment_model = Comment(name=name, comment=comment)
+142
+143        if any(comment_model == _comment for _comment in self.comments):
+144            return  # Exit early if comment already exists
+145
+146        self.comments.insert(0, comment_model)
+
+ + +

Adds comment to AuditCard

+ +
Arguments:
+ +
    +
  • name: Name of person making comment
  • +
  • comment: Comment to add
  • +
+
+ + +
+
+ +
+ + def + create_registry_record(self) -> Dict[str, Any]: + + + +
+ +
148    def create_registry_record(self) -> Dict[str, Any]:
+149        """Creates a registry record for a audit"""
+150
+151        return self.model_dump()
+
+ + +

Creates a registry record for a audit

+
+ + +
+
+ +
+ + def + add_card(self, card: opsml.cards.base.ArtifactCard) -> None: + + + +
+ +
153    def add_card(self, card: ArtifactCard) -> None:
+154        """
+155        Adds a card uid to the appropriate card uid list for tracking
+156
+157        Args:
+158            card:
+159                Card to add to AuditCard
+160        """
+161        if card.uid is None:
+162            raise ValueError(
+163                f"""Card uid must be provided for {card.card_type}.
+164                Uid must be registered prior to adding to AuditCard."""
+165            )
+166
+167        if card.card_type.lower() not in [
+168            CardType.DATACARD.value,
+169            CardType.MODELCARD.value,
+170            CardType.RUNCARD.value,
+171        ]:
+172            raise ValueError(f"Invalid card type {card.card_type}. Valid card types are: data, model or run")
+173
+174        card_list = getattr(self.metadata, f"{card.card_type.lower()}cards")
+175        card_list.append(CardVersion(name=card.name, version=card.version, card_type=card.card_type))
+
+ + +

Adds a card uid to the appropriate card uid list for tracking

+ +
Arguments:
+ +
    +
  • card: Card to add to AuditCard
  • +
+
+ + +
+
+ +
+ business: Dict[int, Question] + + + +
+ +
177    @property
+178    def business(self) -> Dict[int, Question]:
+179        return self.audit.business_understanding
+
+ + + + +
+
+ +
+ data_understanding: Dict[int, Question] + + + +
+ +
181    @property
+182    def data_understanding(self) -> Dict[int, Question]:
+183        return self.audit.data_understanding
+
+ + + + +
+
+ +
+ data_preparation: Dict[int, Question] + + + +
+ +
185    @property
+186    def data_preparation(self) -> Dict[int, Question]:
+187        return self.audit.data_preparation
+
+ + + + +
+
+ +
+ modeling: Dict[int, Question] + + + +
+ +
189    @property
+190    def modeling(self) -> Dict[int, Question]:
+191        return self.audit.modeling
+
+ + + + +
+
+ +
+ evaluation: Dict[int, Question] + + + +
+ +
193    @property
+194    def evaluation(self) -> Dict[int, Question]:
+195        return self.audit.evaluation
+
+ + + + +
+
+ +
+ deployment: Dict[int, Question] + + + +
+ +
197    @property
+198    def deployment(self) -> Dict[int, Question]:
+199        return self.audit.deployment_ops
+
+ + + + +
+
+ +
+ misc: Dict[int, Question] + + + +
+ +
201    @property
+202    def misc(self) -> Dict[int, Question]:
+203        return self.audit.misc
+
+ + + + +
+
+ +
+ + def + list_questions(self, section: Optional[str] = None) -> None: + + + +
+ +
205    def list_questions(self, section: Optional[str] = None) -> None:
+206        """Lists all Audit Card questions in a rich table
+207
+208        Args:
+209            section:
+210                Section name. Can be one of: business, data_understanding, data_preparation, modeling,
+211                evaluation or misc
+212        """
+213
+214        table = AuditQuestionTable()
+215
+216        if section is not None:
+217            questions = self._get_section(section)
+218            for nbr, question in questions.items():
+219                table.add_row(section_name=section, nbr=nbr, question=question)
+220
+221        else:
+222            for _section in self.audit:
+223                section_name, questions = _section
+224                for nbr, question in questions.items():
+225                    table.add_row(section_name=section_name, nbr=nbr, question=question)
+226
+227                table.add_section()
+228
+229        table.print_table()
+
+ + +

Lists all Audit Card questions in a rich table

+ +
Arguments:
+ +
    +
  • section: Section name. Can be one of: business, data_understanding, data_preparation, modeling, +evaluation or misc
  • +
+
+ + +
+
+ +
+ + def + answer_question(self, section: str, question_nbr: int, response: str) -> None: + + + +
+ +
250    def answer_question(self, section: str, question_nbr: int, response: str) -> None:
+251        """Answers a question in a section
+252
+253        Args:
+254            section:
+255                Section name. Can be one of: business, data_understanding, data_preparation, modeling, evaluation,
+256                deployment or misc
+257            question_nbr:
+258                Question number
+259            response:
+260                Response to the question
+261
+262        """
+263
+264        _section: Dict[int, Question] = self._get_section(section)
+265
+266        try:
+267            _section[question_nbr].response = response
+268        except KeyError as exc:
+269            logger.error("Question {} not found in section {}", question_nbr, section)
+270            raise exc
+
+ + +

Answers a question in a section

+ +
Arguments:
+ +
    +
  • section: Section name. Can be one of: business, data_understanding, data_preparation, modeling, evaluation, +deployment or misc
  • +
  • question_nbr: Question number
  • +
  • response: Response to the question
  • +
+
+ + +
+
+ +
+ card_type: str + + + +
+ +
272    @property
+273    def card_type(self) -> str:
+274        return CardType.AUDITCARD.value
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'audit': FieldInfo(annotation=AuditSections, required=False, default=AuditSections(business_understanding={1: Question(question='What business objectives does the product owner pursue?', purpose='\n- Identify the purposes for which the product owner intends to use the AI application \n- Identify the quality of target/goal definition and the assessment against SMART criteria by the product owner.', response=None), 2: Question(question='What business requirements has the product owner defined for the application?', purpose='\n- Identify to what extent business requirements have been derived from the objectives set.\n- Such requirements may include:\n--- development costs\n--- operational costs\n--- staffing needs for operation and use\n-- savings sought\n', response=None), 3: Question(question='What KPIs does the product owner intend to enhance by means of the application?', purpose='\n- Usually it is impossible for the product owner to enhance all kpis at the same time. Therefore the product owner should specify the reason for selecting a specific kpi and the way of measuring any change. If it is impossible to directly measure a kpi, the product owner should specify any indicator used to indirectly assess whether the kpi is within a pre-set target corridor.\n- Identify how the product owner seeks to track and measure the changes against the business targets of the application.', response=None), 4: Question(question='In what business processes shall the application be used? ', purpose='- Identify which processes are affected by the application, how critical those processes are, how they are related and what significance the application has for these processes.', response=None), 5: Question(question='What situation has been the driver for introducing the application? ', purpose='- Identify the driver for the decision to develop the application. State the occurrence of a statutory mandate (Ex: Prop 22), cost increases, new types of fraud, etc.', response=None), 6: Question(question='What framework conditions has the product owner put into place to ensure efficient use of the application? ', purpose='\n- Identify if the product owner is capable to run the system efficiently and to achieve the desired benefits (adequate level of staffing and funds).\n- Aspects for study may include \n--- whether the product owner has suitable staff for development, operation and use of the application,\n--- whether the product owner has put into place an adequate technical and organizational infrastructure,\n--- whether the users are supported by qualified helpdesk staff, and\n--- whether the application has been embedded in a quality assurance environment, and/or internal controlling.\n', response=None), 7: Question(question='What monetary benefits are sought in using the application?', purpose='\n- Identify the relationship between cost and the targeted savings. \n- Identify if there is a reasonable monetary benefit ', response=None), 8: Question(question='What qualifiable and strategic benefits are sought in using the system?', purpose='\n- Identifying any benefits generated by the application beyond financial savings or additional revenue.\n- It is important to identify if the product owner can actually measure and quantify the benefit made. In particular, the product owner shall state if the benefit generated can in fact be attributed to the application.\n', response=None), 9: Question(question='How has the value for money of the system been documented?', purpose='- Identify if the efficiency appraisal template for AI projects or another recognized method has been used and if the method requirements have been complied with.', response=None), 10: Question(question='Which of the following components have been studied in a risk analysis and what have the results been?\n- the application\n- data preparation and \n- the processes mapped by the application\n', purpose='\n- Risk analyses are critical to accomplishing the objectives, to efficiency appraisal, project run, and use of the application.\n- Identify if the product owner has carried out a risk analysis, what risks the product owner seeks to counter and which risks the product owner has decided to shoulder.\n- Identify whether the risks are set off by the benefits associated with the use of the application and if the tolerable risk burden is in accordance with applicable regulations and rules.', response=None)}, data_understanding={1: Question(question='What data are processed by the application?', purpose=' - Learn more about the input data and output data of the application. ', response=None), 2: Question(question='What are the data sources?', purpose='\n- Learn more about \n--- what sources the product owner and project leader approved and data scientist uses,\n--- whether data is up-to-date or not,\n--- what level of reliability both data source and data have,\n--- what the consideration for the data source is or if the data source has a mandatory duty to make information available, and\n\n', response=None), 3: Question(question='What technical/operational criteria have guided data selection?', purpose='\n- Learn more about\n--- the reason for selecting the particular data \n--- alternative data sources or data beyond those selected, and\n--- any dependencies on the data source and the data.\n', response=None), 4: Question(question='How do you assess data quality?', purpose='\n- Learn more about \n--- who checks data quality (product owner, data supplier, third parties, automated test system),\n--- if it is a continuous or a one-off quality assurance process,\n--- what data aspects are key to data quality and why,\n--- how data quality is reviewed, and\n--- what quality criteria have been defined and measured.\n', response=None), 5: Question(question='What data quality is needed for the application to meet the objectives and requirements set?', purpose='\n- Learn more about \n--- how data quality impacts on the application,\n--- how data quality is measured during operation, and\n--- how the application’s performance varies in line with the quality indicators selected.\n', response=None), 6: Question(question='What data quality thresholds have you selected and why?', purpose=' - Learn more about,\n--- if threshold values have been defined for the data quality and\n--- for what technical and other reasons these threshold values have been chosen?\n- The repository should be able to explain what happens when a value is above or below the threshold.', response=None), 7: Question(question='How is the semantic of the data model documented?', purpose=' - Learn more about whether or not semantics and syntax have been defined for all data\n- e.g. whether the repository knows the abbreviated values i.e S&D, BOO etc', response=None), 8: Question(question='Does the application draw on/use/generate any data that are subject to security requirements (e.g. according to GDPR)? Please specify.', purpose='- Learn more about whether the application is subject to GDPR and what is the reason given by the data scientist to use such data. ', response=None), 9: Question(question='How do you ensure data security? ', purpose='- Learn more about technical, organizational and other steps taken by the product owner/developer to ensure data security.', response=None)}, data_preparation={1: Question(question='Please specify any shortcomings in data quality you noted in the input data of the application.', purpose='\n- Possible shortcomings include:\n--- lacking values, \n--- erroneous entries, \n--- inaccurate entries (transposed letters etc.),\n--- lacking datasets, \n--- obsolete entries, and\n--- inconsistent entries.\n', response=None), 2: Question(question='To what extent and how (manually, automatically) do you modify input datasets?', purpose='- Learn more about the steps the product owner/developer/operator takes to address data quality shortcomings. Does the product owner/developer/operator report data errors to data suppliers? Do they replace or ignore missing entries, document data weaknesses to enable benchmarking against future data, etc.?', response=None), 3: Question(question='How has data preparation been documented?', purpose='- Learn more about how data is processed, documented and tracked during operation.', response=None), 4: Question(question='In what way does your data preparation enhance the quality of datasets and how do you measure this impact?', purpose='- Learn more about \n--- criteria for benchmarking unprocessed and pre-processed data, and\n--- as to whether the quality of input data can be benchmarked similarly as output data.\n', response=None), 5: Question(question='How do you assess whether or not pre-processed/unprocessed data make a difference for the run and results of the application?', purpose='- Learn more about any review of application response to diversely cleansed data.', response=None), 6: Question(question='How is the data preparation mapped in the application?', purpose='- Learn more about how data preparation has been integrated in the development, testing, validation, and operation process.\n', response=None), 7: Question(question='What is the mechanism in place for monitoring the quality of data preparation?', purpose='- Learn more about what type of quality assurance has been put into place for the purpose of data preparation, how quality assurance works, when it starts working and how its work is documented.', response=None), 8: Question(question='In what way does your data preparation process address any risks you detected in the early stages of application development.', purpose='\n- Learn more about \n--- any risks posed by data preparation,\n--- any risks of the application and/or the dev environment that may also impact on data preparation, and\n--- any risks of the application and/or the dev environment that are to be mitigated by data preparation.\n', response=None), 9: Question(question='What framework conditions and responsibilities govern data management in this application?', purpose='- Learn more about how data management for the application is structured and what applicable frameworks are in place.', response=None), 10: Question(question='How do you manage the data? ', purpose='\n- Learn more about what data management system is used and how data is stored, e.g. in a\n--- SQL database,\n--- NoSQL database,\n--- data warehouse, or\n--- flat file.\n', response=None)}, modeling={1: Question(question='What data analysis methods have you selected and what are the selection criteria?', purpose='\nMethods may include but are not limited to: \nFrequent pattern mining: association mining, correlation mining\nClassification: decision trees, Bayes classification, rule-based classification, Bayesian belief networks, backpropagation, support vector machines, frequent patterns, lazy learners\nCluster analysis: partitioning methods, hierarchical methods, density-based methods, grid-based methods, probabilistic model-based clustering, graph and network clustering, clustering with constraints\nOutlier detection: outlier detection methods, statistical approaches, proximity-based approaches, clustering-based approaches, mining contextual and collective outliers', response=None), 2: Question(question='What training datasets do you use?', purpose='Collect information on the scope, contents and quality of the training datasets.', response=None), 3: Question(question='How have the training datasets been selected or generated?', purpose='Collect information on the training data generation and selection, on the programmes used in the application, and any errors that may occur.', response=None), 4: Question(question='How are the training datasets updated during the life cycle of the system?', purpose='Collect information on training at operational stage, on whether the model is stable after activation or continuously refined with more training data. Key information includes monitoring and quality assurance of continuous training.', response=None), 5: Question(question='What validation datasets do you use?', purpose='Collect information about the scope, contents and quality of validation datasets.', response=None), 6: Question(question='How have the validation datasets been selected or generated?', purpose='Collect information on generating and selecting validation data, on the programmes used by the application, and on any errors likely to occur.', response=None), 7: Question(question='How are the validation datasets updated during the life cycle of the system?', purpose='Collect information on the validation process at operational stage, on whether the model is stable after activation or continuously refined as validation proceeds. Key information includes monitoring and quality assurance of the validation process.', response=None), 8: Question(question='What test datasets do you use?', purpose='Collect information on the scope, contents and quality of test datasets.', response=None), 9: Question(question='How have the test datasets been selected or generated?', purpose='Collect information on test data generation and selection, the programmes used by the application and any errors likely to occur.', response=None), 10: Question(question='How are the test datasets updated during the life cycle of the application?', purpose='Collect information on testing at operational stage, on whether the model is stable after activation or continuously refined as testing proceeds. Key information includes monitoring and quality assurance of testing.', response=None), 11: Question(question='How do you track modelling, training, validation and test runs?', purpose='Collect information on how modelling, model validation and model testing is documented.', response=None), 12: Question(question='In what way has modelling addressed the risks you detected in the application?', purpose='Collect information on the type of risk analysis conducted for modelling and for factors impacting on modelling', response=None)}, evaluation={1: Question(question='What validation methods do you apply and what were the selection criteria?', purpose='\n- Learn more about\n--- how model quality has been reviewed,\n--- how the decisions/forecasts of the application have been tracked,\n--- how the impact of individual criteria on decisions has been analyzed,\n--- any checks on whether criteria ignored might enhance decisions, and\n--- any model fairness measurements.', response=None), 2: Question(question='What were the results of model validation and how have you evaluated these results?', purpose='\n- Learn more about\n--- how the results accomplished by the validation methods have been documented,\n--- how the results have been construed,\n--- traceability of model response,\n--- the extent to which the model is sufficiently accurate, \n--- how potentially contradictory statements have been assessed,\n--- what empirical data has been used for construing the results, \n--- who reviewed the validation results, and\n--- how the validation results will be used for future validation exercises.', response=None), 3: Question(question='Did you benchmark the performance of your model against any alternative methods/models? Please specify.', purpose='- Learn more about any benchmarking of current methods/models for data analysis against alternative methods/models and about the parameters used.', response=None), 4: Question(question='How does the application respond to faulty or manipulated datasets?', purpose='- Learn more about whether at the training, validation, testing and operational stage, the application has deliberately been exposed to faulty or manipulated data and what the result has been.', response=None), 5: Question(question='Have the objectives set been accomplished and has the application achieved the intended purposes?', purpose='- Learn more about \n--- whether the initial objectives and impacts set by the product owner have been accomplished\n--- how this has been measured and\n--- whether or not additional objectives and impacts have been achieved .', response=None)}, deployment_ops={1: Question(question='At what intervals is the model updated (e.g. to reflect current training data)?', purpose='- Learn more about whether the model is static or dynamic.', response=None), 2: Question(question='How is the application embedded in the surrounding system architecture?', purpose='- Learn more about how the system architecture has been designed, how the application has been embedded,\nwhich interfaces to other system components exist, and how the application depends on these other system components and their changes.', response=None), 3: Question(question='How is the application embedded in the product owner’s process landscape?', purpose='- Understand when and driven by what incidents and framework conditions, users may operate the application as part of technical processes and whether such processes differ on a case-by-case basis or whether the conditions governing the application always remain the same.', response=None), 4: Question(question='What are the major features of human-machine interaction of the application?', purpose='- Understand how the user may influence the application or rely on its results, how the user is informed about actions and results of the application and what autonomy the application may have.', response=None), 5: Question(question='How are the key performance indicators of the application provided to decision-makers?', purpose='- Understand the extent to which decision-makers are informed about decision quality (or uncertainty) of the application.', response=None), 6: Question(question='How is application performance monitored during operation?', purpose='- Understand how and how often performance of the application is monitored or reviewed.', response=None), 7: Question(question='What alternative intervention processes are in place in case of faulty or poor system performance?', purpose='- Understand how business processes depend on the functionality of the application and what happens if the application needs to be bypassed because of erroneous or poor performance (e.g. can staff still manage transactions by using manual inspection or alternative techniques)?\n- Understand if the application may easily be separated from the operating process or if this means bringing the entire automated or manual processing to a halt.\n', response=None), 8: Question(question='What qualifications do users of the application need?', purpose='- Understand what application-related knowledge users need to possess to appropriately assess the decisions made by the application.\n- Understand that users may know nothing at all about the application and its impact on the process.\n', response=None), 9: Question(question='How can users overrule decisions/proposals made by the application? What autonomy do you grant to the application and do you think the level of autonomy is appropriate? ', purpose='- Understand what autonomy the application has (BITKOM model on decision-making processes).', response=None), 10: Question(question='What criteria govern decisions/proposals of the application that are submitted to the user?', purpose='- Understand what decisions are submitted to the user and which are not.', response=None), 11: Question(question='To what extent do you consider the application to comply with applicable laws and regulations?', purpose='- Understand the laws and regulations the application is subject to.\n- Obtain assessments on the application of the various parties involved. Possibly, the Data Gov repository holds a different view of the application than the project manager or the DS .', response=None), 12: Question(question='What ethical concerns do you have about using the application?', purpose='-Understand if apart from purely statutory aspects, the application may also affect ethical aspects.', response=None), 13: Question(question='To what extent can you understand or track decisions/proposals made by the application?', purpose='- Understand if the user considers the decisions/proposals of the application to be fair and reasonable and if the user can even list individual criteria that in his/her view underlie a decisions/proposal of the application.', response=None), 14: Question(question='To what extent are you able to understand or track how the application works?', purpose='- Understand if the user knows and is aware of the internal processes underlying the application or if these ideas are mere presumptions.', response=None), 15: Question(question='How do you protect the application from misuse?', purpose='- Understand what possibilities of misuse exist and what steps have been taken to address them.', response=None), 16: Question(question='What potential types of misuse have you explored?', purpose='- Understand what possibilities of misuse have been analyzed more closely and for what types of misuse knowledge is limited to a theoretical idea only. ', response=None), 17: Question(question='What potential types of attacks on the application and on the embedded processes have you explored and addressed at the planning stage?', purpose='- Understand if the "Security by Design" principle has been implemented in developing the process or the embedded application.', response=None), 18: Question(question='What residual risk still persists and needs to be catered for?', purpose='- Understand to what extent informed decisions have been made with regard to residual risks, and specify any criteria used to decide whether a specific residual risk is tolerable.', response=None), 19: Question(question='What factors impact on the reliability of the overall system in which the application is embedded? How do these factors impact on the embedded application?', purpose='- Understand if the IT environment may trigger incidents or manipulation of the embedded process (e.g. a database on which the application relies for data or for storing its decisions may be corrupted, i.e. occurrence of technical malfunction).', response=None), 20: Question(question='What factors impact on the reliability of the decisions/proposals of the application?', purpose='- Understand if apart from the framework conditions defined by the application itself, there are other variables that may impact on the reliability of the application (e.g. user behavior, flawed organizational procedures, computing power).', response=None), 21: Question(question='To what extent can you rule out any unequal treatment of individuals/facts and figures/matters arising from using the application? How do you verify the occurrence of any such incidents?', purpose='- Understand if an impact analysis tailored to the application has been carried out. Understand any impacts specified and measured in the analysis.', response=None), 22: Question(question='To what extent have sustainability considerations been taken into account such as energy efficiency of operating the AI components?', purpose='- Understand if cost of energy consumption of the AI component is in line with the benefit achieved.\n- Understand if sustainability considerations have duly been taken into account in running the application.', response=None)}, misc={1: Question(question='Demand and change management', purpose='- Understand how demand and change management for developing the application/system have been designed, what tools are used for this purpose, and how the product owner has been involved.', response=None), 2: Question(question='Configuration management', purpose='- Understand how configuration management is structured, how the configuration management database has been designed, how the database is updated and what items it includes.', response=None), 3: Question(question='Software development', purpose='- Understand how software development is structured, what design tools, development tools, and libraries etc. are used.', response=None), 4: Question(question='Quality assurance', purpose='- Understand how quality assurance is structured, how tests and acceptance are structured and how developer tests are designed.', response=None), 5: Question(question='Project management', purpose='- Understand how project management is structured, what approaches and methods have been selected.', response=None), 6: Question(question='Rollout', purpose='- Understand how application/system rollout is structured (e.g. pilot users, gradual rollout, big bang) and what framework conditions have been put into place or are still needed.', response=None), 7: Question(question='Acceptance management', purpose='- Understand how staff, clients etc. have been prepared for application/system rollout and how their understanding and readiness for change has been promoted.', response=None), 8: Question(question='Incident management', purpose='- Understand how users, the operational units etc. can report malfunctions and incidents.', response=None), 9: Question(question='Ombudsman - complaints office', purpose='- Understand if clients (e.g. citizens and private-sector businesses) can address their complaints to a centralized body and how the procedure is structured.', response=None), 10: Question(question='Change management (staff, organization)', purpose='- Understand what changes in practices and procedures, human resources and financial management are associated with rollout and how the organization or its staff have been prepared to face these changes.', response=None)})), 'approved': FieldInfo(annotation=bool, required=False, default=False), 'comments': FieldInfo(annotation=List[Annotated[Comment, SerializeAsAny]], required=False, default=[]), 'metadata': FieldInfo(annotation=AuditCardMetadata, required=False, default=AuditCardMetadata(datacards=[], modelcards=[], runcards=[]))} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.cards.base.ArtifactCard
+
name
+
repository
+
contact
+
version
+
uid
+
info
+
tags
+
validate_args
+
add_tag
+
uri
+
artifact_uri
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/cards/base.html b/api/opsml/cards/base.html new file mode 100644 index 000000000..2380901fc --- /dev/null +++ b/api/opsml/cards/base.html @@ -0,0 +1,871 @@ + + + + + + + opsml.cards.base API documentation + + + + + + + + + +
+
+

+opsml.cards.base

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4import os
+  5from pathlib import Path
+  6from typing import Any, Dict, Optional
+  7
+  8from pydantic import BaseModel, ConfigDict, model_validator
+  9
+ 10from opsml.helpers.logging import ArtifactLogger
+ 11from opsml.helpers.utils import clean_string, validate_name_repository_pattern
+ 12from opsml.settings.config import config
+ 13from opsml.types import CardInfo, CommonKwargs, RegistryTableNames
+ 14
+ 15logger = ArtifactLogger.get_logger()
+ 16
+ 17
+ 18class ArtifactCard(BaseModel):
+ 19    """Base pydantic class for artifact cards"""
+ 20
+ 21    model_config = ConfigDict(
+ 22        arbitrary_types_allowed=True,
+ 23        validate_assignment=False,
+ 24        validate_default=True,
+ 25    )
+ 26
+ 27    name: str = CommonKwargs.UNDEFINED.value
+ 28    repository: str = CommonKwargs.UNDEFINED.value
+ 29    contact: str = CommonKwargs.UNDEFINED.value
+ 30    version: str = CommonKwargs.BASE_VERSION.value
+ 31    uid: Optional[str] = None
+ 32    info: Optional[CardInfo] = None
+ 33    tags: Dict[str, str] = {}
+ 34
+ 35    @model_validator(mode="before")
+ 36    @classmethod
+ 37    def validate_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:  # pylint: disable=arguments-renamed
+ 38        """Validate base args and Lowercase name and repository
+ 39
+ 40        Args:
+ 41            card_args:
+ 42                named args passed to card
+ 43
+ 44        Returns:
+ 45            validated card_args
+ 46        """
+ 47        card_info = card_args.get("info")
+ 48
+ 49        for key in ["name", "repository", "contact", "version", "uid"]:
+ 50            # check card args
+ 51            val = card_args.get(key)
+ 52
+ 53            # check card info
+ 54            if card_info is not None:
+ 55                val = val or getattr(card_info, key)
+ 56
+ 57            # check runtime env vars
+ 58            if val is None:
+ 59                val = os.environ.get(f"OPSML_RUNTIME_{key.upper()}")
+ 60
+ 61            if key in ["name", "repository"]:
+ 62                if val is not None:
+ 63                    val = clean_string(val)
+ 64
+ 65            if key == "version" and val is None:
+ 66                val = CommonKwargs.BASE_VERSION.value
+ 67
+ 68            card_args[key] = val
+ 69
+ 70        # need to check that name, repository and contact are set
+ 71        if not all(card_args[key] for key in ["name", "repository", "contact"]):
+ 72            raise ValueError("name, repository and contact must be set either as named arguments or through CardInfo")
+ 73
+ 74        # validate name and repository for pattern
+ 75        validate_name_repository_pattern(name=card_args["name"], repository=card_args["repository"])
+ 76
+ 77        return card_args
+ 78
+ 79    def create_registry_record(self) -> Dict[str, Any]:
+ 80        """Creates a registry record from self attributes"""
+ 81        raise NotImplementedError
+ 82
+ 83    def add_tag(self, key: str, value: str) -> None:
+ 84        self.tags[key] = str(value)
+ 85
+ 86    @property
+ 87    def uri(self) -> Path:
+ 88        """The base URI to use for the card and it's artifacts."""
+ 89        if self.version == CommonKwargs.BASE_VERSION.value:
+ 90            raise ValueError("Could not create card uri - version is not set")
+ 91
+ 92        assert self.repository is not None, "Repository must be set"
+ 93        assert self.name is not None, "Name must be set"
+ 94
+ 95        return Path(
+ 96            config.storage_root,
+ 97            RegistryTableNames.from_str(self.card_type).value,
+ 98            self.repository,
+ 99            self.name,
+100            f"v{self.version}",
+101        )
+102
+103    @property
+104    def artifact_uri(self) -> Path:
+105        """Returns the root URI to which artifacts associated with this card should be saved."""
+106        return self.uri / "artifacts"
+107
+108    @property
+109    def card_type(self) -> str:
+110        raise NotImplementedError
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + ArtifactCard(pydantic.main.BaseModel): + + + +
+ +
 19class ArtifactCard(BaseModel):
+ 20    """Base pydantic class for artifact cards"""
+ 21
+ 22    model_config = ConfigDict(
+ 23        arbitrary_types_allowed=True,
+ 24        validate_assignment=False,
+ 25        validate_default=True,
+ 26    )
+ 27
+ 28    name: str = CommonKwargs.UNDEFINED.value
+ 29    repository: str = CommonKwargs.UNDEFINED.value
+ 30    contact: str = CommonKwargs.UNDEFINED.value
+ 31    version: str = CommonKwargs.BASE_VERSION.value
+ 32    uid: Optional[str] = None
+ 33    info: Optional[CardInfo] = None
+ 34    tags: Dict[str, str] = {}
+ 35
+ 36    @model_validator(mode="before")
+ 37    @classmethod
+ 38    def validate_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:  # pylint: disable=arguments-renamed
+ 39        """Validate base args and Lowercase name and repository
+ 40
+ 41        Args:
+ 42            card_args:
+ 43                named args passed to card
+ 44
+ 45        Returns:
+ 46            validated card_args
+ 47        """
+ 48        card_info = card_args.get("info")
+ 49
+ 50        for key in ["name", "repository", "contact", "version", "uid"]:
+ 51            # check card args
+ 52            val = card_args.get(key)
+ 53
+ 54            # check card info
+ 55            if card_info is not None:
+ 56                val = val or getattr(card_info, key)
+ 57
+ 58            # check runtime env vars
+ 59            if val is None:
+ 60                val = os.environ.get(f"OPSML_RUNTIME_{key.upper()}")
+ 61
+ 62            if key in ["name", "repository"]:
+ 63                if val is not None:
+ 64                    val = clean_string(val)
+ 65
+ 66            if key == "version" and val is None:
+ 67                val = CommonKwargs.BASE_VERSION.value
+ 68
+ 69            card_args[key] = val
+ 70
+ 71        # need to check that name, repository and contact are set
+ 72        if not all(card_args[key] for key in ["name", "repository", "contact"]):
+ 73            raise ValueError("name, repository and contact must be set either as named arguments or through CardInfo")
+ 74
+ 75        # validate name and repository for pattern
+ 76        validate_name_repository_pattern(name=card_args["name"], repository=card_args["repository"])
+ 77
+ 78        return card_args
+ 79
+ 80    def create_registry_record(self) -> Dict[str, Any]:
+ 81        """Creates a registry record from self attributes"""
+ 82        raise NotImplementedError
+ 83
+ 84    def add_tag(self, key: str, value: str) -> None:
+ 85        self.tags[key] = str(value)
+ 86
+ 87    @property
+ 88    def uri(self) -> Path:
+ 89        """The base URI to use for the card and it's artifacts."""
+ 90        if self.version == CommonKwargs.BASE_VERSION.value:
+ 91            raise ValueError("Could not create card uri - version is not set")
+ 92
+ 93        assert self.repository is not None, "Repository must be set"
+ 94        assert self.name is not None, "Name must be set"
+ 95
+ 96        return Path(
+ 97            config.storage_root,
+ 98            RegistryTableNames.from_str(self.card_type).value,
+ 99            self.repository,
+100            self.name,
+101            f"v{self.version}",
+102        )
+103
+104    @property
+105    def artifact_uri(self) -> Path:
+106        """Returns the root URI to which artifacts associated with this card should be saved."""
+107        return self.uri / "artifacts"
+108
+109    @property
+110    def card_type(self) -> str:
+111        raise NotImplementedError
+
+ + +

Base pydantic class for artifact cards

+
+ + +
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ name: str + + +
+ + + + +
+
+
+ repository: str + + +
+ + + + +
+
+
+ contact: str + + +
+ + + + +
+
+
+ version: str + + +
+ + + + +
+
+
+ uid: Optional[str] + + +
+ + + + +
+
+
+ info: Optional[opsml.types.card.CardInfo] + + +
+ + + + +
+
+
+ tags: Dict[str, str] + + +
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + validate_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
36    @model_validator(mode="before")
+37    @classmethod
+38    def validate_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:  # pylint: disable=arguments-renamed
+39        """Validate base args and Lowercase name and repository
+40
+41        Args:
+42            card_args:
+43                named args passed to card
+44
+45        Returns:
+46            validated card_args
+47        """
+48        card_info = card_args.get("info")
+49
+50        for key in ["name", "repository", "contact", "version", "uid"]:
+51            # check card args
+52            val = card_args.get(key)
+53
+54            # check card info
+55            if card_info is not None:
+56                val = val or getattr(card_info, key)
+57
+58            # check runtime env vars
+59            if val is None:
+60                val = os.environ.get(f"OPSML_RUNTIME_{key.upper()}")
+61
+62            if key in ["name", "repository"]:
+63                if val is not None:
+64                    val = clean_string(val)
+65
+66            if key == "version" and val is None:
+67                val = CommonKwargs.BASE_VERSION.value
+68
+69            card_args[key] = val
+70
+71        # need to check that name, repository and contact are set
+72        if not all(card_args[key] for key in ["name", "repository", "contact"]):
+73            raise ValueError("name, repository and contact must be set either as named arguments or through CardInfo")
+74
+75        # validate name and repository for pattern
+76        validate_name_repository_pattern(name=card_args["name"], repository=card_args["repository"])
+77
+78        return card_args
+
+ + +

Validate base args and Lowercase name and repository

+ +
Arguments:
+ +
    +
  • card_args: named args passed to card
  • +
+ +
Returns:
+ +
+

validated card_args

+
+
+ + +
+
+ +
+ + def + create_registry_record(self) -> Dict[str, Any]: + + + +
+ +
80    def create_registry_record(self) -> Dict[str, Any]:
+81        """Creates a registry record from self attributes"""
+82        raise NotImplementedError
+
+ + +

Creates a registry record from self attributes

+
+ + +
+
+ +
+ + def + add_tag(self, key: str, value: str) -> None: + + + +
+ +
84    def add_tag(self, key: str, value: str) -> None:
+85        self.tags[key] = str(value)
+
+ + + + +
+
+ +
+ uri: pathlib.Path + + + +
+ +
 87    @property
+ 88    def uri(self) -> Path:
+ 89        """The base URI to use for the card and it's artifacts."""
+ 90        if self.version == CommonKwargs.BASE_VERSION.value:
+ 91            raise ValueError("Could not create card uri - version is not set")
+ 92
+ 93        assert self.repository is not None, "Repository must be set"
+ 94        assert self.name is not None, "Name must be set"
+ 95
+ 96        return Path(
+ 97            config.storage_root,
+ 98            RegistryTableNames.from_str(self.card_type).value,
+ 99            self.repository,
+100            self.name,
+101            f"v{self.version}",
+102        )
+
+ + +

The base URI to use for the card and it's artifacts.

+
+ + +
+
+ +
+ artifact_uri: pathlib.Path + + + +
+ +
104    @property
+105    def artifact_uri(self) -> Path:
+106        """Returns the root URI to which artifacts associated with this card should be saved."""
+107        return self.uri / "artifacts"
+
+ + +

Returns the root URI to which artifacts associated with this card should be saved.

+
+ + +
+
+ +
+ card_type: str + + + +
+ +
109    @property
+110    def card_type(self) -> str:
+111        raise NotImplementedError
+
+ + + + +
+
+
+ model_fields = + + {'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/cards/data.html b/api/opsml/cards/data.html new file mode 100644 index 000000000..3c24e20ec --- /dev/null +++ b/api/opsml/cards/data.html @@ -0,0 +1,1085 @@ + + + + + + + opsml.cards.data API documentation + + + + + + + + + +
+
+

+opsml.cards.data

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4
+  5# IMPORTANT: We need `Optional` imported here in order for Pydantic to be able to
+  6# deserialize DataCard.
+  7#
+  8from typing import (  # noqa # pylint: disable=unused-import
+  9    Any,
+ 10    Dict,
+ 11    List,
+ 12    Optional,
+ 13    Union,
+ 14)
+ 15
+ 16from pydantic import SerializeAsAny
+ 17
+ 18from opsml.cards.base import ArtifactCard
+ 19from opsml.data import Dataset
+ 20from opsml.data.interfaces._base import DataInterface
+ 21from opsml.data.splitter import Data, DataSplit
+ 22from opsml.helpers.logging import ArtifactLogger
+ 23from opsml.types import CardType, DataCardMetadata
+ 24
+ 25try:
+ 26    from ydata_profiling import ProfileReport
+ 27except ModuleNotFoundError:
+ 28    ProfileReport = Any
+ 29
+ 30logger = ArtifactLogger.get_logger()
+ 31
+ 32
+ 33class DataCard(ArtifactCard):
+ 34    """Create a DataCard from your data.
+ 35
+ 36    Args:
+ 37        interface:
+ 38            Instance of `DataInterface` that contains data
+ 39        name:
+ 40            What to name the data
+ 41        repository:
+ 42            Repository that this data is associated with
+ 43        contact:
+ 44            Contact to associate with data card
+ 45        info:
+ 46            `CardInfo` object containing additional metadata. If provided, it will override any
+ 47            values provided for `name`, `repository`, `contact`, and `version`.
+ 48
+ 49            Name, repository, and contact are required arguments for all cards. They can be provided
+ 50            directly or through a `CardInfo` object.
+ 51
+ 52        version:
+ 53            DataCard version
+ 54        uid:
+ 55            Unique id assigned to the DataCard
+ 56
+ 57    Returns:
+ 58        DataCard
+ 59
+ 60    """
+ 61
+ 62    interface: SerializeAsAny[Union[DataInterface, Dataset]]
+ 63    metadata: DataCardMetadata = DataCardMetadata()
+ 64
+ 65    def load_data(self, **kwargs: Union[str, int]) -> None:  # pylint: disable=differing-param-doc
+ 66        """
+ 67        Load data to interface
+ 68
+ 69        Args:
+ 70            kwargs:
+ 71                Keyword arguments to pass to the data loader
+ 72
+ 73            ---- Supported kwargs for ImageData and TextDataset ----
+ 74
+ 75            split:
+ 76                Split to use for data. If not provided, then all data will be loaded.
+ 77                Only used for subclasses of `Dataset`.
+ 78
+ 79            batch_size:
+ 80                What batch size to use when loading data. Only used for subclasses of `Dataset`.
+ 81                Defaults to 1000.
+ 82
+ 83            chunk_size:
+ 84                How many files per batch to use when writing arrow back to local file.
+ 85                Defaults to 1000.
+ 86
+ 87                Example:
+ 88
+ 89                    - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+ 90                    10 chunks to write in parallel. This is useful for large datasets.
+ 91
+ 92        """
+ 93        from opsml.storage.card_loader import DataCardLoader
+ 94
+ 95        DataCardLoader(self).load_data(**kwargs)
+ 96
+ 97    def load_data_profile(self) -> None:
+ 98        """
+ 99        Load data to interface
+100        """
+101        from opsml.storage.card_loader import DataCardLoader
+102
+103        DataCardLoader(self).load_data_profile()
+104
+105    def create_registry_record(self) -> Dict[str, Any]:
+106        """
+107        Creates required metadata for registering the current data card.
+108        Implemented with a DataRegistry object.
+109            Returns:
+110            Registry metadata
+111        """
+112        exclude_attr = {"data"}
+113        return self.model_dump(exclude=exclude_attr)
+114
+115    def add_info(self, info: Dict[str, Union[float, int, str]]) -> None:
+116        """
+117        Adds metadata to the existing DataCard metadata dictionary
+118
+119        Args:
+120            info:
+121                Dictionary containing name (str) and value (float, int, str) pairs
+122                to add to the current metadata set
+123        """
+124
+125        self.metadata.additional_info = {**info, **self.metadata.additional_info}
+126
+127    def create_data_profile(self, sample_perc: float = 1) -> ProfileReport:
+128        """Creates a data profile report
+129
+130        Args:
+131            sample_perc:
+132                Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.
+133                Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
+134
+135        """
+136        assert isinstance(
+137            self.interface, DataInterface
+138        ), "Data profile can only be created for a DataInterface subclasses"
+139        self.interface.create_data_profile(sample_perc, str(self.name))
+140
+141    def split_data(self) -> Dict[str, Data]:
+142        """Splits data interface according to data split logic"""
+143
+144        assert isinstance(self.interface, DataInterface), "Splitting is only support for DataInterface subclasses"
+145        if self.data is None:
+146            self.load_data()
+147
+148        return self.interface.split_data()
+149
+150    @property
+151    def data_splits(self) -> List[DataSplit]:
+152        """Returns data splits"""
+153        assert isinstance(self.interface, DataInterface), "Data splits are only supported for DataInterface subclasses"
+154        return self.interface.data_splits
+155
+156    @property
+157    def data(self) -> Any:
+158        """Returns data"""
+159        assert isinstance(
+160            self.interface, DataInterface
+161        ), "Data attribute is only supported for DataInterface subclasses"
+162        return self.interface.data
+163
+164    @property
+165    def data_profile(self) -> Any:
+166        """Returns data profile"""
+167        assert isinstance(self.interface, DataInterface), "Data profile is only supported for DataInterface subclasses"
+168        return self.interface.data_profile
+169
+170    @property
+171    def card_type(self) -> str:
+172        return CardType.DATACARD.value
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + DataCard(opsml.cards.base.ArtifactCard): + + + +
+ +
 34class DataCard(ArtifactCard):
+ 35    """Create a DataCard from your data.
+ 36
+ 37    Args:
+ 38        interface:
+ 39            Instance of `DataInterface` that contains data
+ 40        name:
+ 41            What to name the data
+ 42        repository:
+ 43            Repository that this data is associated with
+ 44        contact:
+ 45            Contact to associate with data card
+ 46        info:
+ 47            `CardInfo` object containing additional metadata. If provided, it will override any
+ 48            values provided for `name`, `repository`, `contact`, and `version`.
+ 49
+ 50            Name, repository, and contact are required arguments for all cards. They can be provided
+ 51            directly or through a `CardInfo` object.
+ 52
+ 53        version:
+ 54            DataCard version
+ 55        uid:
+ 56            Unique id assigned to the DataCard
+ 57
+ 58    Returns:
+ 59        DataCard
+ 60
+ 61    """
+ 62
+ 63    interface: SerializeAsAny[Union[DataInterface, Dataset]]
+ 64    metadata: DataCardMetadata = DataCardMetadata()
+ 65
+ 66    def load_data(self, **kwargs: Union[str, int]) -> None:  # pylint: disable=differing-param-doc
+ 67        """
+ 68        Load data to interface
+ 69
+ 70        Args:
+ 71            kwargs:
+ 72                Keyword arguments to pass to the data loader
+ 73
+ 74            ---- Supported kwargs for ImageData and TextDataset ----
+ 75
+ 76            split:
+ 77                Split to use for data. If not provided, then all data will be loaded.
+ 78                Only used for subclasses of `Dataset`.
+ 79
+ 80            batch_size:
+ 81                What batch size to use when loading data. Only used for subclasses of `Dataset`.
+ 82                Defaults to 1000.
+ 83
+ 84            chunk_size:
+ 85                How many files per batch to use when writing arrow back to local file.
+ 86                Defaults to 1000.
+ 87
+ 88                Example:
+ 89
+ 90                    - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+ 91                    10 chunks to write in parallel. This is useful for large datasets.
+ 92
+ 93        """
+ 94        from opsml.storage.card_loader import DataCardLoader
+ 95
+ 96        DataCardLoader(self).load_data(**kwargs)
+ 97
+ 98    def load_data_profile(self) -> None:
+ 99        """
+100        Load data to interface
+101        """
+102        from opsml.storage.card_loader import DataCardLoader
+103
+104        DataCardLoader(self).load_data_profile()
+105
+106    def create_registry_record(self) -> Dict[str, Any]:
+107        """
+108        Creates required metadata for registering the current data card.
+109        Implemented with a DataRegistry object.
+110            Returns:
+111            Registry metadata
+112        """
+113        exclude_attr = {"data"}
+114        return self.model_dump(exclude=exclude_attr)
+115
+116    def add_info(self, info: Dict[str, Union[float, int, str]]) -> None:
+117        """
+118        Adds metadata to the existing DataCard metadata dictionary
+119
+120        Args:
+121            info:
+122                Dictionary containing name (str) and value (float, int, str) pairs
+123                to add to the current metadata set
+124        """
+125
+126        self.metadata.additional_info = {**info, **self.metadata.additional_info}
+127
+128    def create_data_profile(self, sample_perc: float = 1) -> ProfileReport:
+129        """Creates a data profile report
+130
+131        Args:
+132            sample_perc:
+133                Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.
+134                Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
+135
+136        """
+137        assert isinstance(
+138            self.interface, DataInterface
+139        ), "Data profile can only be created for a DataInterface subclasses"
+140        self.interface.create_data_profile(sample_perc, str(self.name))
+141
+142    def split_data(self) -> Dict[str, Data]:
+143        """Splits data interface according to data split logic"""
+144
+145        assert isinstance(self.interface, DataInterface), "Splitting is only support for DataInterface subclasses"
+146        if self.data is None:
+147            self.load_data()
+148
+149        return self.interface.split_data()
+150
+151    @property
+152    def data_splits(self) -> List[DataSplit]:
+153        """Returns data splits"""
+154        assert isinstance(self.interface, DataInterface), "Data splits are only supported for DataInterface subclasses"
+155        return self.interface.data_splits
+156
+157    @property
+158    def data(self) -> Any:
+159        """Returns data"""
+160        assert isinstance(
+161            self.interface, DataInterface
+162        ), "Data attribute is only supported for DataInterface subclasses"
+163        return self.interface.data
+164
+165    @property
+166    def data_profile(self) -> Any:
+167        """Returns data profile"""
+168        assert isinstance(self.interface, DataInterface), "Data profile is only supported for DataInterface subclasses"
+169        return self.interface.data_profile
+170
+171    @property
+172    def card_type(self) -> str:
+173        return CardType.DATACARD.value
+
+ + +

Create a DataCard from your data.

+ +
Arguments:
+ +
    +
  • interface: Instance of DataInterface that contains data
  • +
  • name: What to name the data
  • +
  • repository: Repository that this data is associated with
  • +
  • contact: Contact to associate with data card
  • +
  • info: CardInfo object containing additional metadata. If provided, it will override any +values provided for name, repository, contact, and version.

    + +

    Name, repository, and contact are required arguments for all cards. They can be provided +directly or through a CardInfo object.

  • +
  • version: DataCard version
  • +
  • uid: Unique id assigned to the DataCard
  • +
+ +
Returns:
+ +
+

DataCard

+
+
+ + +
+
+ interface: Annotated[Union[opsml.data.interfaces._base.DataInterface, opsml.data.interfaces.custom_data.base.Dataset], SerializeAsAny()] + + +
+ + + + +
+
+
+ metadata: opsml.types.data.DataCardMetadata + + +
+ + + + +
+
+ +
+ + def + load_data(self, **kwargs: Union[str, int]) -> None: + + + +
+ +
66    def load_data(self, **kwargs: Union[str, int]) -> None:  # pylint: disable=differing-param-doc
+67        """
+68        Load data to interface
+69
+70        Args:
+71            kwargs:
+72                Keyword arguments to pass to the data loader
+73
+74            ---- Supported kwargs for ImageData and TextDataset ----
+75
+76            split:
+77                Split to use for data. If not provided, then all data will be loaded.
+78                Only used for subclasses of `Dataset`.
+79
+80            batch_size:
+81                What batch size to use when loading data. Only used for subclasses of `Dataset`.
+82                Defaults to 1000.
+83
+84            chunk_size:
+85                How many files per batch to use when writing arrow back to local file.
+86                Defaults to 1000.
+87
+88                Example:
+89
+90                    - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+91                    10 chunks to write in parallel. This is useful for large datasets.
+92
+93        """
+94        from opsml.storage.card_loader import DataCardLoader
+95
+96        DataCardLoader(self).load_data(**kwargs)
+
+ + +

Load data to interface

+ +
Arguments:
+ +
    +
  • kwargs: Keyword arguments to pass to the data loader
  • +
  • ---- Supported kwargs for ImageData and TextDataset ----
  • +
  • split: Split to use for data. If not provided, then all data will be loaded. +Only used for subclasses of Dataset.
  • +
  • batch_size: What batch size to use when loading data. Only used for subclasses of Dataset. +Defaults to 1000.
  • +
  • chunk_size: How many files per batch to use when writing arrow back to local file. +Defaults to 1000.

    + +

    Example:

    + +
      +
    • If batch_size=1000 and chunk_size=100, then the loaded batch will be split into +10 chunks to write in parallel. This is useful for large datasets.
    • +
  • +
+
+ + +
+
+ +
+ + def + load_data_profile(self) -> None: + + + +
+ +
 98    def load_data_profile(self) -> None:
+ 99        """
+100        Load data to interface
+101        """
+102        from opsml.storage.card_loader import DataCardLoader
+103
+104        DataCardLoader(self).load_data_profile()
+
+ + +

Load data to interface

+
+ + +
+
+ +
+ + def + create_registry_record(self) -> Dict[str, Any]: + + + +
+ +
106    def create_registry_record(self) -> Dict[str, Any]:
+107        """
+108        Creates required metadata for registering the current data card.
+109        Implemented with a DataRegistry object.
+110            Returns:
+111            Registry metadata
+112        """
+113        exclude_attr = {"data"}
+114        return self.model_dump(exclude=exclude_attr)
+
+ + +

Creates required metadata for registering the current data card. +Implemented with a DataRegistry object. + Returns: + Registry metadata

+
+ + +
+
+ +
+ + def + add_info(self, info: Dict[str, Union[float, int, str]]) -> None: + + + +
+ +
116    def add_info(self, info: Dict[str, Union[float, int, str]]) -> None:
+117        """
+118        Adds metadata to the existing DataCard metadata dictionary
+119
+120        Args:
+121            info:
+122                Dictionary containing name (str) and value (float, int, str) pairs
+123                to add to the current metadata set
+124        """
+125
+126        self.metadata.additional_info = {**info, **self.metadata.additional_info}
+
+ + +

Adds metadata to the existing DataCard metadata dictionary

+ +
Arguments:
+ +
    +
  • info: Dictionary containing name (str) and value (float, int, str) pairs +to add to the current metadata set
  • +
+
+ + +
+
+ +
+ + def + create_data_profile( self, sample_perc: float = 1) -> ydata_profiling.profile_report.ProfileReport: + + + +
+ +
128    def create_data_profile(self, sample_perc: float = 1) -> ProfileReport:
+129        """Creates a data profile report
+130
+131        Args:
+132            sample_perc:
+133                Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.
+134                Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
+135
+136        """
+137        assert isinstance(
+138            self.interface, DataInterface
+139        ), "Data profile can only be created for a DataInterface subclasses"
+140        self.interface.create_data_profile(sample_perc, str(self.name))
+
+ + +

Creates a data profile report

+ +
Arguments:
+ +
    +
  • sample_perc: Percentage of data to use when creating a profile. Sampling is recommended for large dataframes. +Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
  • +
+
+ + +
+
+ +
+ + def + split_data(self) -> Dict[str, opsml.data.splitter.Data]: + + + +
+ +
142    def split_data(self) -> Dict[str, Data]:
+143        """Splits data interface according to data split logic"""
+144
+145        assert isinstance(self.interface, DataInterface), "Splitting is only support for DataInterface subclasses"
+146        if self.data is None:
+147            self.load_data()
+148
+149        return self.interface.split_data()
+
+ + +

Splits data interface according to data split logic

+
+ + +
+
+ +
+ data_splits: List[opsml.data.splitter.DataSplit] + + + +
+ +
151    @property
+152    def data_splits(self) -> List[DataSplit]:
+153        """Returns data splits"""
+154        assert isinstance(self.interface, DataInterface), "Data splits are only supported for DataInterface subclasses"
+155        return self.interface.data_splits
+
+ + +

Returns data splits

+
+ + +
+
+ +
+ data: Any + + + +
+ +
157    @property
+158    def data(self) -> Any:
+159        """Returns data"""
+160        assert isinstance(
+161            self.interface, DataInterface
+162        ), "Data attribute is only supported for DataInterface subclasses"
+163        return self.interface.data
+
+ + +

Returns data

+
+ + +
+
+ +
+ data_profile: Any + + + +
+ +
165    @property
+166    def data_profile(self) -> Any:
+167        """Returns data profile"""
+168        assert isinstance(self.interface, DataInterface), "Data profile is only supported for DataInterface subclasses"
+169        return self.interface.data_profile
+
+ + +

Returns data profile

+
+ + +
+
+ +
+ card_type: str + + + +
+ +
171    @property
+172    def card_type(self) -> str:
+173        return CardType.DATACARD.value
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'interface': FieldInfo(annotation=Union[DataInterface, Dataset], required=True, metadata=[SerializeAsAny()]), 'metadata': FieldInfo(annotation=DataCardMetadata, required=False, default=DataCardMetadata(interface_type='', data_type='', description=Description(summary=None, sample_code=None, Notes=None), feature_map={}, additional_info={}, runcard_uid=None, pipelinecard_uid=None, auditcard_uid=None))} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.cards.base.ArtifactCard
+
name
+
repository
+
contact
+
version
+
uid
+
info
+
tags
+
validate_args
+
add_tag
+
uri
+
artifact_uri
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/cards/model.html b/api/opsml/cards/model.html new file mode 100644 index 000000000..389eca95d --- /dev/null +++ b/api/opsml/cards/model.html @@ -0,0 +1,1141 @@ + + + + + + + opsml.cards.model API documentation + + + + + + + + + +
+
+

+opsml.cards.model

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4from pathlib import Path
+  5from typing import Any, Dict, Optional
+  6from uuid import UUID
+  7
+  8from pydantic import ConfigDict, SerializeAsAny, field_validator
+  9
+ 10from opsml.cards.base import ArtifactCard
+ 11from opsml.helpers.logging import ArtifactLogger
+ 12from opsml.model.interfaces.base import ModelInterface
+ 13from opsml.types import CardType, ModelCardMetadata, ModelMetadata, OnnxModel
+ 14
+ 15logger = ArtifactLogger.get_logger()
+ 16
+ 17
+ 18class ModelCard(ArtifactCard):
+ 19    """Create a ModelCard from your trained machine learning model.
+ 20    This Card is used in conjunction with the ModelCardCreator class.
+ 21
+ 22    Args:
+ 23        interface:
+ 24                Trained model interface.
+ 25        name:
+ 26            Name for the model specific to your current project
+ 27        repository:
+ 28            Repository that this model is associated with
+ 29        contact:
+ 30            Contact to associate with card
+ 31        info:
+ 32            `CardInfo` object containing additional metadata. If provided, it will override any
+ 33            values provided for `name`, `repository`, `contact`, and `version`.
+ 34
+ 35            Name, repository, and contact are required arguments for all cards. They can be provided
+ 36            directly or through a `CardInfo` object.
+ 37
+ 38        uid:
+ 39            Unique id (assigned if card has been registered)
+ 40        version:
+ 41            Current version (assigned if card has been registered)
+ 42        datacard_uid:
+ 43            Uid of the DataCard associated with training the model
+ 44        to_onnx:
+ 45            Whether to convert the model to onnx or not
+ 46        metadata:
+ 47            `ModelCardMetadata` associated with the model
+ 48    """
+ 49
+ 50    model_config = ConfigDict(
+ 51        arbitrary_types_allowed=True,
+ 52        protected_namespaces=("protect_",),
+ 53        validate_assignment=True,
+ 54    )
+ 55
+ 56    interface: SerializeAsAny[ModelInterface]
+ 57    datacard_uid: Optional[str] = None
+ 58    to_onnx: bool = False
+ 59    metadata: ModelCardMetadata = ModelCardMetadata()
+ 60
+ 61    @field_validator("datacard_uid", mode="before")
+ 62    @classmethod
+ 63    def check_uid(cls, datacard_uid: Optional[str] = None) -> Optional[str]:
+ 64        if datacard_uid is None:
+ 65            return datacard_uid
+ 66
+ 67        try:
+ 68            UUID(datacard_uid, version=4)  # we use uuid4
+ 69            return datacard_uid
+ 70
+ 71        except ValueError as exc:
+ 72            raise ValueError("Datacard uid is not a valid uuid") from exc
+ 73
+ 74    def load_model(self, **kwargs: Any) -> None:
+ 75        """Loads model, preprocessor and sample data to interface"""
+ 76
+ 77        from opsml.storage.card_loader import ModelCardLoader
+ 78
+ 79        ModelCardLoader(self).load_model(**kwargs)
+ 80
+ 81    def download_model(self, path: Path, **kwargs: Any) -> None:
+ 82        """Downloads model, preprocessor and metadata to path
+ 83
+ 84        Args:
+ 85            path:
+ 86                Path to download model
+ 87
+ 88            kwargs:
+ 89                load_preprocessor:
+ 90                    Whether to load preprocessor or not. Default is True
+ 91                load_onnx:
+ 92                    Whether to load onnx model or not. Default is False
+ 93                quantize:
+ 94                    Whether to quantize onnx model or not. Default is False
+ 95        """
+ 96
+ 97        from opsml.storage.card_loader import ModelCardLoader
+ 98
+ 99        # set path to download model
+100        kwargs["lpath"] = path
+101
+102        ModelCardLoader(self).download_model(**kwargs)
+103
+104    def load_onnx_model(self, **kwargs: Any) -> None:
+105        """Loads onnx model to interface"""
+106
+107        from opsml.storage.card_loader import ModelCardLoader
+108
+109        ModelCardLoader(self).load_onnx_model(**kwargs)
+110
+111    def load_preprocessor(self, **kwargs: Any) -> None:
+112        """Loads onnx model to interface"""
+113
+114        if self.preprocessor is not None:
+115            return
+116
+117        from opsml.storage.card_loader import ModelCardLoader
+118
+119        ModelCardLoader(self).load_preprocessor(**kwargs)
+120
+121    def create_registry_record(self) -> Dict[str, Any]:
+122        """Creates a registry record from the current ModelCard"""
+123
+124        exclude_vars = {"interface": {"model", "preprocessor", "sample_data", "onnx_model"}}
+125        dumped_model = self.model_dump(exclude=exclude_vars)
+126
+127        return dumped_model
+128
+129    @property
+130    def model(self) -> Any:
+131        """Quick access to model from interface"""
+132        return self.interface.model
+133
+134    @property
+135    def sample_data(self) -> Any:
+136        """Quick access to sample data from interface"""
+137        return self.interface.sample_data
+138
+139    @property
+140    def preprocessor(self) -> Any:
+141        """Quick access to preprocessor from interface"""
+142
+143        if hasattr(self.interface, "preprocessor"):
+144            return self.interface.preprocessor
+145
+146        if hasattr(self.interface, "tokenizer"):
+147            if self.interface.tokenizer is not None:
+148                return self.interface.tokenizer
+149
+150        if hasattr(self.interface, "feature_extractor"):
+151            if self.interface.feature_extractor is not None:
+152                return self.interface.feature_extractor
+153
+154        return None
+155
+156    @property
+157    def onnx_model(self) -> Optional[OnnxModel]:
+158        """Quick access to onnx model from interface"""
+159        return self.interface.onnx_model
+160
+161    @property
+162    def model_metadata(self) -> ModelMetadata:
+163        """Loads `ModelMetadata` class"""
+164
+165        from opsml.storage.card_loader import ModelCardLoader
+166
+167        return ModelCardLoader(self).load_model_metadata()
+168
+169    @property
+170    def card_type(self) -> str:
+171        return CardType.MODELCARD.value
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + ModelCard(opsml.cards.base.ArtifactCard): + + + +
+ +
 19class ModelCard(ArtifactCard):
+ 20    """Create a ModelCard from your trained machine learning model.
+ 21    This Card is used in conjunction with the ModelCardCreator class.
+ 22
+ 23    Args:
+ 24        interface:
+ 25                Trained model interface.
+ 26        name:
+ 27            Name for the model specific to your current project
+ 28        repository:
+ 29            Repository that this model is associated with
+ 30        contact:
+ 31            Contact to associate with card
+ 32        info:
+ 33            `CardInfo` object containing additional metadata. If provided, it will override any
+ 34            values provided for `name`, `repository`, `contact`, and `version`.
+ 35
+ 36            Name, repository, and contact are required arguments for all cards. They can be provided
+ 37            directly or through a `CardInfo` object.
+ 38
+ 39        uid:
+ 40            Unique id (assigned if card has been registered)
+ 41        version:
+ 42            Current version (assigned if card has been registered)
+ 43        datacard_uid:
+ 44            Uid of the DataCard associated with training the model
+ 45        to_onnx:
+ 46            Whether to convert the model to onnx or not
+ 47        metadata:
+ 48            `ModelCardMetadata` associated with the model
+ 49    """
+ 50
+ 51    model_config = ConfigDict(
+ 52        arbitrary_types_allowed=True,
+ 53        protected_namespaces=("protect_",),
+ 54        validate_assignment=True,
+ 55    )
+ 56
+ 57    interface: SerializeAsAny[ModelInterface]
+ 58    datacard_uid: Optional[str] = None
+ 59    to_onnx: bool = False
+ 60    metadata: ModelCardMetadata = ModelCardMetadata()
+ 61
+ 62    @field_validator("datacard_uid", mode="before")
+ 63    @classmethod
+ 64    def check_uid(cls, datacard_uid: Optional[str] = None) -> Optional[str]:
+ 65        if datacard_uid is None:
+ 66            return datacard_uid
+ 67
+ 68        try:
+ 69            UUID(datacard_uid, version=4)  # we use uuid4
+ 70            return datacard_uid
+ 71
+ 72        except ValueError as exc:
+ 73            raise ValueError("Datacard uid is not a valid uuid") from exc
+ 74
+ 75    def load_model(self, **kwargs: Any) -> None:
+ 76        """Loads model, preprocessor and sample data to interface"""
+ 77
+ 78        from opsml.storage.card_loader import ModelCardLoader
+ 79
+ 80        ModelCardLoader(self).load_model(**kwargs)
+ 81
+ 82    def download_model(self, path: Path, **kwargs: Any) -> None:
+ 83        """Downloads model, preprocessor and metadata to path
+ 84
+ 85        Args:
+ 86            path:
+ 87                Path to download model
+ 88
+ 89            kwargs:
+ 90                load_preprocessor:
+ 91                    Whether to load preprocessor or not. Default is True
+ 92                load_onnx:
+ 93                    Whether to load onnx model or not. Default is False
+ 94                quantize:
+ 95                    Whether to quantize onnx model or not. Default is False
+ 96        """
+ 97
+ 98        from opsml.storage.card_loader import ModelCardLoader
+ 99
+100        # set path to download model
+101        kwargs["lpath"] = path
+102
+103        ModelCardLoader(self).download_model(**kwargs)
+104
+105    def load_onnx_model(self, **kwargs: Any) -> None:
+106        """Loads onnx model to interface"""
+107
+108        from opsml.storage.card_loader import ModelCardLoader
+109
+110        ModelCardLoader(self).load_onnx_model(**kwargs)
+111
+112    def load_preprocessor(self, **kwargs: Any) -> None:
+113        """Loads onnx model to interface"""
+114
+115        if self.preprocessor is not None:
+116            return
+117
+118        from opsml.storage.card_loader import ModelCardLoader
+119
+120        ModelCardLoader(self).load_preprocessor(**kwargs)
+121
+122    def create_registry_record(self) -> Dict[str, Any]:
+123        """Creates a registry record from the current ModelCard"""
+124
+125        exclude_vars = {"interface": {"model", "preprocessor", "sample_data", "onnx_model"}}
+126        dumped_model = self.model_dump(exclude=exclude_vars)
+127
+128        return dumped_model
+129
+130    @property
+131    def model(self) -> Any:
+132        """Quick access to model from interface"""
+133        return self.interface.model
+134
+135    @property
+136    def sample_data(self) -> Any:
+137        """Quick access to sample data from interface"""
+138        return self.interface.sample_data
+139
+140    @property
+141    def preprocessor(self) -> Any:
+142        """Quick access to preprocessor from interface"""
+143
+144        if hasattr(self.interface, "preprocessor"):
+145            return self.interface.preprocessor
+146
+147        if hasattr(self.interface, "tokenizer"):
+148            if self.interface.tokenizer is not None:
+149                return self.interface.tokenizer
+150
+151        if hasattr(self.interface, "feature_extractor"):
+152            if self.interface.feature_extractor is not None:
+153                return self.interface.feature_extractor
+154
+155        return None
+156
+157    @property
+158    def onnx_model(self) -> Optional[OnnxModel]:
+159        """Quick access to onnx model from interface"""
+160        return self.interface.onnx_model
+161
+162    @property
+163    def model_metadata(self) -> ModelMetadata:
+164        """Loads `ModelMetadata` class"""
+165
+166        from opsml.storage.card_loader import ModelCardLoader
+167
+168        return ModelCardLoader(self).load_model_metadata()
+169
+170    @property
+171    def card_type(self) -> str:
+172        return CardType.MODELCARD.value
+
+ + +

Create a ModelCard from your trained machine learning model. +This Card is used in conjunction with the ModelCardCreator class.

+ +
Arguments:
+ +
    +
  • interface: Trained model interface.
  • +
  • name: Name for the model specific to your current project
  • +
  • repository: Repository that this model is associated with
  • +
  • contact: Contact to associate with card
  • +
  • info: CardInfo object containing additional metadata. If provided, it will override any +values provided for name, repository, contact, and version.

    + +

    Name, repository, and contact are required arguments for all cards. They can be provided +directly or through a CardInfo object.

  • +
  • uid: Unique id (assigned if card has been registered)
  • +
  • version: Current version (assigned if card has been registered)
  • +
  • datacard_uid: Uid of the DataCard associated with training the model
  • +
  • to_onnx: Whether to convert the model to onnx or not
  • +
  • metadata: ModelCardMetadata associated with the model
  • +
+
+ + +
+
+ model_config = + + {'arbitrary_types_allowed': True, 'validate_assignment': True, 'validate_default': True, 'protected_namespaces': ('protect_',)} + + +
+ + + + +
+
+
+ interface: typing.Annotated[opsml.model.interfaces.base.ModelInterface, SerializeAsAny()] + + +
+ + + + +
+
+
+ datacard_uid: Optional[str] + + +
+ + + + +
+
+
+ to_onnx: bool + + +
+ + + + +
+
+
+ metadata: opsml.types.model.ModelCardMetadata + + +
+ + + + +
+
+ +
+
@field_validator('datacard_uid', mode='before')
+
@classmethod
+ + def + check_uid(cls, datacard_uid: Optional[str] = None) -> Optional[str]: + + + +
+ +
62    @field_validator("datacard_uid", mode="before")
+63    @classmethod
+64    def check_uid(cls, datacard_uid: Optional[str] = None) -> Optional[str]:
+65        if datacard_uid is None:
+66            return datacard_uid
+67
+68        try:
+69            UUID(datacard_uid, version=4)  # we use uuid4
+70            return datacard_uid
+71
+72        except ValueError as exc:
+73            raise ValueError("Datacard uid is not a valid uuid") from exc
+
+ + + + +
+
+ +
+ + def + load_model(self, **kwargs: Any) -> None: + + + +
+ +
75    def load_model(self, **kwargs: Any) -> None:
+76        """Loads model, preprocessor and sample data to interface"""
+77
+78        from opsml.storage.card_loader import ModelCardLoader
+79
+80        ModelCardLoader(self).load_model(**kwargs)
+
+ + +

Loads model, preprocessor and sample data to interface

+
+ + +
+
+ +
+ + def + download_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
 82    def download_model(self, path: Path, **kwargs: Any) -> None:
+ 83        """Downloads model, preprocessor and metadata to path
+ 84
+ 85        Args:
+ 86            path:
+ 87                Path to download model
+ 88
+ 89            kwargs:
+ 90                load_preprocessor:
+ 91                    Whether to load preprocessor or not. Default is True
+ 92                load_onnx:
+ 93                    Whether to load onnx model or not. Default is False
+ 94                quantize:
+ 95                    Whether to quantize onnx model or not. Default is False
+ 96        """
+ 97
+ 98        from opsml.storage.card_loader import ModelCardLoader
+ 99
+100        # set path to download model
+101        kwargs["lpath"] = path
+102
+103        ModelCardLoader(self).download_model(**kwargs)
+
+ + +

Downloads model, preprocessor and metadata to path

+ +
Arguments:
+ +
    +
  • path: Path to download model
  • +
  • kwargs: load_preprocessor: + Whether to load preprocessor or not. Default is True +load_onnx: + Whether to load onnx model or not. Default is False +quantize: + Whether to quantize onnx model or not. Default is False
  • +
+
+ + +
+
+ +
+ + def + load_onnx_model(self, **kwargs: Any) -> None: + + + +
+ +
105    def load_onnx_model(self, **kwargs: Any) -> None:
+106        """Loads onnx model to interface"""
+107
+108        from opsml.storage.card_loader import ModelCardLoader
+109
+110        ModelCardLoader(self).load_onnx_model(**kwargs)
+
+ + +

Loads onnx model to interface

+
+ + +
+
+ +
+ + def + load_preprocessor(self, **kwargs: Any) -> None: + + + +
+ +
112    def load_preprocessor(self, **kwargs: Any) -> None:
+113        """Loads onnx model to interface"""
+114
+115        if self.preprocessor is not None:
+116            return
+117
+118        from opsml.storage.card_loader import ModelCardLoader
+119
+120        ModelCardLoader(self).load_preprocessor(**kwargs)
+
+ + +

Loads onnx model to interface

+
+ + +
+
+ +
+ + def + create_registry_record(self) -> Dict[str, Any]: + + + +
+ +
122    def create_registry_record(self) -> Dict[str, Any]:
+123        """Creates a registry record from the current ModelCard"""
+124
+125        exclude_vars = {"interface": {"model", "preprocessor", "sample_data", "onnx_model"}}
+126        dumped_model = self.model_dump(exclude=exclude_vars)
+127
+128        return dumped_model
+
+ + +

Creates a registry record from the current ModelCard

+
+ + +
+
+ +
+ model: Any + + + +
+ +
130    @property
+131    def model(self) -> Any:
+132        """Quick access to model from interface"""
+133        return self.interface.model
+
+ + +

Quick access to model from interface

+
+ + +
+
+ +
+ sample_data: Any + + + +
+ +
135    @property
+136    def sample_data(self) -> Any:
+137        """Quick access to sample data from interface"""
+138        return self.interface.sample_data
+
+ + +

Quick access to sample data from interface

+
+ + +
+
+ +
+ preprocessor: Any + + + +
+ +
140    @property
+141    def preprocessor(self) -> Any:
+142        """Quick access to preprocessor from interface"""
+143
+144        if hasattr(self.interface, "preprocessor"):
+145            return self.interface.preprocessor
+146
+147        if hasattr(self.interface, "tokenizer"):
+148            if self.interface.tokenizer is not None:
+149                return self.interface.tokenizer
+150
+151        if hasattr(self.interface, "feature_extractor"):
+152            if self.interface.feature_extractor is not None:
+153                return self.interface.feature_extractor
+154
+155        return None
+
+ + +

Quick access to preprocessor from interface

+
+ + +
+
+ +
+ onnx_model: Optional[opsml.types.model.OnnxModel] + + + +
+ +
157    @property
+158    def onnx_model(self) -> Optional[OnnxModel]:
+159        """Quick access to onnx model from interface"""
+160        return self.interface.onnx_model
+
+ + +

Quick access to onnx model from interface

+
+ + +
+
+ +
+ model_metadata: opsml.types.model.ModelMetadata + + + +
+ +
162    @property
+163    def model_metadata(self) -> ModelMetadata:
+164        """Loads `ModelMetadata` class"""
+165
+166        from opsml.storage.card_loader import ModelCardLoader
+167
+168        return ModelCardLoader(self).load_model_metadata()
+
+ + +

Loads ModelMetadata class

+
+ + +
+
+ +
+ card_type: str + + + +
+ +
170    @property
+171    def card_type(self) -> str:
+172        return CardType.MODELCARD.value
+
+ + + + +
+
+
+ model_fields = + + {'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'interface': FieldInfo(annotation=ModelInterface, required=True, metadata=[SerializeAsAny()]), 'datacard_uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'to_onnx': FieldInfo(annotation=bool, required=False, default=False), 'metadata': FieldInfo(annotation=ModelCardMetadata, required=False, default=ModelCardMetadata(interface_type='', description=Description(summary=None, sample_code=None, Notes=None), data_schema=DataSchema(data_type=None, input_features=None, output_features=None, onnx_input_features=None, onnx_output_features=None, onnx_data_type=None, onnx_version=None), runcard_uid=None, pipelinecard_uid=None, auditcard_uid=None))} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.cards.base.ArtifactCard
+
name
+
repository
+
contact
+
version
+
uid
+
info
+
tags
+
validate_args
+
add_tag
+
uri
+
artifact_uri
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/cards/project.html b/api/opsml/cards/project.html new file mode 100644 index 000000000..d8a932877 --- /dev/null +++ b/api/opsml/cards/project.html @@ -0,0 +1,467 @@ + + + + + + + opsml.cards.project API documentation + + + + + + + + + +
+
+

+opsml.cards.project

+ + + + + + +
 1# Copyright (c) Shipt, Inc.
+ 2# This source code is licensed under the MIT license found in the
+ 3# LICENSE file in the root directory of this source tree.
+ 4
+ 5#
+ 6# IMPORTANT: We need `Dict`, `List`, and `Optional` imported here in order for Pydantic to be able to
+ 7# deserialize ProjectCard.
+ 8#
+ 9from typing import Any, Dict, List, Optional  # noqa # pylint: disable=unused-import
+10
+11from opsml.cards.base import ArtifactCard
+12from opsml.types import CardType
+13
+14
+15class ProjectCard(ArtifactCard):
+16    """
+17    Card containing project information
+18    """
+19
+20    project_id: int = 0  # placeholder
+21
+22    def create_registry_record(self) -> Dict[str, Any]:
+23        """Creates a registry record for a project"""
+24
+25        return self.model_dump()
+26
+27    @property
+28    def card_type(self) -> str:
+29        return CardType.PROJECTCARD.value
+
+ + +
+
+ +
+ + class + ProjectCard(opsml.cards.base.ArtifactCard): + + + +
+ +
16class ProjectCard(ArtifactCard):
+17    """
+18    Card containing project information
+19    """
+20
+21    project_id: int = 0  # placeholder
+22
+23    def create_registry_record(self) -> Dict[str, Any]:
+24        """Creates a registry record for a project"""
+25
+26        return self.model_dump()
+27
+28    @property
+29    def card_type(self) -> str:
+30        return CardType.PROJECTCARD.value
+
+ + +

Card containing project information

+
+ + +
+
+ project_id: int + + +
+ + + + +
+
+ +
+ + def + create_registry_record(self) -> Dict[str, Any]: + + + +
+ +
23    def create_registry_record(self) -> Dict[str, Any]:
+24        """Creates a registry record for a project"""
+25
+26        return self.model_dump()
+
+ + +

Creates a registry record for a project

+
+ + +
+
+ +
+ card_type: str + + + +
+ +
28    @property
+29    def card_type(self) -> str:
+30        return CardType.PROJECTCARD.value
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'project_id': FieldInfo(annotation=int, required=False, default=0)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.cards.base.ArtifactCard
+
name
+
repository
+
contact
+
version
+
uid
+
info
+
tags
+
validate_args
+
add_tag
+
uri
+
artifact_uri
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/cards/run.html b/api/opsml/cards/run.html new file mode 100644 index 000000000..7facbbf2f --- /dev/null +++ b/api/opsml/cards/run.html @@ -0,0 +1,2391 @@ + + + + + + + opsml.cards.run API documentation + + + + + + + + + +
+
+

+opsml.cards.run

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4
+  5# pylint: disable=invalid-name
+  6
+  7
+  8import tempfile
+  9import uuid
+ 10from functools import cached_property
+ 11from pathlib import Path
+ 12from typing import Any, Dict, List, Optional, Tuple, Union, cast
+ 13
+ 14import joblib
+ 15import numpy as np
+ 16from numpy.typing import NDArray
+ 17from pydantic import model_validator
+ 18
+ 19from opsml.cards.base import ArtifactCard
+ 20from opsml.helpers.logging import ArtifactLogger
+ 21from opsml.helpers.utils import TypeChecker
+ 22from opsml.settings.config import config
+ 23from opsml.storage import client
+ 24from opsml.types import (
+ 25    Artifact,
+ 26    ArtifactUris,
+ 27    CardType,
+ 28    CommonKwargs,
+ 29    GraphStyle,
+ 30    Metric,
+ 31    Metrics,
+ 32    Param,
+ 33    Params,
+ 34    RegistryTableNames,
+ 35    RegistryType,
+ 36    RunCardRegistry,
+ 37    RunGraph,
+ 38    SaveName,
+ 39)
+ 40
+ 41logger = ArtifactLogger.get_logger()
+ 42
+ 43_List = List[Union[float, int]]
+ 44_Dict = Dict[str, List[Union[float, int]]]
+ 45_YReturn = Union[_List, _Dict]
+ 46_ParseReturn = Tuple[_YReturn, str]
+ 47
+ 48
+ 49def _dump_graph_artifact(graph: RunGraph, name: str, uri: Path) -> Tuple[Path, Path]:
+ 50    """Helper method for saving graph artifacts to storage
+ 51
+ 52    Args:
+ 53        graph:
+ 54            RunGraph object
+ 55        name:
+ 56            Name of graph
+ 57        uri:
+ 58            Uri to store graph artifact
+ 59    """
+ 60    with tempfile.TemporaryDirectory() as tempdir:
+ 61        lpath = Path(tempdir) / f"{name}.joblib"
+ 62        rpath = (uri / SaveName.GRAPHS.value) / lpath.name
+ 63        joblib.dump(graph.model_dump(), lpath)
+ 64
+ 65        client.storage_client.put(lpath, rpath)
+ 66
+ 67        return lpath, rpath
+ 68
+ 69
+ 70def _decimate_list(array: List[Union[float, int]]) -> List[Union[float, int]]:
+ 71    """Decimates array to no more than 200,000 points
+ 72
+ 73    Args:
+ 74        array:
+ 75            List of floats or ints
+ 76
+ 77    Returns:
+ 78        Decimated array
+ 79    """
+ 80    length = len(array)
+ 81    if len(array) > 200_000:
+ 82        step = round(length / 200_000)
+ 83        return array[::step]
+ 84
+ 85    return array
+ 86
+ 87
+ 88def _parse_y_to_list(
+ 89    x_length: int,
+ 90    y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+ 91) -> _ParseReturn:
+ 92    """Helper method for parsing y to list when logging a graph
+ 93
+ 94    Args:
+ 95        x_length:
+ 96            Length of x
+ 97        y:
+ 98            Y values to parse. Can be a list, dictionary or numpy array
+ 99
+100    Returns:
+101        List or dictionary of y values
+102
+103    """
+104    # if y is dictionary
+105    if isinstance(y, dict):
+106        _y: Dict[str, List[Union[float, int]]] = {}
+107
+108        # common sense constraint
+109        if len(y.keys()) > 50:
+110            raise ValueError("Too many keys in dictionary. A maximum of 50 keys for y is allowed.")
+111
+112        for k, v in y.items():
+113            if isinstance(v, np.ndarray):
+114                v = v.flatten().tolist()
+115                assert isinstance(v, list), "y must be a list or dictionary"
+116                v = _decimate_list(v)
+117
+118            assert x_length == len(v), "x and y must be the same length"
+119            _y[k] = v
+120
+121        return _y, "multi"
+122
+123    # if y is ndarray
+124    if isinstance(y, np.ndarray):
+125        y = y.flatten().tolist()
+126        assert isinstance(y, list), "y must be a list or dictionary"
+127
+128        y = _decimate_list(y)
+129        assert x_length == len(y), "x and y must be the same length"
+130
+131        return y, "single"
+132
+133    # if y is list
+134    assert isinstance(y, list), "y must be a list or dictionary"
+135    y = _decimate_list(y)
+136    assert x_length == len(y), "x and y must be the same length"
+137    return y, "single"
+138
+139
+140class RunCard(ArtifactCard):
+141
+142    """
+143    Create a RunCard from specified arguments.
+144
+145    Apart from required args, a RunCard must be associated with one of
+146    datacard_uid, modelcard_uids or pipelinecard_uid
+147
+148    Args:
+149        name:
+150            Run name
+151        repository:
+152            Repository that this card is associated with
+153        contact:
+154            Contact to associate with card
+155        info:
+156            `CardInfo` object containing additional metadata. If provided, it will override any
+157            values provided for `name`, `repository`, `contact`, and `version`.
+158
+159            Name, repository, and contact are required arguments for all cards. They can be provided
+160            directly or through a `CardInfo` object.
+161
+162        datacard_uids:
+163            Optional DataCard uids associated with this run
+164        modelcard_uids:
+165            Optional List of ModelCard uids to associate with this run
+166        pipelinecard_uid:
+167            Optional PipelineCard uid to associate with this experiment
+168        metrics:
+169            Optional dictionary of key (str), value (int, float) metric paris.
+170            Metrics can also be added via class methods.
+171        parameters:
+172            Parameters associated with a RunCard
+173        artifact_uris:
+174            Optional dictionary of artifact uris associated with artifacts.
+175        uid:
+176            Unique id (assigned if card has been registered)
+177        version:
+178            Current version (assigned if card has been registered)
+179
+180    """
+181
+182    datacard_uids: List[str] = []
+183    modelcard_uids: List[str] = []
+184    pipelinecard_uid: Optional[str] = None
+185    metrics: Metrics = {}
+186    parameters: Params = {}
+187    artifact_uris: ArtifactUris = {}
+188    tags: Dict[str, Union[str, int]] = {}
+189    project: Optional[str] = None
+190
+191    @model_validator(mode="before")
+192    @classmethod
+193    def validate_defaults_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:
+194        # add default
+195        contact = card_args.get("contact")
+196
+197        if contact is None:
+198            card_args["contact"] = CommonKwargs.UNDEFINED.value
+199
+200        repository = card_args.get("repository")
+201
+202        if repository is None:
+203            card_args["repository"] = "opsml"
+204
+205        return card_args
+206
+207    def add_tag(self, key: str, value: str) -> None:
+208        """
+209        Logs tags to current RunCard
+210
+211        Args:
+212            key:
+213                Key for tag
+214            value:
+215                value for tag
+216        """
+217        self.tags = {**{key: value}, **self.tags}
+218
+219    def add_tags(self, tags: Dict[str, str]) -> None:
+220        """
+221        Logs tags to current RunCard
+222
+223        Args:
+224            tags:
+225                Dictionary of tags
+226        """
+227        self.tags = {**tags, **self.tags}
+228
+229    def log_graph(
+230        self,
+231        name: str,
+232        x: Union[List[Union[float, int]], NDArray[Any]],
+233        y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+234        y_label: str,
+235        x_label: str,
+236        graph_style: str,
+237    ) -> None:
+238        """Logs a graph to the RunCard, which will be rendered in the UI as a line graph
+239
+240        Args:
+241            name:
+242                Name of graph
+243            x:
+244                List or numpy array of x values
+245
+246            x_label:
+247                Label for x axis
+248            y:
+249                Either a list or numpy array of y values or a dictionary of y values where key is the group label and
+250                value is a list or numpy array of y values
+251            y_label:
+252                Label for y axis
+253            graph_style:
+254                Style of graph. Options are "line" or "scatter"
+255
+256        example:
+257
+258            ### single line graph
+259            x = np.arange(1, 400, 0.5)
+260            y = x * x
+261            run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+262
+263            ### multi line graph
+264            x = np.arange(1, 1000, 0.5)
+265            y1 = x * x
+266            y2 = y1 * 1.1
+267            y3 = y2 * 3
+268            run.log_graph(
+269                name="multiline",
+270                x=x,
+271                y={"y1": y1, "y2": y2, "y3": y3},
+272                x_label="x",
+273                y_label="y",
+274                graph_style="line",
+275            )
+276
+277        """
+278
+279        if isinstance(x, np.ndarray):
+280            x = x.flatten().tolist()
+281            assert isinstance(x, list), "x must be a list or dictionary"
+282
+283        x = _decimate_list(x)
+284
+285        parsed_y, graph_type = _parse_y_to_list(len(x), y)
+286
+287        logger.info(f"Logging graph {name} to RunCard")
+288        graph = RunGraph(
+289            name=name,
+290            x=x,
+291            x_label=x_label,
+292            y=parsed_y,
+293            y_label=y_label,
+294            graph_type=graph_type,
+295            graph_style=GraphStyle.from_str(graph_style).value,  # validate graph style
+296        )
+297
+298        # save graph to storage so we can view in ui while run is active
+299        lpath, rpath = _dump_graph_artifact(graph, name, self.uri)
+300
+301        self._add_artifact_uri(
+302            name=name,
+303            local_path=lpath.as_posix(),
+304            remote_path=rpath.as_posix(),
+305        )
+306
+307    def log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None:
+308        """
+309        Logs parameters to current RunCard
+310
+311        Args:
+312            parameters:
+313                Dictionary of parameters
+314        """
+315
+316        for key, value in parameters.items():
+317            # check key
+318            self.log_parameter(key, value)
+319
+320    def log_parameter(self, key: str, value: Union[int, float, str]) -> None:
+321        """
+322        Logs parameter to current RunCard
+323
+324        Args:
+325            key:
+326                Param name
+327            value:
+328                Param value
+329        """
+330
+331        TypeChecker.check_param_type(param=value)
+332        _key = TypeChecker.replace_spaces(key)
+333
+334        param = Param(name=key, value=value)
+335
+336        if self.parameters.get(_key) is not None:
+337            self.parameters[_key].append(param)
+338
+339        else:
+340            self.parameters[_key] = [param]
+341
+342    def log_metric(
+343        self,
+344        key: str,
+345        value: Union[int, float],
+346        timestamp: Optional[int] = None,
+347        step: Optional[int] = None,
+348    ) -> None:
+349        """
+350        Logs metric to the existing RunCard metric dictionary
+351
+352        Args:
+353            key:
+354                Metric name
+355            value:
+356                Metric value
+357            timestamp:
+358                Optional timestamp
+359            step:
+360                Optional step associated with name and value
+361        """
+362
+363        TypeChecker.check_metric_type(metric=value)
+364        _key = TypeChecker.replace_spaces(key)
+365
+366        metric = Metric(name=_key, value=value, timestamp=timestamp, step=step)
+367
+368        self._registry.insert_metric([{**metric.model_dump(), **{"run_uid": self.uid}}])
+369
+370        if self.metrics.get(_key) is not None:
+371            self.metrics[_key].append(metric)
+372        else:
+373            self.metrics[_key] = [metric]
+374
+375    def log_metrics(self, metrics: Dict[str, Union[float, int]], step: Optional[int] = None) -> None:
+376        """
+377        Log metrics to the existing RunCard metric dictionary
+378
+379        Args:
+380            metrics:
+381                Dictionary containing key (str) and value (float or int) pairs
+382                to add to the current metric set
+383            step:
+384                Optional step associated with metrics
+385        """
+386
+387        for key, value in metrics.items():
+388            self.log_metric(key, value, step)
+389
+390    def log_artifact_from_file(
+391        self,
+392        name: str,
+393        local_path: Union[str, Path],
+394        artifact_path: Optional[Union[str, Path]] = None,
+395    ) -> None:
+396        """
+397        Log a local file or directory to the opsml server and associate with the current run.
+398
+399        Args:
+400            name:
+401                Name to assign to artifact(s)
+402            local_path:
+403                Local path to file or directory. Can be string or pathlike object
+404            artifact_path:
+405                Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
+406        """
+407
+408        lpath = Path(local_path)
+409        rpath = self.uri / (artifact_path or SaveName.ARTIFACTS.value)
+410
+411        if lpath.is_file():
+412            rpath = rpath / lpath.name
+413
+414        client.storage_client.put(lpath, rpath)
+415        self._add_artifact_uri(
+416            name=name,
+417            local_path=lpath.as_posix(),
+418            remote_path=rpath.as_posix(),
+419        )
+420
+421    def create_registry_record(self) -> Dict[str, Any]:
+422        """Creates a registry record from the current RunCard"""
+423
+424        exclude_attr = {"parameters", "metrics"}
+425
+426        return self.model_dump(exclude=exclude_attr)
+427
+428    def _add_artifact_uri(self, name: str, local_path: str, remote_path: str) -> None:
+429        """
+430        Adds an artifact_uri to the runcard
+431
+432        Args:
+433            name:
+434                Name to associate with artifact
+435            uri:
+436                Uri where artifact is stored
+437        """
+438
+439        self.artifact_uris[name] = Artifact(
+440            name=name,
+441            local_path=local_path,
+442            remote_path=remote_path,
+443        )
+444
+445    def add_card_uid(self, card_type: str, uid: str) -> None:
+446        """
+447        Adds a card uid to the appropriate card uid list for tracking
+448
+449        Args:
+450            card_type:
+451                ArtifactCard class name
+452            uid:
+453                Uid of registered ArtifactCard
+454        """
+455
+456        if card_type == CardType.DATACARD:
+457            self.datacard_uids = [uid, *self.datacard_uids]
+458        elif card_type == CardType.MODELCARD:
+459            self.modelcard_uids = [uid, *self.modelcard_uids]
+460
+461    def get_metric(self, name: str) -> Union[List[Metric], Metric]:
+462        """
+463        Gets a metric by name
+464
+465        Args:
+466            name:
+467                Name of metric
+468
+469        Returns:
+470            List of dictionaries or dictionary containing value
+471
+472        """
+473        _key = TypeChecker.replace_spaces(name)
+474
+475        metric = self.metrics.get(_key)
+476
+477        if metric is None:
+478            # try to get metric from registry
+479            assert self.uid is not None, "RunCard must be registered to get metric"
+480            _metric = self._registry.get_metric(run_uid=self.uid, name=[_key])
+481
+482            if _metric is not None:
+483                metric = [Metric(**i) for i in _metric]
+484
+485            else:
+486                raise ValueError(f"Metric {metric} was not defined")
+487
+488        if len(metric) > 1:
+489            return metric
+490        if len(metric) == 1:
+491            return metric[0]
+492        return metric
+493
+494    def load_metrics(self) -> None:
+495        """Reloads metrics from registry"""
+496        assert self.uid is not None, "RunCard must be registered to load metrics"
+497
+498        metrics = self._registry.get_metric(run_uid=self.uid)
+499
+500        if metrics is None:
+501            logger.info("No metrics found for RunCard")
+502            return None
+503
+504        # reset metrics
+505        self.metrics = {}
+506        for metric in metrics:
+507            _metric = Metric(**metric)
+508            if _metric.name not in self.metrics:
+509                self.metrics[_metric.name] = [_metric]
+510            else:
+511                self.metrics[_metric.name].append(_metric)
+512        return None
+513
+514    def get_parameter(self, name: str) -> Union[List[Param], Param]:
+515        """
+516        Gets a parameter by name
+517
+518        Args:
+519            name:
+520                Name of parameter
+521
+522        Returns:
+523            List of dictionaries or dictionary containing value
+524
+525        """
+526        _key = TypeChecker.replace_spaces(name)
+527        param = self.parameters.get(_key)
+528        if param is not None:
+529            if len(param) > 1:
+530                return param
+531            if len(param) == 1:
+532                return param[0]
+533            return param
+534
+535        raise ValueError(f"Param {param} is not defined")
+536
+537    def load_artifacts(self, name: Optional[str] = None) -> None:
+538        """Loads artifacts from artifact_uris"""
+539        if bool(self.artifact_uris) is False:
+540            logger.info("No artifact uris associated with RunCard")
+541            return None
+542
+543        if name is not None:
+544            artifact = self.artifact_uris.get(name)
+545            assert artifact is not None, f"Artifact {name} not found"
+546            client.storage_client.get(
+547                Path(artifact.remote_path),
+548                Path(artifact.local_path),
+549            )
+550
+551        else:
+552            for _, artifact in self.artifact_uris.items():
+553                client.storage_client.get(
+554                    Path(artifact.remote_path),
+555                    Path(artifact.local_path),
+556                )
+557        return None
+558
+559    @property
+560    def uri(self) -> Path:
+561        """The base URI to use for the card and it's artifacts."""
+562
+563        # when using runcard outside of run context
+564        if self.version == CommonKwargs.BASE_VERSION.value:
+565            if self.uid is None:
+566                self.uid = uuid.uuid4().hex
+567
+568            end_path = self.uid
+569        else:
+570            end_path = f"v{self.version}"
+571
+572        return Path(
+573            config.storage_root,
+574            RegistryTableNames.from_str(self.card_type).value,
+575            str(self.repository),
+576            str(self.name),
+577            end_path,
+578        )
+579
+580    @cached_property
+581    def _registry(self) -> RunCardRegistry:
+582        from opsml.registry.backend import _set_registry
+583
+584        return cast(RunCardRegistry, _set_registry(RegistryType.RUN))
+585
+586    @property
+587    def card_type(self) -> str:
+588        return CardType.RUNCARD.value
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + RunCard(opsml.cards.base.ArtifactCard): + + + +
+ +
141class RunCard(ArtifactCard):
+142
+143    """
+144    Create a RunCard from specified arguments.
+145
+146    Apart from required args, a RunCard must be associated with one of
+147    datacard_uid, modelcard_uids or pipelinecard_uid
+148
+149    Args:
+150        name:
+151            Run name
+152        repository:
+153            Repository that this card is associated with
+154        contact:
+155            Contact to associate with card
+156        info:
+157            `CardInfo` object containing additional metadata. If provided, it will override any
+158            values provided for `name`, `repository`, `contact`, and `version`.
+159
+160            Name, repository, and contact are required arguments for all cards. They can be provided
+161            directly or through a `CardInfo` object.
+162
+163        datacard_uids:
+164            Optional DataCard uids associated with this run
+165        modelcard_uids:
+166            Optional List of ModelCard uids to associate with this run
+167        pipelinecard_uid:
+168            Optional PipelineCard uid to associate with this experiment
+169        metrics:
+170            Optional dictionary of key (str), value (int, float) metric paris.
+171            Metrics can also be added via class methods.
+172        parameters:
+173            Parameters associated with a RunCard
+174        artifact_uris:
+175            Optional dictionary of artifact uris associated with artifacts.
+176        uid:
+177            Unique id (assigned if card has been registered)
+178        version:
+179            Current version (assigned if card has been registered)
+180
+181    """
+182
+183    datacard_uids: List[str] = []
+184    modelcard_uids: List[str] = []
+185    pipelinecard_uid: Optional[str] = None
+186    metrics: Metrics = {}
+187    parameters: Params = {}
+188    artifact_uris: ArtifactUris = {}
+189    tags: Dict[str, Union[str, int]] = {}
+190    project: Optional[str] = None
+191
+192    @model_validator(mode="before")
+193    @classmethod
+194    def validate_defaults_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:
+195        # add default
+196        contact = card_args.get("contact")
+197
+198        if contact is None:
+199            card_args["contact"] = CommonKwargs.UNDEFINED.value
+200
+201        repository = card_args.get("repository")
+202
+203        if repository is None:
+204            card_args["repository"] = "opsml"
+205
+206        return card_args
+207
+208    def add_tag(self, key: str, value: str) -> None:
+209        """
+210        Logs tags to current RunCard
+211
+212        Args:
+213            key:
+214                Key for tag
+215            value:
+216                value for tag
+217        """
+218        self.tags = {**{key: value}, **self.tags}
+219
+220    def add_tags(self, tags: Dict[str, str]) -> None:
+221        """
+222        Logs tags to current RunCard
+223
+224        Args:
+225            tags:
+226                Dictionary of tags
+227        """
+228        self.tags = {**tags, **self.tags}
+229
+230    def log_graph(
+231        self,
+232        name: str,
+233        x: Union[List[Union[float, int]], NDArray[Any]],
+234        y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+235        y_label: str,
+236        x_label: str,
+237        graph_style: str,
+238    ) -> None:
+239        """Logs a graph to the RunCard, which will be rendered in the UI as a line graph
+240
+241        Args:
+242            name:
+243                Name of graph
+244            x:
+245                List or numpy array of x values
+246
+247            x_label:
+248                Label for x axis
+249            y:
+250                Either a list or numpy array of y values or a dictionary of y values where key is the group label and
+251                value is a list or numpy array of y values
+252            y_label:
+253                Label for y axis
+254            graph_style:
+255                Style of graph. Options are "line" or "scatter"
+256
+257        example:
+258
+259            ### single line graph
+260            x = np.arange(1, 400, 0.5)
+261            y = x * x
+262            run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+263
+264            ### multi line graph
+265            x = np.arange(1, 1000, 0.5)
+266            y1 = x * x
+267            y2 = y1 * 1.1
+268            y3 = y2 * 3
+269            run.log_graph(
+270                name="multiline",
+271                x=x,
+272                y={"y1": y1, "y2": y2, "y3": y3},
+273                x_label="x",
+274                y_label="y",
+275                graph_style="line",
+276            )
+277
+278        """
+279
+280        if isinstance(x, np.ndarray):
+281            x = x.flatten().tolist()
+282            assert isinstance(x, list), "x must be a list or dictionary"
+283
+284        x = _decimate_list(x)
+285
+286        parsed_y, graph_type = _parse_y_to_list(len(x), y)
+287
+288        logger.info(f"Logging graph {name} to RunCard")
+289        graph = RunGraph(
+290            name=name,
+291            x=x,
+292            x_label=x_label,
+293            y=parsed_y,
+294            y_label=y_label,
+295            graph_type=graph_type,
+296            graph_style=GraphStyle.from_str(graph_style).value,  # validate graph style
+297        )
+298
+299        # save graph to storage so we can view in ui while run is active
+300        lpath, rpath = _dump_graph_artifact(graph, name, self.uri)
+301
+302        self._add_artifact_uri(
+303            name=name,
+304            local_path=lpath.as_posix(),
+305            remote_path=rpath.as_posix(),
+306        )
+307
+308    def log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None:
+309        """
+310        Logs parameters to current RunCard
+311
+312        Args:
+313            parameters:
+314                Dictionary of parameters
+315        """
+316
+317        for key, value in parameters.items():
+318            # check key
+319            self.log_parameter(key, value)
+320
+321    def log_parameter(self, key: str, value: Union[int, float, str]) -> None:
+322        """
+323        Logs parameter to current RunCard
+324
+325        Args:
+326            key:
+327                Param name
+328            value:
+329                Param value
+330        """
+331
+332        TypeChecker.check_param_type(param=value)
+333        _key = TypeChecker.replace_spaces(key)
+334
+335        param = Param(name=key, value=value)
+336
+337        if self.parameters.get(_key) is not None:
+338            self.parameters[_key].append(param)
+339
+340        else:
+341            self.parameters[_key] = [param]
+342
+343    def log_metric(
+344        self,
+345        key: str,
+346        value: Union[int, float],
+347        timestamp: Optional[int] = None,
+348        step: Optional[int] = None,
+349    ) -> None:
+350        """
+351        Logs metric to the existing RunCard metric dictionary
+352
+353        Args:
+354            key:
+355                Metric name
+356            value:
+357                Metric value
+358            timestamp:
+359                Optional timestamp
+360            step:
+361                Optional step associated with name and value
+362        """
+363
+364        TypeChecker.check_metric_type(metric=value)
+365        _key = TypeChecker.replace_spaces(key)
+366
+367        metric = Metric(name=_key, value=value, timestamp=timestamp, step=step)
+368
+369        self._registry.insert_metric([{**metric.model_dump(), **{"run_uid": self.uid}}])
+370
+371        if self.metrics.get(_key) is not None:
+372            self.metrics[_key].append(metric)
+373        else:
+374            self.metrics[_key] = [metric]
+375
+376    def log_metrics(self, metrics: Dict[str, Union[float, int]], step: Optional[int] = None) -> None:
+377        """
+378        Log metrics to the existing RunCard metric dictionary
+379
+380        Args:
+381            metrics:
+382                Dictionary containing key (str) and value (float or int) pairs
+383                to add to the current metric set
+384            step:
+385                Optional step associated with metrics
+386        """
+387
+388        for key, value in metrics.items():
+389            self.log_metric(key, value, step)
+390
+391    def log_artifact_from_file(
+392        self,
+393        name: str,
+394        local_path: Union[str, Path],
+395        artifact_path: Optional[Union[str, Path]] = None,
+396    ) -> None:
+397        """
+398        Log a local file or directory to the opsml server and associate with the current run.
+399
+400        Args:
+401            name:
+402                Name to assign to artifact(s)
+403            local_path:
+404                Local path to file or directory. Can be string or pathlike object
+405            artifact_path:
+406                Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
+407        """
+408
+409        lpath = Path(local_path)
+410        rpath = self.uri / (artifact_path or SaveName.ARTIFACTS.value)
+411
+412        if lpath.is_file():
+413            rpath = rpath / lpath.name
+414
+415        client.storage_client.put(lpath, rpath)
+416        self._add_artifact_uri(
+417            name=name,
+418            local_path=lpath.as_posix(),
+419            remote_path=rpath.as_posix(),
+420        )
+421
+422    def create_registry_record(self) -> Dict[str, Any]:
+423        """Creates a registry record from the current RunCard"""
+424
+425        exclude_attr = {"parameters", "metrics"}
+426
+427        return self.model_dump(exclude=exclude_attr)
+428
+429    def _add_artifact_uri(self, name: str, local_path: str, remote_path: str) -> None:
+430        """
+431        Adds an artifact_uri to the runcard
+432
+433        Args:
+434            name:
+435                Name to associate with artifact
+436            uri:
+437                Uri where artifact is stored
+438        """
+439
+440        self.artifact_uris[name] = Artifact(
+441            name=name,
+442            local_path=local_path,
+443            remote_path=remote_path,
+444        )
+445
+446    def add_card_uid(self, card_type: str, uid: str) -> None:
+447        """
+448        Adds a card uid to the appropriate card uid list for tracking
+449
+450        Args:
+451            card_type:
+452                ArtifactCard class name
+453            uid:
+454                Uid of registered ArtifactCard
+455        """
+456
+457        if card_type == CardType.DATACARD:
+458            self.datacard_uids = [uid, *self.datacard_uids]
+459        elif card_type == CardType.MODELCARD:
+460            self.modelcard_uids = [uid, *self.modelcard_uids]
+461
+462    def get_metric(self, name: str) -> Union[List[Metric], Metric]:
+463        """
+464        Gets a metric by name
+465
+466        Args:
+467            name:
+468                Name of metric
+469
+470        Returns:
+471            List of dictionaries or dictionary containing value
+472
+473        """
+474        _key = TypeChecker.replace_spaces(name)
+475
+476        metric = self.metrics.get(_key)
+477
+478        if metric is None:
+479            # try to get metric from registry
+480            assert self.uid is not None, "RunCard must be registered to get metric"
+481            _metric = self._registry.get_metric(run_uid=self.uid, name=[_key])
+482
+483            if _metric is not None:
+484                metric = [Metric(**i) for i in _metric]
+485
+486            else:
+487                raise ValueError(f"Metric {metric} was not defined")
+488
+489        if len(metric) > 1:
+490            return metric
+491        if len(metric) == 1:
+492            return metric[0]
+493        return metric
+494
+495    def load_metrics(self) -> None:
+496        """Reloads metrics from registry"""
+497        assert self.uid is not None, "RunCard must be registered to load metrics"
+498
+499        metrics = self._registry.get_metric(run_uid=self.uid)
+500
+501        if metrics is None:
+502            logger.info("No metrics found for RunCard")
+503            return None
+504
+505        # reset metrics
+506        self.metrics = {}
+507        for metric in metrics:
+508            _metric = Metric(**metric)
+509            if _metric.name not in self.metrics:
+510                self.metrics[_metric.name] = [_metric]
+511            else:
+512                self.metrics[_metric.name].append(_metric)
+513        return None
+514
+515    def get_parameter(self, name: str) -> Union[List[Param], Param]:
+516        """
+517        Gets a parameter by name
+518
+519        Args:
+520            name:
+521                Name of parameter
+522
+523        Returns:
+524            List of dictionaries or dictionary containing value
+525
+526        """
+527        _key = TypeChecker.replace_spaces(name)
+528        param = self.parameters.get(_key)
+529        if param is not None:
+530            if len(param) > 1:
+531                return param
+532            if len(param) == 1:
+533                return param[0]
+534            return param
+535
+536        raise ValueError(f"Param {param} is not defined")
+537
+538    def load_artifacts(self, name: Optional[str] = None) -> None:
+539        """Loads artifacts from artifact_uris"""
+540        if bool(self.artifact_uris) is False:
+541            logger.info("No artifact uris associated with RunCard")
+542            return None
+543
+544        if name is not None:
+545            artifact = self.artifact_uris.get(name)
+546            assert artifact is not None, f"Artifact {name} not found"
+547            client.storage_client.get(
+548                Path(artifact.remote_path),
+549                Path(artifact.local_path),
+550            )
+551
+552        else:
+553            for _, artifact in self.artifact_uris.items():
+554                client.storage_client.get(
+555                    Path(artifact.remote_path),
+556                    Path(artifact.local_path),
+557                )
+558        return None
+559
+560    @property
+561    def uri(self) -> Path:
+562        """The base URI to use for the card and it's artifacts."""
+563
+564        # when using runcard outside of run context
+565        if self.version == CommonKwargs.BASE_VERSION.value:
+566            if self.uid is None:
+567                self.uid = uuid.uuid4().hex
+568
+569            end_path = self.uid
+570        else:
+571            end_path = f"v{self.version}"
+572
+573        return Path(
+574            config.storage_root,
+575            RegistryTableNames.from_str(self.card_type).value,
+576            str(self.repository),
+577            str(self.name),
+578            end_path,
+579        )
+580
+581    @cached_property
+582    def _registry(self) -> RunCardRegistry:
+583        from opsml.registry.backend import _set_registry
+584
+585        return cast(RunCardRegistry, _set_registry(RegistryType.RUN))
+586
+587    @property
+588    def card_type(self) -> str:
+589        return CardType.RUNCARD.value
+
+ + +

Create a RunCard from specified arguments.

+ +

Apart from required args, a RunCard must be associated with one of +datacard_uid, modelcard_uids or pipelinecard_uid

+ +
Arguments:
+ +
    +
  • name: Run name
  • +
  • repository: Repository that this card is associated with
  • +
  • contact: Contact to associate with card
  • +
  • info: CardInfo object containing additional metadata. If provided, it will override any +values provided for name, repository, contact, and version.

    + +

    Name, repository, and contact are required arguments for all cards. They can be provided +directly or through a CardInfo object.

  • +
  • datacard_uids: Optional DataCard uids associated with this run
  • +
  • modelcard_uids: Optional List of ModelCard uids to associate with this run
  • +
  • pipelinecard_uid: Optional PipelineCard uid to associate with this experiment
  • +
  • metrics: Optional dictionary of key (str), value (int, float) metric paris. +Metrics can also be added via class methods.
  • +
  • parameters: Parameters associated with a RunCard
  • +
  • artifact_uris: Optional dictionary of artifact uris associated with artifacts.
  • +
  • uid: Unique id (assigned if card has been registered)
  • +
  • version: Current version (assigned if card has been registered)
  • +
+
+ + +
+
+ datacard_uids: List[str] + + +
+ + + + +
+
+
+ modelcard_uids: List[str] + + +
+ + + + +
+
+
+ pipelinecard_uid: Optional[str] + + +
+ + + + +
+
+
+ metrics: Dict[str, List[opsml.types.card.Metric]] + + +
+ + + + +
+
+
+ parameters: Dict[str, List[opsml.types.card.Param]] + + +
+ + + + +
+
+
+ artifact_uris: Dict[str, opsml.types.card.Artifact] + + +
+ + + + +
+
+
+ tags: Dict[str, Union[int, str]] + + +
+ + + + +
+
+
+ project: Optional[str] + + +
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + validate_defaults_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
192    @model_validator(mode="before")
+193    @classmethod
+194    def validate_defaults_args(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:
+195        # add default
+196        contact = card_args.get("contact")
+197
+198        if contact is None:
+199            card_args["contact"] = CommonKwargs.UNDEFINED.value
+200
+201        repository = card_args.get("repository")
+202
+203        if repository is None:
+204            card_args["repository"] = "opsml"
+205
+206        return card_args
+
+ + + + +
+
+ +
+ + def + add_tag(self, key: str, value: str) -> None: + + + +
+ +
208    def add_tag(self, key: str, value: str) -> None:
+209        """
+210        Logs tags to current RunCard
+211
+212        Args:
+213            key:
+214                Key for tag
+215            value:
+216                value for tag
+217        """
+218        self.tags = {**{key: value}, **self.tags}
+
+ + +

Logs tags to current RunCard

+ +
Arguments:
+ +
    +
  • key: Key for tag
  • +
  • value: value for tag
  • +
+
+ + +
+
+ +
+ + def + add_tags(self, tags: Dict[str, str]) -> None: + + + +
+ +
220    def add_tags(self, tags: Dict[str, str]) -> None:
+221        """
+222        Logs tags to current RunCard
+223
+224        Args:
+225            tags:
+226                Dictionary of tags
+227        """
+228        self.tags = {**tags, **self.tags}
+
+ + +

Logs tags to current RunCard

+ +
Arguments:
+ +
    +
  • tags: Dictionary of tags
  • +
+
+ + +
+
+ +
+ + def + log_graph( self, name: str, x: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]], y: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]], Dict[str, Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]]]], y_label: str, x_label: str, graph_style: str) -> None: + + + +
+ +
230    def log_graph(
+231        self,
+232        name: str,
+233        x: Union[List[Union[float, int]], NDArray[Any]],
+234        y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+235        y_label: str,
+236        x_label: str,
+237        graph_style: str,
+238    ) -> None:
+239        """Logs a graph to the RunCard, which will be rendered in the UI as a line graph
+240
+241        Args:
+242            name:
+243                Name of graph
+244            x:
+245                List or numpy array of x values
+246
+247            x_label:
+248                Label for x axis
+249            y:
+250                Either a list or numpy array of y values or a dictionary of y values where key is the group label and
+251                value is a list or numpy array of y values
+252            y_label:
+253                Label for y axis
+254            graph_style:
+255                Style of graph. Options are "line" or "scatter"
+256
+257        example:
+258
+259            ### single line graph
+260            x = np.arange(1, 400, 0.5)
+261            y = x * x
+262            run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+263
+264            ### multi line graph
+265            x = np.arange(1, 1000, 0.5)
+266            y1 = x * x
+267            y2 = y1 * 1.1
+268            y3 = y2 * 3
+269            run.log_graph(
+270                name="multiline",
+271                x=x,
+272                y={"y1": y1, "y2": y2, "y3": y3},
+273                x_label="x",
+274                y_label="y",
+275                graph_style="line",
+276            )
+277
+278        """
+279
+280        if isinstance(x, np.ndarray):
+281            x = x.flatten().tolist()
+282            assert isinstance(x, list), "x must be a list or dictionary"
+283
+284        x = _decimate_list(x)
+285
+286        parsed_y, graph_type = _parse_y_to_list(len(x), y)
+287
+288        logger.info(f"Logging graph {name} to RunCard")
+289        graph = RunGraph(
+290            name=name,
+291            x=x,
+292            x_label=x_label,
+293            y=parsed_y,
+294            y_label=y_label,
+295            graph_type=graph_type,
+296            graph_style=GraphStyle.from_str(graph_style).value,  # validate graph style
+297        )
+298
+299        # save graph to storage so we can view in ui while run is active
+300        lpath, rpath = _dump_graph_artifact(graph, name, self.uri)
+301
+302        self._add_artifact_uri(
+303            name=name,
+304            local_path=lpath.as_posix(),
+305            remote_path=rpath.as_posix(),
+306        )
+
+ + +

Logs a graph to the RunCard, which will be rendered in the UI as a line graph

+ +
Arguments:
+ +
    +
  • name: Name of graph
  • +
  • x: List or numpy array of x values
  • +
  • x_label: Label for x axis
  • +
  • y: Either a list or numpy array of y values or a dictionary of y values where key is the group label and +value is a list or numpy array of y values
  • +
  • y_label: Label for y axis
  • +
  • graph_style: Style of graph. Options are "line" or "scatter"
  • +
+ +

example:

+ +
### single line graph
+x = np.arange(1, 400, 0.5)
+y = x * x
+run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+
+### multi line graph
+x = np.arange(1, 1000, 0.5)
+y1 = x * x
+y2 = y1 * 1.1
+y3 = y2 * 3
+run.log_graph(
+    name="multiline",
+    x=x,
+    y={"y1": y1, "y2": y2, "y3": y3},
+    x_label="x",
+    y_label="y",
+    graph_style="line",
+)
+
+
+ + +
+
+ +
+ + def + log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None: + + + +
+ +
308    def log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None:
+309        """
+310        Logs parameters to current RunCard
+311
+312        Args:
+313            parameters:
+314                Dictionary of parameters
+315        """
+316
+317        for key, value in parameters.items():
+318            # check key
+319            self.log_parameter(key, value)
+
+ + +

Logs parameters to current RunCard

+ +
Arguments:
+ +
    +
  • parameters: Dictionary of parameters
  • +
+
+ + +
+
+ +
+ + def + log_parameter(self, key: str, value: Union[int, float, str]) -> None: + + + +
+ +
321    def log_parameter(self, key: str, value: Union[int, float, str]) -> None:
+322        """
+323        Logs parameter to current RunCard
+324
+325        Args:
+326            key:
+327                Param name
+328            value:
+329                Param value
+330        """
+331
+332        TypeChecker.check_param_type(param=value)
+333        _key = TypeChecker.replace_spaces(key)
+334
+335        param = Param(name=key, value=value)
+336
+337        if self.parameters.get(_key) is not None:
+338            self.parameters[_key].append(param)
+339
+340        else:
+341            self.parameters[_key] = [param]
+
+ + +

Logs parameter to current RunCard

+ +
Arguments:
+ +
    +
  • key: Param name
  • +
  • value: Param value
  • +
+
+ + +
+
+ +
+ + def + log_metric( self, key: str, value: Union[int, float], timestamp: Optional[int] = None, step: Optional[int] = None) -> None: + + + +
+ +
343    def log_metric(
+344        self,
+345        key: str,
+346        value: Union[int, float],
+347        timestamp: Optional[int] = None,
+348        step: Optional[int] = None,
+349    ) -> None:
+350        """
+351        Logs metric to the existing RunCard metric dictionary
+352
+353        Args:
+354            key:
+355                Metric name
+356            value:
+357                Metric value
+358            timestamp:
+359                Optional timestamp
+360            step:
+361                Optional step associated with name and value
+362        """
+363
+364        TypeChecker.check_metric_type(metric=value)
+365        _key = TypeChecker.replace_spaces(key)
+366
+367        metric = Metric(name=_key, value=value, timestamp=timestamp, step=step)
+368
+369        self._registry.insert_metric([{**metric.model_dump(), **{"run_uid": self.uid}}])
+370
+371        if self.metrics.get(_key) is not None:
+372            self.metrics[_key].append(metric)
+373        else:
+374            self.metrics[_key] = [metric]
+
+ + +

Logs metric to the existing RunCard metric dictionary

+ +
Arguments:
+ +
    +
  • key: Metric name
  • +
  • value: Metric value
  • +
  • timestamp: Optional timestamp
  • +
  • step: Optional step associated with name and value
  • +
+
+ + +
+
+ +
+ + def + log_metrics( self, metrics: Dict[str, Union[float, int]], step: Optional[int] = None) -> None: + + + +
+ +
376    def log_metrics(self, metrics: Dict[str, Union[float, int]], step: Optional[int] = None) -> None:
+377        """
+378        Log metrics to the existing RunCard metric dictionary
+379
+380        Args:
+381            metrics:
+382                Dictionary containing key (str) and value (float or int) pairs
+383                to add to the current metric set
+384            step:
+385                Optional step associated with metrics
+386        """
+387
+388        for key, value in metrics.items():
+389            self.log_metric(key, value, step)
+
+ + +

Log metrics to the existing RunCard metric dictionary

+ +
Arguments:
+ +
    +
  • metrics: Dictionary containing key (str) and value (float or int) pairs +to add to the current metric set
  • +
  • step: Optional step associated with metrics
  • +
+
+ + +
+
+ +
+ + def + log_artifact_from_file( self, name: str, local_path: Union[str, pathlib.Path], artifact_path: Union[str, pathlib.Path, NoneType] = None) -> None: + + + +
+ +
391    def log_artifact_from_file(
+392        self,
+393        name: str,
+394        local_path: Union[str, Path],
+395        artifact_path: Optional[Union[str, Path]] = None,
+396    ) -> None:
+397        """
+398        Log a local file or directory to the opsml server and associate with the current run.
+399
+400        Args:
+401            name:
+402                Name to assign to artifact(s)
+403            local_path:
+404                Local path to file or directory. Can be string or pathlike object
+405            artifact_path:
+406                Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
+407        """
+408
+409        lpath = Path(local_path)
+410        rpath = self.uri / (artifact_path or SaveName.ARTIFACTS.value)
+411
+412        if lpath.is_file():
+413            rpath = rpath / lpath.name
+414
+415        client.storage_client.put(lpath, rpath)
+416        self._add_artifact_uri(
+417            name=name,
+418            local_path=lpath.as_posix(),
+419            remote_path=rpath.as_posix(),
+420        )
+
+ + +

Log a local file or directory to the opsml server and associate with the current run.

+ +
Arguments:
+ +
    +
  • name: Name to assign to artifact(s)
  • +
  • local_path: Local path to file or directory. Can be string or pathlike object
  • +
  • artifact_path: Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
  • +
+
+ + +
+
+ +
+ + def + create_registry_record(self) -> Dict[str, Any]: + + + +
+ +
422    def create_registry_record(self) -> Dict[str, Any]:
+423        """Creates a registry record from the current RunCard"""
+424
+425        exclude_attr = {"parameters", "metrics"}
+426
+427        return self.model_dump(exclude=exclude_attr)
+
+ + +

Creates a registry record from the current RunCard

+
+ + +
+
+ +
+ + def + add_card_uid(self, card_type: str, uid: str) -> None: + + + +
+ +
446    def add_card_uid(self, card_type: str, uid: str) -> None:
+447        """
+448        Adds a card uid to the appropriate card uid list for tracking
+449
+450        Args:
+451            card_type:
+452                ArtifactCard class name
+453            uid:
+454                Uid of registered ArtifactCard
+455        """
+456
+457        if card_type == CardType.DATACARD:
+458            self.datacard_uids = [uid, *self.datacard_uids]
+459        elif card_type == CardType.MODELCARD:
+460            self.modelcard_uids = [uid, *self.modelcard_uids]
+
+ + +

Adds a card uid to the appropriate card uid list for tracking

+ +
Arguments:
+ +
    +
  • card_type: ArtifactCard class name
  • +
  • uid: Uid of registered ArtifactCard
  • +
+
+ + +
+
+ +
+ + def + get_metric( self, name: str) -> Union[List[opsml.types.card.Metric], opsml.types.card.Metric]: + + + +
+ +
462    def get_metric(self, name: str) -> Union[List[Metric], Metric]:
+463        """
+464        Gets a metric by name
+465
+466        Args:
+467            name:
+468                Name of metric
+469
+470        Returns:
+471            List of dictionaries or dictionary containing value
+472
+473        """
+474        _key = TypeChecker.replace_spaces(name)
+475
+476        metric = self.metrics.get(_key)
+477
+478        if metric is None:
+479            # try to get metric from registry
+480            assert self.uid is not None, "RunCard must be registered to get metric"
+481            _metric = self._registry.get_metric(run_uid=self.uid, name=[_key])
+482
+483            if _metric is not None:
+484                metric = [Metric(**i) for i in _metric]
+485
+486            else:
+487                raise ValueError(f"Metric {metric} was not defined")
+488
+489        if len(metric) > 1:
+490            return metric
+491        if len(metric) == 1:
+492            return metric[0]
+493        return metric
+
+ + +

Gets a metric by name

+ +
Arguments:
+ +
    +
  • name: Name of metric
  • +
+ +
Returns:
+ +
+

List of dictionaries or dictionary containing value

+
+
+ + +
+
+ +
+ + def + load_metrics(self) -> None: + + + +
+ +
495    def load_metrics(self) -> None:
+496        """Reloads metrics from registry"""
+497        assert self.uid is not None, "RunCard must be registered to load metrics"
+498
+499        metrics = self._registry.get_metric(run_uid=self.uid)
+500
+501        if metrics is None:
+502            logger.info("No metrics found for RunCard")
+503            return None
+504
+505        # reset metrics
+506        self.metrics = {}
+507        for metric in metrics:
+508            _metric = Metric(**metric)
+509            if _metric.name not in self.metrics:
+510                self.metrics[_metric.name] = [_metric]
+511            else:
+512                self.metrics[_metric.name].append(_metric)
+513        return None
+
+ + +

Reloads metrics from registry

+
+ + +
+
+ +
+ + def + get_parameter( self, name: str) -> Union[List[opsml.types.card.Param], opsml.types.card.Param]: + + + +
+ +
515    def get_parameter(self, name: str) -> Union[List[Param], Param]:
+516        """
+517        Gets a parameter by name
+518
+519        Args:
+520            name:
+521                Name of parameter
+522
+523        Returns:
+524            List of dictionaries or dictionary containing value
+525
+526        """
+527        _key = TypeChecker.replace_spaces(name)
+528        param = self.parameters.get(_key)
+529        if param is not None:
+530            if len(param) > 1:
+531                return param
+532            if len(param) == 1:
+533                return param[0]
+534            return param
+535
+536        raise ValueError(f"Param {param} is not defined")
+
+ + +

Gets a parameter by name

+ +
Arguments:
+ +
    +
  • name: Name of parameter
  • +
+ +
Returns:
+ +
+

List of dictionaries or dictionary containing value

+
+
+ + +
+
+ +
+ + def + load_artifacts(self, name: Optional[str] = None) -> None: + + + +
+ +
538    def load_artifacts(self, name: Optional[str] = None) -> None:
+539        """Loads artifacts from artifact_uris"""
+540        if bool(self.artifact_uris) is False:
+541            logger.info("No artifact uris associated with RunCard")
+542            return None
+543
+544        if name is not None:
+545            artifact = self.artifact_uris.get(name)
+546            assert artifact is not None, f"Artifact {name} not found"
+547            client.storage_client.get(
+548                Path(artifact.remote_path),
+549                Path(artifact.local_path),
+550            )
+551
+552        else:
+553            for _, artifact in self.artifact_uris.items():
+554                client.storage_client.get(
+555                    Path(artifact.remote_path),
+556                    Path(artifact.local_path),
+557                )
+558        return None
+
+ + +

Loads artifacts from artifact_uris

+
+ + +
+
+ +
+ uri: pathlib.Path + + + +
+ +
560    @property
+561    def uri(self) -> Path:
+562        """The base URI to use for the card and it's artifacts."""
+563
+564        # when using runcard outside of run context
+565        if self.version == CommonKwargs.BASE_VERSION.value:
+566            if self.uid is None:
+567                self.uid = uuid.uuid4().hex
+568
+569            end_path = self.uid
+570        else:
+571            end_path = f"v{self.version}"
+572
+573        return Path(
+574            config.storage_root,
+575            RegistryTableNames.from_str(self.card_type).value,
+576            str(self.repository),
+577            str(self.name),
+578            end_path,
+579        )
+
+ + +

The base URI to use for the card and it's artifacts.

+
+ + +
+
+ +
+ card_type: str + + + +
+ +
587    @property
+588    def card_type(self) -> str:
+589        return CardType.RUNCARD.value
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, Union[int, str]], required=False, default={}), 'datacard_uids': FieldInfo(annotation=List[str], required=False, default=[]), 'modelcard_uids': FieldInfo(annotation=List[str], required=False, default=[]), 'pipelinecard_uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'metrics': FieldInfo(annotation=Dict[str, List[Metric]], required=False, default={}), 'parameters': FieldInfo(annotation=Dict[str, List[Param]], required=False, default={}), 'artifact_uris': FieldInfo(annotation=Dict[str, Artifact], required=False, default={}), 'project': FieldInfo(annotation=Union[str, NoneType], required=False)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.cards.base.ArtifactCard
+
name
+
repository
+
contact
+
version
+
uid
+
info
+
validate_args
+
artifact_uri
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_arrow.html b/api/opsml/data/interfaces/_arrow.html new file mode 100644 index 000000000..16ab7f2b1 --- /dev/null +++ b/api/opsml/data/interfaces/_arrow.html @@ -0,0 +1,650 @@ + + + + + + + opsml.data.interfaces._arrow API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._arrow

+ + + + + + +
 1from pathlib import Path
+ 2from typing import Optional
+ 3
+ 4import pyarrow as pa
+ 5import pyarrow.parquet as pq
+ 6
+ 7from opsml.data.interfaces._base import DataInterface
+ 8from opsml.types import AllowedDataType, Feature, Suffix
+ 9
+10
+11class ArrowData(DataInterface):
+12
+13    """Arrow Table data interface
+14
+15    Args:
+16        data:
+17            Pyarrow Table
+18        dependent_vars:
+19            List of dependent variables. Can be string or index if using numpy
+20        data_splits:
+21            Optional list of `DataSplit`
+22        data_profile:
+23            Optional ydata-profiling `ProfileReport`
+24        feature_map:
+25            Dictionary of features -> automatically generated
+26        feature_descriptions:
+27            Dictionary or feature descriptions
+28        sql_logic:
+29            Sql logic used to generate data
+30
+31    """
+32
+33    data: Optional[pa.Table] = None
+34
+35    def save_data(self, path: Path) -> None:
+36        """Saves pandas dataframe to parquet"""
+37
+38        assert self.data is not None, "No data detected in interface"
+39        schema = self.data.schema
+40        self.feature_map = {
+41            feature: Feature(
+42                feature_type=str(type_),
+43                shape=(1,),
+44            )
+45            for feature, type_ in zip(schema.names, schema.types)
+46        }
+47
+48        pq.write_table(self.data, path)
+49
+50    def load_data(self, path: Path) -> None:
+51        """Load parquet dataset to pandas dataframe"""
+52
+53        load_path = path.with_suffix(self.data_suffix)
+54        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=load_path).read()
+55
+56        self.data = pa_table
+57
+58    @property
+59    def data_type(self) -> str:
+60        return AllowedDataType.PYARROW.value
+61
+62    @property
+63    def data_suffix(self) -> str:
+64        """Returns suffix for storage"""
+65        return Suffix.PARQUET.value
+66
+67    @staticmethod
+68    def name() -> str:
+69        return ArrowData.__name__
+
+ + +
+
+ +
+ + class + ArrowData(opsml.data.interfaces._base.DataInterface): + + + +
+ +
12class ArrowData(DataInterface):
+13
+14    """Arrow Table data interface
+15
+16    Args:
+17        data:
+18            Pyarrow Table
+19        dependent_vars:
+20            List of dependent variables. Can be string or index if using numpy
+21        data_splits:
+22            Optional list of `DataSplit`
+23        data_profile:
+24            Optional ydata-profiling `ProfileReport`
+25        feature_map:
+26            Dictionary of features -> automatically generated
+27        feature_descriptions:
+28            Dictionary or feature descriptions
+29        sql_logic:
+30            Sql logic used to generate data
+31
+32    """
+33
+34    data: Optional[pa.Table] = None
+35
+36    def save_data(self, path: Path) -> None:
+37        """Saves pandas dataframe to parquet"""
+38
+39        assert self.data is not None, "No data detected in interface"
+40        schema = self.data.schema
+41        self.feature_map = {
+42            feature: Feature(
+43                feature_type=str(type_),
+44                shape=(1,),
+45            )
+46            for feature, type_ in zip(schema.names, schema.types)
+47        }
+48
+49        pq.write_table(self.data, path)
+50
+51    def load_data(self, path: Path) -> None:
+52        """Load parquet dataset to pandas dataframe"""
+53
+54        load_path = path.with_suffix(self.data_suffix)
+55        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=load_path).read()
+56
+57        self.data = pa_table
+58
+59    @property
+60    def data_type(self) -> str:
+61        return AllowedDataType.PYARROW.value
+62
+63    @property
+64    def data_suffix(self) -> str:
+65        """Returns suffix for storage"""
+66        return Suffix.PARQUET.value
+67
+68    @staticmethod
+69    def name() -> str:
+70        return ArrowData.__name__
+
+ + +

Arrow Table data interface

+ +
Arguments:
+ +
    +
  • data: Pyarrow Table
  • +
  • dependent_vars: List of dependent variables. Can be string or index if using numpy
  • +
  • data_splits: Optional list of DataSplit
  • +
  • data_profile: Optional ydata-profiling ProfileReport
  • +
  • feature_map: Dictionary of features -> automatically generated
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
  • sql_logic: Sql logic used to generate data
  • +
+
+ + +
+
+ data: Optional[pyarrow.lib.Table] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
36    def save_data(self, path: Path) -> None:
+37        """Saves pandas dataframe to parquet"""
+38
+39        assert self.data is not None, "No data detected in interface"
+40        schema = self.data.schema
+41        self.feature_map = {
+42            feature: Feature(
+43                feature_type=str(type_),
+44                shape=(1,),
+45            )
+46            for feature, type_ in zip(schema.names, schema.types)
+47        }
+48
+49        pq.write_table(self.data, path)
+
+ + +

Saves pandas dataframe to parquet

+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path) -> None: + + + +
+ +
51    def load_data(self, path: Path) -> None:
+52        """Load parquet dataset to pandas dataframe"""
+53
+54        load_path = path.with_suffix(self.data_suffix)
+55        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=load_path).read()
+56
+57        self.data = pa_table
+
+ + +

Load parquet dataset to pandas dataframe

+
+ + +
+
+ +
+ data_type: str + + + +
+ +
59    @property
+60    def data_type(self) -> str:
+61        return AllowedDataType.PYARROW.value
+
+ + + + +
+
+ +
+ data_suffix: str + + + +
+ +
63    @property
+64    def data_suffix(self) -> str:
+65        """Returns suffix for storage"""
+66        return Suffix.PARQUET.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
68    @staticmethod
+69    def name() -> str:
+70        return ArrowData.__name__
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[Table, NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces._base.DataInterface
+
data_splits
+
dependent_vars
+
data_profile
+
feature_map
+
feature_descriptions
+
sql_logic
+
add_sql
+
load_data_profile
+
save_data_profile
+
create_data_profile
+
split_data
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_base.html b/api/opsml/data/interfaces/_base.html new file mode 100644 index 000000000..46fbe4dbb --- /dev/null +++ b/api/opsml/data/interfaces/_base.html @@ -0,0 +1,1428 @@ + + + + + + + opsml.data.interfaces._base API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._base

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, List, Optional, Union
+  3
+  4import joblib
+  5import pandas as pd
+  6import polars as pl
+  7from pydantic import BaseModel, ConfigDict, field_validator
+  8
+  9from opsml.data.splitter import Data, DataSplit, DataSplitter
+ 10from opsml.helpers.logging import ArtifactLogger
+ 11from opsml.helpers.utils import FileUtils
+ 12from opsml.types import CommonKwargs, Feature, Suffix
+ 13
+ 14logger = ArtifactLogger.get_logger()
+ 15
+ 16try:
+ 17    from ydata_profiling import ProfileReport
+ 18except ModuleNotFoundError:
+ 19    ProfileReport = Any
+ 20
+ 21
+ 22class DataInterface(BaseModel):
+ 23    """Base data interface for all data types
+ 24
+ 25    Args:
+ 26        data:
+ 27            Data. Can be a pyarrow table, pandas dataframe, polars dataframe
+ 28            or numpy array
+ 29        dependent_vars:
+ 30            List of dependent variables. Can be string or index if using numpy
+ 31        data_splits:
+ 32            Optional list of `DataSplit`
+ 33        data_profile:
+ 34            Optional ydata-profiling `ProfileReport`
+ 35        feature_map:
+ 36            Dictionary of features -> automatically generated
+ 37        feature_descriptions:
+ 38            Dictionary or feature descriptions
+ 39        sql_logic:
+ 40            Sql logic used to generate data
+ 41
+ 42    """
+ 43
+ 44    data: Optional[Any] = None
+ 45    data_splits: List[DataSplit] = []
+ 46    dependent_vars: List[Union[int, str]] = []
+ 47    data_profile: Optional[ProfileReport] = None
+ 48    feature_map: Dict[str, Feature] = {}
+ 49    feature_descriptions: Dict[str, str] = {}
+ 50    sql_logic: Dict[str, str] = {}
+ 51
+ 52    model_config = ConfigDict(
+ 53        arbitrary_types_allowed=True,
+ 54        validate_assignment=False,
+ 55        validate_default=True,
+ 56    )
+ 57
+ 58    @property
+ 59    def data_type(self) -> str:
+ 60        return CommonKwargs.UNDEFINED.value
+ 61
+ 62    @field_validator("sql_logic", mode="before")
+ 63    @classmethod
+ 64    def _load_sql(cls, sql_logic: Dict[str, str]) -> Dict[str, str]:
+ 65        if not bool(sql_logic):
+ 66            return sql_logic
+ 67
+ 68        for name, query in sql_logic.items():
+ 69            if ".sql" in query:
+ 70                try:
+ 71                    sql_path = FileUtils.find_filepath(name=query)
+ 72                    with open(sql_path, "r", encoding="utf-8") as file_:
+ 73                        query_ = file_.read()
+ 74                    sql_logic[name] = query_
+ 75
+ 76                except Exception as error:
+ 77                    raise ValueError(f"Could not load sql file {query}. {error}") from error
+ 78
+ 79        return sql_logic
+ 80
+ 81    def add_sql(
+ 82        self,
+ 83        name: str,
+ 84        query: Optional[str] = None,
+ 85        filename: Optional[str] = None,
+ 86    ) -> None:
+ 87        """
+ 88        Adds a query or query from file to the sql_logic dictionary. Either a query or
+ 89        a filename pointing to a sql file are required in addition to a name.
+ 90
+ 91        Args:
+ 92            name:
+ 93                Name for sql query
+ 94            query:
+ 95                SQL query
+ 96            filename: Filename of sql query
+ 97        """
+ 98        if query is not None:
+ 99            self.sql_logic[name] = query
+100
+101        elif filename is not None:
+102            sql_path = str(FileUtils.find_filepath(name=filename))
+103            with open(sql_path, "r", encoding="utf-8") as file_:
+104                query = file_.read()
+105            self.sql_logic[name] = query
+106
+107        else:
+108            raise ValueError("SQL Query or Filename must be provided")
+109
+110    @field_validator("data_profile", mode="before")
+111    @classmethod
+112    def _check_profile(cls, profile: Optional[ProfileReport]) -> Optional[ProfileReport]:
+113        if profile is not None:
+114            from ydata_profiling import ProfileReport as ydata_profile
+115
+116            assert isinstance(profile, ydata_profile)
+117        return profile
+118
+119    def save_data(self, path: Path) -> None:
+120        """Saves data to path. Base implementation use Joblib
+121
+122        Args:
+123            path:
+124                Pathlib object
+125        """
+126        assert self.data is not None, "No data detected in interface"
+127        joblib.dump(self.data, path)
+128
+129        self.feature_map = {
+130            "features": Feature(
+131                feature_type=str(type(self.data)),
+132                shape=CommonKwargs.UNDEFINED.value,
+133            )
+134        }
+135
+136    def load_data(self, path: Path) -> None:
+137        """Load data from pathlib object
+138
+139        Args:
+140            path:
+141                Pathlib object
+142        """
+143
+144        self.data = joblib.load(path)
+145
+146    def load_data_profile(self, path: Path) -> None:
+147        """Load data profile from pathlib object
+148
+149        Args:
+150            path:
+151                Pathlib object
+152        """
+153        self.data_profile = ProfileReport().loads(
+154            joblib.load(path),
+155        )
+156
+157    def save_data_profile(self, path: Path) -> None:
+158        """Saves data profile to path. Data profiles are saved as joblib
+159        joblib
+160
+161        Args:
+162            path:
+163                Pathlib object
+164        """
+165        assert self.data_profile is not None, "No data profile detected in interface"
+166
+167        if path.suffix == Suffix.HTML.value:
+168            profile_artifact = self.data_profile.to_html()
+169            path.write_text(profile_artifact, encoding="utf-8")
+170        else:
+171            profile_artifact = self.data_profile.dumps()
+172            joblib.dump(profile_artifact, path)
+173
+174    def create_data_profile(self, sample_perc: float = 1, name: str = "data_profile") -> ProfileReport:
+175        """Creates a data profile report
+176
+177        Args:
+178            sample_perc:
+179                Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.
+180                Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
+181            name:
+182                Name of data profile
+183
+184        """
+185        from opsml.profile.profile_data import DataProfiler
+186
+187        if isinstance(self.data, (pl.DataFrame, pd.DataFrame)):
+188            if self.data_profile is None:
+189                self.data_profile = DataProfiler.create_profile_report(
+190                    data=self.data,
+191                    name=name,
+192                    sample_perc=min(sample_perc, 1),  # max of 1
+193                )
+194                return self.data_profile
+195
+196            logger.info("Data profile already exists")
+197            return self.data_profile
+198
+199        raise ValueError("A pandas dataframe type is required to create a data profile")
+200
+201    def split_data(self) -> Dict[str, Data]:
+202        """
+203        Loops through data splits and splits data either by indexing or
+204        column values
+205
+206        Example:
+207
+208            ```python
+209            card_info = CardInfo(name="linnerrud", repository="tutorial", contact="user@email.com")
+210            data_card = DataCard(
+211                info=card_info,
+212                data=data,
+213                dependent_vars=["Pulse"],
+214                # define splits
+215                data_splits=[
+216                    DataSplit(label="train", indices=train_idx),
+217                    DataSplit(label="test", indices=test_idx),
+218                ],
+219
+220            )
+221
+222            splits = data_card.split_data()
+223            print(splits["train"].X.head())
+224
+225               Chins  Situps  Jumps
+226            0    5.0   162.0   60.0
+227            1    2.0   110.0   60.0
+228            2   12.0   101.0  101.0
+229            3   12.0   105.0   37.0
+230            4   13.0   155.0   58.0
+231            ```
+232
+233        Returns
+234            Class containing data splits
+235        """
+236        if self.data is None:
+237            raise ValueError("Data must not be None. Either supply data or load data")
+238
+239        if len(self.data_splits) > 0:
+240            data_holder: Dict[str, Data] = {}
+241            for data_split in self.data_splits:
+242                label, data = DataSplitter.split(
+243                    split=data_split,
+244                    dependent_vars=self.dependent_vars,
+245                    data=self.data,
+246                    data_type=self.data_type,
+247                )
+248                data_holder[label] = data
+249
+250            return data_holder
+251        raise ValueError("No data splits provided")
+252
+253    @property
+254    def data_suffix(self) -> str:
+255        """Returns suffix for storage"""
+256        return Suffix.JOBLIB.value
+257
+258    @staticmethod
+259    def name() -> str:
+260        raise NotImplementedError
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + DataInterface(pydantic.main.BaseModel): + + + +
+ +
 23class DataInterface(BaseModel):
+ 24    """Base data interface for all data types
+ 25
+ 26    Args:
+ 27        data:
+ 28            Data. Can be a pyarrow table, pandas dataframe, polars dataframe
+ 29            or numpy array
+ 30        dependent_vars:
+ 31            List of dependent variables. Can be string or index if using numpy
+ 32        data_splits:
+ 33            Optional list of `DataSplit`
+ 34        data_profile:
+ 35            Optional ydata-profiling `ProfileReport`
+ 36        feature_map:
+ 37            Dictionary of features -> automatically generated
+ 38        feature_descriptions:
+ 39            Dictionary or feature descriptions
+ 40        sql_logic:
+ 41            Sql logic used to generate data
+ 42
+ 43    """
+ 44
+ 45    data: Optional[Any] = None
+ 46    data_splits: List[DataSplit] = []
+ 47    dependent_vars: List[Union[int, str]] = []
+ 48    data_profile: Optional[ProfileReport] = None
+ 49    feature_map: Dict[str, Feature] = {}
+ 50    feature_descriptions: Dict[str, str] = {}
+ 51    sql_logic: Dict[str, str] = {}
+ 52
+ 53    model_config = ConfigDict(
+ 54        arbitrary_types_allowed=True,
+ 55        validate_assignment=False,
+ 56        validate_default=True,
+ 57    )
+ 58
+ 59    @property
+ 60    def data_type(self) -> str:
+ 61        return CommonKwargs.UNDEFINED.value
+ 62
+ 63    @field_validator("sql_logic", mode="before")
+ 64    @classmethod
+ 65    def _load_sql(cls, sql_logic: Dict[str, str]) -> Dict[str, str]:
+ 66        if not bool(sql_logic):
+ 67            return sql_logic
+ 68
+ 69        for name, query in sql_logic.items():
+ 70            if ".sql" in query:
+ 71                try:
+ 72                    sql_path = FileUtils.find_filepath(name=query)
+ 73                    with open(sql_path, "r", encoding="utf-8") as file_:
+ 74                        query_ = file_.read()
+ 75                    sql_logic[name] = query_
+ 76
+ 77                except Exception as error:
+ 78                    raise ValueError(f"Could not load sql file {query}. {error}") from error
+ 79
+ 80        return sql_logic
+ 81
+ 82    def add_sql(
+ 83        self,
+ 84        name: str,
+ 85        query: Optional[str] = None,
+ 86        filename: Optional[str] = None,
+ 87    ) -> None:
+ 88        """
+ 89        Adds a query or query from file to the sql_logic dictionary. Either a query or
+ 90        a filename pointing to a sql file are required in addition to a name.
+ 91
+ 92        Args:
+ 93            name:
+ 94                Name for sql query
+ 95            query:
+ 96                SQL query
+ 97            filename: Filename of sql query
+ 98        """
+ 99        if query is not None:
+100            self.sql_logic[name] = query
+101
+102        elif filename is not None:
+103            sql_path = str(FileUtils.find_filepath(name=filename))
+104            with open(sql_path, "r", encoding="utf-8") as file_:
+105                query = file_.read()
+106            self.sql_logic[name] = query
+107
+108        else:
+109            raise ValueError("SQL Query or Filename must be provided")
+110
+111    @field_validator("data_profile", mode="before")
+112    @classmethod
+113    def _check_profile(cls, profile: Optional[ProfileReport]) -> Optional[ProfileReport]:
+114        if profile is not None:
+115            from ydata_profiling import ProfileReport as ydata_profile
+116
+117            assert isinstance(profile, ydata_profile)
+118        return profile
+119
+120    def save_data(self, path: Path) -> None:
+121        """Saves data to path. Base implementation use Joblib
+122
+123        Args:
+124            path:
+125                Pathlib object
+126        """
+127        assert self.data is not None, "No data detected in interface"
+128        joblib.dump(self.data, path)
+129
+130        self.feature_map = {
+131            "features": Feature(
+132                feature_type=str(type(self.data)),
+133                shape=CommonKwargs.UNDEFINED.value,
+134            )
+135        }
+136
+137    def load_data(self, path: Path) -> None:
+138        """Load data from pathlib object
+139
+140        Args:
+141            path:
+142                Pathlib object
+143        """
+144
+145        self.data = joblib.load(path)
+146
+147    def load_data_profile(self, path: Path) -> None:
+148        """Load data profile from pathlib object
+149
+150        Args:
+151            path:
+152                Pathlib object
+153        """
+154        self.data_profile = ProfileReport().loads(
+155            joblib.load(path),
+156        )
+157
+158    def save_data_profile(self, path: Path) -> None:
+159        """Saves data profile to path. Data profiles are saved as joblib
+160        joblib
+161
+162        Args:
+163            path:
+164                Pathlib object
+165        """
+166        assert self.data_profile is not None, "No data profile detected in interface"
+167
+168        if path.suffix == Suffix.HTML.value:
+169            profile_artifact = self.data_profile.to_html()
+170            path.write_text(profile_artifact, encoding="utf-8")
+171        else:
+172            profile_artifact = self.data_profile.dumps()
+173            joblib.dump(profile_artifact, path)
+174
+175    def create_data_profile(self, sample_perc: float = 1, name: str = "data_profile") -> ProfileReport:
+176        """Creates a data profile report
+177
+178        Args:
+179            sample_perc:
+180                Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.
+181                Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
+182            name:
+183                Name of data profile
+184
+185        """
+186        from opsml.profile.profile_data import DataProfiler
+187
+188        if isinstance(self.data, (pl.DataFrame, pd.DataFrame)):
+189            if self.data_profile is None:
+190                self.data_profile = DataProfiler.create_profile_report(
+191                    data=self.data,
+192                    name=name,
+193                    sample_perc=min(sample_perc, 1),  # max of 1
+194                )
+195                return self.data_profile
+196
+197            logger.info("Data profile already exists")
+198            return self.data_profile
+199
+200        raise ValueError("A pandas dataframe type is required to create a data profile")
+201
+202    def split_data(self) -> Dict[str, Data]:
+203        """
+204        Loops through data splits and splits data either by indexing or
+205        column values
+206
+207        Example:
+208
+209            ```python
+210            card_info = CardInfo(name="linnerrud", repository="tutorial", contact="user@email.com")
+211            data_card = DataCard(
+212                info=card_info,
+213                data=data,
+214                dependent_vars=["Pulse"],
+215                # define splits
+216                data_splits=[
+217                    DataSplit(label="train", indices=train_idx),
+218                    DataSplit(label="test", indices=test_idx),
+219                ],
+220
+221            )
+222
+223            splits = data_card.split_data()
+224            print(splits["train"].X.head())
+225
+226               Chins  Situps  Jumps
+227            0    5.0   162.0   60.0
+228            1    2.0   110.0   60.0
+229            2   12.0   101.0  101.0
+230            3   12.0   105.0   37.0
+231            4   13.0   155.0   58.0
+232            ```
+233
+234        Returns
+235            Class containing data splits
+236        """
+237        if self.data is None:
+238            raise ValueError("Data must not be None. Either supply data or load data")
+239
+240        if len(self.data_splits) > 0:
+241            data_holder: Dict[str, Data] = {}
+242            for data_split in self.data_splits:
+243                label, data = DataSplitter.split(
+244                    split=data_split,
+245                    dependent_vars=self.dependent_vars,
+246                    data=self.data,
+247                    data_type=self.data_type,
+248                )
+249                data_holder[label] = data
+250
+251            return data_holder
+252        raise ValueError("No data splits provided")
+253
+254    @property
+255    def data_suffix(self) -> str:
+256        """Returns suffix for storage"""
+257        return Suffix.JOBLIB.value
+258
+259    @staticmethod
+260    def name() -> str:
+261        raise NotImplementedError
+
+ + +

Base data interface for all data types

+ +
Arguments:
+ +
    +
  • data: Data. Can be a pyarrow table, pandas dataframe, polars dataframe +or numpy array
  • +
  • dependent_vars: List of dependent variables. Can be string or index if using numpy
  • +
  • data_splits: Optional list of DataSplit
  • +
  • data_profile: Optional ydata-profiling ProfileReport
  • +
  • feature_map: Dictionary of features -> automatically generated
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
  • sql_logic: Sql logic used to generate data
  • +
+
+ + +
+
+ data: Optional[Any] + + +
+ + + + +
+
+
+ data_splits: List[opsml.data.splitter.DataSplit] + + +
+ + + + +
+
+
+ dependent_vars: List[Union[int, str]] + + +
+ + + + +
+
+
+ data_profile: Optional[ydata_profiling.profile_report.ProfileReport] + + +
+ + + + +
+
+
+ feature_map: Dict[str, opsml.types.model.Feature] + + +
+ + + + +
+
+
+ feature_descriptions: Dict[str, str] + + +
+ + + + +
+
+
+ sql_logic: Dict[str, str] + + +
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+ +
+ data_type: str + + + +
+ +
59    @property
+60    def data_type(self) -> str:
+61        return CommonKwargs.UNDEFINED.value
+
+ + + + +
+
+ +
+ + def + add_sql( self, name: str, query: Optional[str] = None, filename: Optional[str] = None) -> None: + + + +
+ +
 82    def add_sql(
+ 83        self,
+ 84        name: str,
+ 85        query: Optional[str] = None,
+ 86        filename: Optional[str] = None,
+ 87    ) -> None:
+ 88        """
+ 89        Adds a query or query from file to the sql_logic dictionary. Either a query or
+ 90        a filename pointing to a sql file are required in addition to a name.
+ 91
+ 92        Args:
+ 93            name:
+ 94                Name for sql query
+ 95            query:
+ 96                SQL query
+ 97            filename: Filename of sql query
+ 98        """
+ 99        if query is not None:
+100            self.sql_logic[name] = query
+101
+102        elif filename is not None:
+103            sql_path = str(FileUtils.find_filepath(name=filename))
+104            with open(sql_path, "r", encoding="utf-8") as file_:
+105                query = file_.read()
+106            self.sql_logic[name] = query
+107
+108        else:
+109            raise ValueError("SQL Query or Filename must be provided")
+
+ + +

Adds a query or query from file to the sql_logic dictionary. Either a query or +a filename pointing to a sql file are required in addition to a name.

+ +
Arguments:
+ +
    +
  • name: Name for sql query
  • +
  • query: SQL query
  • +
  • filename: Filename of sql query
  • +
+
+ + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
120    def save_data(self, path: Path) -> None:
+121        """Saves data to path. Base implementation use Joblib
+122
+123        Args:
+124            path:
+125                Pathlib object
+126        """
+127        assert self.data is not None, "No data detected in interface"
+128        joblib.dump(self.data, path)
+129
+130        self.feature_map = {
+131            "features": Feature(
+132                feature_type=str(type(self.data)),
+133                shape=CommonKwargs.UNDEFINED.value,
+134            )
+135        }
+
+ + +

Saves data to path. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path) -> None: + + + +
+ +
137    def load_data(self, path: Path) -> None:
+138        """Load data from pathlib object
+139
+140        Args:
+141            path:
+142                Pathlib object
+143        """
+144
+145        self.data = joblib.load(path)
+
+ + +

Load data from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_data_profile(self, path: pathlib.Path) -> None: + + + +
+ +
147    def load_data_profile(self, path: Path) -> None:
+148        """Load data profile from pathlib object
+149
+150        Args:
+151            path:
+152                Pathlib object
+153        """
+154        self.data_profile = ProfileReport().loads(
+155            joblib.load(path),
+156        )
+
+ + +

Load data profile from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + save_data_profile(self, path: pathlib.Path) -> None: + + + +
+ +
158    def save_data_profile(self, path: Path) -> None:
+159        """Saves data profile to path. Data profiles are saved as joblib
+160        joblib
+161
+162        Args:
+163            path:
+164                Pathlib object
+165        """
+166        assert self.data_profile is not None, "No data profile detected in interface"
+167
+168        if path.suffix == Suffix.HTML.value:
+169            profile_artifact = self.data_profile.to_html()
+170            path.write_text(profile_artifact, encoding="utf-8")
+171        else:
+172            profile_artifact = self.data_profile.dumps()
+173            joblib.dump(profile_artifact, path)
+
+ + +

Saves data profile to path. Data profiles are saved as joblib +joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + create_data_profile( self, sample_perc: float = 1, name: str = 'data_profile') -> ydata_profiling.profile_report.ProfileReport: + + + +
+ +
175    def create_data_profile(self, sample_perc: float = 1, name: str = "data_profile") -> ProfileReport:
+176        """Creates a data profile report
+177
+178        Args:
+179            sample_perc:
+180                Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.
+181                Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
+182            name:
+183                Name of data profile
+184
+185        """
+186        from opsml.profile.profile_data import DataProfiler
+187
+188        if isinstance(self.data, (pl.DataFrame, pd.DataFrame)):
+189            if self.data_profile is None:
+190                self.data_profile = DataProfiler.create_profile_report(
+191                    data=self.data,
+192                    name=name,
+193                    sample_perc=min(sample_perc, 1),  # max of 1
+194                )
+195                return self.data_profile
+196
+197            logger.info("Data profile already exists")
+198            return self.data_profile
+199
+200        raise ValueError("A pandas dataframe type is required to create a data profile")
+
+ + +

Creates a data profile report

+ +
Arguments:
+ +
    +
  • sample_perc: Percentage of data to use when creating a profile. Sampling is recommended for large dataframes. +Percentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
  • +
  • name: Name of data profile
  • +
+
+ + +
+
+ +
+ + def + split_data(self) -> Dict[str, opsml.data.splitter.Data]: + + + +
+ +
202    def split_data(self) -> Dict[str, Data]:
+203        """
+204        Loops through data splits and splits data either by indexing or
+205        column values
+206
+207        Example:
+208
+209            ```python
+210            card_info = CardInfo(name="linnerrud", repository="tutorial", contact="user@email.com")
+211            data_card = DataCard(
+212                info=card_info,
+213                data=data,
+214                dependent_vars=["Pulse"],
+215                # define splits
+216                data_splits=[
+217                    DataSplit(label="train", indices=train_idx),
+218                    DataSplit(label="test", indices=test_idx),
+219                ],
+220
+221            )
+222
+223            splits = data_card.split_data()
+224            print(splits["train"].X.head())
+225
+226               Chins  Situps  Jumps
+227            0    5.0   162.0   60.0
+228            1    2.0   110.0   60.0
+229            2   12.0   101.0  101.0
+230            3   12.0   105.0   37.0
+231            4   13.0   155.0   58.0
+232            ```
+233
+234        Returns
+235            Class containing data splits
+236        """
+237        if self.data is None:
+238            raise ValueError("Data must not be None. Either supply data or load data")
+239
+240        if len(self.data_splits) > 0:
+241            data_holder: Dict[str, Data] = {}
+242            for data_split in self.data_splits:
+243                label, data = DataSplitter.split(
+244                    split=data_split,
+245                    dependent_vars=self.dependent_vars,
+246                    data=self.data,
+247                    data_type=self.data_type,
+248                )
+249                data_holder[label] = data
+250
+251            return data_holder
+252        raise ValueError("No data splits provided")
+
+ + +

Loops through data splits and splits data either by indexing or +column values

+ +
Example:
+ +
+
+
card_info = CardInfo(name="linnerrud", repository="tutorial", contact="user@email.com")
+data_card = DataCard(
+    info=card_info,
+    data=data,
+    dependent_vars=["Pulse"],
+    # define splits
+    data_splits=[
+        DataSplit(label="train", indices=train_idx),
+        DataSplit(label="test", indices=test_idx),
+    ],
+
+)
+
+splits = data_card.split_data()
+print(splits["train"].X.head())
+
+   Chins  Situps  Jumps
+0    5.0   162.0   60.0
+1    2.0   110.0   60.0
+2   12.0   101.0  101.0
+3   12.0   105.0   37.0
+4   13.0   155.0   58.0
+
+
+
+ +

Returns + Class containing data splits

+
+ + +
+
+ +
+ data_suffix: str + + + +
+ +
254    @property
+255    def data_suffix(self) -> str:
+256        """Returns suffix for storage"""
+257        return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
259    @staticmethod
+260    def name() -> str:
+261        raise NotImplementedError
+
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[Any, NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_image.html b/api/opsml/data/interfaces/_image.html new file mode 100644 index 000000000..b4ffb8b5d --- /dev/null +++ b/api/opsml/data/interfaces/_image.html @@ -0,0 +1,914 @@ + + + + + + + opsml.data.interfaces._image API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._image

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4from pathlib import Path
+  5from typing import Dict, Optional, Union
+  6
+  7import pyarrow as pa
+  8
+  9from opsml.data.interfaces.custom_data.arrow_reader import PyarrowDatasetReader
+ 10from opsml.data.interfaces.custom_data.arrow_writer import PyarrowDatasetWriter
+ 11from opsml.data.interfaces.custom_data.base import (
+ 12    Dataset,
+ 13    check_for_dirs,
+ 14    get_metadata_filepath,
+ 15)
+ 16from opsml.helpers.logging import ArtifactLogger
+ 17from opsml.types import CommonKwargs
+ 18
+ 19logger = ArtifactLogger.get_logger()
+ 20
+ 21try:
+ 22    from opsml.data.interfaces.custom_data.image import ImageMetadata
+ 23
+ 24    class ImageDataset(Dataset):
+ 25        """Create an image dataset from a directory of images.
+ 26        User can also provide a split that indicates the subdirectory of images to use.
+ 27        It is expected that each split contains a metadata.jsonl built from the ImageMetadata class.
+ 28        ImageDataset was built to have parity with HuggingFace.
+ 29
+ 30        Args:
+ 31            data_dir:
+ 32                Root directory for images.
+ 33
+ 34                For example, you the image file is located at either:
+ 35
+ 36                    - "images/train/my_image.png"
+ 37                    - "images/my_image.png"
+ 38
+ 39                Then the data_dir should be `images/`
+ 40
+ 41            shard_size:
+ 42                Size of shards to use for dataset. Default is 512MB.
+ 43
+ 44            splits:
+ 45                Dictionary of splits to use for dataset. If no splits are provided, then the
+ 46                data_dir or subdirs will be used as the split. It is expected that each split contains a
+ 47                metadata.jsonl built from the ImageMetadata class. It is recommended to allow opsml
+ 48                to create the splits for you.
+ 49        """
+ 50
+ 51        splits: Dict[Optional[str], ImageMetadata] = {}
+ 52
+ 53        def save_data(self, path: Path) -> None:
+ 54            """Saves data to path. Base implementation use Joblib
+ 55
+ 56            Args:
+ 57                path:
+ 58                    Pathlib object
+ 59            """
+ 60            PyarrowDatasetWriter(self, path, self.arrow_schema).write_dataset_to_table()
+ 61
+ 62        def load_data(self, path: Path, **kwargs: Union[str, int]) -> None:
+ 63            """Saves data to data_dir
+ 64
+ 65            Args:
+ 66                path:
+ 67                    Path to load_data
+ 68
+ 69                kwargs:
+ 70
+ 71                    Keyword arguments to pass to the data loader
+ 72
+ 73                    ---- Supported kwargs for ImageData and TextDataset ----
+ 74
+ 75                    split:
+ 76                        Split to use for data. If not provided, then all data will be loaded.
+ 77                        Only used for subclasses of `Dataset`.
+ 78
+ 79                    batch_size:
+ 80                        What batch size to use when loading data in memory. Only used for subclasses of `Dataset`.
+ 81                        Defaults to 1000.
+ 82
+ 83                    chunk_size:
+ 84                        How many files per batch to use when writing arrow back to local file.
+ 85                        Defaults to 1000.
+ 86
+ 87                        Example:
+ 88
+ 89                            - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+ 90                            10 chunks to write in parallel. This is useful for large datasets.
+ 91            """
+ 92            PyarrowDatasetReader(dataset=self, lpath=path, **kwargs).load_dataset()  # type: ignore[arg-type]
+ 93
+ 94        def split_data(self) -> None:
+ 95            """Creates data splits based on subdirectories of data_dir and supplied split value"""
+ 96            if bool(self.splits):
+ 97                return
+ 98
+ 99            splits = check_for_dirs(self.data_dir)
+100
+101            if bool(splits):
+102                for split in splits:
+103                    self.splits[split] = ImageMetadata.load_from_file(get_metadata_filepath(self.data_dir, split)[0])
+104            else:
+105                self.splits[None] = ImageMetadata.load_from_file(get_metadata_filepath(self.data_dir)[0])
+106
+107        @property
+108        def arrow_schema(self) -> pa.Schema:
+109            """Returns schema for ImageData records
+110
+111            Returns:
+112                pyarrow.Schema
+113            """
+114
+115            return pa.schema(
+116                [
+117                    pa.field("split_label", pa.string()),
+118                    pa.field("path", pa.string()),
+119                    pa.field("height", pa.int32()),
+120                    pa.field("width", pa.int32()),
+121                    pa.field("bytes", pa.binary()),
+122                    pa.field("mode", pa.string()),
+123                ],
+124                metadata={
+125                    "split_label": "label assigned to image",
+126                    "path": "path to image",
+127                    "height": "image height",
+128                    "width": "image width",
+129                    "bytes": "image bytes",
+130                    "mode": "image mode",
+131                },
+132            )
+133
+134        @staticmethod
+135        def name() -> str:
+136            return ImageDataset.__name__
+137
+138        @property
+139        def data_type(self) -> str:
+140            return CommonKwargs.IMAGE.value
+141
+142except ModuleNotFoundError:
+143    from opsml.data.interfaces.backups import ImageDatasetNoModule as ImageDataset
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + ImageDataset(opsml.data.interfaces.custom_data.base.Dataset): + + + +
+ +
 25    class ImageDataset(Dataset):
+ 26        """Create an image dataset from a directory of images.
+ 27        User can also provide a split that indicates the subdirectory of images to use.
+ 28        It is expected that each split contains a metadata.jsonl built from the ImageMetadata class.
+ 29        ImageDataset was built to have parity with HuggingFace.
+ 30
+ 31        Args:
+ 32            data_dir:
+ 33                Root directory for images.
+ 34
+ 35                For example, you the image file is located at either:
+ 36
+ 37                    - "images/train/my_image.png"
+ 38                    - "images/my_image.png"
+ 39
+ 40                Then the data_dir should be `images/`
+ 41
+ 42            shard_size:
+ 43                Size of shards to use for dataset. Default is 512MB.
+ 44
+ 45            splits:
+ 46                Dictionary of splits to use for dataset. If no splits are provided, then the
+ 47                data_dir or subdirs will be used as the split. It is expected that each split contains a
+ 48                metadata.jsonl built from the ImageMetadata class. It is recommended to allow opsml
+ 49                to create the splits for you.
+ 50        """
+ 51
+ 52        splits: Dict[Optional[str], ImageMetadata] = {}
+ 53
+ 54        def save_data(self, path: Path) -> None:
+ 55            """Saves data to path. Base implementation use Joblib
+ 56
+ 57            Args:
+ 58                path:
+ 59                    Pathlib object
+ 60            """
+ 61            PyarrowDatasetWriter(self, path, self.arrow_schema).write_dataset_to_table()
+ 62
+ 63        def load_data(self, path: Path, **kwargs: Union[str, int]) -> None:
+ 64            """Saves data to data_dir
+ 65
+ 66            Args:
+ 67                path:
+ 68                    Path to load_data
+ 69
+ 70                kwargs:
+ 71
+ 72                    Keyword arguments to pass to the data loader
+ 73
+ 74                    ---- Supported kwargs for ImageData and TextDataset ----
+ 75
+ 76                    split:
+ 77                        Split to use for data. If not provided, then all data will be loaded.
+ 78                        Only used for subclasses of `Dataset`.
+ 79
+ 80                    batch_size:
+ 81                        What batch size to use when loading data in memory. Only used for subclasses of `Dataset`.
+ 82                        Defaults to 1000.
+ 83
+ 84                    chunk_size:
+ 85                        How many files per batch to use when writing arrow back to local file.
+ 86                        Defaults to 1000.
+ 87
+ 88                        Example:
+ 89
+ 90                            - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+ 91                            10 chunks to write in parallel. This is useful for large datasets.
+ 92            """
+ 93            PyarrowDatasetReader(dataset=self, lpath=path, **kwargs).load_dataset()  # type: ignore[arg-type]
+ 94
+ 95        def split_data(self) -> None:
+ 96            """Creates data splits based on subdirectories of data_dir and supplied split value"""
+ 97            if bool(self.splits):
+ 98                return
+ 99
+100            splits = check_for_dirs(self.data_dir)
+101
+102            if bool(splits):
+103                for split in splits:
+104                    self.splits[split] = ImageMetadata.load_from_file(get_metadata_filepath(self.data_dir, split)[0])
+105            else:
+106                self.splits[None] = ImageMetadata.load_from_file(get_metadata_filepath(self.data_dir)[0])
+107
+108        @property
+109        def arrow_schema(self) -> pa.Schema:
+110            """Returns schema for ImageData records
+111
+112            Returns:
+113                pyarrow.Schema
+114            """
+115
+116            return pa.schema(
+117                [
+118                    pa.field("split_label", pa.string()),
+119                    pa.field("path", pa.string()),
+120                    pa.field("height", pa.int32()),
+121                    pa.field("width", pa.int32()),
+122                    pa.field("bytes", pa.binary()),
+123                    pa.field("mode", pa.string()),
+124                ],
+125                metadata={
+126                    "split_label": "label assigned to image",
+127                    "path": "path to image",
+128                    "height": "image height",
+129                    "width": "image width",
+130                    "bytes": "image bytes",
+131                    "mode": "image mode",
+132                },
+133            )
+134
+135        @staticmethod
+136        def name() -> str:
+137            return ImageDataset.__name__
+138
+139        @property
+140        def data_type(self) -> str:
+141            return CommonKwargs.IMAGE.value
+
+ + +

Create an image dataset from a directory of images. +User can also provide a split that indicates the subdirectory of images to use. +It is expected that each split contains a metadata.jsonl built from the ImageMetadata class. +ImageDataset was built to have parity with HuggingFace.

+ +
Arguments:
+ +
    +
  • data_dir: Root directory for images.

    + +

    For example, you the image file is located at either:

    + +
      +
    • "images/train/my_image.png"
    • +
    • "images/my_image.png"
    • +
    + +

    Then the data_dir should be images/

  • +
  • shard_size: Size of shards to use for dataset. Default is 512MB.
  • +
  • splits: Dictionary of splits to use for dataset. If no splits are provided, then the +data_dir or subdirs will be used as the split. It is expected that each split contains a +metadata.jsonl built from the ImageMetadata class. It is recommended to allow opsml +to create the splits for you.
  • +
+
+ + +
+
+ splits: Dict[Optional[str], opsml.data.interfaces.custom_data.image.ImageMetadata] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
54        def save_data(self, path: Path) -> None:
+55            """Saves data to path. Base implementation use Joblib
+56
+57            Args:
+58                path:
+59                    Pathlib object
+60            """
+61            PyarrowDatasetWriter(self, path, self.arrow_schema).write_dataset_to_table()
+
+ + +

Saves data to path. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path, **kwargs: Union[str, int]) -> None: + + + +
+ +
63        def load_data(self, path: Path, **kwargs: Union[str, int]) -> None:
+64            """Saves data to data_dir
+65
+66            Args:
+67                path:
+68                    Path to load_data
+69
+70                kwargs:
+71
+72                    Keyword arguments to pass to the data loader
+73
+74                    ---- Supported kwargs for ImageData and TextDataset ----
+75
+76                    split:
+77                        Split to use for data. If not provided, then all data will be loaded.
+78                        Only used for subclasses of `Dataset`.
+79
+80                    batch_size:
+81                        What batch size to use when loading data in memory. Only used for subclasses of `Dataset`.
+82                        Defaults to 1000.
+83
+84                    chunk_size:
+85                        How many files per batch to use when writing arrow back to local file.
+86                        Defaults to 1000.
+87
+88                        Example:
+89
+90                            - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+91                            10 chunks to write in parallel. This is useful for large datasets.
+92            """
+93            PyarrowDatasetReader(dataset=self, lpath=path, **kwargs).load_dataset()  # type: ignore[arg-type]
+
+ + +

Saves data to data_dir

+ +
Arguments:
+ +
    +
  • path: Path to load_data
  • +
  • kwargs: Keyword arguments to pass to the data loader

    + +

    ---- Supported kwargs for ImageData and TextDataset ----

    + +

    split: + Split to use for data. If not provided, then all data will be loaded. + Only used for subclasses of Dataset.

    + +

    batch_size: + What batch size to use when loading data in memory. Only used for subclasses of Dataset. + Defaults to 1000.

    + +

    chunk_size: + How many files per batch to use when writing arrow back to local file. + Defaults to 1000.

    + +

    Example:

    + +
       - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
    +   10 chunks to write in parallel. This is useful for large datasets.
    +
  • +
+
+ + +
+
+ +
+ + def + split_data(self) -> None: + + + +
+ +
 95        def split_data(self) -> None:
+ 96            """Creates data splits based on subdirectories of data_dir and supplied split value"""
+ 97            if bool(self.splits):
+ 98                return
+ 99
+100            splits = check_for_dirs(self.data_dir)
+101
+102            if bool(splits):
+103                for split in splits:
+104                    self.splits[split] = ImageMetadata.load_from_file(get_metadata_filepath(self.data_dir, split)[0])
+105            else:
+106                self.splits[None] = ImageMetadata.load_from_file(get_metadata_filepath(self.data_dir)[0])
+
+ + +

Creates data splits based on subdirectories of data_dir and supplied split value

+
+ + +
+
+ +
+ arrow_schema: pyarrow.lib.Schema + + + +
+ +
108        @property
+109        def arrow_schema(self) -> pa.Schema:
+110            """Returns schema for ImageData records
+111
+112            Returns:
+113                pyarrow.Schema
+114            """
+115
+116            return pa.schema(
+117                [
+118                    pa.field("split_label", pa.string()),
+119                    pa.field("path", pa.string()),
+120                    pa.field("height", pa.int32()),
+121                    pa.field("width", pa.int32()),
+122                    pa.field("bytes", pa.binary()),
+123                    pa.field("mode", pa.string()),
+124                ],
+125                metadata={
+126                    "split_label": "label assigned to image",
+127                    "path": "path to image",
+128                    "height": "image height",
+129                    "width": "image width",
+130                    "bytes": "image bytes",
+131                    "mode": "image mode",
+132                },
+133            )
+
+ + +

Returns schema for ImageData records

+ +
Returns:
+ +
+

pyarrow.Schema

+
+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
135        @staticmethod
+136        def name() -> str:
+137            return ImageDataset.__name__
+
+ + + + +
+
+ +
+ data_type: str + + + +
+ +
139        @property
+140        def data_type(self) -> str:
+141            return CommonKwargs.IMAGE.value
+
+ + + + +
+
+
+ model_config = +{} + + +
+ + + + +
+
+
+ model_fields = + + {'data_dir': FieldInfo(annotation=Path, required=True), 'shard_size': FieldInfo(annotation=str, required=False, default='512MB'), 'splits': FieldInfo(annotation=Dict[Union[str, NoneType], ImageMetadata], required=False, default={}), 'description': FieldInfo(annotation=Description, required=False, default=Description(summary=None, sample_code=None, Notes=None))} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces.custom_data.base.Dataset
+
data_dir
+
shard_size
+
description
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_numpy.html b/api/opsml/data/interfaces/_numpy.html new file mode 100644 index 000000000..27954f5ec --- /dev/null +++ b/api/opsml/data/interfaces/_numpy.html @@ -0,0 +1,634 @@ + + + + + + + opsml.data.interfaces._numpy API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._numpy

+ + + + + + +
 1from pathlib import Path
+ 2from typing import Any, Optional
+ 3
+ 4import numpy as np
+ 5import zarr
+ 6
+ 7from opsml.data.interfaces._base import DataInterface
+ 8from opsml.types import AllowedDataType, Feature, Suffix
+ 9
+10
+11class NumpyData(DataInterface):
+12    """Numpy data interface
+13
+14    Args:
+15        data:
+16            Numpy array
+17        dependent_vars:
+18            List of dependent variables. Can be string or index if using numpy
+19        data_splits:
+20            Optional list of `DataSplit`
+21        data_profile:
+22            Optional ydata-profiling `ProfileReport`
+23        feature_map:
+24            Dictionary of features -> automatically generated
+25        feature_descriptions:
+26            Dictionary or feature descriptions
+27        sql_logic:
+28            Sql logic used to generate data
+29    """
+30
+31    data: Optional[np.ndarray[Any, Any]] = None
+32
+33    def save_data(self, path: Path) -> None:
+34        """Saves numpy array as a zarr file"""
+35
+36        assert self.data is not None, "No data detected in interface"
+37
+38        zarr.save(path, self.data)
+39
+40        self.feature_map = {
+41            "features": Feature(
+42                feature_type=str(self.data.dtype),
+43                shape=self.data.shape,
+44            )
+45        }
+46
+47    def load_data(self, path: Path) -> None:
+48        """Load numpy array from zarr file"""
+49
+50        self.data = zarr.load(path)
+51
+52    @property
+53    def data_type(self) -> str:
+54        return AllowedDataType.NUMPY.value
+55
+56    @property
+57    def data_suffix(self) -> str:
+58        """Returns suffix for storage"""
+59        return Suffix.ZARR.value
+60
+61    @staticmethod
+62    def name() -> str:
+63        return NumpyData.__name__
+
+ + +
+
+ +
+ + class + NumpyData(opsml.data.interfaces._base.DataInterface): + + + +
+ +
12class NumpyData(DataInterface):
+13    """Numpy data interface
+14
+15    Args:
+16        data:
+17            Numpy array
+18        dependent_vars:
+19            List of dependent variables. Can be string or index if using numpy
+20        data_splits:
+21            Optional list of `DataSplit`
+22        data_profile:
+23            Optional ydata-profiling `ProfileReport`
+24        feature_map:
+25            Dictionary of features -> automatically generated
+26        feature_descriptions:
+27            Dictionary or feature descriptions
+28        sql_logic:
+29            Sql logic used to generate data
+30    """
+31
+32    data: Optional[np.ndarray[Any, Any]] = None
+33
+34    def save_data(self, path: Path) -> None:
+35        """Saves numpy array as a zarr file"""
+36
+37        assert self.data is not None, "No data detected in interface"
+38
+39        zarr.save(path, self.data)
+40
+41        self.feature_map = {
+42            "features": Feature(
+43                feature_type=str(self.data.dtype),
+44                shape=self.data.shape,
+45            )
+46        }
+47
+48    def load_data(self, path: Path) -> None:
+49        """Load numpy array from zarr file"""
+50
+51        self.data = zarr.load(path)
+52
+53    @property
+54    def data_type(self) -> str:
+55        return AllowedDataType.NUMPY.value
+56
+57    @property
+58    def data_suffix(self) -> str:
+59        """Returns suffix for storage"""
+60        return Suffix.ZARR.value
+61
+62    @staticmethod
+63    def name() -> str:
+64        return NumpyData.__name__
+
+ + +

Numpy data interface

+ +
Arguments:
+ +
    +
  • data: Numpy array
  • +
  • dependent_vars: List of dependent variables. Can be string or index if using numpy
  • +
  • data_splits: Optional list of DataSplit
  • +
  • data_profile: Optional ydata-profiling ProfileReport
  • +
  • feature_map: Dictionary of features -> automatically generated
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
  • sql_logic: Sql logic used to generate data
  • +
+
+ + +
+
+ data: Optional[numpy.ndarray[Any, Any]] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
34    def save_data(self, path: Path) -> None:
+35        """Saves numpy array as a zarr file"""
+36
+37        assert self.data is not None, "No data detected in interface"
+38
+39        zarr.save(path, self.data)
+40
+41        self.feature_map = {
+42            "features": Feature(
+43                feature_type=str(self.data.dtype),
+44                shape=self.data.shape,
+45            )
+46        }
+
+ + +

Saves numpy array as a zarr file

+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path) -> None: + + + +
+ +
48    def load_data(self, path: Path) -> None:
+49        """Load numpy array from zarr file"""
+50
+51        self.data = zarr.load(path)
+
+ + +

Load numpy array from zarr file

+
+ + +
+
+ +
+ data_type: str + + + +
+ +
53    @property
+54    def data_type(self) -> str:
+55        return AllowedDataType.NUMPY.value
+
+ + + + +
+
+ +
+ data_suffix: str + + + +
+ +
57    @property
+58    def data_suffix(self) -> str:
+59        """Returns suffix for storage"""
+60        return Suffix.ZARR.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
62    @staticmethod
+63    def name() -> str:
+64        return NumpyData.__name__
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[ndarray[Any, Any], NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces._base.DataInterface
+
data_splits
+
dependent_vars
+
data_profile
+
feature_map
+
feature_descriptions
+
sql_logic
+
add_sql
+
load_data_profile
+
save_data_profile
+
create_data_profile
+
split_data
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_pandas.html b/api/opsml/data/interfaces/_pandas.html new file mode 100644 index 000000000..3057e90ce --- /dev/null +++ b/api/opsml/data/interfaces/_pandas.html @@ -0,0 +1,660 @@ + + + + + + + opsml.data.interfaces._pandas API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._pandas

+ + + + + + +
 1from pathlib import Path
+ 2from typing import Optional, cast
+ 3
+ 4import pandas as pd
+ 5import pyarrow as pa
+ 6import pyarrow.parquet as pq
+ 7
+ 8from opsml.data.formatter import check_data_schema
+ 9from opsml.data.interfaces._base import DataInterface
+10from opsml.types import AllowedDataType, Feature, Suffix
+11
+12
+13class PandasData(DataInterface):
+14    """Pandas interface
+15
+16    Args:
+17        data:
+18            Pandas DataFrame
+19        dependent_vars:
+20            List of dependent variables. Can be string or index if using numpy
+21        data_splits:
+22            Optional list of `DataSplit`
+23        data_profile:
+24            Optional ydata-profiling `ProfileReport`
+25        feature_map:
+26            Dictionary of features -> automatically generated
+27        feature_descriptions:
+28            Dictionary or feature descriptions
+29        sql_logic:
+30            Sql logic used to generate data
+31    """
+32
+33    data: Optional[pd.DataFrame] = None
+34
+35    def save_data(self, path: Path) -> None:
+36        """Saves pandas dataframe to parquet"""
+37
+38        assert self.data is not None, "No data detected in interface"
+39        arrow_table = pa.Table.from_pandas(self.data, preserve_index=False)
+40        self.feature_map = {
+41            key: Feature(
+42                feature_type=str(value),
+43                shape=(1,),
+44            )
+45            for key, value in self.data.dtypes.to_dict().items()
+46        }
+47        pq.write_table(arrow_table, path)
+48
+49    def load_data(self, path: Path) -> None:
+50        """Load parquet dataset to pandas dataframe"""
+51
+52        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=path).read()
+53
+54        data = check_data_schema(
+55            pa_table.to_pandas(),
+56            self.feature_map,
+57            self.data_type,
+58        )
+59
+60        self.data = cast(pd.DataFrame, data)
+61
+62    @property
+63    def data_type(self) -> str:
+64        return AllowedDataType.PANDAS.value
+65
+66    @property
+67    def data_suffix(self) -> str:
+68        """Returns suffix for storage"""
+69        return Suffix.PARQUET.value
+70
+71    @staticmethod
+72    def name() -> str:
+73        return PandasData.__name__
+
+ + +
+
+ +
+ + class + PandasData(opsml.data.interfaces._base.DataInterface): + + + +
+ +
14class PandasData(DataInterface):
+15    """Pandas interface
+16
+17    Args:
+18        data:
+19            Pandas DataFrame
+20        dependent_vars:
+21            List of dependent variables. Can be string or index if using numpy
+22        data_splits:
+23            Optional list of `DataSplit`
+24        data_profile:
+25            Optional ydata-profiling `ProfileReport`
+26        feature_map:
+27            Dictionary of features -> automatically generated
+28        feature_descriptions:
+29            Dictionary or feature descriptions
+30        sql_logic:
+31            Sql logic used to generate data
+32    """
+33
+34    data: Optional[pd.DataFrame] = None
+35
+36    def save_data(self, path: Path) -> None:
+37        """Saves pandas dataframe to parquet"""
+38
+39        assert self.data is not None, "No data detected in interface"
+40        arrow_table = pa.Table.from_pandas(self.data, preserve_index=False)
+41        self.feature_map = {
+42            key: Feature(
+43                feature_type=str(value),
+44                shape=(1,),
+45            )
+46            for key, value in self.data.dtypes.to_dict().items()
+47        }
+48        pq.write_table(arrow_table, path)
+49
+50    def load_data(self, path: Path) -> None:
+51        """Load parquet dataset to pandas dataframe"""
+52
+53        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=path).read()
+54
+55        data = check_data_schema(
+56            pa_table.to_pandas(),
+57            self.feature_map,
+58            self.data_type,
+59        )
+60
+61        self.data = cast(pd.DataFrame, data)
+62
+63    @property
+64    def data_type(self) -> str:
+65        return AllowedDataType.PANDAS.value
+66
+67    @property
+68    def data_suffix(self) -> str:
+69        """Returns suffix for storage"""
+70        return Suffix.PARQUET.value
+71
+72    @staticmethod
+73    def name() -> str:
+74        return PandasData.__name__
+
+ + +

Pandas interface

+ +
Arguments:
+ +
    +
  • data: Pandas DataFrame
  • +
  • dependent_vars: List of dependent variables. Can be string or index if using numpy
  • +
  • data_splits: Optional list of DataSplit
  • +
  • data_profile: Optional ydata-profiling ProfileReport
  • +
  • feature_map: Dictionary of features -> automatically generated
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
  • sql_logic: Sql logic used to generate data
  • +
+
+ + +
+
+ data: Optional[pandas.core.frame.DataFrame] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
36    def save_data(self, path: Path) -> None:
+37        """Saves pandas dataframe to parquet"""
+38
+39        assert self.data is not None, "No data detected in interface"
+40        arrow_table = pa.Table.from_pandas(self.data, preserve_index=False)
+41        self.feature_map = {
+42            key: Feature(
+43                feature_type=str(value),
+44                shape=(1,),
+45            )
+46            for key, value in self.data.dtypes.to_dict().items()
+47        }
+48        pq.write_table(arrow_table, path)
+
+ + +

Saves pandas dataframe to parquet

+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path) -> None: + + + +
+ +
50    def load_data(self, path: Path) -> None:
+51        """Load parquet dataset to pandas dataframe"""
+52
+53        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=path).read()
+54
+55        data = check_data_schema(
+56            pa_table.to_pandas(),
+57            self.feature_map,
+58            self.data_type,
+59        )
+60
+61        self.data = cast(pd.DataFrame, data)
+
+ + +

Load parquet dataset to pandas dataframe

+
+ + +
+
+ +
+ data_type: str + + + +
+ +
63    @property
+64    def data_type(self) -> str:
+65        return AllowedDataType.PANDAS.value
+
+ + + + +
+
+ +
+ data_suffix: str + + + +
+ +
67    @property
+68    def data_suffix(self) -> str:
+69        """Returns suffix for storage"""
+70        return Suffix.PARQUET.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
72    @staticmethod
+73    def name() -> str:
+74        return PandasData.__name__
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[DataFrame, NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces._base.DataInterface
+
data_splits
+
dependent_vars
+
data_profile
+
feature_map
+
feature_descriptions
+
sql_logic
+
add_sql
+
load_data_profile
+
save_data_profile
+
create_data_profile
+
split_data
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_polars.html b/api/opsml/data/interfaces/_polars.html new file mode 100644 index 000000000..537b256e8 --- /dev/null +++ b/api/opsml/data/interfaces/_polars.html @@ -0,0 +1,660 @@ + + + + + + + opsml.data.interfaces._polars API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._polars

+ + + + + + +
 1from pathlib import Path
+ 2from typing import Optional, cast
+ 3
+ 4import polars as pl
+ 5import pyarrow as pa
+ 6import pyarrow.parquet as pq
+ 7
+ 8from opsml.data.formatter import check_data_schema
+ 9from opsml.data.interfaces._base import DataInterface
+10from opsml.types import AllowedDataType, Feature, Suffix
+11
+12
+13class PolarsData(DataInterface):
+14    """Polars data interface
+15
+16    Args:
+17        data:
+18            Polars DataFrame
+19        dependent_vars:
+20            List of dependent variables. Can be string or index if using numpy
+21        data_splits:
+22            Optional list of `DataSplit`
+23        data_profile:
+24            Optional ydata-profiling `ProfileReport`
+25        feature_map:
+26            Dictionary of features -> automatically generated
+27        feature_descriptions:
+28            Dictionary or feature descriptions
+29        sql_logic:
+30            Sql logic used to generate data
+31    """
+32
+33    data: Optional[pl.DataFrame] = None
+34
+35    def save_data(self, path: Path) -> None:
+36        """Saves pandas dataframe to parquet"""
+37
+38        assert self.data is not None, "No data detected in interface"
+39        self.feature_map = {
+40            key: Feature(
+41                feature_type=str(value),
+42                shape=(1,),
+43            )
+44            for key, value in self.data.schema.items()
+45        }
+46
+47        pq.write_table(self.data.to_arrow(), path)
+48
+49    def load_data(self, path: Path) -> None:
+50        """Load parquet dataset to pandas dataframe"""
+51
+52        load_path = path.with_suffix(self.data_suffix)
+53        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=load_path).read()
+54        data = check_data_schema(
+55            pl.from_arrow(data=pa_table),
+56            self.feature_map,
+57            self.data_type,
+58        )
+59
+60        self.data = cast(pl.DataFrame, data)
+61
+62    @property
+63    def data_type(self) -> str:
+64        return AllowedDataType.POLARS.value
+65
+66    @property
+67    def data_suffix(self) -> str:
+68        """Returns suffix for storage"""
+69        return Suffix.PARQUET.value
+70
+71    @staticmethod
+72    def name() -> str:
+73        return PolarsData.__name__
+
+ + +
+
+ +
+ + class + PolarsData(opsml.data.interfaces._base.DataInterface): + + + +
+ +
14class PolarsData(DataInterface):
+15    """Polars data interface
+16
+17    Args:
+18        data:
+19            Polars DataFrame
+20        dependent_vars:
+21            List of dependent variables. Can be string or index if using numpy
+22        data_splits:
+23            Optional list of `DataSplit`
+24        data_profile:
+25            Optional ydata-profiling `ProfileReport`
+26        feature_map:
+27            Dictionary of features -> automatically generated
+28        feature_descriptions:
+29            Dictionary or feature descriptions
+30        sql_logic:
+31            Sql logic used to generate data
+32    """
+33
+34    data: Optional[pl.DataFrame] = None
+35
+36    def save_data(self, path: Path) -> None:
+37        """Saves pandas dataframe to parquet"""
+38
+39        assert self.data is not None, "No data detected in interface"
+40        self.feature_map = {
+41            key: Feature(
+42                feature_type=str(value),
+43                shape=(1,),
+44            )
+45            for key, value in self.data.schema.items()
+46        }
+47
+48        pq.write_table(self.data.to_arrow(), path)
+49
+50    def load_data(self, path: Path) -> None:
+51        """Load parquet dataset to pandas dataframe"""
+52
+53        load_path = path.with_suffix(self.data_suffix)
+54        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=load_path).read()
+55        data = check_data_schema(
+56            pl.from_arrow(data=pa_table),
+57            self.feature_map,
+58            self.data_type,
+59        )
+60
+61        self.data = cast(pl.DataFrame, data)
+62
+63    @property
+64    def data_type(self) -> str:
+65        return AllowedDataType.POLARS.value
+66
+67    @property
+68    def data_suffix(self) -> str:
+69        """Returns suffix for storage"""
+70        return Suffix.PARQUET.value
+71
+72    @staticmethod
+73    def name() -> str:
+74        return PolarsData.__name__
+
+ + +

Polars data interface

+ +
Arguments:
+ +
    +
  • data: Polars DataFrame
  • +
  • dependent_vars: List of dependent variables. Can be string or index if using numpy
  • +
  • data_splits: Optional list of DataSplit
  • +
  • data_profile: Optional ydata-profiling ProfileReport
  • +
  • feature_map: Dictionary of features -> automatically generated
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
  • sql_logic: Sql logic used to generate data
  • +
+
+ + +
+
+ data: Optional[polars.dataframe.frame.DataFrame] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
36    def save_data(self, path: Path) -> None:
+37        """Saves pandas dataframe to parquet"""
+38
+39        assert self.data is not None, "No data detected in interface"
+40        self.feature_map = {
+41            key: Feature(
+42                feature_type=str(value),
+43                shape=(1,),
+44            )
+45            for key, value in self.data.schema.items()
+46        }
+47
+48        pq.write_table(self.data.to_arrow(), path)
+
+ + +

Saves pandas dataframe to parquet

+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path) -> None: + + + +
+ +
50    def load_data(self, path: Path) -> None:
+51        """Load parquet dataset to pandas dataframe"""
+52
+53        load_path = path.with_suffix(self.data_suffix)
+54        pa_table: pa.Table = pq.ParquetDataset(path_or_paths=load_path).read()
+55        data = check_data_schema(
+56            pl.from_arrow(data=pa_table),
+57            self.feature_map,
+58            self.data_type,
+59        )
+60
+61        self.data = cast(pl.DataFrame, data)
+
+ + +

Load parquet dataset to pandas dataframe

+
+ + +
+
+ +
+ data_type: str + + + +
+ +
63    @property
+64    def data_type(self) -> str:
+65        return AllowedDataType.POLARS.value
+
+ + + + +
+
+ +
+ data_suffix: str + + + +
+ +
67    @property
+68    def data_suffix(self) -> str:
+69        """Returns suffix for storage"""
+70        return Suffix.PARQUET.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
72    @staticmethod
+73    def name() -> str:
+74        return PolarsData.__name__
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[DataFrame, NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces._base.DataInterface
+
data_splits
+
dependent_vars
+
data_profile
+
feature_map
+
feature_descriptions
+
sql_logic
+
add_sql
+
load_data_profile
+
save_data_profile
+
create_data_profile
+
split_data
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_sql.html b/api/opsml/data/interfaces/_sql.html new file mode 100644 index 000000000..6de5e5a21 --- /dev/null +++ b/api/opsml/data/interfaces/_sql.html @@ -0,0 +1,460 @@ + + + + + + + opsml.data.interfaces._sql API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._sql

+ + + + + + +
 1from opsml.data.interfaces._base import DataInterface
+ 2from opsml.types import AllowedDataType
+ 3
+ 4
+ 5class SqlData(DataInterface):
+ 6
+ 7    """Arrow Table data interface
+ 8
+ 9    Args:
+10
+11        sql_logic:
+12            Dictionary of strings containing sql logic or sql files used to create the data
+13        feature_descriptions:
+14            Dictionary or feature descriptions
+15    """
+16
+17    @property
+18    def data_type(self) -> str:
+19        return AllowedDataType.SQL.value
+20
+21    @staticmethod
+22    def name() -> str:
+23        return SqlData.__name__
+
+ + +
+
+ +
+ + class + SqlData(opsml.data.interfaces._base.DataInterface): + + + +
+ +
 6class SqlData(DataInterface):
+ 7
+ 8    """Arrow Table data interface
+ 9
+10    Args:
+11
+12        sql_logic:
+13            Dictionary of strings containing sql logic or sql files used to create the data
+14        feature_descriptions:
+15            Dictionary or feature descriptions
+16    """
+17
+18    @property
+19    def data_type(self) -> str:
+20        return AllowedDataType.SQL.value
+21
+22    @staticmethod
+23    def name() -> str:
+24        return SqlData.__name__
+
+ + +

Arrow Table data interface

+ +
Arguments:
+ +
    +
  • sql_logic: Dictionary of strings containing sql logic or sql files used to create the data
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
+
+ + +
+ +
+ data_type: str + + + +
+ +
18    @property
+19    def data_type(self) -> str:
+20        return AllowedDataType.SQL.value
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
22    @staticmethod
+23    def name() -> str:
+24        return SqlData.__name__
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[Any, NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces._base.DataInterface
+
data
+
data_splits
+
dependent_vars
+
data_profile
+
feature_map
+
feature_descriptions
+
sql_logic
+
add_sql
+
save_data
+
load_data
+
load_data_profile
+
save_data_profile
+
create_data_profile
+
split_data
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_text.html b/api/opsml/data/interfaces/_text.html new file mode 100644 index 000000000..f23bcdaba --- /dev/null +++ b/api/opsml/data/interfaces/_text.html @@ -0,0 +1,892 @@ + + + + + + + opsml.data.interfaces._text API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._text

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4from pathlib import Path
+  5from typing import Dict, Optional, Union
+  6
+  7import pyarrow as pa
+  8
+  9from opsml.data.interfaces.custom_data.arrow_reader import PyarrowDatasetReader
+ 10from opsml.data.interfaces.custom_data.arrow_writer import PyarrowDatasetWriter
+ 11from opsml.data.interfaces.custom_data.base import (
+ 12    Dataset,
+ 13    check_for_dirs,
+ 14    get_metadata_filepath,
+ 15)
+ 16from opsml.data.interfaces.custom_data.text import TextMetadata
+ 17from opsml.helpers.logging import ArtifactLogger
+ 18from opsml.types import CommonKwargs
+ 19
+ 20logger = ArtifactLogger.get_logger()
+ 21
+ 22
+ 23class TextDataset(Dataset):
+ 24    """Create a text dataset from a directory of files
+ 25    User can also provide a split that indicates the subdirectory of files to use.
+ 26    It is expected that each split contains a metadata.jsonl built from the TextMetadata class.
+ 27    TextDataset was built to have parity with HuggingFace.
+ 28
+ 29    Args:
+ 30        data_dir:
+ 31            Root directory for text data.
+ 32
+ 33            For example, the file is located at either:
+ 34
+ 35                - "text/train/example.txt"
+ 36                - "text/example.txt"
+ 37
+ 38            Then the data_dir should be `text/`
+ 39
+ 40        shard_size:
+ 41            Size of shards to use for dataset. Default is 512MB.
+ 42
+ 43        splits:
+ 44            Dictionary of splits to use for dataset. If no splits are provided, then the
+ 45            data_dir or subdirs will be used as the split. It is expected that each split contains a
+ 46            metadata.jsonl built from the TextMetadata class. It is recommended to allow opsml
+ 47            to create the splits for you.
+ 48    """
+ 49
+ 50    splits: Dict[Optional[str], TextMetadata] = {}
+ 51
+ 52    def save_data(self, path: Path) -> None:
+ 53        """Saves data to path. Base implementation use Joblib
+ 54
+ 55        Args:
+ 56            path:
+ 57                Pathlib object
+ 58        """
+ 59        PyarrowDatasetWriter(self, path, self.arrow_schema).write_dataset_to_table()
+ 60
+ 61    def load_data(self, path: Path, **kwargs: Union[str, int]) -> None:
+ 62        """Saves data to data_dir
+ 63
+ 64        Args:
+ 65            path:
+ 66                Path to load_data
+ 67
+ 68            kwargs:
+ 69
+ 70                Keyword arguments to pass to the data loader
+ 71
+ 72                ---- Supported kwargs for ImageDataset and TextDataset ----
+ 73
+ 74                split:
+ 75                    Split to use for data. If not provided, then all data will be loaded.
+ 76                    Only used for subclasses of `Dataset`.
+ 77
+ 78                batch_size:
+ 79                    What batch size to use when loading data. Only used for subclasses of `Dataset`.
+ 80                    Defaults to 1000.
+ 81
+ 82                chunk_size:
+ 83                    How many files per batch to use when writing arrow back to local file.
+ 84                    Defaults to 1000.
+ 85
+ 86                    Example:
+ 87
+ 88                        - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+ 89                        10 chunks to write in parallel. This is useful for large datasets.
+ 90        """
+ 91        PyarrowDatasetReader(dataset=self, lpath=path, **kwargs).load_dataset()  # type: ignore[arg-type]
+ 92
+ 93    def split_data(self) -> None:
+ 94        """Creates data splits based on subdirectories of data_dir and supplied split value"""
+ 95        if bool(self.splits):
+ 96            return
+ 97
+ 98        splits = check_for_dirs(self.data_dir)
+ 99
+100        if bool(splits):
+101            for split in splits:
+102                self.splits[split] = TextMetadata.load_from_file(get_metadata_filepath(self.data_dir, split)[0])
+103        else:
+104            self.splits[None] = TextMetadata.load_from_file(get_metadata_filepath(self.data_dir)[0])
+105
+106    @property
+107    def arrow_schema(self) -> pa.Schema:
+108        """Returns schema for TextData records
+109
+110        Returns:
+111            pyarrow.Schema
+112        """
+113
+114        return pa.schema(
+115            [
+116                pa.field("split_label", pa.string()),
+117                pa.field("path", pa.string()),
+118                pa.field("bytes", pa.binary()),
+119            ],
+120            metadata={
+121                "split_label": "label assigned to text",
+122                "path": "path to text",
+123                "bytes": "text bytes",
+124            },
+125        )
+126
+127    @staticmethod
+128    def name() -> str:
+129        return TextDataset.__name__
+130
+131    @property
+132    def data_type(self) -> str:
+133        return CommonKwargs.TEXT.value
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + TextDataset(opsml.data.interfaces.custom_data.base.Dataset): + + + +
+ +
 24class TextDataset(Dataset):
+ 25    """Create a text dataset from a directory of files
+ 26    User can also provide a split that indicates the subdirectory of files to use.
+ 27    It is expected that each split contains a metadata.jsonl built from the TextMetadata class.
+ 28    TextDataset was built to have parity with HuggingFace.
+ 29
+ 30    Args:
+ 31        data_dir:
+ 32            Root directory for text data.
+ 33
+ 34            For example, the file is located at either:
+ 35
+ 36                - "text/train/example.txt"
+ 37                - "text/example.txt"
+ 38
+ 39            Then the data_dir should be `text/`
+ 40
+ 41        shard_size:
+ 42            Size of shards to use for dataset. Default is 512MB.
+ 43
+ 44        splits:
+ 45            Dictionary of splits to use for dataset. If no splits are provided, then the
+ 46            data_dir or subdirs will be used as the split. It is expected that each split contains a
+ 47            metadata.jsonl built from the TextMetadata class. It is recommended to allow opsml
+ 48            to create the splits for you.
+ 49    """
+ 50
+ 51    splits: Dict[Optional[str], TextMetadata] = {}
+ 52
+ 53    def save_data(self, path: Path) -> None:
+ 54        """Saves data to path. Base implementation use Joblib
+ 55
+ 56        Args:
+ 57            path:
+ 58                Pathlib object
+ 59        """
+ 60        PyarrowDatasetWriter(self, path, self.arrow_schema).write_dataset_to_table()
+ 61
+ 62    def load_data(self, path: Path, **kwargs: Union[str, int]) -> None:
+ 63        """Saves data to data_dir
+ 64
+ 65        Args:
+ 66            path:
+ 67                Path to load_data
+ 68
+ 69            kwargs:
+ 70
+ 71                Keyword arguments to pass to the data loader
+ 72
+ 73                ---- Supported kwargs for ImageDataset and TextDataset ----
+ 74
+ 75                split:
+ 76                    Split to use for data. If not provided, then all data will be loaded.
+ 77                    Only used for subclasses of `Dataset`.
+ 78
+ 79                batch_size:
+ 80                    What batch size to use when loading data. Only used for subclasses of `Dataset`.
+ 81                    Defaults to 1000.
+ 82
+ 83                chunk_size:
+ 84                    How many files per batch to use when writing arrow back to local file.
+ 85                    Defaults to 1000.
+ 86
+ 87                    Example:
+ 88
+ 89                        - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+ 90                        10 chunks to write in parallel. This is useful for large datasets.
+ 91        """
+ 92        PyarrowDatasetReader(dataset=self, lpath=path, **kwargs).load_dataset()  # type: ignore[arg-type]
+ 93
+ 94    def split_data(self) -> None:
+ 95        """Creates data splits based on subdirectories of data_dir and supplied split value"""
+ 96        if bool(self.splits):
+ 97            return
+ 98
+ 99        splits = check_for_dirs(self.data_dir)
+100
+101        if bool(splits):
+102            for split in splits:
+103                self.splits[split] = TextMetadata.load_from_file(get_metadata_filepath(self.data_dir, split)[0])
+104        else:
+105            self.splits[None] = TextMetadata.load_from_file(get_metadata_filepath(self.data_dir)[0])
+106
+107    @property
+108    def arrow_schema(self) -> pa.Schema:
+109        """Returns schema for TextData records
+110
+111        Returns:
+112            pyarrow.Schema
+113        """
+114
+115        return pa.schema(
+116            [
+117                pa.field("split_label", pa.string()),
+118                pa.field("path", pa.string()),
+119                pa.field("bytes", pa.binary()),
+120            ],
+121            metadata={
+122                "split_label": "label assigned to text",
+123                "path": "path to text",
+124                "bytes": "text bytes",
+125            },
+126        )
+127
+128    @staticmethod
+129    def name() -> str:
+130        return TextDataset.__name__
+131
+132    @property
+133    def data_type(self) -> str:
+134        return CommonKwargs.TEXT.value
+
+ + +

Create a text dataset from a directory of files +User can also provide a split that indicates the subdirectory of files to use. +It is expected that each split contains a metadata.jsonl built from the TextMetadata class. +TextDataset was built to have parity with HuggingFace.

+ +
Arguments:
+ +
    +
  • data_dir: Root directory for text data.

    + +

    For example, the file is located at either:

    + +
      +
    • "text/train/example.txt"
    • +
    • "text/example.txt"
    • +
    + +

    Then the data_dir should be text/

  • +
  • shard_size: Size of shards to use for dataset. Default is 512MB.
  • +
  • splits: Dictionary of splits to use for dataset. If no splits are provided, then the +data_dir or subdirs will be used as the split. It is expected that each split contains a +metadata.jsonl built from the TextMetadata class. It is recommended to allow opsml +to create the splits for you.
  • +
+
+ + +
+
+ splits: Dict[Optional[str], opsml.data.interfaces.custom_data.text.TextMetadata] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
53    def save_data(self, path: Path) -> None:
+54        """Saves data to path. Base implementation use Joblib
+55
+56        Args:
+57            path:
+58                Pathlib object
+59        """
+60        PyarrowDatasetWriter(self, path, self.arrow_schema).write_dataset_to_table()
+
+ + +

Saves data to path. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path, **kwargs: Union[str, int]) -> None: + + + +
+ +
62    def load_data(self, path: Path, **kwargs: Union[str, int]) -> None:
+63        """Saves data to data_dir
+64
+65        Args:
+66            path:
+67                Path to load_data
+68
+69            kwargs:
+70
+71                Keyword arguments to pass to the data loader
+72
+73                ---- Supported kwargs for ImageDataset and TextDataset ----
+74
+75                split:
+76                    Split to use for data. If not provided, then all data will be loaded.
+77                    Only used for subclasses of `Dataset`.
+78
+79                batch_size:
+80                    What batch size to use when loading data. Only used for subclasses of `Dataset`.
+81                    Defaults to 1000.
+82
+83                chunk_size:
+84                    How many files per batch to use when writing arrow back to local file.
+85                    Defaults to 1000.
+86
+87                    Example:
+88
+89                        - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
+90                        10 chunks to write in parallel. This is useful for large datasets.
+91        """
+92        PyarrowDatasetReader(dataset=self, lpath=path, **kwargs).load_dataset()  # type: ignore[arg-type]
+
+ + +

Saves data to data_dir

+ +
Arguments:
+ +
    +
  • path: Path to load_data
  • +
  • kwargs: Keyword arguments to pass to the data loader

    + +

    ---- Supported kwargs for ImageDataset and TextDataset ----

    + +

    split: + Split to use for data. If not provided, then all data will be loaded. + Only used for subclasses of Dataset.

    + +

    batch_size: + What batch size to use when loading data. Only used for subclasses of Dataset. + Defaults to 1000.

    + +

    chunk_size: + How many files per batch to use when writing arrow back to local file. + Defaults to 1000.

    + +

    Example:

    + +
       - If batch_size=1000 and chunk_size=100, then the loaded batch will be split into
    +   10 chunks to write in parallel. This is useful for large datasets.
    +
  • +
+
+ + +
+
+ +
+ + def + split_data(self) -> None: + + + +
+ +
 94    def split_data(self) -> None:
+ 95        """Creates data splits based on subdirectories of data_dir and supplied split value"""
+ 96        if bool(self.splits):
+ 97            return
+ 98
+ 99        splits = check_for_dirs(self.data_dir)
+100
+101        if bool(splits):
+102            for split in splits:
+103                self.splits[split] = TextMetadata.load_from_file(get_metadata_filepath(self.data_dir, split)[0])
+104        else:
+105            self.splits[None] = TextMetadata.load_from_file(get_metadata_filepath(self.data_dir)[0])
+
+ + +

Creates data splits based on subdirectories of data_dir and supplied split value

+
+ + +
+
+ +
+ arrow_schema: pyarrow.lib.Schema + + + +
+ +
107    @property
+108    def arrow_schema(self) -> pa.Schema:
+109        """Returns schema for TextData records
+110
+111        Returns:
+112            pyarrow.Schema
+113        """
+114
+115        return pa.schema(
+116            [
+117                pa.field("split_label", pa.string()),
+118                pa.field("path", pa.string()),
+119                pa.field("bytes", pa.binary()),
+120            ],
+121            metadata={
+122                "split_label": "label assigned to text",
+123                "path": "path to text",
+124                "bytes": "text bytes",
+125            },
+126        )
+
+ + +

Returns schema for TextData records

+ +
Returns:
+ +
+

pyarrow.Schema

+
+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
128    @staticmethod
+129    def name() -> str:
+130        return TextDataset.__name__
+
+ + + + +
+
+ +
+ data_type: str + + + +
+ +
132    @property
+133    def data_type(self) -> str:
+134        return CommonKwargs.TEXT.value
+
+ + + + +
+
+
+ model_config = +{} + + +
+ + + + +
+
+
+ model_fields = + + {'data_dir': FieldInfo(annotation=Path, required=True), 'shard_size': FieldInfo(annotation=str, required=False, default='512MB'), 'splits': FieldInfo(annotation=Dict[Union[str, NoneType], TextMetadata], required=False, default={}), 'description': FieldInfo(annotation=Description, required=False, default=Description(summary=None, sample_code=None, Notes=None))} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces.custom_data.base.Dataset
+
data_dir
+
shard_size
+
description
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/interfaces/_torch.html b/api/opsml/data/interfaces/_torch.html new file mode 100644 index 000000000..0cf6614f9 --- /dev/null +++ b/api/opsml/data/interfaces/_torch.html @@ -0,0 +1,615 @@ + + + + + + + opsml.data.interfaces._torch API documentation + + + + + + + + + +
+
+

+opsml.data.interfaces._torch

+ + + + + + +
 1from pathlib import Path
+ 2from typing import Optional
+ 3
+ 4from opsml.data.interfaces._base import DataInterface
+ 5from opsml.types import AllowedDataType, Feature, Suffix
+ 6
+ 7try:
+ 8    import torch
+ 9
+10    class TorchData(DataInterface):
+11        """Torch dataset interface
+12
+13        Args:
+14            data:
+15                Torch dataset or torch tensors
+16            dependent_vars:
+17                List of dependent variables. Can be string or index if using numpy
+18            data_splits:
+19                Optional list of `DataSplit`
+20            feature_map:
+21                Dictionary of features -> automatically generated
+22            feature_descriptions:
+23                Dictionary or feature descriptions
+24            sql_logic:
+25                Sql logic used to generate data
+26            is_dataset:
+27                Whether data is a torch dataset or not
+28        """
+29
+30        data: Optional[torch.Tensor] = None
+31
+32        def save_data(self, path: Path) -> None:
+33            """Saves torch dataset or tensor(s)"""
+34
+35            assert self.data is not None, "No data detected in interface"
+36
+37            torch.save(self.data, path)
+38            self.feature_map["features"] = Feature(feature_type=str(self.data.dtype), shape=self.data.shape)
+39
+40        def load_data(self, path: Path) -> None:
+41            """Load torch tensors or torch datasets"""
+42            self.data = torch.load(path)
+43
+44        @property
+45        def data_type(self) -> str:
+46            return AllowedDataType.TORCH_TENSOR.value
+47
+48        @property
+49        def data_suffix(self) -> str:
+50            """Returns suffix for storage"""
+51            return Suffix.PT.value
+52
+53        @staticmethod
+54        def name() -> str:
+55            return TorchData.__name__
+56
+57except ModuleNotFoundError:
+58    from opsml.data.interfaces.backups import TorchDataNoModule as TorchData
+
+ + +
+
+ +
+ + class + TorchData(opsml.data.interfaces._base.DataInterface): + + + +
+ +
11    class TorchData(DataInterface):
+12        """Torch dataset interface
+13
+14        Args:
+15            data:
+16                Torch dataset or torch tensors
+17            dependent_vars:
+18                List of dependent variables. Can be string or index if using numpy
+19            data_splits:
+20                Optional list of `DataSplit`
+21            feature_map:
+22                Dictionary of features -> automatically generated
+23            feature_descriptions:
+24                Dictionary or feature descriptions
+25            sql_logic:
+26                Sql logic used to generate data
+27            is_dataset:
+28                Whether data is a torch dataset or not
+29        """
+30
+31        data: Optional[torch.Tensor] = None
+32
+33        def save_data(self, path: Path) -> None:
+34            """Saves torch dataset or tensor(s)"""
+35
+36            assert self.data is not None, "No data detected in interface"
+37
+38            torch.save(self.data, path)
+39            self.feature_map["features"] = Feature(feature_type=str(self.data.dtype), shape=self.data.shape)
+40
+41        def load_data(self, path: Path) -> None:
+42            """Load torch tensors or torch datasets"""
+43            self.data = torch.load(path)
+44
+45        @property
+46        def data_type(self) -> str:
+47            return AllowedDataType.TORCH_TENSOR.value
+48
+49        @property
+50        def data_suffix(self) -> str:
+51            """Returns suffix for storage"""
+52            return Suffix.PT.value
+53
+54        @staticmethod
+55        def name() -> str:
+56            return TorchData.__name__
+
+ + +

Torch dataset interface

+ +
Arguments:
+ +
    +
  • data: Torch dataset or torch tensors
  • +
  • dependent_vars: List of dependent variables. Can be string or index if using numpy
  • +
  • data_splits: Optional list of DataSplit
  • +
  • feature_map: Dictionary of features -> automatically generated
  • +
  • feature_descriptions: Dictionary or feature descriptions
  • +
  • sql_logic: Sql logic used to generate data
  • +
  • is_dataset: Whether data is a torch dataset or not
  • +
+
+ + +
+
+ data: Optional[torch.Tensor] + + +
+ + + + +
+
+ +
+ + def + save_data(self, path: pathlib.Path) -> None: + + + +
+ +
33        def save_data(self, path: Path) -> None:
+34            """Saves torch dataset or tensor(s)"""
+35
+36            assert self.data is not None, "No data detected in interface"
+37
+38            torch.save(self.data, path)
+39            self.feature_map["features"] = Feature(feature_type=str(self.data.dtype), shape=self.data.shape)
+
+ + +

Saves torch dataset or tensor(s)

+
+ + +
+
+ +
+ + def + load_data(self, path: pathlib.Path) -> None: + + + +
+ +
41        def load_data(self, path: Path) -> None:
+42            """Load torch tensors or torch datasets"""
+43            self.data = torch.load(path)
+
+ + +

Load torch tensors or torch datasets

+
+ + +
+
+ +
+ data_type: str + + + +
+ +
45        @property
+46        def data_type(self) -> str:
+47            return AllowedDataType.TORCH_TENSOR.value
+
+ + + + +
+
+ +
+ data_suffix: str + + + +
+ +
49        @property
+50        def data_suffix(self) -> str:
+51            """Returns suffix for storage"""
+52            return Suffix.PT.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
54        @staticmethod
+55        def name() -> str:
+56            return TorchData.__name__
+
+ + + + +
+
+
+ model_config = +{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True} + + +
+ + + + +
+
+
+ model_fields = + + {'data': FieldInfo(annotation=Union[Tensor, NoneType], required=False), 'data_splits': FieldInfo(annotation=List[DataSplit], required=False, default=[]), 'dependent_vars': FieldInfo(annotation=List[Union[int, str]], required=False, default=[]), 'data_profile': FieldInfo(annotation=Union[ProfileReport, NoneType], required=False), 'feature_map': FieldInfo(annotation=Dict[str, Feature], required=False, default={}), 'feature_descriptions': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'sql_logic': FieldInfo(annotation=Dict[str, str], required=False, default={})} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.data.interfaces._base.DataInterface
+
data_splits
+
dependent_vars
+
data_profile
+
feature_map
+
feature_descriptions
+
sql_logic
+
add_sql
+
load_data_profile
+
save_data_profile
+
create_data_profile
+
split_data
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/data/splitter.html b/api/opsml/data/splitter.html new file mode 100644 index 000000000..4b651f7b2 --- /dev/null +++ b/api/opsml/data/splitter.html @@ -0,0 +1,2385 @@ + + + + + + + opsml.data.splitter API documentation + + + + + + + + + +
+
+

+opsml.data.splitter

+ + + + + + +
  1# pylint: disable=invalid-name
+  2# Copyright (c) Shipt, Inc.
+  3# This source code is licensed under the MIT license found in the
+  4# LICENSE file in the root directory of this source tree.
+  5from dataclasses import dataclass
+  6from typing import Any, List, Optional, Tuple, Union
+  7
+  8import pandas as pd
+  9import polars as pl
+ 10import pyarrow as pa
+ 11from numpy.typing import NDArray
+ 12from pydantic import BaseModel, ConfigDict, field_validator
+ 13
+ 14from opsml.types import AllowedDataType
+ 15
+ 16
+ 17@dataclass
+ 18class Data:
+ 19    X: Any
+ 20    y: Optional[Any] = None
+ 21
+ 22
+ 23class DataSplit(BaseModel):
+ 24    model_config = ConfigDict(arbitrary_types_allowed=True)
+ 25
+ 26    label: str
+ 27    column_name: Optional[str] = None
+ 28    column_value: Optional[Union[str, float, int, pd.Timestamp]] = None
+ 29    inequality: Optional[str] = None
+ 30    start: Optional[int] = None
+ 31    stop: Optional[int] = None
+ 32    indices: Optional[List[int]] = None
+ 33
+ 34    @field_validator("indices", mode="before")
+ 35    @classmethod
+ 36    def convert_to_list(cls, value: Optional[List[int]]) -> Optional[List[int]]:
+ 37        """Pre to convert indices to list if not None"""
+ 38
+ 39        if value is not None and not isinstance(value, list):
+ 40            value = list(value)
+ 41
+ 42        return value
+ 43
+ 44    @field_validator("inequality", mode="before")
+ 45    @classmethod
+ 46    def trim_whitespace(cls, value: str) -> str:
+ 47        """Trims whitespace from inequality signs"""
+ 48
+ 49        if value is not None:
+ 50            value = value.strip()
+ 51
+ 52        return value
+ 53
+ 54
+ 55class DataSplitterBase:
+ 56    def __init__(
+ 57        self,
+ 58        split: DataSplit,
+ 59        dependent_vars: List[Union[int, str]],
+ 60    ):
+ 61        self.split = split
+ 62        self.dependent_vars = dependent_vars
+ 63
+ 64    @property
+ 65    def column_name(self) -> str:
+ 66        if self.split.column_name is not None:
+ 67            return self.split.column_name
+ 68
+ 69        raise ValueError("Column name was not provided")
+ 70
+ 71    @property
+ 72    def column_value(self) -> Any:
+ 73        if self.split.column_value is not None:
+ 74            return self.split.column_value
+ 75
+ 76        raise ValueError("Column value was not provided")
+ 77
+ 78    @property
+ 79    def indices(self) -> List[int]:
+ 80        if self.split.indices is not None:
+ 81            return self.split.indices
+ 82        raise ValueError("List of indices was not provided")
+ 83
+ 84    @property
+ 85    def start(self) -> int:
+ 86        if self.split.start is not None:
+ 87            return self.split.start
+ 88        raise ValueError("Start index was not provided")
+ 89
+ 90    @property
+ 91    def stop(self) -> int:
+ 92        if self.split.stop is not None:
+ 93            return self.split.stop
+ 94        raise ValueError("Stop index was not provided")
+ 95
+ 96    def get_x_cols(self, columns: List[str], dependent_vars: List[Union[str, int]]) -> List[str]:
+ 97        for var in dependent_vars:
+ 98            if isinstance(var, str):
+ 99                columns.remove(var)
+100
+101        return columns
+102
+103    def create_split(self, data: Any) -> Tuple[str, Data]:
+104        raise NotImplementedError
+105
+106    @staticmethod
+107    def validate(data_type: str, split: DataSplit) -> bool:
+108        raise NotImplementedError
+109
+110
+111class PolarsColumnSplitter(DataSplitterBase):
+112    """Column splitter for Polars dataframe"""
+113
+114    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+115        if self.split.inequality is None:
+116            data = data.filter(pl.col(self.column_name) == self.column_value)
+117
+118        elif self.split.inequality == ">":
+119            data = data.filter(pl.col(self.column_name) > self.column_value)
+120
+121        elif self.split.inequality == ">=":
+122            data = data.filter(pl.col(self.column_name) >= self.column_value)
+123
+124        elif self.split.inequality == "<":
+125            data = data.filter(pl.col(self.column_name) < self.column_value)
+126
+127        else:
+128            data = data.filter(pl.col(self.column_name) <= self.column_value)
+129
+130        if bool(self.dependent_vars):
+131            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+132
+133            return self.split.label, Data(
+134                X=data.select(x_cols),
+135                y=data.select(self.dependent_vars),
+136            )
+137
+138        return self.split.label, Data(X=data)
+139
+140    @staticmethod
+141    def validate(data_type: str, split: DataSplit) -> bool:
+142        return data_type == AllowedDataType.POLARS and split.column_name is not None
+143
+144
+145class PolarsIndexSplitter(DataSplitterBase):
+146    """Split Polars DataFrame by rows index"""
+147
+148    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+149        # slice
+150        data = data[self.indices]
+151
+152        if bool(self.dependent_vars):
+153            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+154
+155            return self.split.label, Data(
+156                X=data.select(x_cols),
+157                y=data.select(self.dependent_vars),
+158            )
+159
+160        return self.split.label, Data(X=data)
+161
+162    @staticmethod
+163    def validate(data_type: str, split: DataSplit) -> bool:
+164        return data_type == AllowedDataType.POLARS and split.indices is not None
+165
+166
+167class PolarsRowsSplitter(DataSplitterBase):
+168    """Split Polars DataFrame by rows slice"""
+169
+170    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+171        # slice
+172        data = data[self.start : self.stop]
+173
+174        if bool(self.dependent_vars):
+175            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+176
+177            return self.split.label, Data(
+178                X=data.select(x_cols),
+179                y=data.select(self.dependent_vars),
+180            )
+181
+182        return self.split.label, Data(X=data)
+183
+184    @staticmethod
+185    def validate(data_type: str, split: DataSplit) -> bool:
+186        return data_type == AllowedDataType.POLARS and split.start is not None
+187
+188
+189class PandasIndexSplitter(DataSplitterBase):
+190    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+191        data = data.iloc[self.indices]
+192
+193        if bool(self.dependent_vars):
+194            x = data[data.columns[~data.columns.isin(self.dependent_vars)]]
+195            y = data[data.columns[data.columns.isin(self.dependent_vars)]]
+196
+197            return self.split.label, Data(X=x, y=y)
+198
+199        return self.split.label, Data(X=data)
+200
+201    @staticmethod
+202    def validate(data_type: str, split: DataSplit) -> bool:
+203        return data_type == AllowedDataType.PANDAS and split.indices is not None
+204
+205
+206class PandasRowSplitter(DataSplitterBase):
+207    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+208        # slice
+209        data = data[self.start : self.stop]
+210
+211        if bool(self.dependent_vars):
+212            x = data[data.columns[~data.columns.isin(self.dependent_vars)]]
+213            y = data[data.columns[data.columns.isin(self.dependent_vars)]]
+214
+215            return self.split.label, Data(X=x, y=y)
+216
+217        return self.split.label, Data(X=data)
+218
+219    @staticmethod
+220    def validate(data_type: str, split: DataSplit) -> bool:
+221        return data_type == AllowedDataType.PANDAS and split.start is not None
+222
+223
+224class PandasColumnSplitter(DataSplitterBase):
+225    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+226        if self.split.inequality is None:
+227            data = data[data[self.column_name] == self.column_value]
+228
+229        elif self.split.inequality == ">":
+230            data = data[data[self.column_name] > self.column_value]
+231
+232        elif self.split.inequality == ">=":
+233            data = data[data[self.column_name] >= self.column_value]
+234
+235        elif self.split.inequality == "<":
+236            data = data[data[self.column_name] < self.column_value]
+237
+238        else:
+239            data = data[data[self.column_name] <= self.column_value]
+240
+241        if bool(self.dependent_vars):
+242            return self.split.label, Data(
+243                X=data[data.columns[~data.columns.isin(self.dependent_vars)]],
+244                y=data[data.columns[data.columns.isin(self.dependent_vars)]],
+245            )
+246
+247        data_split = Data(X=data)
+248        return self.split.label, data_split
+249
+250    @staticmethod
+251    def validate(data_type: str, split: DataSplit) -> bool:
+252        return data_type == AllowedDataType.PANDAS and split.column_name is not None
+253
+254
+255class PyArrowIndexSplitter(DataSplitterBase):
+256    def create_split(self, data: pa.Table) -> Tuple[str, Data]:
+257        return self.split.label, Data(X=data.take(self.indices))
+258
+259    @staticmethod
+260    def validate(data_type: str, split: DataSplit) -> bool:
+261        return data_type == AllowedDataType.PYARROW and split.indices is not None
+262
+263
+264class NumpyIndexSplitter(DataSplitterBase):
+265    def create_split(self, data: NDArray[Any]) -> Tuple[str, Data]:
+266        return self.split.label, Data(X=data[self.indices])
+267
+268    @staticmethod
+269    def validate(data_type: str, split: DataSplit) -> bool:
+270        return data_type == AllowedDataType.NUMPY and split.indices is not None
+271
+272
+273class NumpyRowSplitter(DataSplitterBase):
+274    def create_split(self, data: NDArray[Any]) -> Tuple[str, Data]:
+275        data_split = data[self.start : self.stop]
+276        return self.split.label, Data(X=data_split)
+277
+278    @staticmethod
+279    def validate(data_type: str, split: DataSplit) -> bool:
+280        return data_type == AllowedDataType.NUMPY and split.start is not None
+281
+282
+283class DataSplitter:
+284    @staticmethod
+285    def split(
+286        split: DataSplit,
+287        data: Union[pd.DataFrame, NDArray[Any], pl.DataFrame],
+288        data_type: str,
+289        dependent_vars: List[Union[int, str]],
+290    ) -> Tuple[str, Data]:
+291        data_splitter = next(
+292            (
+293                data_splitter
+294                for data_splitter in DataSplitterBase.__subclasses__()
+295                if data_splitter.validate(
+296                    data_type=data_type,
+297                    split=split,
+298                )
+299            ),
+300            None,
+301        )
+302
+303        if data_splitter is not None:
+304            return data_splitter(
+305                split=split,
+306                dependent_vars=dependent_vars,
+307            ).create_split(data=data)
+308
+309        raise ValueError("Failed to find data supporter that supports provided logic")
+
+ + +
+
+ +
+
@dataclass
+ + class + Data: + + + +
+ +
18@dataclass
+19class Data:
+20    X: Any
+21    y: Optional[Any] = None
+
+ + + + +
+
+ + Data(X: Any, y: Optional[Any] = None) + + +
+ + + + +
+
+
+ X: Any + + +
+ + + + +
+
+
+ y: Optional[Any] = +None + + +
+ + + + +
+
+
+ +
+ + class + DataSplit(pydantic.main.BaseModel): + + + +
+ +
24class DataSplit(BaseModel):
+25    model_config = ConfigDict(arbitrary_types_allowed=True)
+26
+27    label: str
+28    column_name: Optional[str] = None
+29    column_value: Optional[Union[str, float, int, pd.Timestamp]] = None
+30    inequality: Optional[str] = None
+31    start: Optional[int] = None
+32    stop: Optional[int] = None
+33    indices: Optional[List[int]] = None
+34
+35    @field_validator("indices", mode="before")
+36    @classmethod
+37    def convert_to_list(cls, value: Optional[List[int]]) -> Optional[List[int]]:
+38        """Pre to convert indices to list if not None"""
+39
+40        if value is not None and not isinstance(value, list):
+41            value = list(value)
+42
+43        return value
+44
+45    @field_validator("inequality", mode="before")
+46    @classmethod
+47    def trim_whitespace(cls, value: str) -> str:
+48        """Trims whitespace from inequality signs"""
+49
+50        if value is not None:
+51            value = value.strip()
+52
+53        return value
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ model_config = +{'arbitrary_types_allowed': True} + + +
+ + + + +
+
+
+ label: str + + +
+ + + + +
+
+
+ column_name: Optional[str] + + +
+ + + + +
+
+
+ column_value: Union[str, float, int, pandas._libs.tslibs.timestamps.Timestamp, NoneType] + + +
+ + + + +
+
+
+ inequality: Optional[str] + + +
+ + + + +
+
+
+ start: Optional[int] + + +
+ + + + +
+
+
+ stop: Optional[int] + + +
+ + + + +
+
+
+ indices: Optional[List[int]] + + +
+ + + + +
+
+ +
+
@field_validator('indices', mode='before')
+
@classmethod
+ + def + convert_to_list(cls, value: Optional[List[int]]) -> Optional[List[int]]: + + + +
+ +
35    @field_validator("indices", mode="before")
+36    @classmethod
+37    def convert_to_list(cls, value: Optional[List[int]]) -> Optional[List[int]]:
+38        """Pre to convert indices to list if not None"""
+39
+40        if value is not None and not isinstance(value, list):
+41            value = list(value)
+42
+43        return value
+
+ + +

Pre to convert indices to list if not None

+
+ + +
+
+ +
+
@field_validator('inequality', mode='before')
+
@classmethod
+ + def + trim_whitespace(cls, value: str) -> str: + + + +
+ +
45    @field_validator("inequality", mode="before")
+46    @classmethod
+47    def trim_whitespace(cls, value: str) -> str:
+48        """Trims whitespace from inequality signs"""
+49
+50        if value is not None:
+51            value = value.strip()
+52
+53        return value
+
+ + +

Trims whitespace from inequality signs

+
+ + +
+
+
+ model_fields = + + {'label': FieldInfo(annotation=str, required=True), 'column_name': FieldInfo(annotation=Union[str, NoneType], required=False), 'column_value': FieldInfo(annotation=Union[str, float, int, Timestamp, NoneType], required=False), 'inequality': FieldInfo(annotation=Union[str, NoneType], required=False), 'start': FieldInfo(annotation=Union[int, NoneType], required=False), 'stop': FieldInfo(annotation=Union[int, NoneType], required=False), 'indices': FieldInfo(annotation=Union[List[int], NoneType], required=False)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + DataSplitterBase: + + + +
+ +
 56class DataSplitterBase:
+ 57    def __init__(
+ 58        self,
+ 59        split: DataSplit,
+ 60        dependent_vars: List[Union[int, str]],
+ 61    ):
+ 62        self.split = split
+ 63        self.dependent_vars = dependent_vars
+ 64
+ 65    @property
+ 66    def column_name(self) -> str:
+ 67        if self.split.column_name is not None:
+ 68            return self.split.column_name
+ 69
+ 70        raise ValueError("Column name was not provided")
+ 71
+ 72    @property
+ 73    def column_value(self) -> Any:
+ 74        if self.split.column_value is not None:
+ 75            return self.split.column_value
+ 76
+ 77        raise ValueError("Column value was not provided")
+ 78
+ 79    @property
+ 80    def indices(self) -> List[int]:
+ 81        if self.split.indices is not None:
+ 82            return self.split.indices
+ 83        raise ValueError("List of indices was not provided")
+ 84
+ 85    @property
+ 86    def start(self) -> int:
+ 87        if self.split.start is not None:
+ 88            return self.split.start
+ 89        raise ValueError("Start index was not provided")
+ 90
+ 91    @property
+ 92    def stop(self) -> int:
+ 93        if self.split.stop is not None:
+ 94            return self.split.stop
+ 95        raise ValueError("Stop index was not provided")
+ 96
+ 97    def get_x_cols(self, columns: List[str], dependent_vars: List[Union[str, int]]) -> List[str]:
+ 98        for var in dependent_vars:
+ 99            if isinstance(var, str):
+100                columns.remove(var)
+101
+102        return columns
+103
+104    def create_split(self, data: Any) -> Tuple[str, Data]:
+105        raise NotImplementedError
+106
+107    @staticmethod
+108    def validate(data_type: str, split: DataSplit) -> bool:
+109        raise NotImplementedError
+
+ + + + +
+ +
+ + DataSplitterBase( split: DataSplit, dependent_vars: List[Union[int, str]]) + + + +
+ +
57    def __init__(
+58        self,
+59        split: DataSplit,
+60        dependent_vars: List[Union[int, str]],
+61    ):
+62        self.split = split
+63        self.dependent_vars = dependent_vars
+
+ + + + +
+
+
+ split + + +
+ + + + +
+
+
+ dependent_vars + + +
+ + + + +
+
+ +
+ column_name: str + + + +
+ +
65    @property
+66    def column_name(self) -> str:
+67        if self.split.column_name is not None:
+68            return self.split.column_name
+69
+70        raise ValueError("Column name was not provided")
+
+ + + + +
+
+ +
+ column_value: Any + + + +
+ +
72    @property
+73    def column_value(self) -> Any:
+74        if self.split.column_value is not None:
+75            return self.split.column_value
+76
+77        raise ValueError("Column value was not provided")
+
+ + + + +
+
+ +
+ indices: List[int] + + + +
+ +
79    @property
+80    def indices(self) -> List[int]:
+81        if self.split.indices is not None:
+82            return self.split.indices
+83        raise ValueError("List of indices was not provided")
+
+ + + + +
+
+ +
+ start: int + + + +
+ +
85    @property
+86    def start(self) -> int:
+87        if self.split.start is not None:
+88            return self.split.start
+89        raise ValueError("Start index was not provided")
+
+ + + + +
+
+ +
+ stop: int + + + +
+ +
91    @property
+92    def stop(self) -> int:
+93        if self.split.stop is not None:
+94            return self.split.stop
+95        raise ValueError("Stop index was not provided")
+
+ + + + +
+
+ +
+ + def + get_x_cols( self, columns: List[str], dependent_vars: List[Union[int, str]]) -> List[str]: + + + +
+ +
 97    def get_x_cols(self, columns: List[str], dependent_vars: List[Union[str, int]]) -> List[str]:
+ 98        for var in dependent_vars:
+ 99            if isinstance(var, str):
+100                columns.remove(var)
+101
+102        return columns
+
+ + + + +
+
+ +
+ + def + create_split(self, data: Any) -> Tuple[str, Data]: + + + +
+ +
104    def create_split(self, data: Any) -> Tuple[str, Data]:
+105        raise NotImplementedError
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
107    @staticmethod
+108    def validate(data_type: str, split: DataSplit) -> bool:
+109        raise NotImplementedError
+
+ + + + +
+
+
+ +
+ + class + PolarsColumnSplitter(DataSplitterBase): + + + +
+ +
112class PolarsColumnSplitter(DataSplitterBase):
+113    """Column splitter for Polars dataframe"""
+114
+115    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+116        if self.split.inequality is None:
+117            data = data.filter(pl.col(self.column_name) == self.column_value)
+118
+119        elif self.split.inequality == ">":
+120            data = data.filter(pl.col(self.column_name) > self.column_value)
+121
+122        elif self.split.inequality == ">=":
+123            data = data.filter(pl.col(self.column_name) >= self.column_value)
+124
+125        elif self.split.inequality == "<":
+126            data = data.filter(pl.col(self.column_name) < self.column_value)
+127
+128        else:
+129            data = data.filter(pl.col(self.column_name) <= self.column_value)
+130
+131        if bool(self.dependent_vars):
+132            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+133
+134            return self.split.label, Data(
+135                X=data.select(x_cols),
+136                y=data.select(self.dependent_vars),
+137            )
+138
+139        return self.split.label, Data(X=data)
+140
+141    @staticmethod
+142    def validate(data_type: str, split: DataSplit) -> bool:
+143        return data_type == AllowedDataType.POLARS and split.column_name is not None
+
+ + +

Column splitter for Polars dataframe

+
+ + +
+ +
+ + def + create_split( self, data: polars.dataframe.frame.DataFrame) -> Tuple[str, Data]: + + + +
+ +
115    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+116        if self.split.inequality is None:
+117            data = data.filter(pl.col(self.column_name) == self.column_value)
+118
+119        elif self.split.inequality == ">":
+120            data = data.filter(pl.col(self.column_name) > self.column_value)
+121
+122        elif self.split.inequality == ">=":
+123            data = data.filter(pl.col(self.column_name) >= self.column_value)
+124
+125        elif self.split.inequality == "<":
+126            data = data.filter(pl.col(self.column_name) < self.column_value)
+127
+128        else:
+129            data = data.filter(pl.col(self.column_name) <= self.column_value)
+130
+131        if bool(self.dependent_vars):
+132            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+133
+134            return self.split.label, Data(
+135                X=data.select(x_cols),
+136                y=data.select(self.dependent_vars),
+137            )
+138
+139        return self.split.label, Data(X=data)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
141    @staticmethod
+142    def validate(data_type: str, split: DataSplit) -> bool:
+143        return data_type == AllowedDataType.POLARS and split.column_name is not None
+
+ + + + +
+ +
+
+ +
+ + class + PolarsIndexSplitter(DataSplitterBase): + + + +
+ +
146class PolarsIndexSplitter(DataSplitterBase):
+147    """Split Polars DataFrame by rows index"""
+148
+149    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+150        # slice
+151        data = data[self.indices]
+152
+153        if bool(self.dependent_vars):
+154            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+155
+156            return self.split.label, Data(
+157                X=data.select(x_cols),
+158                y=data.select(self.dependent_vars),
+159            )
+160
+161        return self.split.label, Data(X=data)
+162
+163    @staticmethod
+164    def validate(data_type: str, split: DataSplit) -> bool:
+165        return data_type == AllowedDataType.POLARS and split.indices is not None
+
+ + +

Split Polars DataFrame by rows index

+
+ + +
+ +
+ + def + create_split( self, data: polars.dataframe.frame.DataFrame) -> Tuple[str, Data]: + + + +
+ +
149    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+150        # slice
+151        data = data[self.indices]
+152
+153        if bool(self.dependent_vars):
+154            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+155
+156            return self.split.label, Data(
+157                X=data.select(x_cols),
+158                y=data.select(self.dependent_vars),
+159            )
+160
+161        return self.split.label, Data(X=data)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
163    @staticmethod
+164    def validate(data_type: str, split: DataSplit) -> bool:
+165        return data_type == AllowedDataType.POLARS and split.indices is not None
+
+ + + + +
+ +
+
+ +
+ + class + PolarsRowsSplitter(DataSplitterBase): + + + +
+ +
168class PolarsRowsSplitter(DataSplitterBase):
+169    """Split Polars DataFrame by rows slice"""
+170
+171    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+172        # slice
+173        data = data[self.start : self.stop]
+174
+175        if bool(self.dependent_vars):
+176            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+177
+178            return self.split.label, Data(
+179                X=data.select(x_cols),
+180                y=data.select(self.dependent_vars),
+181            )
+182
+183        return self.split.label, Data(X=data)
+184
+185    @staticmethod
+186    def validate(data_type: str, split: DataSplit) -> bool:
+187        return data_type == AllowedDataType.POLARS and split.start is not None
+
+ + +

Split Polars DataFrame by rows slice

+
+ + +
+ +
+ + def + create_split( self, data: polars.dataframe.frame.DataFrame) -> Tuple[str, Data]: + + + +
+ +
171    def create_split(self, data: pl.DataFrame) -> Tuple[str, Data]:
+172        # slice
+173        data = data[self.start : self.stop]
+174
+175        if bool(self.dependent_vars):
+176            x_cols = self.get_x_cols(columns=data.columns, dependent_vars=self.dependent_vars)
+177
+178            return self.split.label, Data(
+179                X=data.select(x_cols),
+180                y=data.select(self.dependent_vars),
+181            )
+182
+183        return self.split.label, Data(X=data)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
185    @staticmethod
+186    def validate(data_type: str, split: DataSplit) -> bool:
+187        return data_type == AllowedDataType.POLARS and split.start is not None
+
+ + + + +
+ +
+
+ +
+ + class + PandasIndexSplitter(DataSplitterBase): + + + +
+ +
190class PandasIndexSplitter(DataSplitterBase):
+191    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+192        data = data.iloc[self.indices]
+193
+194        if bool(self.dependent_vars):
+195            x = data[data.columns[~data.columns.isin(self.dependent_vars)]]
+196            y = data[data.columns[data.columns.isin(self.dependent_vars)]]
+197
+198            return self.split.label, Data(X=x, y=y)
+199
+200        return self.split.label, Data(X=data)
+201
+202    @staticmethod
+203    def validate(data_type: str, split: DataSplit) -> bool:
+204        return data_type == AllowedDataType.PANDAS and split.indices is not None
+
+ + + + +
+ +
+ + def + create_split( self, data: pandas.core.frame.DataFrame) -> Tuple[str, Data]: + + + +
+ +
191    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+192        data = data.iloc[self.indices]
+193
+194        if bool(self.dependent_vars):
+195            x = data[data.columns[~data.columns.isin(self.dependent_vars)]]
+196            y = data[data.columns[data.columns.isin(self.dependent_vars)]]
+197
+198            return self.split.label, Data(X=x, y=y)
+199
+200        return self.split.label, Data(X=data)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
202    @staticmethod
+203    def validate(data_type: str, split: DataSplit) -> bool:
+204        return data_type == AllowedDataType.PANDAS and split.indices is not None
+
+ + + + +
+ +
+
+ +
+ + class + PandasRowSplitter(DataSplitterBase): + + + +
+ +
207class PandasRowSplitter(DataSplitterBase):
+208    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+209        # slice
+210        data = data[self.start : self.stop]
+211
+212        if bool(self.dependent_vars):
+213            x = data[data.columns[~data.columns.isin(self.dependent_vars)]]
+214            y = data[data.columns[data.columns.isin(self.dependent_vars)]]
+215
+216            return self.split.label, Data(X=x, y=y)
+217
+218        return self.split.label, Data(X=data)
+219
+220    @staticmethod
+221    def validate(data_type: str, split: DataSplit) -> bool:
+222        return data_type == AllowedDataType.PANDAS and split.start is not None
+
+ + + + +
+ +
+ + def + create_split( self, data: pandas.core.frame.DataFrame) -> Tuple[str, Data]: + + + +
+ +
208    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+209        # slice
+210        data = data[self.start : self.stop]
+211
+212        if bool(self.dependent_vars):
+213            x = data[data.columns[~data.columns.isin(self.dependent_vars)]]
+214            y = data[data.columns[data.columns.isin(self.dependent_vars)]]
+215
+216            return self.split.label, Data(X=x, y=y)
+217
+218        return self.split.label, Data(X=data)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
220    @staticmethod
+221    def validate(data_type: str, split: DataSplit) -> bool:
+222        return data_type == AllowedDataType.PANDAS and split.start is not None
+
+ + + + +
+ +
+
+ +
+ + class + PandasColumnSplitter(DataSplitterBase): + + + +
+ +
225class PandasColumnSplitter(DataSplitterBase):
+226    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+227        if self.split.inequality is None:
+228            data = data[data[self.column_name] == self.column_value]
+229
+230        elif self.split.inequality == ">":
+231            data = data[data[self.column_name] > self.column_value]
+232
+233        elif self.split.inequality == ">=":
+234            data = data[data[self.column_name] >= self.column_value]
+235
+236        elif self.split.inequality == "<":
+237            data = data[data[self.column_name] < self.column_value]
+238
+239        else:
+240            data = data[data[self.column_name] <= self.column_value]
+241
+242        if bool(self.dependent_vars):
+243            return self.split.label, Data(
+244                X=data[data.columns[~data.columns.isin(self.dependent_vars)]],
+245                y=data[data.columns[data.columns.isin(self.dependent_vars)]],
+246            )
+247
+248        data_split = Data(X=data)
+249        return self.split.label, data_split
+250
+251    @staticmethod
+252    def validate(data_type: str, split: DataSplit) -> bool:
+253        return data_type == AllowedDataType.PANDAS and split.column_name is not None
+
+ + + + +
+ +
+ + def + create_split( self, data: pandas.core.frame.DataFrame) -> Tuple[str, Data]: + + + +
+ +
226    def create_split(self, data: pd.DataFrame) -> Tuple[str, Data]:
+227        if self.split.inequality is None:
+228            data = data[data[self.column_name] == self.column_value]
+229
+230        elif self.split.inequality == ">":
+231            data = data[data[self.column_name] > self.column_value]
+232
+233        elif self.split.inequality == ">=":
+234            data = data[data[self.column_name] >= self.column_value]
+235
+236        elif self.split.inequality == "<":
+237            data = data[data[self.column_name] < self.column_value]
+238
+239        else:
+240            data = data[data[self.column_name] <= self.column_value]
+241
+242        if bool(self.dependent_vars):
+243            return self.split.label, Data(
+244                X=data[data.columns[~data.columns.isin(self.dependent_vars)]],
+245                y=data[data.columns[data.columns.isin(self.dependent_vars)]],
+246            )
+247
+248        data_split = Data(X=data)
+249        return self.split.label, data_split
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
251    @staticmethod
+252    def validate(data_type: str, split: DataSplit) -> bool:
+253        return data_type == AllowedDataType.PANDAS and split.column_name is not None
+
+ + + + +
+ +
+
+ +
+ + class + PyArrowIndexSplitter(DataSplitterBase): + + + +
+ +
256class PyArrowIndexSplitter(DataSplitterBase):
+257    def create_split(self, data: pa.Table) -> Tuple[str, Data]:
+258        return self.split.label, Data(X=data.take(self.indices))
+259
+260    @staticmethod
+261    def validate(data_type: str, split: DataSplit) -> bool:
+262        return data_type == AllowedDataType.PYARROW and split.indices is not None
+
+ + + + +
+ +
+ + def + create_split(self, data: pyarrow.lib.Table) -> Tuple[str, Data]: + + + +
+ +
257    def create_split(self, data: pa.Table) -> Tuple[str, Data]:
+258        return self.split.label, Data(X=data.take(self.indices))
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
260    @staticmethod
+261    def validate(data_type: str, split: DataSplit) -> bool:
+262        return data_type == AllowedDataType.PYARROW and split.indices is not None
+
+ + + + +
+ +
+
+ +
+ + class + NumpyIndexSplitter(DataSplitterBase): + + + +
+ +
265class NumpyIndexSplitter(DataSplitterBase):
+266    def create_split(self, data: NDArray[Any]) -> Tuple[str, Data]:
+267        return self.split.label, Data(X=data[self.indices])
+268
+269    @staticmethod
+270    def validate(data_type: str, split: DataSplit) -> bool:
+271        return data_type == AllowedDataType.NUMPY and split.indices is not None
+
+ + + + +
+ +
+ + def + create_split( self, data: numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]) -> Tuple[str, Data]: + + + +
+ +
266    def create_split(self, data: NDArray[Any]) -> Tuple[str, Data]:
+267        return self.split.label, Data(X=data[self.indices])
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
269    @staticmethod
+270    def validate(data_type: str, split: DataSplit) -> bool:
+271        return data_type == AllowedDataType.NUMPY and split.indices is not None
+
+ + + + +
+ +
+
+ +
+ + class + NumpyRowSplitter(DataSplitterBase): + + + +
+ +
274class NumpyRowSplitter(DataSplitterBase):
+275    def create_split(self, data: NDArray[Any]) -> Tuple[str, Data]:
+276        data_split = data[self.start : self.stop]
+277        return self.split.label, Data(X=data_split)
+278
+279    @staticmethod
+280    def validate(data_type: str, split: DataSplit) -> bool:
+281        return data_type == AllowedDataType.NUMPY and split.start is not None
+
+ + + + +
+ +
+ + def + create_split( self, data: numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]) -> Tuple[str, Data]: + + + +
+ +
275    def create_split(self, data: NDArray[Any]) -> Tuple[str, Data]:
+276        data_split = data[self.start : self.stop]
+277        return self.split.label, Data(X=data_split)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(data_type: str, split: DataSplit) -> bool: + + + +
+ +
279    @staticmethod
+280    def validate(data_type: str, split: DataSplit) -> bool:
+281        return data_type == AllowedDataType.NUMPY and split.start is not None
+
+ + + + +
+ +
+
+ +
+ + class + DataSplitter: + + + +
+ +
284class DataSplitter:
+285    @staticmethod
+286    def split(
+287        split: DataSplit,
+288        data: Union[pd.DataFrame, NDArray[Any], pl.DataFrame],
+289        data_type: str,
+290        dependent_vars: List[Union[int, str]],
+291    ) -> Tuple[str, Data]:
+292        data_splitter = next(
+293            (
+294                data_splitter
+295                for data_splitter in DataSplitterBase.__subclasses__()
+296                if data_splitter.validate(
+297                    data_type=data_type,
+298                    split=split,
+299                )
+300            ),
+301            None,
+302        )
+303
+304        if data_splitter is not None:
+305            return data_splitter(
+306                split=split,
+307                dependent_vars=dependent_vars,
+308            ).create_split(data=data)
+309
+310        raise ValueError("Failed to find data supporter that supports provided logic")
+
+ + + + +
+ +
+
@staticmethod
+ + def + split( split: DataSplit, data: Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], polars.dataframe.frame.DataFrame], data_type: str, dependent_vars: List[Union[int, str]]) -> Tuple[str, Data]: + + + +
+ +
285    @staticmethod
+286    def split(
+287        split: DataSplit,
+288        data: Union[pd.DataFrame, NDArray[Any], pl.DataFrame],
+289        data_type: str,
+290        dependent_vars: List[Union[int, str]],
+291    ) -> Tuple[str, Data]:
+292        data_splitter = next(
+293            (
+294                data_splitter
+295                for data_splitter in DataSplitterBase.__subclasses__()
+296                if data_splitter.validate(
+297                    data_type=data_type,
+298                    split=split,
+299                )
+300            ),
+301            None,
+302        )
+303
+304        if data_splitter is not None:
+305            return data_splitter(
+306                split=split,
+307                dependent_vars=dependent_vars,
+308            ).create_split(data=data)
+309
+310        raise ValueError("Failed to find data supporter that supports provided logic")
+
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/challenger.html b/api/opsml/model/challenger.html new file mode 100644 index 000000000..7a66bcdb9 --- /dev/null +++ b/api/opsml/model/challenger.html @@ -0,0 +1,1645 @@ + + + + + + + opsml.model.challenger API documentation + + + + + + + + + +
+
+

+opsml.model.challenger

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4from typing import Any, Dict, List, Optional, Union, cast
+  5
+  6from pydantic import BaseModel, ConfigDict, ValidationInfo, field_validator
+  7
+  8from opsml.cards.model import ModelCard
+  9from opsml.cards.run import RunCard
+ 10from opsml.helpers.logging import ArtifactLogger
+ 11from opsml.registry.registry import CardRegistries
+ 12from opsml.types import CardInfo, Metric
+ 13
+ 14logger = ArtifactLogger.get_logger()
+ 15
+ 16# User interfaces should primarily be checked at runtime
+ 17
+ 18
+ 19class BattleReport(BaseModel):
+ 20    model_config = ConfigDict(arbitrary_types_allowed=True)
+ 21    champion_name: str
+ 22    champion_version: str
+ 23    champion_metric: Optional[Metric] = None
+ 24    challenger_metric: Optional[Metric] = None
+ 25    challenger_win: bool
+ 26
+ 27
+ 28MetricName = Union[str, List[str]]
+ 29MetricValue = Union[int, float, List[Union[int, float]]]
+ 30
+ 31
+ 32class ChallengeInputs(BaseModel):
+ 33    metric_name: MetricName
+ 34    metric_value: Optional[MetricValue] = None
+ 35    lower_is_better: Union[bool, List[bool]] = True
+ 36
+ 37    @property
+ 38    def metric_names(self) -> List[str]:
+ 39        return cast(List[str], self.metric_name)
+ 40
+ 41    @property
+ 42    def metric_values(self) -> List[Optional[Union[int, float]]]:
+ 43        return cast(List[Optional[Union[int, float]]], self.metric_value)
+ 44
+ 45    @property
+ 46    def thresholds(self) -> List[bool]:
+ 47        return cast(List[bool], self.lower_is_better)
+ 48
+ 49    @field_validator("metric_name")
+ 50    @classmethod
+ 51    def convert_name(cls, name: Union[List[str], str]) -> List[str]:
+ 52        if not isinstance(name, list):
+ 53            return [name]
+ 54        return name
+ 55
+ 56    @field_validator("metric_value")
+ 57    @classmethod
+ 58    def convert_value(cls, value: Optional[MetricValue], info: ValidationInfo) -> List[Any]:
+ 59        data = info.data
+ 60        metric = cast(MetricName, data["metric_name"])
+ 61        nbr_metrics = len(metric)
+ 62
+ 63        if value is not None:
+ 64            if not isinstance(value, list):
+ 65                metric_value = [value]
+ 66            else:
+ 67                metric_value = value
+ 68        else:
+ 69            metric_value = [None] * nbr_metrics  # type: ignore
+ 70
+ 71        if len(metric_value) != nbr_metrics:
+ 72            raise ValueError("List of metric values must be the same length as metric names")
+ 73
+ 74        return metric_value
+ 75
+ 76    @field_validator("lower_is_better")
+ 77    @classmethod
+ 78    def convert_threshold(cls, threshold: Union[bool, List[bool]], info: ValidationInfo) -> List[bool]:
+ 79        data = info.data
+ 80        metric = cast(MetricName, data["metric_name"])
+ 81        nbr_metrics = len(metric)
+ 82
+ 83        if not isinstance(threshold, list):
+ 84            _threshold = [threshold] * nbr_metrics
+ 85        else:
+ 86            _threshold = threshold
+ 87
+ 88        if len(_threshold) != nbr_metrics:
+ 89            if len(_threshold) == 1:
+ 90                _threshold = _threshold * nbr_metrics
+ 91            else:
+ 92                raise ValueError("Length of lower_is_better must be the same length as number of metrics")
+ 93
+ 94        return _threshold
+ 95
+ 96
+ 97class ModelChallenger:
+ 98    def __init__(self, challenger: ModelCard):
+ 99        """
+100        Instantiates ModelChallenger class
+101
+102        Args:
+103            challenger:
+104                ModelCard of challenger
+105
+106        """
+107        self._challenger = challenger
+108        self._challenger_metric: Optional[Metric] = None
+109        self._registries = CardRegistries()
+110
+111    @property
+112    def challenger_metric(self) -> Metric:
+113        if self._challenger_metric is not None:
+114            return self._challenger_metric
+115        raise ValueError("Challenger metric not set")
+116
+117    @challenger_metric.setter
+118    def challenger_metric(self, metric: Metric) -> None:
+119        self._challenger_metric = metric
+120
+121    def _get_last_champion_record(self) -> Optional[Dict[str, Any]]:
+122        """Gets the previous champion record"""
+123
+124        champion_records = self._registries.model.list_cards(
+125            name=self._challenger.name,
+126            repository=self._challenger.repository,
+127        )
+128
+129        if not bool(champion_records):
+130            return None
+131
+132        # indicates challenger has been registered
+133        if self._challenger.version is not None and len(champion_records) > 1:
+134            return champion_records[1]
+135
+136        # account for cases where challenger is only model in registry
+137        champion_record = champion_records[0]
+138        if champion_record.get("version") == self._challenger.version:
+139            return None
+140
+141        return champion_record
+142
+143    def _get_runcard_metric(self, runcard_uid: str, metric_name: str) -> Metric:
+144        """
+145        Loads a RunCard from uid
+146
+147        Args:
+148            runcard_uid:
+149                RunCard uid
+150            metric_name:
+151                Name of metric
+152
+153        """
+154        runcard = cast(RunCard, self._registries.run.load_card(uid=runcard_uid))
+155        metric = runcard.get_metric(name=metric_name)
+156
+157        if isinstance(metric, list):
+158            metric = metric[0]
+159
+160        return metric
+161
+162    def _battle(self, champion: CardInfo, champion_metric: Metric, lower_is_better: bool) -> BattleReport:
+163        """
+164        Runs a battle between champion and current challenger
+165
+166        Args:
+167            champion:
+168                Champion record
+169            champion_metric:
+170                Champion metric from a runcard
+171            lower_is_better:
+172                Whether lower metric is preferred
+173
+174        Returns:
+175            `BattleReport`
+176
+177        """
+178        if lower_is_better:
+179            challenger_win = self.challenger_metric.value < champion_metric.value
+180        else:
+181            challenger_win = self.challenger_metric.value > champion_metric.value
+182        return BattleReport.model_construct(
+183            champion_name=str(champion.name),
+184            champion_version=str(champion.version),
+185            champion_metric=champion_metric,
+186            challenger_metric=self.challenger_metric.model_copy(deep=True),
+187            challenger_win=challenger_win,
+188        )
+189
+190    def _battle_last_model_version(self, metric_name: str, lower_is_better: bool) -> BattleReport:
+191        """Compares the last champion model to the current challenger"""
+192
+193        champion_record = self._get_last_champion_record()
+194
+195        if champion_record is None:
+196            logger.info("No previous model found. Challenger wins")
+197
+198            return BattleReport(
+199                champion_name="No model",
+200                champion_version="No version",
+201                challenger_win=True,
+202            )
+203
+204        runcard_id = champion_record.get("runcard_uid")
+205        if runcard_id is None:
+206            raise ValueError(f"No RunCard is associated with champion: {champion_record}")
+207
+208        champion_metric = self._get_runcard_metric(runcard_uid=runcard_id, metric_name=metric_name)
+209
+210        return self._battle(
+211            champion=CardInfo(
+212                name=champion_record.get("name"),
+213                version=champion_record.get("version"),
+214            ),
+215            champion_metric=champion_metric,
+216            lower_is_better=lower_is_better,
+217        )
+218
+219    def _battle_champions(
+220        self,
+221        champions: List[CardInfo],
+222        metric_name: str,
+223        lower_is_better: bool,
+224    ) -> List[BattleReport]:
+225        """Loops through and creates a `BattleReport` for each champion"""
+226        battle_reports = []
+227
+228        for champion in champions:
+229            champion_record = self._registries.model.list_cards(
+230                info=champion,
+231            )
+232
+233            if not bool(champion_record):
+234                raise ValueError(f"Champion model does not exist. {champion}")
+235
+236            champion_card = champion_record[0]
+237            runcard_uid = champion_card.get("runcard_uid")
+238            if runcard_uid is None:
+239                raise ValueError(f"No RunCard associated with champion: {champion}")
+240
+241            champion_metric = self._get_runcard_metric(
+242                runcard_uid=runcard_uid,
+243                metric_name=metric_name,
+244            )
+245
+246            # update name, repository and version in case of None
+247            champion.name = champion.name or champion_card.get("name")
+248            champion.repository = champion.repository or champion_card.get("repository")
+249            champion.version = champion.version or champion_card.get("version")
+250
+251            battle_reports.append(
+252                self._battle(
+253                    champion=champion,
+254                    champion_metric=champion_metric,
+255                    lower_is_better=lower_is_better,
+256                )
+257            )
+258        return battle_reports
+259
+260    def challenge_champion(
+261        self,
+262        metric_name: MetricName,
+263        metric_value: Optional[MetricValue] = None,
+264        champions: Optional[List[CardInfo]] = None,
+265        lower_is_better: Union[bool, List[bool]] = True,
+266    ) -> Dict[str, List[BattleReport]]:
+267        """
+268        Challenges n champion models against the challenger model. If no champion is provided,
+269        the latest model version is used as a champion.
+270
+271        Args:
+272            champions:
+273                Optional list of champion CardInfo
+274            metric_name:
+275                Name of metric to evaluate
+276            metric_value:
+277                Challenger metric value
+278            lower_is_better:
+279                Whether a lower metric value is better or not
+280
+281        Returns
+282            `BattleReport`
+283        """
+284
+285        # validate inputs
+286        inputs = ChallengeInputs(
+287            metric_name=metric_name,
+288            metric_value=metric_value,
+289            lower_is_better=lower_is_better,
+290        )
+291
+292        report_dict = {}
+293
+294        for name, value, _lower_is_better in zip(
+295            inputs.metric_names,
+296            inputs.metric_values,
+297            inputs.thresholds,
+298        ):
+299            # get challenger metric
+300            if value is None:
+301                if self._challenger.metadata.runcard_uid is not None:
+302                    self.challenger_metric = self._get_runcard_metric(
+303                        self._challenger.metadata.runcard_uid, metric_name=name
+304                    )
+305                else:
+306                    raise ValueError("Challenger and champions must be associated with a registered RunCard")
+307            else:
+308                self.challenger_metric = Metric(name=name, value=value)
+309
+310            if champions is None:
+311                report_dict[name] = [
+312                    self._battle_last_model_version(
+313                        metric_name=name,
+314                        lower_is_better=_lower_is_better,
+315                    )
+316                ]
+317
+318            else:
+319                report_dict[name] = self._battle_champions(
+320                    champions=champions,
+321                    metric_name=name,
+322                    lower_is_better=_lower_is_better,
+323                )
+324
+325        return report_dict
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + BattleReport(pydantic.main.BaseModel): + + + +
+ +
20class BattleReport(BaseModel):
+21    model_config = ConfigDict(arbitrary_types_allowed=True)
+22    champion_name: str
+23    champion_version: str
+24    champion_metric: Optional[Metric] = None
+25    challenger_metric: Optional[Metric] = None
+26    challenger_win: bool
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ model_config = +{'arbitrary_types_allowed': True} + + +
+ + + + +
+
+
+ champion_name: str + + +
+ + + + +
+
+
+ champion_version: str + + +
+ + + + +
+
+
+ champion_metric: Optional[opsml.types.card.Metric] + + +
+ + + + +
+
+
+ challenger_metric: Optional[opsml.types.card.Metric] + + +
+ + + + +
+
+
+ challenger_win: bool + + +
+ + + + +
+
+
+ model_fields = + + {'champion_name': FieldInfo(annotation=str, required=True), 'champion_version': FieldInfo(annotation=str, required=True), 'champion_metric': FieldInfo(annotation=Union[Metric, NoneType], required=False), 'challenger_metric': FieldInfo(annotation=Union[Metric, NoneType], required=False), 'challenger_win': FieldInfo(annotation=bool, required=True)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+
+ MetricName = +typing.Union[str, typing.List[str]] + + +
+ + + + +
+
+
+ MetricValue = +typing.Union[int, float, typing.List[typing.Union[int, float]]] + + +
+ + + + +
+
+ +
+ + class + ChallengeInputs(pydantic.main.BaseModel): + + + +
+ +
33class ChallengeInputs(BaseModel):
+34    metric_name: MetricName
+35    metric_value: Optional[MetricValue] = None
+36    lower_is_better: Union[bool, List[bool]] = True
+37
+38    @property
+39    def metric_names(self) -> List[str]:
+40        return cast(List[str], self.metric_name)
+41
+42    @property
+43    def metric_values(self) -> List[Optional[Union[int, float]]]:
+44        return cast(List[Optional[Union[int, float]]], self.metric_value)
+45
+46    @property
+47    def thresholds(self) -> List[bool]:
+48        return cast(List[bool], self.lower_is_better)
+49
+50    @field_validator("metric_name")
+51    @classmethod
+52    def convert_name(cls, name: Union[List[str], str]) -> List[str]:
+53        if not isinstance(name, list):
+54            return [name]
+55        return name
+56
+57    @field_validator("metric_value")
+58    @classmethod
+59    def convert_value(cls, value: Optional[MetricValue], info: ValidationInfo) -> List[Any]:
+60        data = info.data
+61        metric = cast(MetricName, data["metric_name"])
+62        nbr_metrics = len(metric)
+63
+64        if value is not None:
+65            if not isinstance(value, list):
+66                metric_value = [value]
+67            else:
+68                metric_value = value
+69        else:
+70            metric_value = [None] * nbr_metrics  # type: ignore
+71
+72        if len(metric_value) != nbr_metrics:
+73            raise ValueError("List of metric values must be the same length as metric names")
+74
+75        return metric_value
+76
+77    @field_validator("lower_is_better")
+78    @classmethod
+79    def convert_threshold(cls, threshold: Union[bool, List[bool]], info: ValidationInfo) -> List[bool]:
+80        data = info.data
+81        metric = cast(MetricName, data["metric_name"])
+82        nbr_metrics = len(metric)
+83
+84        if not isinstance(threshold, list):
+85            _threshold = [threshold] * nbr_metrics
+86        else:
+87            _threshold = threshold
+88
+89        if len(_threshold) != nbr_metrics:
+90            if len(_threshold) == 1:
+91                _threshold = _threshold * nbr_metrics
+92            else:
+93                raise ValueError("Length of lower_is_better must be the same length as number of metrics")
+94
+95        return _threshold
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ metric_name: Union[str, List[str]] + + +
+ + + + +
+
+
+ metric_value: Union[int, float, List[Union[int, float]], NoneType] + + +
+ + + + +
+
+
+ lower_is_better: Union[bool, List[bool]] + + +
+ + + + +
+
+ +
+ metric_names: List[str] + + + +
+ +
38    @property
+39    def metric_names(self) -> List[str]:
+40        return cast(List[str], self.metric_name)
+
+ + + + +
+
+ +
+ metric_values: List[Union[int, float, NoneType]] + + + +
+ +
42    @property
+43    def metric_values(self) -> List[Optional[Union[int, float]]]:
+44        return cast(List[Optional[Union[int, float]]], self.metric_value)
+
+ + + + +
+
+ +
+ thresholds: List[bool] + + + +
+ +
46    @property
+47    def thresholds(self) -> List[bool]:
+48        return cast(List[bool], self.lower_is_better)
+
+ + + + +
+
+ +
+
@field_validator('metric_name')
+
@classmethod
+ + def + convert_name(cls, name: Union[List[str], str]) -> List[str]: + + + +
+ +
50    @field_validator("metric_name")
+51    @classmethod
+52    def convert_name(cls, name: Union[List[str], str]) -> List[str]:
+53        if not isinstance(name, list):
+54            return [name]
+55        return name
+
+ + + + +
+
+ +
+
@field_validator('metric_value')
+
@classmethod
+ + def + convert_value( cls, value: Union[int, float, List[Union[int, float]], NoneType], info: pydantic_core.core_schema.ValidationInfo) -> List[Any]: + + + +
+ +
57    @field_validator("metric_value")
+58    @classmethod
+59    def convert_value(cls, value: Optional[MetricValue], info: ValidationInfo) -> List[Any]:
+60        data = info.data
+61        metric = cast(MetricName, data["metric_name"])
+62        nbr_metrics = len(metric)
+63
+64        if value is not None:
+65            if not isinstance(value, list):
+66                metric_value = [value]
+67            else:
+68                metric_value = value
+69        else:
+70            metric_value = [None] * nbr_metrics  # type: ignore
+71
+72        if len(metric_value) != nbr_metrics:
+73            raise ValueError("List of metric values must be the same length as metric names")
+74
+75        return metric_value
+
+ + + + +
+
+ +
+
@field_validator('lower_is_better')
+
@classmethod
+ + def + convert_threshold( cls, threshold: Union[bool, List[bool]], info: pydantic_core.core_schema.ValidationInfo) -> List[bool]: + + + +
+ +
77    @field_validator("lower_is_better")
+78    @classmethod
+79    def convert_threshold(cls, threshold: Union[bool, List[bool]], info: ValidationInfo) -> List[bool]:
+80        data = info.data
+81        metric = cast(MetricName, data["metric_name"])
+82        nbr_metrics = len(metric)
+83
+84        if not isinstance(threshold, list):
+85            _threshold = [threshold] * nbr_metrics
+86        else:
+87            _threshold = threshold
+88
+89        if len(_threshold) != nbr_metrics:
+90            if len(_threshold) == 1:
+91                _threshold = _threshold * nbr_metrics
+92            else:
+93                raise ValueError("Length of lower_is_better must be the same length as number of metrics")
+94
+95        return _threshold
+
+ + + + +
+
+
+ model_config = +{} + + +
+ + + + +
+
+
+ model_fields = + + {'metric_name': FieldInfo(annotation=Union[str, List[str]], required=True), 'metric_value': FieldInfo(annotation=Union[int, float, List[Union[int, float]], NoneType], required=False), 'lower_is_better': FieldInfo(annotation=Union[bool, List[bool]], required=False, default=True)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + ModelChallenger: + + + +
+ +
 98class ModelChallenger:
+ 99    def __init__(self, challenger: ModelCard):
+100        """
+101        Instantiates ModelChallenger class
+102
+103        Args:
+104            challenger:
+105                ModelCard of challenger
+106
+107        """
+108        self._challenger = challenger
+109        self._challenger_metric: Optional[Metric] = None
+110        self._registries = CardRegistries()
+111
+112    @property
+113    def challenger_metric(self) -> Metric:
+114        if self._challenger_metric is not None:
+115            return self._challenger_metric
+116        raise ValueError("Challenger metric not set")
+117
+118    @challenger_metric.setter
+119    def challenger_metric(self, metric: Metric) -> None:
+120        self._challenger_metric = metric
+121
+122    def _get_last_champion_record(self) -> Optional[Dict[str, Any]]:
+123        """Gets the previous champion record"""
+124
+125        champion_records = self._registries.model.list_cards(
+126            name=self._challenger.name,
+127            repository=self._challenger.repository,
+128        )
+129
+130        if not bool(champion_records):
+131            return None
+132
+133        # indicates challenger has been registered
+134        if self._challenger.version is not None and len(champion_records) > 1:
+135            return champion_records[1]
+136
+137        # account for cases where challenger is only model in registry
+138        champion_record = champion_records[0]
+139        if champion_record.get("version") == self._challenger.version:
+140            return None
+141
+142        return champion_record
+143
+144    def _get_runcard_metric(self, runcard_uid: str, metric_name: str) -> Metric:
+145        """
+146        Loads a RunCard from uid
+147
+148        Args:
+149            runcard_uid:
+150                RunCard uid
+151            metric_name:
+152                Name of metric
+153
+154        """
+155        runcard = cast(RunCard, self._registries.run.load_card(uid=runcard_uid))
+156        metric = runcard.get_metric(name=metric_name)
+157
+158        if isinstance(metric, list):
+159            metric = metric[0]
+160
+161        return metric
+162
+163    def _battle(self, champion: CardInfo, champion_metric: Metric, lower_is_better: bool) -> BattleReport:
+164        """
+165        Runs a battle between champion and current challenger
+166
+167        Args:
+168            champion:
+169                Champion record
+170            champion_metric:
+171                Champion metric from a runcard
+172            lower_is_better:
+173                Whether lower metric is preferred
+174
+175        Returns:
+176            `BattleReport`
+177
+178        """
+179        if lower_is_better:
+180            challenger_win = self.challenger_metric.value < champion_metric.value
+181        else:
+182            challenger_win = self.challenger_metric.value > champion_metric.value
+183        return BattleReport.model_construct(
+184            champion_name=str(champion.name),
+185            champion_version=str(champion.version),
+186            champion_metric=champion_metric,
+187            challenger_metric=self.challenger_metric.model_copy(deep=True),
+188            challenger_win=challenger_win,
+189        )
+190
+191    def _battle_last_model_version(self, metric_name: str, lower_is_better: bool) -> BattleReport:
+192        """Compares the last champion model to the current challenger"""
+193
+194        champion_record = self._get_last_champion_record()
+195
+196        if champion_record is None:
+197            logger.info("No previous model found. Challenger wins")
+198
+199            return BattleReport(
+200                champion_name="No model",
+201                champion_version="No version",
+202                challenger_win=True,
+203            )
+204
+205        runcard_id = champion_record.get("runcard_uid")
+206        if runcard_id is None:
+207            raise ValueError(f"No RunCard is associated with champion: {champion_record}")
+208
+209        champion_metric = self._get_runcard_metric(runcard_uid=runcard_id, metric_name=metric_name)
+210
+211        return self._battle(
+212            champion=CardInfo(
+213                name=champion_record.get("name"),
+214                version=champion_record.get("version"),
+215            ),
+216            champion_metric=champion_metric,
+217            lower_is_better=lower_is_better,
+218        )
+219
+220    def _battle_champions(
+221        self,
+222        champions: List[CardInfo],
+223        metric_name: str,
+224        lower_is_better: bool,
+225    ) -> List[BattleReport]:
+226        """Loops through and creates a `BattleReport` for each champion"""
+227        battle_reports = []
+228
+229        for champion in champions:
+230            champion_record = self._registries.model.list_cards(
+231                info=champion,
+232            )
+233
+234            if not bool(champion_record):
+235                raise ValueError(f"Champion model does not exist. {champion}")
+236
+237            champion_card = champion_record[0]
+238            runcard_uid = champion_card.get("runcard_uid")
+239            if runcard_uid is None:
+240                raise ValueError(f"No RunCard associated with champion: {champion}")
+241
+242            champion_metric = self._get_runcard_metric(
+243                runcard_uid=runcard_uid,
+244                metric_name=metric_name,
+245            )
+246
+247            # update name, repository and version in case of None
+248            champion.name = champion.name or champion_card.get("name")
+249            champion.repository = champion.repository or champion_card.get("repository")
+250            champion.version = champion.version or champion_card.get("version")
+251
+252            battle_reports.append(
+253                self._battle(
+254                    champion=champion,
+255                    champion_metric=champion_metric,
+256                    lower_is_better=lower_is_better,
+257                )
+258            )
+259        return battle_reports
+260
+261    def challenge_champion(
+262        self,
+263        metric_name: MetricName,
+264        metric_value: Optional[MetricValue] = None,
+265        champions: Optional[List[CardInfo]] = None,
+266        lower_is_better: Union[bool, List[bool]] = True,
+267    ) -> Dict[str, List[BattleReport]]:
+268        """
+269        Challenges n champion models against the challenger model. If no champion is provided,
+270        the latest model version is used as a champion.
+271
+272        Args:
+273            champions:
+274                Optional list of champion CardInfo
+275            metric_name:
+276                Name of metric to evaluate
+277            metric_value:
+278                Challenger metric value
+279            lower_is_better:
+280                Whether a lower metric value is better or not
+281
+282        Returns
+283            `BattleReport`
+284        """
+285
+286        # validate inputs
+287        inputs = ChallengeInputs(
+288            metric_name=metric_name,
+289            metric_value=metric_value,
+290            lower_is_better=lower_is_better,
+291        )
+292
+293        report_dict = {}
+294
+295        for name, value, _lower_is_better in zip(
+296            inputs.metric_names,
+297            inputs.metric_values,
+298            inputs.thresholds,
+299        ):
+300            # get challenger metric
+301            if value is None:
+302                if self._challenger.metadata.runcard_uid is not None:
+303                    self.challenger_metric = self._get_runcard_metric(
+304                        self._challenger.metadata.runcard_uid, metric_name=name
+305                    )
+306                else:
+307                    raise ValueError("Challenger and champions must be associated with a registered RunCard")
+308            else:
+309                self.challenger_metric = Metric(name=name, value=value)
+310
+311            if champions is None:
+312                report_dict[name] = [
+313                    self._battle_last_model_version(
+314                        metric_name=name,
+315                        lower_is_better=_lower_is_better,
+316                    )
+317                ]
+318
+319            else:
+320                report_dict[name] = self._battle_champions(
+321                    champions=champions,
+322                    metric_name=name,
+323                    lower_is_better=_lower_is_better,
+324                )
+325
+326        return report_dict
+
+ + + + +
+ +
+ + ModelChallenger(challenger: opsml.cards.model.ModelCard) + + + +
+ +
 99    def __init__(self, challenger: ModelCard):
+100        """
+101        Instantiates ModelChallenger class
+102
+103        Args:
+104            challenger:
+105                ModelCard of challenger
+106
+107        """
+108        self._challenger = challenger
+109        self._challenger_metric: Optional[Metric] = None
+110        self._registries = CardRegistries()
+
+ + +

Instantiates ModelChallenger class

+ +
Arguments:
+ +
    +
  • challenger: ModelCard of challenger
  • +
+
+ + +
+
+ +
+ challenger_metric: opsml.types.card.Metric + + + +
+ +
112    @property
+113    def challenger_metric(self) -> Metric:
+114        if self._challenger_metric is not None:
+115            return self._challenger_metric
+116        raise ValueError("Challenger metric not set")
+
+ + + + +
+
+ +
+ + def + challenge_champion( self, metric_name: Union[str, List[str]], metric_value: Union[int, float, List[Union[int, float]], NoneType] = None, champions: Optional[List[opsml.types.card.CardInfo]] = None, lower_is_better: Union[bool, List[bool]] = True) -> Dict[str, List[BattleReport]]: + + + +
+ +
261    def challenge_champion(
+262        self,
+263        metric_name: MetricName,
+264        metric_value: Optional[MetricValue] = None,
+265        champions: Optional[List[CardInfo]] = None,
+266        lower_is_better: Union[bool, List[bool]] = True,
+267    ) -> Dict[str, List[BattleReport]]:
+268        """
+269        Challenges n champion models against the challenger model. If no champion is provided,
+270        the latest model version is used as a champion.
+271
+272        Args:
+273            champions:
+274                Optional list of champion CardInfo
+275            metric_name:
+276                Name of metric to evaluate
+277            metric_value:
+278                Challenger metric value
+279            lower_is_better:
+280                Whether a lower metric value is better or not
+281
+282        Returns
+283            `BattleReport`
+284        """
+285
+286        # validate inputs
+287        inputs = ChallengeInputs(
+288            metric_name=metric_name,
+289            metric_value=metric_value,
+290            lower_is_better=lower_is_better,
+291        )
+292
+293        report_dict = {}
+294
+295        for name, value, _lower_is_better in zip(
+296            inputs.metric_names,
+297            inputs.metric_values,
+298            inputs.thresholds,
+299        ):
+300            # get challenger metric
+301            if value is None:
+302                if self._challenger.metadata.runcard_uid is not None:
+303                    self.challenger_metric = self._get_runcard_metric(
+304                        self._challenger.metadata.runcard_uid, metric_name=name
+305                    )
+306                else:
+307                    raise ValueError("Challenger and champions must be associated with a registered RunCard")
+308            else:
+309                self.challenger_metric = Metric(name=name, value=value)
+310
+311            if champions is None:
+312                report_dict[name] = [
+313                    self._battle_last_model_version(
+314                        metric_name=name,
+315                        lower_is_better=_lower_is_better,
+316                    )
+317                ]
+318
+319            else:
+320                report_dict[name] = self._battle_champions(
+321                    champions=champions,
+322                    metric_name=name,
+323                    lower_is_better=_lower_is_better,
+324                )
+325
+326        return report_dict
+
+ + +

Challenges n champion models against the challenger model. If no champion is provided, +the latest model version is used as a champion.

+ +
Arguments:
+ +
    +
  • champions: Optional list of champion CardInfo
  • +
  • metric_name: Name of metric to evaluate
  • +
  • metric_value: Challenger metric value
  • +
  • lower_is_better: Whether a lower metric value is better or not
  • +
+ +

Returns + BattleReport

+
+ + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/base.html b/api/opsml/model/interfaces/base.html new file mode 100644 index 000000000..5fd710f3f --- /dev/null +++ b/api/opsml/model/interfaces/base.html @@ -0,0 +1,1550 @@ + + + + + + + opsml.model.interfaces.base API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.base

+ + + + + + +
  1from dataclasses import dataclass
+  2from pathlib import Path
+  3from typing import Any, Dict, List, Optional, Tuple, cast
+  4from uuid import UUID
+  5
+  6import joblib
+  7import numpy as np
+  8import pandas as pd
+  9from pydantic import BaseModel, ConfigDict, field_validator, model_validator
+ 10
+ 11from opsml.helpers.utils import get_class_name
+ 12from opsml.types import CommonKwargs, ModelReturn, OnnxModel
+ 13from opsml.types.extra import Suffix
+ 14
+ 15
+ 16def get_processor_name(_class: Optional[Any] = None) -> str:
+ 17    if _class is not None:
+ 18        return str(_class.__class__.__name__)
+ 19
+ 20    return CommonKwargs.UNDEFINED.value
+ 21
+ 22
+ 23def get_model_args(model: Any) -> Tuple[Any, str, List[str]]:
+ 24    assert model is not None, "Model must not be None"
+ 25
+ 26    model_module = model.__module__
+ 27    model_bases = [str(base) for base in model.__class__.__bases__]
+ 28
+ 29    return model, model_module, model_bases
+ 30
+ 31
+ 32@dataclass
+ 33class SamplePrediction:
+ 34    """Dataclass that holds sample prediction information
+ 35
+ 36    Args:
+ 37        prediction_type:
+ 38            Type of prediction
+ 39        prediction:
+ 40            Sample prediction
+ 41    """
+ 42
+ 43    prediction_type: str
+ 44    prediction: Any
+ 45
+ 46
+ 47class ModelInterface(BaseModel):
+ 48    model: Optional[Any] = None
+ 49    sample_data: Optional[Any] = None
+ 50    onnx_model: Optional[OnnxModel] = None
+ 51    task_type: str = CommonKwargs.UNDEFINED.value
+ 52    model_type: str = CommonKwargs.UNDEFINED.value
+ 53    data_type: str = CommonKwargs.UNDEFINED.value
+ 54    modelcard_uid: str = ""
+ 55
+ 56    model_config = ConfigDict(
+ 57        protected_namespaces=("protect_",),
+ 58        arbitrary_types_allowed=True,
+ 59        validate_assignment=False,
+ 60        validate_default=True,
+ 61        extra="allow",
+ 62    )
+ 63
+ 64    @property
+ 65    def model_class(self) -> str:
+ 66        return CommonKwargs.UNDEFINED.value
+ 67
+ 68    @model_validator(mode="before")
+ 69    @classmethod
+ 70    def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 71        if model_args.get("modelcard_uid", False):
+ 72            return model_args
+ 73
+ 74        sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 75        model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 76        model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 77
+ 78        return model_args
+ 79
+ 80    @field_validator("modelcard_uid", mode="before")
+ 81    @classmethod
+ 82    def check_modelcard_uid(cls, modelcard_uid: str) -> str:
+ 83        # empty strings are falsey
+ 84        if not modelcard_uid:
+ 85            return modelcard_uid
+ 86
+ 87        try:
+ 88            UUID(modelcard_uid, version=4)  # we use uuid4
+ 89            return modelcard_uid
+ 90
+ 91        except ValueError as exc:
+ 92            raise ValueError("ModelCard uid is not a valid uuid") from exc
+ 93
+ 94    def save_model(self, path: Path) -> None:
+ 95        """Saves model to path. Base implementation use Joblib
+ 96
+ 97        Args:
+ 98            path:
+ 99                Pathlib object
+100        """
+101        assert self.model is not None, "No model detected in interface"
+102        joblib.dump(self.model, path)
+103
+104    def load_model(self, path: Path, **kwargs: Any) -> None:
+105        """Load model from pathlib object
+106
+107        Args:
+108            path:
+109                Pathlib object
+110            kwargs:
+111                Additional kwargs
+112        """
+113        self.model = joblib.load(path)
+114
+115    def save_onnx(self, path: Path) -> ModelReturn:
+116        """Saves the onnx model
+117
+118        Args:
+119            path:
+120                Path to save
+121
+122        Returns:
+123            ModelReturn
+124        """
+125        import onnxruntime as rt
+126
+127        from opsml.model.onnx import _get_onnx_metadata
+128
+129        if self.onnx_model is None:
+130            self.convert_to_onnx()
+131            sess: rt.InferenceSession = self.onnx_model.sess
+132            path.write_bytes(sess._model_bytes)  # pylint: disable=protected-access
+133
+134        else:
+135            self.onnx_model.sess_to_path(path.with_suffix(Suffix.ONNX.value))
+136
+137        assert self.onnx_model is not None, "No onnx model detected in interface"
+138        metadata = _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+139
+140        return metadata
+141
+142    def convert_to_onnx(self, **kwargs: Path) -> None:
+143        """Converts model to onnx format"""
+144        from opsml.model.onnx import _OnnxModelConverter
+145
+146        if self.onnx_model is not None:
+147            return None
+148
+149        metadata = _OnnxModelConverter(self).convert_model()
+150        self.onnx_model = metadata.onnx_model
+151
+152        return None
+153
+154    def load_onnx_model(self, path: Path) -> None:
+155        """Load onnx model from pathlib object
+156
+157        Args:
+158            path:
+159                Pathlib object
+160        """
+161        from onnxruntime import InferenceSession
+162
+163        assert self.onnx_model is not None, "No onnx model detected in interface"
+164        self.onnx_model.sess = InferenceSession(path)
+165
+166    def save_sample_data(self, path: Path) -> None:
+167        """Serialized and save sample data to path.
+168
+169        Args:
+170            path:
+171                Pathlib object
+172        """
+173        joblib.dump(self.sample_data, path)
+174
+175    def load_sample_data(self, path: Path) -> None:
+176        """Serialized and save sample data to path.
+177
+178        Args:
+179            path:
+180                Pathlib object
+181        """
+182
+183        self.sample_data = joblib.load(path)
+184
+185    @classmethod
+186    def _get_sample_data(cls, sample_data: Any) -> Any:
+187        """Check sample data and returns one record to be used
+188        during type inference and ONNX conversion/validation.
+189
+190        Returns:
+191            Sample data with only one record
+192        """
+193
+194        if isinstance(sample_data, list):
+195            return [data[0:1] for data in sample_data]
+196
+197        if isinstance(sample_data, tuple):
+198            return (data[0:1] for data in sample_data)
+199
+200        if isinstance(sample_data, dict):
+201            return {key: data[0:1] for key, data in sample_data.items()}
+202
+203        return sample_data[0:1]
+204
+205    def get_sample_prediction(self) -> SamplePrediction:
+206        assert self.model is not None, "Model is not defined"
+207        assert self.sample_data is not None, "Sample data must be provided"
+208
+209        if isinstance(self.sample_data, (pd.DataFrame, np.ndarray)):
+210            prediction = self.model.predict(self.sample_data)
+211
+212        elif isinstance(self.sample_data, dict):
+213            try:
+214                prediction = self.model.predict(**self.sample_data)
+215            except Exception as _:  # pylint: disable=broad-except
+216                prediction = self.model.predict(self.sample_data)
+217
+218        elif isinstance(self.sample_data, (list, tuple)):
+219            try:
+220                prediction = self.model.predict(*self.sample_data)
+221            except Exception as _:  # pylint: disable=broad-except
+222                prediction = self.model.predict(self.sample_data)
+223
+224        else:
+225            prediction = self.model.predict(self.sample_data)
+226
+227        prediction_type = get_class_name(prediction)
+228
+229        return SamplePrediction(
+230            prediction_type,
+231            prediction,
+232        )
+233
+234    @property
+235    def model_suffix(self) -> str:
+236        """Returns suffix for storage"""
+237        return Suffix.JOBLIB.value
+238
+239    @property
+240    def data_suffix(self) -> str:
+241        """Returns suffix for storage"""
+242        return Suffix.JOBLIB.value
+243
+244    @staticmethod
+245    def name() -> str:
+246        return ModelInterface.__name__
+
+ + +
+
+ +
+ + def + get_processor_name(_class: Optional[Any] = None) -> str: + + + +
+ +
17def get_processor_name(_class: Optional[Any] = None) -> str:
+18    if _class is not None:
+19        return str(_class.__class__.__name__)
+20
+21    return CommonKwargs.UNDEFINED.value
+
+ + + + +
+
+ +
+ + def + get_model_args(model: Any) -> Tuple[Any, str, List[str]]: + + + +
+ +
24def get_model_args(model: Any) -> Tuple[Any, str, List[str]]:
+25    assert model is not None, "Model must not be None"
+26
+27    model_module = model.__module__
+28    model_bases = [str(base) for base in model.__class__.__bases__]
+29
+30    return model, model_module, model_bases
+
+ + + + +
+
+ +
+
@dataclass
+ + class + SamplePrediction: + + + +
+ +
33@dataclass
+34class SamplePrediction:
+35    """Dataclass that holds sample prediction information
+36
+37    Args:
+38        prediction_type:
+39            Type of prediction
+40        prediction:
+41            Sample prediction
+42    """
+43
+44    prediction_type: str
+45    prediction: Any
+
+ + +

Dataclass that holds sample prediction information

+ +
Arguments:
+ +
    +
  • prediction_type: Type of prediction
  • +
  • prediction: Sample prediction
  • +
+
+ + +
+
+ + SamplePrediction(prediction_type: str, prediction: Any) + + +
+ + + + +
+
+
+ prediction_type: str + + +
+ + + + +
+
+
+ prediction: Any + + +
+ + + + +
+
+
+ +
+ + class + ModelInterface(pydantic.main.BaseModel): + + + +
+ +
 48class ModelInterface(BaseModel):
+ 49    model: Optional[Any] = None
+ 50    sample_data: Optional[Any] = None
+ 51    onnx_model: Optional[OnnxModel] = None
+ 52    task_type: str = CommonKwargs.UNDEFINED.value
+ 53    model_type: str = CommonKwargs.UNDEFINED.value
+ 54    data_type: str = CommonKwargs.UNDEFINED.value
+ 55    modelcard_uid: str = ""
+ 56
+ 57    model_config = ConfigDict(
+ 58        protected_namespaces=("protect_",),
+ 59        arbitrary_types_allowed=True,
+ 60        validate_assignment=False,
+ 61        validate_default=True,
+ 62        extra="allow",
+ 63    )
+ 64
+ 65    @property
+ 66    def model_class(self) -> str:
+ 67        return CommonKwargs.UNDEFINED.value
+ 68
+ 69    @model_validator(mode="before")
+ 70    @classmethod
+ 71    def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 72        if model_args.get("modelcard_uid", False):
+ 73            return model_args
+ 74
+ 75        sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 76        model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 77        model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 78
+ 79        return model_args
+ 80
+ 81    @field_validator("modelcard_uid", mode="before")
+ 82    @classmethod
+ 83    def check_modelcard_uid(cls, modelcard_uid: str) -> str:
+ 84        # empty strings are falsey
+ 85        if not modelcard_uid:
+ 86            return modelcard_uid
+ 87
+ 88        try:
+ 89            UUID(modelcard_uid, version=4)  # we use uuid4
+ 90            return modelcard_uid
+ 91
+ 92        except ValueError as exc:
+ 93            raise ValueError("ModelCard uid is not a valid uuid") from exc
+ 94
+ 95    def save_model(self, path: Path) -> None:
+ 96        """Saves model to path. Base implementation use Joblib
+ 97
+ 98        Args:
+ 99            path:
+100                Pathlib object
+101        """
+102        assert self.model is not None, "No model detected in interface"
+103        joblib.dump(self.model, path)
+104
+105    def load_model(self, path: Path, **kwargs: Any) -> None:
+106        """Load model from pathlib object
+107
+108        Args:
+109            path:
+110                Pathlib object
+111            kwargs:
+112                Additional kwargs
+113        """
+114        self.model = joblib.load(path)
+115
+116    def save_onnx(self, path: Path) -> ModelReturn:
+117        """Saves the onnx model
+118
+119        Args:
+120            path:
+121                Path to save
+122
+123        Returns:
+124            ModelReturn
+125        """
+126        import onnxruntime as rt
+127
+128        from opsml.model.onnx import _get_onnx_metadata
+129
+130        if self.onnx_model is None:
+131            self.convert_to_onnx()
+132            sess: rt.InferenceSession = self.onnx_model.sess
+133            path.write_bytes(sess._model_bytes)  # pylint: disable=protected-access
+134
+135        else:
+136            self.onnx_model.sess_to_path(path.with_suffix(Suffix.ONNX.value))
+137
+138        assert self.onnx_model is not None, "No onnx model detected in interface"
+139        metadata = _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+140
+141        return metadata
+142
+143    def convert_to_onnx(self, **kwargs: Path) -> None:
+144        """Converts model to onnx format"""
+145        from opsml.model.onnx import _OnnxModelConverter
+146
+147        if self.onnx_model is not None:
+148            return None
+149
+150        metadata = _OnnxModelConverter(self).convert_model()
+151        self.onnx_model = metadata.onnx_model
+152
+153        return None
+154
+155    def load_onnx_model(self, path: Path) -> None:
+156        """Load onnx model from pathlib object
+157
+158        Args:
+159            path:
+160                Pathlib object
+161        """
+162        from onnxruntime import InferenceSession
+163
+164        assert self.onnx_model is not None, "No onnx model detected in interface"
+165        self.onnx_model.sess = InferenceSession(path)
+166
+167    def save_sample_data(self, path: Path) -> None:
+168        """Serialized and save sample data to path.
+169
+170        Args:
+171            path:
+172                Pathlib object
+173        """
+174        joblib.dump(self.sample_data, path)
+175
+176    def load_sample_data(self, path: Path) -> None:
+177        """Serialized and save sample data to path.
+178
+179        Args:
+180            path:
+181                Pathlib object
+182        """
+183
+184        self.sample_data = joblib.load(path)
+185
+186    @classmethod
+187    def _get_sample_data(cls, sample_data: Any) -> Any:
+188        """Check sample data and returns one record to be used
+189        during type inference and ONNX conversion/validation.
+190
+191        Returns:
+192            Sample data with only one record
+193        """
+194
+195        if isinstance(sample_data, list):
+196            return [data[0:1] for data in sample_data]
+197
+198        if isinstance(sample_data, tuple):
+199            return (data[0:1] for data in sample_data)
+200
+201        if isinstance(sample_data, dict):
+202            return {key: data[0:1] for key, data in sample_data.items()}
+203
+204        return sample_data[0:1]
+205
+206    def get_sample_prediction(self) -> SamplePrediction:
+207        assert self.model is not None, "Model is not defined"
+208        assert self.sample_data is not None, "Sample data must be provided"
+209
+210        if isinstance(self.sample_data, (pd.DataFrame, np.ndarray)):
+211            prediction = self.model.predict(self.sample_data)
+212
+213        elif isinstance(self.sample_data, dict):
+214            try:
+215                prediction = self.model.predict(**self.sample_data)
+216            except Exception as _:  # pylint: disable=broad-except
+217                prediction = self.model.predict(self.sample_data)
+218
+219        elif isinstance(self.sample_data, (list, tuple)):
+220            try:
+221                prediction = self.model.predict(*self.sample_data)
+222            except Exception as _:  # pylint: disable=broad-except
+223                prediction = self.model.predict(self.sample_data)
+224
+225        else:
+226            prediction = self.model.predict(self.sample_data)
+227
+228        prediction_type = get_class_name(prediction)
+229
+230        return SamplePrediction(
+231            prediction_type,
+232            prediction,
+233        )
+234
+235    @property
+236    def model_suffix(self) -> str:
+237        """Returns suffix for storage"""
+238        return Suffix.JOBLIB.value
+239
+240    @property
+241    def data_suffix(self) -> str:
+242        """Returns suffix for storage"""
+243        return Suffix.JOBLIB.value
+244
+245    @staticmethod
+246    def name() -> str:
+247        return ModelInterface.__name__
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ model: Optional[Any] + + +
+ + + + +
+
+
+ sample_data: Optional[Any] + + +
+ + + + +
+
+
+ onnx_model: Optional[opsml.types.model.OnnxModel] + + +
+ + + + +
+
+
+ task_type: str + + +
+ + + + +
+
+
+ model_type: str + + +
+ + + + +
+
+
+ data_type: str + + +
+ + + + +
+
+
+ modelcard_uid: str + + +
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
65    @property
+66    def model_class(self) -> str:
+67        return CommonKwargs.UNDEFINED.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
69    @model_validator(mode="before")
+70    @classmethod
+71    def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+72        if model_args.get("modelcard_uid", False):
+73            return model_args
+74
+75        sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+76        model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+77        model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+78
+79        return model_args
+
+ + + + +
+
+ +
+
@field_validator('modelcard_uid', mode='before')
+
@classmethod
+ + def + check_modelcard_uid(cls, modelcard_uid: str) -> str: + + + +
+ +
81    @field_validator("modelcard_uid", mode="before")
+82    @classmethod
+83    def check_modelcard_uid(cls, modelcard_uid: str) -> str:
+84        # empty strings are falsey
+85        if not modelcard_uid:
+86            return modelcard_uid
+87
+88        try:
+89            UUID(modelcard_uid, version=4)  # we use uuid4
+90            return modelcard_uid
+91
+92        except ValueError as exc:
+93            raise ValueError("ModelCard uid is not a valid uuid") from exc
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
 95    def save_model(self, path: Path) -> None:
+ 96        """Saves model to path. Base implementation use Joblib
+ 97
+ 98        Args:
+ 99            path:
+100                Pathlib object
+101        """
+102        assert self.model is not None, "No model detected in interface"
+103        joblib.dump(self.model, path)
+
+ + +

Saves model to path. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
105    def load_model(self, path: Path, **kwargs: Any) -> None:
+106        """Load model from pathlib object
+107
+108        Args:
+109            path:
+110                Pathlib object
+111            kwargs:
+112                Additional kwargs
+113        """
+114        self.model = joblib.load(path)
+
+ + +

Load model from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
  • kwargs: Additional kwargs
  • +
+
+ + +
+
+ +
+ + def + save_onnx(self, path: pathlib.Path) -> opsml.types.model.ModelReturn: + + + +
+ +
116    def save_onnx(self, path: Path) -> ModelReturn:
+117        """Saves the onnx model
+118
+119        Args:
+120            path:
+121                Path to save
+122
+123        Returns:
+124            ModelReturn
+125        """
+126        import onnxruntime as rt
+127
+128        from opsml.model.onnx import _get_onnx_metadata
+129
+130        if self.onnx_model is None:
+131            self.convert_to_onnx()
+132            sess: rt.InferenceSession = self.onnx_model.sess
+133            path.write_bytes(sess._model_bytes)  # pylint: disable=protected-access
+134
+135        else:
+136            self.onnx_model.sess_to_path(path.with_suffix(Suffix.ONNX.value))
+137
+138        assert self.onnx_model is not None, "No onnx model detected in interface"
+139        metadata = _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+140
+141        return metadata
+
+ + +

Saves the onnx model

+ +
Arguments:
+ +
    +
  • path: Path to save
  • +
+ +
Returns:
+ +
+

ModelReturn

+
+
+ + +
+
+ +
+ + def + convert_to_onnx(self, **kwargs: pathlib.Path) -> None: + + + +
+ +
143    def convert_to_onnx(self, **kwargs: Path) -> None:
+144        """Converts model to onnx format"""
+145        from opsml.model.onnx import _OnnxModelConverter
+146
+147        if self.onnx_model is not None:
+148            return None
+149
+150        metadata = _OnnxModelConverter(self).convert_model()
+151        self.onnx_model = metadata.onnx_model
+152
+153        return None
+
+ + +

Converts model to onnx format

+
+ + +
+
+ +
+ + def + load_onnx_model(self, path: pathlib.Path) -> None: + + + +
+ +
155    def load_onnx_model(self, path: Path) -> None:
+156        """Load onnx model from pathlib object
+157
+158        Args:
+159            path:
+160                Pathlib object
+161        """
+162        from onnxruntime import InferenceSession
+163
+164        assert self.onnx_model is not None, "No onnx model detected in interface"
+165        self.onnx_model.sess = InferenceSession(path)
+
+ + +

Load onnx model from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + save_sample_data(self, path: pathlib.Path) -> None: + + + +
+ +
167    def save_sample_data(self, path: Path) -> None:
+168        """Serialized and save sample data to path.
+169
+170        Args:
+171            path:
+172                Pathlib object
+173        """
+174        joblib.dump(self.sample_data, path)
+
+ + +

Serialized and save sample data to path.

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_sample_data(self, path: pathlib.Path) -> None: + + + +
+ +
176    def load_sample_data(self, path: Path) -> None:
+177        """Serialized and save sample data to path.
+178
+179        Args:
+180            path:
+181                Pathlib object
+182        """
+183
+184        self.sample_data = joblib.load(path)
+
+ + +

Serialized and save sample data to path.

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + get_sample_prediction(self) -> SamplePrediction: + + + +
+ +
206    def get_sample_prediction(self) -> SamplePrediction:
+207        assert self.model is not None, "Model is not defined"
+208        assert self.sample_data is not None, "Sample data must be provided"
+209
+210        if isinstance(self.sample_data, (pd.DataFrame, np.ndarray)):
+211            prediction = self.model.predict(self.sample_data)
+212
+213        elif isinstance(self.sample_data, dict):
+214            try:
+215                prediction = self.model.predict(**self.sample_data)
+216            except Exception as _:  # pylint: disable=broad-except
+217                prediction = self.model.predict(self.sample_data)
+218
+219        elif isinstance(self.sample_data, (list, tuple)):
+220            try:
+221                prediction = self.model.predict(*self.sample_data)
+222            except Exception as _:  # pylint: disable=broad-except
+223                prediction = self.model.predict(self.sample_data)
+224
+225        else:
+226            prediction = self.model.predict(self.sample_data)
+227
+228        prediction_type = get_class_name(prediction)
+229
+230        return SamplePrediction(
+231            prediction_type,
+232            prediction,
+233        )
+
+ + + + +
+
+ +
+ model_suffix: str + + + +
+ +
235    @property
+236    def model_suffix(self) -> str:
+237        """Returns suffix for storage"""
+238        return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ data_suffix: str + + + +
+ +
240    @property
+241    def data_suffix(self) -> str:
+242        """Returns suffix for storage"""
+243        return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
245    @staticmethod
+246    def name() -> str:
+247        return ModelInterface.__name__
+
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Any, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Any, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default='')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/catboost_.html b/api/opsml/model/interfaces/catboost_.html new file mode 100644 index 000000000..a5d46d4ec --- /dev/null +++ b/api/opsml/model/interfaces/catboost_.html @@ -0,0 +1,1296 @@ + + + + + + + opsml.model.interfaces.catboost_ API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.catboost_

+ + + + + + +
  1import tempfile
+  2from pathlib import Path
+  3from typing import Any, Dict, List, Optional, Union, cast
+  4
+  5import joblib
+  6import numpy as np
+  7from numpy.typing import NDArray
+  8from pydantic import model_validator
+  9
+ 10from opsml.helpers.logging import ArtifactLogger
+ 11from opsml.helpers.utils import get_class_name
+ 12from opsml.model.interfaces.base import (
+ 13    ModelInterface,
+ 14    SamplePrediction,
+ 15    get_model_args,
+ 16    get_processor_name,
+ 17)
+ 18from opsml.types import (
+ 19    CommonKwargs,
+ 20    ModelReturn,
+ 21    OnnxModel,
+ 22    SaveName,
+ 23    Suffix,
+ 24    TrainedModelType,
+ 25)
+ 26
+ 27logger = ArtifactLogger.get_logger()
+ 28
+ 29try:
+ 30    from catboost import CatBoost
+ 31
+ 32    class CatBoostModel(ModelInterface):
+ 33        """Model interface for CatBoost models.
+ 34
+ 35        Args:
+ 36            model:
+ 37                CatBoost model (Classifier, Regressor, Ranker)
+ 38            preprocessor:
+ 39                Optional preprocessor
+ 40            sample_data:
+ 41                Sample data to be used for type inference and sample prediction.
+ 42                For catboost models this should be a numpy array (either 1d or 2d) or list of feature values.
+ 43                This should match exactly what the model expects as input.
+ 44            task_type:
+ 45                Task type for model. Defaults to undefined.
+ 46            model_type:
+ 47                Optional model type. This is inferred automatically.
+ 48            preprocessor_name:
+ 49                Optional preprocessor name. This is inferred automatically if a
+ 50                preprocessor is provided.
+ 51
+ 52        Returns:
+ 53            CatBoostModel
+ 54        """
+ 55
+ 56        model: Optional[CatBoost] = None
+ 57        sample_data: Optional[Union[List[Any], NDArray[Any]]] = None
+ 58        preprocessor: Optional[Any] = None
+ 59        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 60
+ 61        @classmethod
+ 62        def _get_sample_data(cls, sample_data: NDArray[Any]) -> Union[List[Any], NDArray[Any]]:
+ 63            """Check sample data and returns one record to be used
+ 64            during type inference and sample prediction.
+ 65
+ 66            Returns:
+ 67                Sample data with only one record
+ 68            """
+ 69
+ 70            if isinstance(sample_data, list):
+ 71                return sample_data
+ 72
+ 73            if isinstance(sample_data, np.ndarray):
+ 74                if len(sample_data.shape) == 1:
+ 75                    return sample_data.reshape(1, -1)
+ 76                return sample_data[0:1]
+ 77
+ 78            raise ValueError("Sample data should be a list or numpy array")
+ 79
+ 80        def get_sample_prediction(self) -> SamplePrediction:
+ 81            assert self.model is not None, "Model is not defined"
+ 82            assert self.sample_data is not None, "Sample data must be provided"
+ 83
+ 84            prediction = self.model.predict(self.sample_data)
+ 85
+ 86            prediction_type = get_class_name(prediction)
+ 87
+ 88            return SamplePrediction(prediction_type, prediction)
+ 89
+ 90        @property
+ 91        def model_class(self) -> str:
+ 92            return TrainedModelType.CATBOOST.value
+ 93
+ 94        @model_validator(mode="before")
+ 95        @classmethod
+ 96        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 97            model = model_args.get("model")
+ 98
+ 99            if model_args.get("modelcard_uid", False):
+100                return model_args
+101
+102            model, module, bases = get_model_args(model)
+103
+104            if "catboost" in module:
+105                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+106
+107            else:
+108                for base in bases:
+109                    if "catboost" in base:
+110                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+111
+112            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+113            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+114            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+115            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+116                model_args.get(CommonKwargs.PREPROCESSOR.value),
+117            )
+118
+119            return model_args
+120
+121        def save_model(self, path: Path) -> None:
+122            """Saves model to path. Base implementation use Joblib
+123
+124            Args:
+125                path:
+126                    Pathlib object
+127            """
+128            assert self.model is not None, "No model detected in interface"
+129            self.model.save_model(path.as_posix())
+130
+131        def load_model(self, path: Path, **kwargs: Any) -> None:
+132            """Load model from pathlib object
+133
+134            Args:
+135                path:
+136                    Pathlib object
+137                kwargs:
+138                    Additional kwargs
+139            """
+140            import catboost
+141
+142            model = getattr(catboost, self.model_type, CatBoost)()
+143            self.model = model.load_model(path.as_posix())
+144
+145        def _convert_to_onnx_inplace(self) -> None:
+146            """Convert to onnx model using temp dir"""
+147            with tempfile.TemporaryDirectory() as tmpdir:
+148                lpath = Path(tmpdir) / SaveName.ONNX_MODEL.value
+149                onnx_path = lpath.with_suffix(Suffix.ONNX.value)
+150                self.convert_to_onnx(**{"path": onnx_path})
+151
+152        def convert_to_onnx(self, **kwargs: Path) -> None:
+153            """Converts model to onnx format"""
+154
+155            logger.info("Converting CatBoost model to onnx format")
+156
+157            import onnx
+158            import onnxruntime as rt
+159
+160            if self.onnx_model is not None:
+161                return None
+162
+163            path: Optional[Path] = kwargs.get("path")
+164            if path is None:
+165                return self._convert_to_onnx_inplace()
+166
+167            assert self.model is not None, "No model detected in interface"
+168            self.model.save_model(
+169                path.as_posix(),
+170                format="onnx",
+171                export_parameters={"onnx_domain": "ai.catboost"},
+172            )
+173            self.onnx_model = OnnxModel(
+174                onnx_version=onnx.__version__,
+175                sess=rt.InferenceSession(path.as_posix()),
+176            )
+177            return None
+178
+179        def save_onnx(self, path: Path) -> ModelReturn:
+180            import onnxruntime as rt
+181
+182            from opsml.model.onnx import _get_onnx_metadata
+183
+184            if self.onnx_model is None:
+185                self.convert_to_onnx(**{"path": path})
+186
+187            else:
+188                self.onnx_model.sess_to_path(path)
+189
+190            assert self.onnx_model is not None, "No onnx model detected in interface"
+191
+192            # no need to save onnx to bytes since its done during onnx conversion
+193            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+194
+195        def save_preprocessor(self, path: Path) -> None:
+196            """Saves preprocessor to path if present. Base implementation use Joblib
+197
+198            Args:
+199                path:
+200                    Pathlib object
+201            """
+202            assert self.preprocessor is not None, "No preprocessor detected in interface"
+203            joblib.dump(self.preprocessor, path)
+204
+205        def load_preprocessor(self, path: Path) -> None:
+206            """Load preprocessor from pathlib object
+207
+208            Args:
+209                path:
+210                    Pathlib object
+211            """
+212            self.preprocessor = joblib.load(path)
+213
+214        @property
+215        def preprocessor_suffix(self) -> str:
+216            """Returns suffix for storage"""
+217            return Suffix.JOBLIB.value
+218
+219        @property
+220        def model_suffix(self) -> str:
+221            """Returns suffix for storage"""
+222            return Suffix.CATBOOST.value
+223
+224        @staticmethod
+225        def name() -> str:
+226            return CatBoostModel.__name__
+227
+228except ModuleNotFoundError:
+229    from opsml.model.interfaces.backups import CatBoostModelNoModule as CatBoostModel
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + CatBoostModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 33    class CatBoostModel(ModelInterface):
+ 34        """Model interface for CatBoost models.
+ 35
+ 36        Args:
+ 37            model:
+ 38                CatBoost model (Classifier, Regressor, Ranker)
+ 39            preprocessor:
+ 40                Optional preprocessor
+ 41            sample_data:
+ 42                Sample data to be used for type inference and sample prediction.
+ 43                For catboost models this should be a numpy array (either 1d or 2d) or list of feature values.
+ 44                This should match exactly what the model expects as input.
+ 45            task_type:
+ 46                Task type for model. Defaults to undefined.
+ 47            model_type:
+ 48                Optional model type. This is inferred automatically.
+ 49            preprocessor_name:
+ 50                Optional preprocessor name. This is inferred automatically if a
+ 51                preprocessor is provided.
+ 52
+ 53        Returns:
+ 54            CatBoostModel
+ 55        """
+ 56
+ 57        model: Optional[CatBoost] = None
+ 58        sample_data: Optional[Union[List[Any], NDArray[Any]]] = None
+ 59        preprocessor: Optional[Any] = None
+ 60        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 61
+ 62        @classmethod
+ 63        def _get_sample_data(cls, sample_data: NDArray[Any]) -> Union[List[Any], NDArray[Any]]:
+ 64            """Check sample data and returns one record to be used
+ 65            during type inference and sample prediction.
+ 66
+ 67            Returns:
+ 68                Sample data with only one record
+ 69            """
+ 70
+ 71            if isinstance(sample_data, list):
+ 72                return sample_data
+ 73
+ 74            if isinstance(sample_data, np.ndarray):
+ 75                if len(sample_data.shape) == 1:
+ 76                    return sample_data.reshape(1, -1)
+ 77                return sample_data[0:1]
+ 78
+ 79            raise ValueError("Sample data should be a list or numpy array")
+ 80
+ 81        def get_sample_prediction(self) -> SamplePrediction:
+ 82            assert self.model is not None, "Model is not defined"
+ 83            assert self.sample_data is not None, "Sample data must be provided"
+ 84
+ 85            prediction = self.model.predict(self.sample_data)
+ 86
+ 87            prediction_type = get_class_name(prediction)
+ 88
+ 89            return SamplePrediction(prediction_type, prediction)
+ 90
+ 91        @property
+ 92        def model_class(self) -> str:
+ 93            return TrainedModelType.CATBOOST.value
+ 94
+ 95        @model_validator(mode="before")
+ 96        @classmethod
+ 97        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 98            model = model_args.get("model")
+ 99
+100            if model_args.get("modelcard_uid", False):
+101                return model_args
+102
+103            model, module, bases = get_model_args(model)
+104
+105            if "catboost" in module:
+106                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+107
+108            else:
+109                for base in bases:
+110                    if "catboost" in base:
+111                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+112
+113            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+114            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+115            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+116            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+117                model_args.get(CommonKwargs.PREPROCESSOR.value),
+118            )
+119
+120            return model_args
+121
+122        def save_model(self, path: Path) -> None:
+123            """Saves model to path. Base implementation use Joblib
+124
+125            Args:
+126                path:
+127                    Pathlib object
+128            """
+129            assert self.model is not None, "No model detected in interface"
+130            self.model.save_model(path.as_posix())
+131
+132        def load_model(self, path: Path, **kwargs: Any) -> None:
+133            """Load model from pathlib object
+134
+135            Args:
+136                path:
+137                    Pathlib object
+138                kwargs:
+139                    Additional kwargs
+140            """
+141            import catboost
+142
+143            model = getattr(catboost, self.model_type, CatBoost)()
+144            self.model = model.load_model(path.as_posix())
+145
+146        def _convert_to_onnx_inplace(self) -> None:
+147            """Convert to onnx model using temp dir"""
+148            with tempfile.TemporaryDirectory() as tmpdir:
+149                lpath = Path(tmpdir) / SaveName.ONNX_MODEL.value
+150                onnx_path = lpath.with_suffix(Suffix.ONNX.value)
+151                self.convert_to_onnx(**{"path": onnx_path})
+152
+153        def convert_to_onnx(self, **kwargs: Path) -> None:
+154            """Converts model to onnx format"""
+155
+156            logger.info("Converting CatBoost model to onnx format")
+157
+158            import onnx
+159            import onnxruntime as rt
+160
+161            if self.onnx_model is not None:
+162                return None
+163
+164            path: Optional[Path] = kwargs.get("path")
+165            if path is None:
+166                return self._convert_to_onnx_inplace()
+167
+168            assert self.model is not None, "No model detected in interface"
+169            self.model.save_model(
+170                path.as_posix(),
+171                format="onnx",
+172                export_parameters={"onnx_domain": "ai.catboost"},
+173            )
+174            self.onnx_model = OnnxModel(
+175                onnx_version=onnx.__version__,
+176                sess=rt.InferenceSession(path.as_posix()),
+177            )
+178            return None
+179
+180        def save_onnx(self, path: Path) -> ModelReturn:
+181            import onnxruntime as rt
+182
+183            from opsml.model.onnx import _get_onnx_metadata
+184
+185            if self.onnx_model is None:
+186                self.convert_to_onnx(**{"path": path})
+187
+188            else:
+189                self.onnx_model.sess_to_path(path)
+190
+191            assert self.onnx_model is not None, "No onnx model detected in interface"
+192
+193            # no need to save onnx to bytes since its done during onnx conversion
+194            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+195
+196        def save_preprocessor(self, path: Path) -> None:
+197            """Saves preprocessor to path if present. Base implementation use Joblib
+198
+199            Args:
+200                path:
+201                    Pathlib object
+202            """
+203            assert self.preprocessor is not None, "No preprocessor detected in interface"
+204            joblib.dump(self.preprocessor, path)
+205
+206        def load_preprocessor(self, path: Path) -> None:
+207            """Load preprocessor from pathlib object
+208
+209            Args:
+210                path:
+211                    Pathlib object
+212            """
+213            self.preprocessor = joblib.load(path)
+214
+215        @property
+216        def preprocessor_suffix(self) -> str:
+217            """Returns suffix for storage"""
+218            return Suffix.JOBLIB.value
+219
+220        @property
+221        def model_suffix(self) -> str:
+222            """Returns suffix for storage"""
+223            return Suffix.CATBOOST.value
+224
+225        @staticmethod
+226        def name() -> str:
+227            return CatBoostModel.__name__
+
+ + +

Model interface for CatBoost models.

+ +
Arguments:
+ +
    +
  • model: CatBoost model (Classifier, Regressor, Ranker)
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference and sample prediction. +For catboost models this should be a numpy array (either 1d or 2d) or list of feature values. +This should match exactly what the model expects as input.
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor name. This is inferred automatically if a +preprocessor is provided.
  • +
+ +
Returns:
+ +
+

CatBoostModel

+
+
+ + +
+
+ model: Optional[catboost.core.CatBoost] + + +
+ + + + +
+
+
+ sample_data: Union[List[Any], numpy.ndarray[Any, numpy.dtype[Any]], NoneType] + + +
+ + + + +
+
+
+ preprocessor: Optional[Any] + + +
+ + + + +
+
+
+ preprocessor_name: str + + +
+ + + + +
+
+ +
+ + def + get_sample_prediction(self) -> opsml.model.interfaces.base.SamplePrediction: + + + +
+ +
81        def get_sample_prediction(self) -> SamplePrediction:
+82            assert self.model is not None, "Model is not defined"
+83            assert self.sample_data is not None, "Sample data must be provided"
+84
+85            prediction = self.model.predict(self.sample_data)
+86
+87            prediction_type = get_class_name(prediction)
+88
+89            return SamplePrediction(prediction_type, prediction)
+
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
91        @property
+92        def model_class(self) -> str:
+93            return TrainedModelType.CATBOOST.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
 95        @model_validator(mode="before")
+ 96        @classmethod
+ 97        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 98            model = model_args.get("model")
+ 99
+100            if model_args.get("modelcard_uid", False):
+101                return model_args
+102
+103            model, module, bases = get_model_args(model)
+104
+105            if "catboost" in module:
+106                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+107
+108            else:
+109                for base in bases:
+110                    if "catboost" in base:
+111                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+112
+113            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+114            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+115            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+116            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+117                model_args.get(CommonKwargs.PREPROCESSOR.value),
+118            )
+119
+120            return model_args
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
122        def save_model(self, path: Path) -> None:
+123            """Saves model to path. Base implementation use Joblib
+124
+125            Args:
+126                path:
+127                    Pathlib object
+128            """
+129            assert self.model is not None, "No model detected in interface"
+130            self.model.save_model(path.as_posix())
+
+ + +

Saves model to path. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
132        def load_model(self, path: Path, **kwargs: Any) -> None:
+133            """Load model from pathlib object
+134
+135            Args:
+136                path:
+137                    Pathlib object
+138                kwargs:
+139                    Additional kwargs
+140            """
+141            import catboost
+142
+143            model = getattr(catboost, self.model_type, CatBoost)()
+144            self.model = model.load_model(path.as_posix())
+
+ + +

Load model from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
  • kwargs: Additional kwargs
  • +
+
+ + +
+
+ +
+ + def + convert_to_onnx(self, **kwargs: pathlib.Path) -> None: + + + +
+ +
153        def convert_to_onnx(self, **kwargs: Path) -> None:
+154            """Converts model to onnx format"""
+155
+156            logger.info("Converting CatBoost model to onnx format")
+157
+158            import onnx
+159            import onnxruntime as rt
+160
+161            if self.onnx_model is not None:
+162                return None
+163
+164            path: Optional[Path] = kwargs.get("path")
+165            if path is None:
+166                return self._convert_to_onnx_inplace()
+167
+168            assert self.model is not None, "No model detected in interface"
+169            self.model.save_model(
+170                path.as_posix(),
+171                format="onnx",
+172                export_parameters={"onnx_domain": "ai.catboost"},
+173            )
+174            self.onnx_model = OnnxModel(
+175                onnx_version=onnx.__version__,
+176                sess=rt.InferenceSession(path.as_posix()),
+177            )
+178            return None
+
+ + +

Converts model to onnx format

+
+ + +
+
+ +
+ + def + save_onnx(self, path: pathlib.Path) -> opsml.types.model.ModelReturn: + + + +
+ +
180        def save_onnx(self, path: Path) -> ModelReturn:
+181            import onnxruntime as rt
+182
+183            from opsml.model.onnx import _get_onnx_metadata
+184
+185            if self.onnx_model is None:
+186                self.convert_to_onnx(**{"path": path})
+187
+188            else:
+189                self.onnx_model.sess_to_path(path)
+190
+191            assert self.onnx_model is not None, "No onnx model detected in interface"
+192
+193            # no need to save onnx to bytes since its done during onnx conversion
+194            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+
+ + +

Saves the onnx model

+ +
Arguments:
+ +
    +
  • path: Path to save
  • +
+ +
Returns:
+ +
+

ModelReturn

+
+
+ + +
+
+ +
+ + def + save_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
196        def save_preprocessor(self, path: Path) -> None:
+197            """Saves preprocessor to path if present. Base implementation use Joblib
+198
+199            Args:
+200                path:
+201                    Pathlib object
+202            """
+203            assert self.preprocessor is not None, "No preprocessor detected in interface"
+204            joblib.dump(self.preprocessor, path)
+
+ + +

Saves preprocessor to path if present. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
206        def load_preprocessor(self, path: Path) -> None:
+207            """Load preprocessor from pathlib object
+208
+209            Args:
+210                path:
+211                    Pathlib object
+212            """
+213            self.preprocessor = joblib.load(path)
+
+ + +

Load preprocessor from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ preprocessor_suffix: str + + + +
+ +
215        @property
+216        def preprocessor_suffix(self) -> str:
+217            """Returns suffix for storage"""
+218            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
220        @property
+221        def model_suffix(self) -> str:
+222            """Returns suffix for storage"""
+223            return Suffix.CATBOOST.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
225        @staticmethod
+226        def name() -> str:
+227            return CatBoostModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[CatBoost, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[List[Any], ndarray[Any, dtype[Any]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/huggingface.html b/api/opsml/model/interfaces/huggingface.html new file mode 100644 index 000000000..987825f48 --- /dev/null +++ b/api/opsml/model/interfaces/huggingface.html @@ -0,0 +1,2078 @@ + + + + + + + opsml.model.interfaces.huggingface API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.huggingface

+ + + + + + +
  1import tempfile
+  2from pathlib import Path
+  3from typing import Any, Dict, Optional, Union, cast
+  4
+  5from pydantic import field_validator, model_validator
+  6
+  7from opsml.helpers.logging import ArtifactLogger
+  8from opsml.helpers.utils import get_class_name
+  9from opsml.model.interfaces.base import (
+ 10    ModelInterface,
+ 11    SamplePrediction,
+ 12    get_processor_name,
+ 13)
+ 14from opsml.types import (
+ 15    GENERATION_TYPES,
+ 16    CommonKwargs,
+ 17    HuggingFaceOnnxArgs,
+ 18    HuggingFaceTask,
+ 19    ModelReturn,
+ 20    OnnxModel,
+ 21    SaveName,
+ 22    TrainedModelType,
+ 23)
+ 24
+ 25logger = ArtifactLogger.get_logger()
+ 26
+ 27try:
+ 28    import transformers
+ 29    from PIL import ImageFile
+ 30    from transformers import (
+ 31        BatchEncoding,
+ 32        BatchFeature,
+ 33        FeatureExtractionMixin,
+ 34        ImageProcessingMixin,
+ 35        Pipeline,
+ 36        PreTrainedModel,
+ 37        PreTrainedTokenizer,
+ 38        PreTrainedTokenizerFast,
+ 39        TFPreTrainedModel,
+ 40        pipeline,
+ 41    )
+ 42    from transformers.utils import ModelOutput
+ 43
+ 44    class HuggingFaceModel(ModelInterface):
+ 45        """Model interface for HuggingFace models
+ 46
+ 47        Args:
+ 48            model:
+ 49                HuggingFace model or pipeline
+ 50            tokenizer:
+ 51                HuggingFace tokenizer. If passing pipeline, tokenizer will be extracted
+ 52            feature_extractor:
+ 53                HuggingFace feature extractor or image processor. If passing pipeline, feature extractor will be extracted
+ 54            sample_data:
+ 55                Sample data to be used for type inference.
+ 56                This should match exactly what the model expects as input.
+ 57            task_type:
+ 58                Task type for HuggingFace model. See `HuggingFaceTask` for supported tasks.
+ 59            model_type:
+ 60                Optional model type for HuggingFace model. This is inferred automatically.
+ 61            is_pipeline:
+ 62                If model is a pipeline. Defaults to False.
+ 63            backend:
+ 64                Backend for HuggingFace model. This is inferred from model
+ 65            onnx_args:
+ 66                Optional arguments for ONNX conversion. See `HuggingFaceOnnxArgs` for supported arguments.
+ 67            tokenizer_name:
+ 68                Optional tokenizer name for HuggingFace model. This is inferred automatically.
+ 69            feature_extractor_name:
+ 70                Optional feature_extractor name for HuggingFace model. This is inferred automatically.
+ 71
+ 72        Returns:
+ 73            HuggingFaceModel
+ 74
+ 75        Example::
+ 76
+ 77            from transformers import BartModel, BartTokenizer
+ 78
+ 79            tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
+ 80            model = BartModel.from_pretrained("facebook/bart-base")
+ 81            inputs = tokenizer(["Hello. How are you"], return_tensors="pt")
+ 82
+ 83            # this is fed to the ModelCard
+ 84            model = HuggingFaceModel(
+ 85                model=model,
+ 86                tokenizer=tokenizer,
+ 87                sample_data=inputs,
+ 88                task_type=HuggingFaceTask.TEXT_CLASSIFICATION.value,
+ 89            )
+ 90        """
+ 91
+ 92        model: Optional[Union[Pipeline, PreTrainedModel, TFPreTrainedModel]] = None
+ 93        tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None
+ 94        feature_extractor: Optional[Union[FeatureExtractionMixin, ImageProcessingMixin]] = None
+ 95        is_pipeline: bool = False
+ 96        backend: str = CommonKwargs.PYTORCH.value
+ 97        onnx_args: Optional[HuggingFaceOnnxArgs] = None
+ 98        tokenizer_name: str = CommonKwargs.UNDEFINED.value
+ 99        feature_extractor_name: str = CommonKwargs.UNDEFINED.value
+100
+101        @classmethod
+102        def _get_sample_data(cls, sample_data: Any) -> Any:
+103            """Check sample data and returns one record to be used
+104            during type inference and ONNX conversion/validation.
+105
+106            Returns:
+107                Sample data with only one record
+108            """
+109
+110            if isinstance(sample_data, list):
+111                return [data[0:1] for data in sample_data]
+112
+113            if isinstance(sample_data, tuple):
+114                return (data[0:1] for data in sample_data)
+115
+116            if isinstance(sample_data, (BatchEncoding, BatchFeature, dict)):
+117                sample_dict = {}
+118                for key, value in sample_data.items():
+119                    sample_dict[key] = value[0:1]
+120                return sample_dict
+121
+122            if isinstance(sample_data, str):
+123                return sample_data
+124
+125            if isinstance(sample_data, ImageFile.ImageFile):
+126                return sample_data
+127
+128            return sample_data[0:1]
+129
+130        @classmethod
+131        def _check_model_backend(cls, model: Any) -> str:
+132            """Check model backend type for HuggingFace model
+133
+134            Args:
+135                model:
+136                    HuggingFace model
+137
+138            Returns:
+139                backend name
+140            """
+141
+142            if isinstance(model, PreTrainedModel):
+143                return CommonKwargs.PYTORCH.value
+144
+145            if isinstance(model, TFPreTrainedModel):
+146                return CommonKwargs.TENSORFLOW.value
+147
+148            raise ValueError("Model must be a huggingface model")
+149
+150        @model_validator(mode="before")
+151        @classmethod
+152        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+153            if bool(model_args.get("modelcard_uid", False)):
+154                return model_args
+155
+156            hf_model = model_args.get("model")
+157            assert hf_model is not None, "Model is not defined"
+158
+159            if isinstance(hf_model, Pipeline):
+160                model_args[CommonKwargs.BACKEND.value] = cls._check_model_backend(hf_model.model)
+161                model_args[CommonKwargs.IS_PIPELINE.value] = True
+162                model_args[CommonKwargs.MODEL_TYPE.value] = hf_model.model.__class__.__name__
+163                model_args[CommonKwargs.TOKENIZER.value] = hf_model.tokenizer
+164                model_args[CommonKwargs.TOKENIZER_NAME.value] = get_processor_name(hf_model.tokenizer)
+165                model_args[CommonKwargs.FEATURE_EXTRACTOR.value] = hf_model.feature_extractor
+166                model_args[CommonKwargs.FEATURE_EXTRACTOR_NAME.value] = get_processor_name(hf_model.feature_extractor)
+167
+168            else:
+169                model_args[CommonKwargs.BACKEND.value] = cls._check_model_backend(hf_model)
+170                model_args[CommonKwargs.IS_PIPELINE.value] = False
+171                model_args[CommonKwargs.MODEL_TYPE.value] = hf_model.__class__.__name__
+172                model_args[CommonKwargs.TOKENIZER_NAME.value] = get_processor_name(
+173                    model_args.get(CommonKwargs.TOKENIZER.value),
+174                )
+175
+176                model_args[CommonKwargs.FEATURE_EXTRACTOR_NAME.value] = get_processor_name(
+177                    model_args.get(CommonKwargs.FEATURE_EXTRACTOR.value)
+178                )
+179
+180            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+181
+182            # set args
+183            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+184            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+185
+186            return model_args
+187
+188        @field_validator("task_type", mode="before")
+189        @classmethod
+190        def check_task_type(cls, task_type: str) -> str:
+191            """Check if task is a huggingface approved task"""
+192
+193            task = task_type.lower()
+194            if task not in list(HuggingFaceTask):
+195                raise ValueError(f"Task type {task} is not supported")
+196            return task
+197
+198        # ------------ Model Interface Helper Methods ------------#
+199
+200        def _generate_predictions(self) -> Any:
+201            """Use model in generate mode if generate task"""
+202
+203            assert self.sample_data is not None, "Sample data must be provided"
+204            assert self.model is not None, "Model must be provided"
+205
+206            try:  # try generation first , then functional
+207                if isinstance(self.sample_data, (BatchEncoding, dict)):
+208                    return self.model.generate(**self.sample_data)
+209
+210                return self.model.generate(self.sample_data)
+211
+212            except Exception as _:  # pylint: disable=broad-except
+213                return self._functional_predictions()
+214
+215        def _functional_predictions(self) -> Any:
+216            """Use model in functional mode if functional task"""
+217
+218            assert self.sample_data is not None, "Sample data must be provided"
+219            assert self.model is not None, "Model must be provided"
+220
+221            if isinstance(self.sample_data, (BatchEncoding, dict)):
+222                return self.model(**self.sample_data)
+223
+224            return self.model(self.sample_data)
+225
+226        def _get_pipeline_prediction(self) -> Any:
+227            """Use model in pipeline mode if pipeline task"""
+228            assert isinstance(self.model, Pipeline), "Model must be a pipeline"
+229
+230            if isinstance(self.sample_data, dict):
+231                prediction = self.model(**self.sample_data)
+232
+233            else:
+234                prediction = self.model(self.sample_data)
+235
+236            if isinstance(prediction, dict):
+237                return prediction
+238
+239            if isinstance(prediction, list):
+240                assert len(prediction) >= 1, "Pipeline model must return a prediction"
+241                return prediction[0]
+242
+243            raise ValueError("Pipeline model must return a prediction")
+244
+245        def get_sample_prediction(self) -> SamplePrediction:
+246            """Generates prediction from model and provided sample data"""
+247
+248            if self.is_pipeline:
+249                prediction = self._get_pipeline_prediction()
+250            elif self.task_type in GENERATION_TYPES:
+251                prediction = self._generate_predictions()
+252            else:
+253                prediction = self._functional_predictions()
+254
+255            if isinstance(prediction, ModelOutput):
+256                prediction = dict(prediction)
+257
+258            prediction_type = get_class_name(prediction)
+259
+260            return SamplePrediction(prediction_type, prediction)
+261
+262        # ------------ Model Interface Onnx Methods ------------#
+263
+264        def _quantize_model(self, path: Path, onnx_model: Any) -> None:
+265            """Quantizes an huggingface model
+266
+267            Args:
+268                path:
+269                    parent path to save too
+270                onnx_model:
+271                    onnx model to quantize
+272
+273            Returns:
+274                Path to quantized model
+275            """
+276            assert self.onnx_args is not None, "No onnx args provided"
+277            assert self.onnx_args.config is not None, "No quantization config provided"
+278
+279            logger.info("Quantizing HuggingFace ONNX model")
+280
+281            from optimum.onnxruntime import ORTQuantizer
+282
+283            save_path = path / SaveName.QUANTIZED_MODEL.value
+284            quantizer = ORTQuantizer.from_pretrained(onnx_model)
+285
+286            quantizer.quantize(save_dir=save_path, quantization_config=self.onnx_args.config)
+287
+288        def _convert_to_onnx_inplace(self) -> None:
+289            """Converts model to onnx in place"""
+290
+291            with tempfile.TemporaryDirectory() as tmpdirname:
+292                lpath = Path(tmpdirname)
+293                self.save_model((lpath / SaveName.TRAINED_MODEL.value))
+294
+295                if self.tokenizer is not None:
+296                    self.save_tokenizer((lpath / SaveName.TOKENIZER.value))
+297
+298                if self.feature_extractor is not None:
+299                    self.save_feature_extractor((lpath / SaveName.FEATURE_EXTRACTOR.value))
+300
+301                onnx_path = lpath / SaveName.ONNX_MODEL.value
+302                return self.convert_to_onnx(**{"path": onnx_path})
+303
+304        def convert_to_onnx(self, **kwargs: Path) -> None:
+305            """Converts a huggingface model or pipeline to onnx via optimum library.
+306            Converted model or pipeline is accessible via the `onnx_model` attribute.
+307            """
+308
+309            logger.info("Staring conversion of HuggingFace model to ONNX")
+310
+311            assert (
+312                self.onnx_args is not None
+313            ), "No onnx args provided. If converting to onnx, provide a HuggingFaceOnnxArgs instance"
+314
+315            if self.onnx_model is not None:
+316                return None
+317
+318            import onnx
+319            import optimum.onnxruntime as ort
+320
+321            path: Optional[Path] = kwargs.get("path")
+322            if path is None:
+323                return self._convert_to_onnx_inplace()
+324
+325            # ensure no suffix (this is an exception to the rule to all model interfaces)
+326            # huggingface prefers to save onnx models in dirs instead of single model.onnx file
+327            path = path.with_suffix("")
+328            ort_model: ort.ORTModel = getattr(ort, self.onnx_args.ort_type)
+329            model_path = path.parent / SaveName.TRAINED_MODEL.value
+330            onnx_model = ort_model.from_pretrained(model_path, export=True, provider=self.onnx_args.provider)
+331            onnx_model.save_pretrained(path)
+332
+333            if self.is_pipeline:
+334                self.onnx_model = OnnxModel(
+335                    onnx_version=onnx.__version__,
+336                    sess=pipeline(
+337                        self.task_type,
+338                        model=onnx_model,
+339                        tokenizer=self.tokenizer,
+340                        feature_extractor=self.feature_extractor,
+341                    ),
+342                )
+343            else:
+344                self.onnx_model = OnnxModel(onnx_version=onnx.__version__, sess=onnx_model)
+345
+346            if self.onnx_args.quantize:
+347                self._quantize_model(path.parent, onnx_model)
+348
+349            return None
+350
+351        # ------------ Model Interface Save Methods ------------#
+352
+353        def save_model(self, path: Path) -> None:
+354            assert self.model is not None, "No model detected in interface"
+355
+356            if isinstance(self.model, Pipeline):
+357                self.model.model.save_pretrained(path)
+358                return None
+359
+360            self.model.save_pretrained(path)
+361            return None
+362
+363        def save_tokenizer(self, path: Path) -> None:
+364            if self.tokenizer is None:
+365                return None
+366
+367            if isinstance(self.model, Pipeline):
+368                assert self.model.tokenizer is not None, "Tokenizer is missing"
+369                self.model.tokenizer.save_pretrained(path)
+370                return None
+371
+372            self.tokenizer.save_pretrained(path)
+373            return None
+374
+375        def save_feature_extractor(self, path: Path) -> None:
+376            if self.feature_extractor is None:
+377                return None
+378
+379            if isinstance(self.model, Pipeline):
+380                assert self.model.feature_extractor is not None, "Feature extractor is missing"
+381                self.model.feature_extractor.save_pretrained(path)
+382                return None
+383
+384            self.feature_extractor.save_pretrained(path)
+385            return None
+386
+387        def save_onnx(self, path: Path) -> ModelReturn:
+388            import onnxruntime as rt
+389
+390            from opsml.model.onnx import _get_onnx_metadata
+391
+392            model_saved = False
+393            if self.onnx_model is None:
+394                # HF saves model during conversion
+395                self.convert_to_onnx(**{"path": path})
+396                model_saved = True
+397
+398            assert self.onnx_model is not None, "No onnx model detected in interface"
+399            if self.is_pipeline:
+400                if not model_saved:
+401                    self.onnx_model.sess.model.save_pretrained(path.with_suffix(""))
+402                return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess.model.model))
+403
+404            if not model_saved:
+405                self.onnx_model.sess.save_pretrained(path.with_suffix(""))
+406
+407            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess.model))
+408
+409        # ------------ Model Interface Load Methods ------------#
+410
+411        def load_tokenizer(self, path: Path) -> None:
+412            self.tokenizer = getattr(transformers, self.tokenizer_name).from_pretrained(path)
+413
+414        def load_feature_extractor(self, path: Path) -> None:
+415            self.feature_extractor = getattr(transformers, self.feature_extractor_name).from_pretrained(path)
+416
+417        def load_model(self, path: Path, **kwargs: Any) -> None:
+418            """Load huggingface model from path
+419
+420            Args:
+421                path:
+422                    Path to model
+423                kwargs:
+424                    Additional kwargs to pass to transformers.load_pretrained
+425            """
+426            custom_arch = kwargs.get("custom_architecture")
+427            if custom_arch is not None:
+428                assert isinstance(
+429                    custom_arch, (PreTrainedModel, TFPreTrainedModel)
+430                ), "Custom architecture must be a huggingface model"
+431                self.model = custom_arch.from_pretrained(path)
+432
+433            else:
+434                self.model = getattr(transformers, self.model_type).from_pretrained(path)
+435
+436        def to_pipeline(self) -> None:
+437            """Converts model to pipeline"""
+438
+439            if isinstance(self.model, Pipeline):
+440                return None
+441
+442            pipe = pipeline(
+443                task=self.task_type,
+444                model=self.model,
+445                tokenizer=self.tokenizer,
+446                feature_extractor=self.feature_extractor,
+447            )
+448
+449            self.model = pipe
+450            self.is_pipeline = True
+451            return None
+452
+453        def load_onnx_model(self, path: Path) -> None:
+454            """Load onnx model from path"""
+455            import onnx
+456            import optimum.onnxruntime as ort
+457
+458            assert self.onnx_args is not None, "No onnx args provided"
+459            ort_model = getattr(ort, self.onnx_args.ort_type)
+460            onnx_model = ort_model.from_pretrained(
+461                path,
+462                config=self.onnx_args.config,
+463                provider=self.onnx_args.provider,
+464            )
+465
+466            if self.is_pipeline:
+467                self.onnx_model = OnnxModel(
+468                    onnx_version=onnx.__version__,  # type: ignore[attr-defined]
+469                    sess=pipeline(
+470                        self.task_type,
+471                        model=onnx_model,
+472                        tokenizer=self.tokenizer,
+473                        feature_extractor=self.feature_extractor,
+474                    ),
+475                )
+476            else:
+477                self.onnx_model = OnnxModel(
+478                    onnx_version=onnx.__version__,  # type: ignore[attr-defined]
+479                    sess=onnx_model,
+480                )
+481
+482        @property
+483        def model_class(self) -> str:
+484            return TrainedModelType.TRANSFORMERS.value
+485
+486        @property
+487        def model_suffix(self) -> str:
+488            """Returns suffix for storage"""
+489            return ""
+490
+491        @staticmethod
+492        def name() -> str:
+493            return HuggingFaceModel.__name__
+494
+495except ModuleNotFoundError:
+496    from opsml.model.interfaces.backups import (
+497        HuggingFaceModelNoModule as HuggingFaceModel,
+498    )
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + HuggingFaceModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 45    class HuggingFaceModel(ModelInterface):
+ 46        """Model interface for HuggingFace models
+ 47
+ 48        Args:
+ 49            model:
+ 50                HuggingFace model or pipeline
+ 51            tokenizer:
+ 52                HuggingFace tokenizer. If passing pipeline, tokenizer will be extracted
+ 53            feature_extractor:
+ 54                HuggingFace feature extractor or image processor. If passing pipeline, feature extractor will be extracted
+ 55            sample_data:
+ 56                Sample data to be used for type inference.
+ 57                This should match exactly what the model expects as input.
+ 58            task_type:
+ 59                Task type for HuggingFace model. See `HuggingFaceTask` for supported tasks.
+ 60            model_type:
+ 61                Optional model type for HuggingFace model. This is inferred automatically.
+ 62            is_pipeline:
+ 63                If model is a pipeline. Defaults to False.
+ 64            backend:
+ 65                Backend for HuggingFace model. This is inferred from model
+ 66            onnx_args:
+ 67                Optional arguments for ONNX conversion. See `HuggingFaceOnnxArgs` for supported arguments.
+ 68            tokenizer_name:
+ 69                Optional tokenizer name for HuggingFace model. This is inferred automatically.
+ 70            feature_extractor_name:
+ 71                Optional feature_extractor name for HuggingFace model. This is inferred automatically.
+ 72
+ 73        Returns:
+ 74            HuggingFaceModel
+ 75
+ 76        Example::
+ 77
+ 78            from transformers import BartModel, BartTokenizer
+ 79
+ 80            tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
+ 81            model = BartModel.from_pretrained("facebook/bart-base")
+ 82            inputs = tokenizer(["Hello. How are you"], return_tensors="pt")
+ 83
+ 84            # this is fed to the ModelCard
+ 85            model = HuggingFaceModel(
+ 86                model=model,
+ 87                tokenizer=tokenizer,
+ 88                sample_data=inputs,
+ 89                task_type=HuggingFaceTask.TEXT_CLASSIFICATION.value,
+ 90            )
+ 91        """
+ 92
+ 93        model: Optional[Union[Pipeline, PreTrainedModel, TFPreTrainedModel]] = None
+ 94        tokenizer: Optional[Union[PreTrainedTokenizer, PreTrainedTokenizerFast]] = None
+ 95        feature_extractor: Optional[Union[FeatureExtractionMixin, ImageProcessingMixin]] = None
+ 96        is_pipeline: bool = False
+ 97        backend: str = CommonKwargs.PYTORCH.value
+ 98        onnx_args: Optional[HuggingFaceOnnxArgs] = None
+ 99        tokenizer_name: str = CommonKwargs.UNDEFINED.value
+100        feature_extractor_name: str = CommonKwargs.UNDEFINED.value
+101
+102        @classmethod
+103        def _get_sample_data(cls, sample_data: Any) -> Any:
+104            """Check sample data and returns one record to be used
+105            during type inference and ONNX conversion/validation.
+106
+107            Returns:
+108                Sample data with only one record
+109            """
+110
+111            if isinstance(sample_data, list):
+112                return [data[0:1] for data in sample_data]
+113
+114            if isinstance(sample_data, tuple):
+115                return (data[0:1] for data in sample_data)
+116
+117            if isinstance(sample_data, (BatchEncoding, BatchFeature, dict)):
+118                sample_dict = {}
+119                for key, value in sample_data.items():
+120                    sample_dict[key] = value[0:1]
+121                return sample_dict
+122
+123            if isinstance(sample_data, str):
+124                return sample_data
+125
+126            if isinstance(sample_data, ImageFile.ImageFile):
+127                return sample_data
+128
+129            return sample_data[0:1]
+130
+131        @classmethod
+132        def _check_model_backend(cls, model: Any) -> str:
+133            """Check model backend type for HuggingFace model
+134
+135            Args:
+136                model:
+137                    HuggingFace model
+138
+139            Returns:
+140                backend name
+141            """
+142
+143            if isinstance(model, PreTrainedModel):
+144                return CommonKwargs.PYTORCH.value
+145
+146            if isinstance(model, TFPreTrainedModel):
+147                return CommonKwargs.TENSORFLOW.value
+148
+149            raise ValueError("Model must be a huggingface model")
+150
+151        @model_validator(mode="before")
+152        @classmethod
+153        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+154            if bool(model_args.get("modelcard_uid", False)):
+155                return model_args
+156
+157            hf_model = model_args.get("model")
+158            assert hf_model is not None, "Model is not defined"
+159
+160            if isinstance(hf_model, Pipeline):
+161                model_args[CommonKwargs.BACKEND.value] = cls._check_model_backend(hf_model.model)
+162                model_args[CommonKwargs.IS_PIPELINE.value] = True
+163                model_args[CommonKwargs.MODEL_TYPE.value] = hf_model.model.__class__.__name__
+164                model_args[CommonKwargs.TOKENIZER.value] = hf_model.tokenizer
+165                model_args[CommonKwargs.TOKENIZER_NAME.value] = get_processor_name(hf_model.tokenizer)
+166                model_args[CommonKwargs.FEATURE_EXTRACTOR.value] = hf_model.feature_extractor
+167                model_args[CommonKwargs.FEATURE_EXTRACTOR_NAME.value] = get_processor_name(hf_model.feature_extractor)
+168
+169            else:
+170                model_args[CommonKwargs.BACKEND.value] = cls._check_model_backend(hf_model)
+171                model_args[CommonKwargs.IS_PIPELINE.value] = False
+172                model_args[CommonKwargs.MODEL_TYPE.value] = hf_model.__class__.__name__
+173                model_args[CommonKwargs.TOKENIZER_NAME.value] = get_processor_name(
+174                    model_args.get(CommonKwargs.TOKENIZER.value),
+175                )
+176
+177                model_args[CommonKwargs.FEATURE_EXTRACTOR_NAME.value] = get_processor_name(
+178                    model_args.get(CommonKwargs.FEATURE_EXTRACTOR.value)
+179                )
+180
+181            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+182
+183            # set args
+184            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+185            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+186
+187            return model_args
+188
+189        @field_validator("task_type", mode="before")
+190        @classmethod
+191        def check_task_type(cls, task_type: str) -> str:
+192            """Check if task is a huggingface approved task"""
+193
+194            task = task_type.lower()
+195            if task not in list(HuggingFaceTask):
+196                raise ValueError(f"Task type {task} is not supported")
+197            return task
+198
+199        # ------------ Model Interface Helper Methods ------------#
+200
+201        def _generate_predictions(self) -> Any:
+202            """Use model in generate mode if generate task"""
+203
+204            assert self.sample_data is not None, "Sample data must be provided"
+205            assert self.model is not None, "Model must be provided"
+206
+207            try:  # try generation first , then functional
+208                if isinstance(self.sample_data, (BatchEncoding, dict)):
+209                    return self.model.generate(**self.sample_data)
+210
+211                return self.model.generate(self.sample_data)
+212
+213            except Exception as _:  # pylint: disable=broad-except
+214                return self._functional_predictions()
+215
+216        def _functional_predictions(self) -> Any:
+217            """Use model in functional mode if functional task"""
+218
+219            assert self.sample_data is not None, "Sample data must be provided"
+220            assert self.model is not None, "Model must be provided"
+221
+222            if isinstance(self.sample_data, (BatchEncoding, dict)):
+223                return self.model(**self.sample_data)
+224
+225            return self.model(self.sample_data)
+226
+227        def _get_pipeline_prediction(self) -> Any:
+228            """Use model in pipeline mode if pipeline task"""
+229            assert isinstance(self.model, Pipeline), "Model must be a pipeline"
+230
+231            if isinstance(self.sample_data, dict):
+232                prediction = self.model(**self.sample_data)
+233
+234            else:
+235                prediction = self.model(self.sample_data)
+236
+237            if isinstance(prediction, dict):
+238                return prediction
+239
+240            if isinstance(prediction, list):
+241                assert len(prediction) >= 1, "Pipeline model must return a prediction"
+242                return prediction[0]
+243
+244            raise ValueError("Pipeline model must return a prediction")
+245
+246        def get_sample_prediction(self) -> SamplePrediction:
+247            """Generates prediction from model and provided sample data"""
+248
+249            if self.is_pipeline:
+250                prediction = self._get_pipeline_prediction()
+251            elif self.task_type in GENERATION_TYPES:
+252                prediction = self._generate_predictions()
+253            else:
+254                prediction = self._functional_predictions()
+255
+256            if isinstance(prediction, ModelOutput):
+257                prediction = dict(prediction)
+258
+259            prediction_type = get_class_name(prediction)
+260
+261            return SamplePrediction(prediction_type, prediction)
+262
+263        # ------------ Model Interface Onnx Methods ------------#
+264
+265        def _quantize_model(self, path: Path, onnx_model: Any) -> None:
+266            """Quantizes an huggingface model
+267
+268            Args:
+269                path:
+270                    parent path to save too
+271                onnx_model:
+272                    onnx model to quantize
+273
+274            Returns:
+275                Path to quantized model
+276            """
+277            assert self.onnx_args is not None, "No onnx args provided"
+278            assert self.onnx_args.config is not None, "No quantization config provided"
+279
+280            logger.info("Quantizing HuggingFace ONNX model")
+281
+282            from optimum.onnxruntime import ORTQuantizer
+283
+284            save_path = path / SaveName.QUANTIZED_MODEL.value
+285            quantizer = ORTQuantizer.from_pretrained(onnx_model)
+286
+287            quantizer.quantize(save_dir=save_path, quantization_config=self.onnx_args.config)
+288
+289        def _convert_to_onnx_inplace(self) -> None:
+290            """Converts model to onnx in place"""
+291
+292            with tempfile.TemporaryDirectory() as tmpdirname:
+293                lpath = Path(tmpdirname)
+294                self.save_model((lpath / SaveName.TRAINED_MODEL.value))
+295
+296                if self.tokenizer is not None:
+297                    self.save_tokenizer((lpath / SaveName.TOKENIZER.value))
+298
+299                if self.feature_extractor is not None:
+300                    self.save_feature_extractor((lpath / SaveName.FEATURE_EXTRACTOR.value))
+301
+302                onnx_path = lpath / SaveName.ONNX_MODEL.value
+303                return self.convert_to_onnx(**{"path": onnx_path})
+304
+305        def convert_to_onnx(self, **kwargs: Path) -> None:
+306            """Converts a huggingface model or pipeline to onnx via optimum library.
+307            Converted model or pipeline is accessible via the `onnx_model` attribute.
+308            """
+309
+310            logger.info("Staring conversion of HuggingFace model to ONNX")
+311
+312            assert (
+313                self.onnx_args is not None
+314            ), "No onnx args provided. If converting to onnx, provide a HuggingFaceOnnxArgs instance"
+315
+316            if self.onnx_model is not None:
+317                return None
+318
+319            import onnx
+320            import optimum.onnxruntime as ort
+321
+322            path: Optional[Path] = kwargs.get("path")
+323            if path is None:
+324                return self._convert_to_onnx_inplace()
+325
+326            # ensure no suffix (this is an exception to the rule to all model interfaces)
+327            # huggingface prefers to save onnx models in dirs instead of single model.onnx file
+328            path = path.with_suffix("")
+329            ort_model: ort.ORTModel = getattr(ort, self.onnx_args.ort_type)
+330            model_path = path.parent / SaveName.TRAINED_MODEL.value
+331            onnx_model = ort_model.from_pretrained(model_path, export=True, provider=self.onnx_args.provider)
+332            onnx_model.save_pretrained(path)
+333
+334            if self.is_pipeline:
+335                self.onnx_model = OnnxModel(
+336                    onnx_version=onnx.__version__,
+337                    sess=pipeline(
+338                        self.task_type,
+339                        model=onnx_model,
+340                        tokenizer=self.tokenizer,
+341                        feature_extractor=self.feature_extractor,
+342                    ),
+343                )
+344            else:
+345                self.onnx_model = OnnxModel(onnx_version=onnx.__version__, sess=onnx_model)
+346
+347            if self.onnx_args.quantize:
+348                self._quantize_model(path.parent, onnx_model)
+349
+350            return None
+351
+352        # ------------ Model Interface Save Methods ------------#
+353
+354        def save_model(self, path: Path) -> None:
+355            assert self.model is not None, "No model detected in interface"
+356
+357            if isinstance(self.model, Pipeline):
+358                self.model.model.save_pretrained(path)
+359                return None
+360
+361            self.model.save_pretrained(path)
+362            return None
+363
+364        def save_tokenizer(self, path: Path) -> None:
+365            if self.tokenizer is None:
+366                return None
+367
+368            if isinstance(self.model, Pipeline):
+369                assert self.model.tokenizer is not None, "Tokenizer is missing"
+370                self.model.tokenizer.save_pretrained(path)
+371                return None
+372
+373            self.tokenizer.save_pretrained(path)
+374            return None
+375
+376        def save_feature_extractor(self, path: Path) -> None:
+377            if self.feature_extractor is None:
+378                return None
+379
+380            if isinstance(self.model, Pipeline):
+381                assert self.model.feature_extractor is not None, "Feature extractor is missing"
+382                self.model.feature_extractor.save_pretrained(path)
+383                return None
+384
+385            self.feature_extractor.save_pretrained(path)
+386            return None
+387
+388        def save_onnx(self, path: Path) -> ModelReturn:
+389            import onnxruntime as rt
+390
+391            from opsml.model.onnx import _get_onnx_metadata
+392
+393            model_saved = False
+394            if self.onnx_model is None:
+395                # HF saves model during conversion
+396                self.convert_to_onnx(**{"path": path})
+397                model_saved = True
+398
+399            assert self.onnx_model is not None, "No onnx model detected in interface"
+400            if self.is_pipeline:
+401                if not model_saved:
+402                    self.onnx_model.sess.model.save_pretrained(path.with_suffix(""))
+403                return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess.model.model))
+404
+405            if not model_saved:
+406                self.onnx_model.sess.save_pretrained(path.with_suffix(""))
+407
+408            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess.model))
+409
+410        # ------------ Model Interface Load Methods ------------#
+411
+412        def load_tokenizer(self, path: Path) -> None:
+413            self.tokenizer = getattr(transformers, self.tokenizer_name).from_pretrained(path)
+414
+415        def load_feature_extractor(self, path: Path) -> None:
+416            self.feature_extractor = getattr(transformers, self.feature_extractor_name).from_pretrained(path)
+417
+418        def load_model(self, path: Path, **kwargs: Any) -> None:
+419            """Load huggingface model from path
+420
+421            Args:
+422                path:
+423                    Path to model
+424                kwargs:
+425                    Additional kwargs to pass to transformers.load_pretrained
+426            """
+427            custom_arch = kwargs.get("custom_architecture")
+428            if custom_arch is not None:
+429                assert isinstance(
+430                    custom_arch, (PreTrainedModel, TFPreTrainedModel)
+431                ), "Custom architecture must be a huggingface model"
+432                self.model = custom_arch.from_pretrained(path)
+433
+434            else:
+435                self.model = getattr(transformers, self.model_type).from_pretrained(path)
+436
+437        def to_pipeline(self) -> None:
+438            """Converts model to pipeline"""
+439
+440            if isinstance(self.model, Pipeline):
+441                return None
+442
+443            pipe = pipeline(
+444                task=self.task_type,
+445                model=self.model,
+446                tokenizer=self.tokenizer,
+447                feature_extractor=self.feature_extractor,
+448            )
+449
+450            self.model = pipe
+451            self.is_pipeline = True
+452            return None
+453
+454        def load_onnx_model(self, path: Path) -> None:
+455            """Load onnx model from path"""
+456            import onnx
+457            import optimum.onnxruntime as ort
+458
+459            assert self.onnx_args is not None, "No onnx args provided"
+460            ort_model = getattr(ort, self.onnx_args.ort_type)
+461            onnx_model = ort_model.from_pretrained(
+462                path,
+463                config=self.onnx_args.config,
+464                provider=self.onnx_args.provider,
+465            )
+466
+467            if self.is_pipeline:
+468                self.onnx_model = OnnxModel(
+469                    onnx_version=onnx.__version__,  # type: ignore[attr-defined]
+470                    sess=pipeline(
+471                        self.task_type,
+472                        model=onnx_model,
+473                        tokenizer=self.tokenizer,
+474                        feature_extractor=self.feature_extractor,
+475                    ),
+476                )
+477            else:
+478                self.onnx_model = OnnxModel(
+479                    onnx_version=onnx.__version__,  # type: ignore[attr-defined]
+480                    sess=onnx_model,
+481                )
+482
+483        @property
+484        def model_class(self) -> str:
+485            return TrainedModelType.TRANSFORMERS.value
+486
+487        @property
+488        def model_suffix(self) -> str:
+489            """Returns suffix for storage"""
+490            return ""
+491
+492        @staticmethod
+493        def name() -> str:
+494            return HuggingFaceModel.__name__
+
+ + +

Model interface for HuggingFace models

+ +
Arguments:
+ +
    +
  • model: HuggingFace model or pipeline
  • +
  • tokenizer: HuggingFace tokenizer. If passing pipeline, tokenizer will be extracted
  • +
  • feature_extractor: HuggingFace feature extractor or image processor. If passing pipeline, feature extractor will be extracted
  • +
  • sample_data: Sample data to be used for type inference. +This should match exactly what the model expects as input.
  • +
  • task_type: Task type for HuggingFace model. See HuggingFaceTask for supported tasks.
  • +
  • model_type: Optional model type for HuggingFace model. This is inferred automatically.
  • +
  • is_pipeline: If model is a pipeline. Defaults to False.
  • +
  • backend: Backend for HuggingFace model. This is inferred from model
  • +
  • onnx_args: Optional arguments for ONNX conversion. See HuggingFaceOnnxArgs for supported arguments.
  • +
  • tokenizer_name: Optional tokenizer name for HuggingFace model. This is inferred automatically.
  • +
  • feature_extractor_name: Optional feature_extractor name for HuggingFace model. This is inferred automatically.
  • +
+ +
Returns:
+ +
+

HuggingFaceModel

+
+ +

Example::

+ +
from transformers import BartModel, BartTokenizer
+
+tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
+model = BartModel.from_pretrained("facebook/bart-base")
+inputs = tokenizer(["Hello. How are you"], return_tensors="pt")
+
+# this is fed to the ModelCard
+model = HuggingFaceModel(
+    model=model,
+    tokenizer=tokenizer,
+    sample_data=inputs,
+    task_type=HuggingFaceTask.TEXT_CLASSIFICATION.value,
+)
+
+
+ + +
+
+ model: Union[transformers.pipelines.base.Pipeline, transformers.modeling_utils.PreTrainedModel, transformers.modeling_tf_utils.TFPreTrainedModel, NoneType] + + +
+ + + + +
+
+
+ tokenizer: Union[transformers.tokenization_utils.PreTrainedTokenizer, transformers.tokenization_utils_fast.PreTrainedTokenizerFast, NoneType] + + +
+ + + + +
+
+
+ feature_extractor: Union[transformers.feature_extraction_utils.FeatureExtractionMixin, transformers.image_processing_utils.ImageProcessingMixin, NoneType] + + +
+ + + + +
+
+
+ is_pipeline: bool + + +
+ + + + +
+
+
+ backend: str + + +
+ + + + +
+
+
+ onnx_args: Optional[opsml.types.model.HuggingFaceOnnxArgs] + + +
+ + + + +
+
+
+ tokenizer_name: str + + +
+ + + + +
+
+
+ feature_extractor_name: str + + +
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
151        @model_validator(mode="before")
+152        @classmethod
+153        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+154            if bool(model_args.get("modelcard_uid", False)):
+155                return model_args
+156
+157            hf_model = model_args.get("model")
+158            assert hf_model is not None, "Model is not defined"
+159
+160            if isinstance(hf_model, Pipeline):
+161                model_args[CommonKwargs.BACKEND.value] = cls._check_model_backend(hf_model.model)
+162                model_args[CommonKwargs.IS_PIPELINE.value] = True
+163                model_args[CommonKwargs.MODEL_TYPE.value] = hf_model.model.__class__.__name__
+164                model_args[CommonKwargs.TOKENIZER.value] = hf_model.tokenizer
+165                model_args[CommonKwargs.TOKENIZER_NAME.value] = get_processor_name(hf_model.tokenizer)
+166                model_args[CommonKwargs.FEATURE_EXTRACTOR.value] = hf_model.feature_extractor
+167                model_args[CommonKwargs.FEATURE_EXTRACTOR_NAME.value] = get_processor_name(hf_model.feature_extractor)
+168
+169            else:
+170                model_args[CommonKwargs.BACKEND.value] = cls._check_model_backend(hf_model)
+171                model_args[CommonKwargs.IS_PIPELINE.value] = False
+172                model_args[CommonKwargs.MODEL_TYPE.value] = hf_model.__class__.__name__
+173                model_args[CommonKwargs.TOKENIZER_NAME.value] = get_processor_name(
+174                    model_args.get(CommonKwargs.TOKENIZER.value),
+175                )
+176
+177                model_args[CommonKwargs.FEATURE_EXTRACTOR_NAME.value] = get_processor_name(
+178                    model_args.get(CommonKwargs.FEATURE_EXTRACTOR.value)
+179                )
+180
+181            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+182
+183            # set args
+184            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+185            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+186
+187            return model_args
+
+ + + + +
+
+ +
+
@field_validator('task_type', mode='before')
+
@classmethod
+ + def + check_task_type(cls, task_type: str) -> str: + + + +
+ +
189        @field_validator("task_type", mode="before")
+190        @classmethod
+191        def check_task_type(cls, task_type: str) -> str:
+192            """Check if task is a huggingface approved task"""
+193
+194            task = task_type.lower()
+195            if task not in list(HuggingFaceTask):
+196                raise ValueError(f"Task type {task} is not supported")
+197            return task
+
+ + +

Check if task is a huggingface approved task

+
+ + +
+
+ +
+ + def + get_sample_prediction(self) -> opsml.model.interfaces.base.SamplePrediction: + + + +
+ +
246        def get_sample_prediction(self) -> SamplePrediction:
+247            """Generates prediction from model and provided sample data"""
+248
+249            if self.is_pipeline:
+250                prediction = self._get_pipeline_prediction()
+251            elif self.task_type in GENERATION_TYPES:
+252                prediction = self._generate_predictions()
+253            else:
+254                prediction = self._functional_predictions()
+255
+256            if isinstance(prediction, ModelOutput):
+257                prediction = dict(prediction)
+258
+259            prediction_type = get_class_name(prediction)
+260
+261            return SamplePrediction(prediction_type, prediction)
+
+ + +

Generates prediction from model and provided sample data

+
+ + +
+
+ +
+ + def + convert_to_onnx(self, **kwargs: pathlib.Path) -> None: + + + +
+ +
305        def convert_to_onnx(self, **kwargs: Path) -> None:
+306            """Converts a huggingface model or pipeline to onnx via optimum library.
+307            Converted model or pipeline is accessible via the `onnx_model` attribute.
+308            """
+309
+310            logger.info("Staring conversion of HuggingFace model to ONNX")
+311
+312            assert (
+313                self.onnx_args is not None
+314            ), "No onnx args provided. If converting to onnx, provide a HuggingFaceOnnxArgs instance"
+315
+316            if self.onnx_model is not None:
+317                return None
+318
+319            import onnx
+320            import optimum.onnxruntime as ort
+321
+322            path: Optional[Path] = kwargs.get("path")
+323            if path is None:
+324                return self._convert_to_onnx_inplace()
+325
+326            # ensure no suffix (this is an exception to the rule to all model interfaces)
+327            # huggingface prefers to save onnx models in dirs instead of single model.onnx file
+328            path = path.with_suffix("")
+329            ort_model: ort.ORTModel = getattr(ort, self.onnx_args.ort_type)
+330            model_path = path.parent / SaveName.TRAINED_MODEL.value
+331            onnx_model = ort_model.from_pretrained(model_path, export=True, provider=self.onnx_args.provider)
+332            onnx_model.save_pretrained(path)
+333
+334            if self.is_pipeline:
+335                self.onnx_model = OnnxModel(
+336                    onnx_version=onnx.__version__,
+337                    sess=pipeline(
+338                        self.task_type,
+339                        model=onnx_model,
+340                        tokenizer=self.tokenizer,
+341                        feature_extractor=self.feature_extractor,
+342                    ),
+343                )
+344            else:
+345                self.onnx_model = OnnxModel(onnx_version=onnx.__version__, sess=onnx_model)
+346
+347            if self.onnx_args.quantize:
+348                self._quantize_model(path.parent, onnx_model)
+349
+350            return None
+
+ + +

Converts a huggingface model or pipeline to onnx via optimum library. +Converted model or pipeline is accessible via the onnx_model attribute.

+
+ + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
354        def save_model(self, path: Path) -> None:
+355            assert self.model is not None, "No model detected in interface"
+356
+357            if isinstance(self.model, Pipeline):
+358                self.model.model.save_pretrained(path)
+359                return None
+360
+361            self.model.save_pretrained(path)
+362            return None
+
+ + +

Saves model to path. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + save_tokenizer(self, path: pathlib.Path) -> None: + + + +
+ +
364        def save_tokenizer(self, path: Path) -> None:
+365            if self.tokenizer is None:
+366                return None
+367
+368            if isinstance(self.model, Pipeline):
+369                assert self.model.tokenizer is not None, "Tokenizer is missing"
+370                self.model.tokenizer.save_pretrained(path)
+371                return None
+372
+373            self.tokenizer.save_pretrained(path)
+374            return None
+
+ + + + +
+
+ +
+ + def + save_feature_extractor(self, path: pathlib.Path) -> None: + + + +
+ +
376        def save_feature_extractor(self, path: Path) -> None:
+377            if self.feature_extractor is None:
+378                return None
+379
+380            if isinstance(self.model, Pipeline):
+381                assert self.model.feature_extractor is not None, "Feature extractor is missing"
+382                self.model.feature_extractor.save_pretrained(path)
+383                return None
+384
+385            self.feature_extractor.save_pretrained(path)
+386            return None
+
+ + + + +
+
+ +
+ + def + save_onnx(self, path: pathlib.Path) -> opsml.types.model.ModelReturn: + + + +
+ +
388        def save_onnx(self, path: Path) -> ModelReturn:
+389            import onnxruntime as rt
+390
+391            from opsml.model.onnx import _get_onnx_metadata
+392
+393            model_saved = False
+394            if self.onnx_model is None:
+395                # HF saves model during conversion
+396                self.convert_to_onnx(**{"path": path})
+397                model_saved = True
+398
+399            assert self.onnx_model is not None, "No onnx model detected in interface"
+400            if self.is_pipeline:
+401                if not model_saved:
+402                    self.onnx_model.sess.model.save_pretrained(path.with_suffix(""))
+403                return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess.model.model))
+404
+405            if not model_saved:
+406                self.onnx_model.sess.save_pretrained(path.with_suffix(""))
+407
+408            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess.model))
+
+ + +

Saves the onnx model

+ +
Arguments:
+ +
    +
  • path: Path to save
  • +
+ +
Returns:
+ +
+

ModelReturn

+
+
+ + +
+
+ +
+ + def + load_tokenizer(self, path: pathlib.Path) -> None: + + + +
+ +
412        def load_tokenizer(self, path: Path) -> None:
+413            self.tokenizer = getattr(transformers, self.tokenizer_name).from_pretrained(path)
+
+ + + + +
+
+ +
+ + def + load_feature_extractor(self, path: pathlib.Path) -> None: + + + +
+ +
415        def load_feature_extractor(self, path: Path) -> None:
+416            self.feature_extractor = getattr(transformers, self.feature_extractor_name).from_pretrained(path)
+
+ + + + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
418        def load_model(self, path: Path, **kwargs: Any) -> None:
+419            """Load huggingface model from path
+420
+421            Args:
+422                path:
+423                    Path to model
+424                kwargs:
+425                    Additional kwargs to pass to transformers.load_pretrained
+426            """
+427            custom_arch = kwargs.get("custom_architecture")
+428            if custom_arch is not None:
+429                assert isinstance(
+430                    custom_arch, (PreTrainedModel, TFPreTrainedModel)
+431                ), "Custom architecture must be a huggingface model"
+432                self.model = custom_arch.from_pretrained(path)
+433
+434            else:
+435                self.model = getattr(transformers, self.model_type).from_pretrained(path)
+
+ + +

Load huggingface model from path

+ +
Arguments:
+ +
    +
  • path: Path to model
  • +
  • kwargs: Additional kwargs to pass to transformers.load_pretrained
  • +
+
+ + +
+
+ +
+ + def + to_pipeline(self) -> None: + + + +
+ +
437        def to_pipeline(self) -> None:
+438            """Converts model to pipeline"""
+439
+440            if isinstance(self.model, Pipeline):
+441                return None
+442
+443            pipe = pipeline(
+444                task=self.task_type,
+445                model=self.model,
+446                tokenizer=self.tokenizer,
+447                feature_extractor=self.feature_extractor,
+448            )
+449
+450            self.model = pipe
+451            self.is_pipeline = True
+452            return None
+
+ + +

Converts model to pipeline

+
+ + +
+
+ +
+ + def + load_onnx_model(self, path: pathlib.Path) -> None: + + + +
+ +
454        def load_onnx_model(self, path: Path) -> None:
+455            """Load onnx model from path"""
+456            import onnx
+457            import optimum.onnxruntime as ort
+458
+459            assert self.onnx_args is not None, "No onnx args provided"
+460            ort_model = getattr(ort, self.onnx_args.ort_type)
+461            onnx_model = ort_model.from_pretrained(
+462                path,
+463                config=self.onnx_args.config,
+464                provider=self.onnx_args.provider,
+465            )
+466
+467            if self.is_pipeline:
+468                self.onnx_model = OnnxModel(
+469                    onnx_version=onnx.__version__,  # type: ignore[attr-defined]
+470                    sess=pipeline(
+471                        self.task_type,
+472                        model=onnx_model,
+473                        tokenizer=self.tokenizer,
+474                        feature_extractor=self.feature_extractor,
+475                    ),
+476                )
+477            else:
+478                self.onnx_model = OnnxModel(
+479                    onnx_version=onnx.__version__,  # type: ignore[attr-defined]
+480                    sess=onnx_model,
+481                )
+
+ + +

Load onnx model from path

+
+ + +
+
+ +
+ model_class: str + + + +
+ +
483        @property
+484        def model_class(self) -> str:
+485            return TrainedModelType.TRANSFORMERS.value
+
+ + + + +
+
+ +
+ model_suffix: str + + + +
+ +
487        @property
+488        def model_suffix(self) -> str:
+489            """Returns suffix for storage"""
+490            return ""
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
492        @staticmethod
+493        def name() -> str:
+494            return HuggingFaceModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Pipeline, PreTrainedModel, TFPreTrainedModel, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Any, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'tokenizer': FieldInfo(annotation=Union[PreTrainedTokenizer, PreTrainedTokenizerFast, NoneType], required=False), 'feature_extractor': FieldInfo(annotation=Union[FeatureExtractionMixin, ImageProcessingMixin, NoneType], required=False), 'is_pipeline': FieldInfo(annotation=bool, required=False, default=False), 'backend': FieldInfo(annotation=str, required=False, default='pytorch'), 'onnx_args': FieldInfo(annotation=Union[HuggingFaceOnnxArgs, NoneType], required=False), 'tokenizer_name': FieldInfo(annotation=str, required=False, default='undefined'), 'feature_extractor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
sample_data
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
save_sample_data
+
load_sample_data
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/lgbm.html b/api/opsml/model/interfaces/lgbm.html new file mode 100644 index 000000000..de44808e0 --- /dev/null +++ b/api/opsml/model/interfaces/lgbm.html @@ -0,0 +1,1014 @@ + + + + + + + opsml.model.interfaces.lgbm API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.lgbm

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, Optional, Union
+  3
+  4import joblib
+  5import pandas as pd
+  6from numpy.typing import NDArray
+  7from pydantic import model_validator
+  8
+  9from opsml.helpers.utils import get_class_name
+ 10from opsml.model.interfaces.base import (
+ 11    ModelInterface,
+ 12    get_model_args,
+ 13    get_processor_name,
+ 14)
+ 15from opsml.types import CommonKwargs, TrainedModelType
+ 16from opsml.types.extra import Suffix
+ 17
+ 18try:
+ 19    import lightgbm as lgb
+ 20    from lightgbm import Booster, LGBMModel
+ 21
+ 22    class LightGBMModel(ModelInterface):
+ 23        """Model interface for LightGBM Booster model class. If using the sklearn API, use SklearnModel instead.
+ 24
+ 25        Args:
+ 26            model:
+ 27                LightGBM booster model
+ 28            preprocessor:
+ 29                Optional preprocessor
+ 30            sample_data:
+ 31                Sample data to be used for type inference.
+ 32                For lightgbm models this should be a pandas DataFrame or numpy array.
+ 33                This should match exactly what the model expects as input.
+ 34            task_type:
+ 35                Task type for model. Defaults to undefined.
+ 36            model_type:
+ 37                Optional model type. This is inferred automatically.
+ 38            preprocessor_name:
+ 39                Optional preprocessor. This is inferred automatically if a
+ 40                preprocessor is provided.
+ 41            onnx_args:
+ 42                Optional arguments for ONNX conversion. See `TorchOnnxArgs` for supported arguments.
+ 43
+ 44        Returns:
+ 45            LightGBMModel
+ 46        """
+ 47
+ 48        model: Optional[Union[Booster, LGBMModel]] = None
+ 49        sample_data: Optional[Union[pd.DataFrame, NDArray[Any]]] = None
+ 50        preprocessor: Optional[Any] = None
+ 51        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 52
+ 53        @property
+ 54        def model_class(self) -> str:
+ 55            if "Booster" in self.model_type:
+ 56                return TrainedModelType.LGBM_BOOSTER.value
+ 57            return TrainedModelType.SKLEARN_ESTIMATOR.value
+ 58
+ 59        @model_validator(mode="before")
+ 60        @classmethod
+ 61        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 62            model = model_args.get("model")
+ 63
+ 64            if model_args.get("modelcard_uid", False):
+ 65                return model_args
+ 66
+ 67            model, module, _ = get_model_args(model)
+ 68
+ 69            if "lightgbm" in module or isinstance(model, LGBMModel):
+ 70                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 71
+ 72            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 73            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 74            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 75            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 76                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 77            )
+ 78
+ 79            return model_args
+ 80
+ 81        def save_model(self, path: Path) -> None:
+ 82            """Saves lgb model according to model format. Booster models are saved to text.
+ 83            Sklearn models are saved via joblib.
+ 84
+ 85            Args:
+ 86                path:
+ 87                    base path to save model to
+ 88            """
+ 89            assert self.model is not None, "No model found"
+ 90            if isinstance(self.model, Booster):
+ 91                self.model.save_model(filename=path)
+ 92
+ 93            else:
+ 94                super().save_model(path)
+ 95
+ 96        def load_model(self, path: Path, **kwargs: Any) -> None:
+ 97            """Loads lightgbm booster or sklearn model
+ 98
+ 99
+100            Args:
+101                path:
+102                    base path to load from
+103                **kwargs:
+104                    Additional keyword arguments
+105            """
+106
+107            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+108                self.model = lgb.Booster(model_file=path)
+109            else:
+110                super().load_model(path)
+111
+112        def save_preprocessor(self, path: Path) -> None:
+113            """Saves preprocessor to path if present. Base implementation use Joblib
+114
+115            Args:
+116                path:
+117                    Pathlib object
+118            """
+119            assert self.preprocessor is not None, "No preprocessor detected in interface"
+120            joblib.dump(self.preprocessor, path)
+121
+122        def load_preprocessor(self, path: Path) -> None:
+123            """Load preprocessor from pathlib object
+124
+125            Args:
+126                path:
+127                    Pathlib object
+128            """
+129            self.preprocessor = joblib.load(path)
+130
+131        @property
+132        def model_suffix(self) -> str:
+133            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+134                return Suffix.TEXT.value
+135
+136            return super().model_suffix
+137
+138        @property
+139        def preprocessor_suffix(self) -> str:
+140            """Returns suffix for storage"""
+141            return Suffix.JOBLIB.value
+142
+143        @staticmethod
+144        def name() -> str:
+145            return LightGBMModel.__name__
+146
+147except ModuleNotFoundError:
+148    from opsml.model.interfaces.backups import LightGBMModelNoModule as LightGBMModel
+
+ + +
+
+ +
+ + class + LightGBMModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 23    class LightGBMModel(ModelInterface):
+ 24        """Model interface for LightGBM Booster model class. If using the sklearn API, use SklearnModel instead.
+ 25
+ 26        Args:
+ 27            model:
+ 28                LightGBM booster model
+ 29            preprocessor:
+ 30                Optional preprocessor
+ 31            sample_data:
+ 32                Sample data to be used for type inference.
+ 33                For lightgbm models this should be a pandas DataFrame or numpy array.
+ 34                This should match exactly what the model expects as input.
+ 35            task_type:
+ 36                Task type for model. Defaults to undefined.
+ 37            model_type:
+ 38                Optional model type. This is inferred automatically.
+ 39            preprocessor_name:
+ 40                Optional preprocessor. This is inferred automatically if a
+ 41                preprocessor is provided.
+ 42            onnx_args:
+ 43                Optional arguments for ONNX conversion. See `TorchOnnxArgs` for supported arguments.
+ 44
+ 45        Returns:
+ 46            LightGBMModel
+ 47        """
+ 48
+ 49        model: Optional[Union[Booster, LGBMModel]] = None
+ 50        sample_data: Optional[Union[pd.DataFrame, NDArray[Any]]] = None
+ 51        preprocessor: Optional[Any] = None
+ 52        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 53
+ 54        @property
+ 55        def model_class(self) -> str:
+ 56            if "Booster" in self.model_type:
+ 57                return TrainedModelType.LGBM_BOOSTER.value
+ 58            return TrainedModelType.SKLEARN_ESTIMATOR.value
+ 59
+ 60        @model_validator(mode="before")
+ 61        @classmethod
+ 62        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 63            model = model_args.get("model")
+ 64
+ 65            if model_args.get("modelcard_uid", False):
+ 66                return model_args
+ 67
+ 68            model, module, _ = get_model_args(model)
+ 69
+ 70            if "lightgbm" in module or isinstance(model, LGBMModel):
+ 71                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 72
+ 73            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 74            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 75            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 76            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 77                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 78            )
+ 79
+ 80            return model_args
+ 81
+ 82        def save_model(self, path: Path) -> None:
+ 83            """Saves lgb model according to model format. Booster models are saved to text.
+ 84            Sklearn models are saved via joblib.
+ 85
+ 86            Args:
+ 87                path:
+ 88                    base path to save model to
+ 89            """
+ 90            assert self.model is not None, "No model found"
+ 91            if isinstance(self.model, Booster):
+ 92                self.model.save_model(filename=path)
+ 93
+ 94            else:
+ 95                super().save_model(path)
+ 96
+ 97        def load_model(self, path: Path, **kwargs: Any) -> None:
+ 98            """Loads lightgbm booster or sklearn model
+ 99
+100
+101            Args:
+102                path:
+103                    base path to load from
+104                **kwargs:
+105                    Additional keyword arguments
+106            """
+107
+108            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+109                self.model = lgb.Booster(model_file=path)
+110            else:
+111                super().load_model(path)
+112
+113        def save_preprocessor(self, path: Path) -> None:
+114            """Saves preprocessor to path if present. Base implementation use Joblib
+115
+116            Args:
+117                path:
+118                    Pathlib object
+119            """
+120            assert self.preprocessor is not None, "No preprocessor detected in interface"
+121            joblib.dump(self.preprocessor, path)
+122
+123        def load_preprocessor(self, path: Path) -> None:
+124            """Load preprocessor from pathlib object
+125
+126            Args:
+127                path:
+128                    Pathlib object
+129            """
+130            self.preprocessor = joblib.load(path)
+131
+132        @property
+133        def model_suffix(self) -> str:
+134            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+135                return Suffix.TEXT.value
+136
+137            return super().model_suffix
+138
+139        @property
+140        def preprocessor_suffix(self) -> str:
+141            """Returns suffix for storage"""
+142            return Suffix.JOBLIB.value
+143
+144        @staticmethod
+145        def name() -> str:
+146            return LightGBMModel.__name__
+
+ + +

Model interface for LightGBM Booster model class. If using the sklearn API, use SklearnModel instead.

+ +
Arguments:
+ +
    +
  • model: LightGBM booster model
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference. +For lightgbm models this should be a pandas DataFrame or numpy array. +This should match exactly what the model expects as input.
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a +preprocessor is provided.
  • +
  • onnx_args: Optional arguments for ONNX conversion. See TorchOnnxArgs for supported arguments.
  • +
+ +
Returns:
+ +
+

LightGBMModel

+
+
+ + +
+
+ model: Union[lightgbm.basic.Booster, lightgbm.sklearn.LGBMModel, NoneType] + + +
+ + + + +
+
+
+ sample_data: Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], NoneType] + + +
+ + + + +
+
+
+ preprocessor: Optional[Any] + + +
+ + + + +
+
+
+ preprocessor_name: str + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
54        @property
+55        def model_class(self) -> str:
+56            if "Booster" in self.model_type:
+57                return TrainedModelType.LGBM_BOOSTER.value
+58            return TrainedModelType.SKLEARN_ESTIMATOR.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
60        @model_validator(mode="before")
+61        @classmethod
+62        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+63            model = model_args.get("model")
+64
+65            if model_args.get("modelcard_uid", False):
+66                return model_args
+67
+68            model, module, _ = get_model_args(model)
+69
+70            if "lightgbm" in module or isinstance(model, LGBMModel):
+71                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+72
+73            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+74            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+75            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+76            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+77                model_args.get(CommonKwargs.PREPROCESSOR.value),
+78            )
+79
+80            return model_args
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
82        def save_model(self, path: Path) -> None:
+83            """Saves lgb model according to model format. Booster models are saved to text.
+84            Sklearn models are saved via joblib.
+85
+86            Args:
+87                path:
+88                    base path to save model to
+89            """
+90            assert self.model is not None, "No model found"
+91            if isinstance(self.model, Booster):
+92                self.model.save_model(filename=path)
+93
+94            else:
+95                super().save_model(path)
+
+ + +

Saves lgb model according to model format. Booster models are saved to text. +Sklearn models are saved via joblib.

+ +
Arguments:
+ +
    +
  • path: base path to save model to
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
 97        def load_model(self, path: Path, **kwargs: Any) -> None:
+ 98            """Loads lightgbm booster or sklearn model
+ 99
+100
+101            Args:
+102                path:
+103                    base path to load from
+104                **kwargs:
+105                    Additional keyword arguments
+106            """
+107
+108            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+109                self.model = lgb.Booster(model_file=path)
+110            else:
+111                super().load_model(path)
+
+ + +

Loads lightgbm booster or sklearn model

+ +
Arguments:
+ +
    +
  • path: base path to load from
  • +
  • **kwargs: Additional keyword arguments
  • +
+
+ + +
+
+ +
+ + def + save_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
113        def save_preprocessor(self, path: Path) -> None:
+114            """Saves preprocessor to path if present. Base implementation use Joblib
+115
+116            Args:
+117                path:
+118                    Pathlib object
+119            """
+120            assert self.preprocessor is not None, "No preprocessor detected in interface"
+121            joblib.dump(self.preprocessor, path)
+
+ + +

Saves preprocessor to path if present. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
123        def load_preprocessor(self, path: Path) -> None:
+124            """Load preprocessor from pathlib object
+125
+126            Args:
+127                path:
+128                    Pathlib object
+129            """
+130            self.preprocessor = joblib.load(path)
+
+ + +

Load preprocessor from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
132        @property
+133        def model_suffix(self) -> str:
+134            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+135                return Suffix.TEXT.value
+136
+137            return super().model_suffix
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ preprocessor_suffix: str + + + +
+ +
139        @property
+140        def preprocessor_suffix(self) -> str:
+141            """Returns suffix for storage"""
+142            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
144        @staticmethod
+145        def name() -> str:
+146            return LightGBMModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Booster, LGBMModel, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[DataFrame, ndarray[Any, dtype[Any]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
save_onnx
+
convert_to_onnx
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
get_sample_prediction
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/pytorch.html b/api/opsml/model/interfaces/pytorch.html new file mode 100644 index 000000000..7e1f5fb07 --- /dev/null +++ b/api/opsml/model/interfaces/pytorch.html @@ -0,0 +1,1388 @@ + + + + + + + opsml.model.interfaces.pytorch API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.pytorch

+ + + + + + +
  1import tempfile
+  2from pathlib import Path
+  3from typing import Any, Dict, List, Optional, Tuple, Union, cast
+  4
+  5import joblib
+  6from pydantic import model_validator
+  7
+  8from opsml.helpers.utils import OpsmlImportExceptions, get_class_name
+  9from opsml.model.interfaces.base import (
+ 10    ModelInterface,
+ 11    SamplePrediction,
+ 12    get_model_args,
+ 13    get_processor_name,
+ 14)
+ 15from opsml.types import (
+ 16    CommonKwargs,
+ 17    ModelReturn,
+ 18    SaveName,
+ 19    Suffix,
+ 20    TorchOnnxArgs,
+ 21    TorchSaveArgs,
+ 22    TrainedModelType,
+ 23)
+ 24
+ 25try:
+ 26    import torch
+ 27
+ 28    ValidData = Union[torch.Tensor, Dict[str, torch.Tensor], List[torch.Tensor], Tuple[torch.Tensor]]
+ 29
+ 30    class TorchModel(ModelInterface):
+ 31        """Model interface for Pytorch models.
+ 32
+ 33        Args:
+ 34            model:
+ 35                Torch model
+ 36            preprocessor:
+ 37                Optional preprocessor
+ 38            sample_data:
+ 39                Sample data to be used for type inference and ONNX conversion/validation.
+ 40                This should match exactly what the model expects as input.
+ 41            save_args:
+ 42                Optional arguments for saving model. See `TorchSaveArgs` for supported arguments.
+ 43            task_type:
+ 44                Task type for model. Defaults to undefined.
+ 45            model_type:
+ 46                Optional model type. This is inferred automatically.
+ 47            preprocessor_name:
+ 48                Optional preprocessor. This is inferred automatically if a
+ 49                preprocessor is provided.
+ 50            onnx_args:
+ 51                Optional arguments for ONNX conversion. See `TorchOnnxArgs` for supported arguments.
+ 52
+ 53        Returns:
+ 54        TorchModel
+ 55        """
+ 56
+ 57        model: Optional[torch.nn.Module] = None
+ 58        sample_data: Optional[
+ 59            Union[torch.Tensor, Dict[str, torch.Tensor], List[torch.Tensor], Tuple[torch.Tensor]]
+ 60        ] = None
+ 61        onnx_args: Optional[TorchOnnxArgs] = None
+ 62        save_args: TorchSaveArgs = TorchSaveArgs()
+ 63        preprocessor: Optional[Any] = None
+ 64        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 65
+ 66        @property
+ 67        def model_class(self) -> str:
+ 68            return TrainedModelType.PYTORCH.value
+ 69
+ 70        @classmethod
+ 71        def _get_sample_data(cls, sample_data: Any) -> Any:
+ 72            """Check sample data and returns one record to be used
+ 73            during type inference and ONNX conversion/validation.
+ 74
+ 75            Returns:
+ 76                Sample data with only one record
+ 77            """
+ 78            if isinstance(sample_data, torch.Tensor):
+ 79                return sample_data[0:1]
+ 80
+ 81            if isinstance(sample_data, list):
+ 82                return [data[0:1] for data in sample_data]
+ 83
+ 84            if isinstance(sample_data, tuple):
+ 85                return tuple(data[0:1] for data in sample_data)
+ 86
+ 87            if isinstance(sample_data, dict):
+ 88                sample_dict = {}
+ 89                for key, value in sample_data.items():
+ 90                    sample_dict[key] = value[0:1]
+ 91                return sample_dict
+ 92
+ 93            raise ValueError("Provided sample data is not a valid type")
+ 94
+ 95        @model_validator(mode="before")
+ 96        @classmethod
+ 97        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 98            model = model_args.get("model")
+ 99
+100            if model_args.get("modelcard_uid", False):
+101                return model_args
+102
+103            model, _, bases = get_model_args(model)
+104
+105            for base in bases:
+106                if "torch" in base:
+107                    model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+108
+109            sample_data = cls._get_sample_data(model_args[CommonKwargs.SAMPLE_DATA.value])
+110            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+111            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+112            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+113                model_args.get(CommonKwargs.PREPROCESSOR.value),
+114            )
+115
+116            return model_args
+117
+118        def get_sample_prediction(self) -> SamplePrediction:
+119            assert self.model is not None, "Model is not defined"
+120            assert self.sample_data is not None, "Sample data must be provided"
+121
+122            # test dict input
+123            if isinstance(self.sample_data, dict):
+124                try:
+125                    prediction = self.model(**self.sample_data)
+126                except Exception as _:  # pylint: disable=broad-except
+127                    prediction = self.model(self.sample_data)
+128
+129            # test list and tuple inputs
+130            elif isinstance(self.sample_data, (list, tuple)):
+131                try:
+132                    prediction = self.model(*self.sample_data)
+133                except Exception as _:  # pylint: disable=broad-except
+134                    prediction = self.model(self.sample_data)
+135
+136            # all others
+137            else:
+138                prediction = self.model(self.sample_data)
+139
+140            prediction_type = get_class_name(prediction)
+141
+142            return SamplePrediction(prediction_type, prediction)
+143
+144        def save_model(self, path: Path) -> None:
+145            """Save pytorch model to path
+146
+147            Args:
+148                path:
+149                    pathlib object
+150            """
+151            assert self.model is not None, "No model found"
+152
+153            if self.save_args.as_state_dict:
+154                torch.save(self.model.state_dict(), path)
+155            else:
+156                torch.save(self.model, path)
+157
+158        def load_model(self, path: Path, **kwargs: Any) -> None:
+159            """Load pytorch model from path
+160
+161            Args:
+162                path:
+163                    pathlib object
+164                kwargs:
+165                    Additional arguments to be passed to torch.load
+166            """
+167            model_arch = kwargs.get(CommonKwargs.MODEL_ARCH.value)
+168
+169            if model_arch is not None:
+170                model_arch.load_state_dict(torch.load(path))
+171                model_arch.eval()
+172                self.model = model_arch
+173
+174            else:
+175                self.model = torch.load(path)
+176
+177        def save_onnx(self, path: Path) -> ModelReturn:
+178            """Saves an onnx model
+179
+180            Args:
+181                path:
+182                    Path to save model to
+183
+184            Returns:
+185                ModelReturn
+186            """
+187            import onnxruntime as rt
+188
+189            from opsml.model.onnx import _get_onnx_metadata
+190
+191            if self.onnx_model is None:
+192                self.convert_to_onnx(**{"path": path})
+193
+194            else:
+195                # save onnx model
+196                self.onnx_model.sess_to_path(path)
+197
+198            # no need to save onnx to bytes since its done during onnx conversion
+199            assert self.onnx_model is not None, "No onnx model detected in interface"
+200            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+201
+202        def _convert_to_onnx_inplace(self) -> None:
+203            """Convert to onnx model using temp dir"""
+204            with tempfile.TemporaryDirectory() as tmpdir:
+205                lpath = Path(tmpdir) / SaveName.ONNX_MODEL.value
+206                onnx_path = lpath.with_suffix(Suffix.ONNX.value)
+207                self.convert_to_onnx(**{"path": onnx_path})
+208
+209        def convert_to_onnx(self, **kwargs: Path) -> None:
+210            # import packages for onnx conversion
+211            OpsmlImportExceptions.try_torchonnx_imports()
+212            if self.onnx_model is not None:
+213                return None
+214
+215            from opsml.model.onnx.torch_converter import _PyTorchOnnxModel
+216
+217            path: Optional[Path] = kwargs.get("path")
+218
+219            if path is None:
+220                return self._convert_to_onnx_inplace()
+221
+222            self.onnx_model = _PyTorchOnnxModel(self).convert_to_onnx(path=path)
+223            return None
+224
+225        def save_preprocessor(self, path: Path) -> None:
+226            """Saves preprocessor to path if present. Base implementation use Joblib
+227
+228            Args:
+229                path:
+230                    Pathlib object
+231            """
+232            assert self.preprocessor is not None, "No preprocessor detected in interface"
+233            joblib.dump(self.preprocessor, path)
+234
+235        def load_preprocessor(self, path: Path) -> None:
+236            """Load preprocessor from pathlib object
+237
+238            Args:
+239                path:
+240                    Pathlib object
+241            """
+242            self.preprocessor = joblib.load(path)
+243
+244        @property
+245        def preprocessor_suffix(self) -> str:
+246            """Returns suffix for storage"""
+247            return Suffix.JOBLIB.value
+248
+249        @property
+250        def model_suffix(self) -> str:
+251            """Returns suffix for storage"""
+252            return Suffix.PT.value
+253
+254        @staticmethod
+255        def name() -> str:
+256            return TorchModel.__name__
+257
+258except ModuleNotFoundError:
+259    from opsml.model.interfaces.backups import TorchModelNoModule as TorchModel
+
+ + +
+
+ +
+ + class + TorchModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 31    class TorchModel(ModelInterface):
+ 32        """Model interface for Pytorch models.
+ 33
+ 34        Args:
+ 35            model:
+ 36                Torch model
+ 37            preprocessor:
+ 38                Optional preprocessor
+ 39            sample_data:
+ 40                Sample data to be used for type inference and ONNX conversion/validation.
+ 41                This should match exactly what the model expects as input.
+ 42            save_args:
+ 43                Optional arguments for saving model. See `TorchSaveArgs` for supported arguments.
+ 44            task_type:
+ 45                Task type for model. Defaults to undefined.
+ 46            model_type:
+ 47                Optional model type. This is inferred automatically.
+ 48            preprocessor_name:
+ 49                Optional preprocessor. This is inferred automatically if a
+ 50                preprocessor is provided.
+ 51            onnx_args:
+ 52                Optional arguments for ONNX conversion. See `TorchOnnxArgs` for supported arguments.
+ 53
+ 54        Returns:
+ 55        TorchModel
+ 56        """
+ 57
+ 58        model: Optional[torch.nn.Module] = None
+ 59        sample_data: Optional[
+ 60            Union[torch.Tensor, Dict[str, torch.Tensor], List[torch.Tensor], Tuple[torch.Tensor]]
+ 61        ] = None
+ 62        onnx_args: Optional[TorchOnnxArgs] = None
+ 63        save_args: TorchSaveArgs = TorchSaveArgs()
+ 64        preprocessor: Optional[Any] = None
+ 65        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 66
+ 67        @property
+ 68        def model_class(self) -> str:
+ 69            return TrainedModelType.PYTORCH.value
+ 70
+ 71        @classmethod
+ 72        def _get_sample_data(cls, sample_data: Any) -> Any:
+ 73            """Check sample data and returns one record to be used
+ 74            during type inference and ONNX conversion/validation.
+ 75
+ 76            Returns:
+ 77                Sample data with only one record
+ 78            """
+ 79            if isinstance(sample_data, torch.Tensor):
+ 80                return sample_data[0:1]
+ 81
+ 82            if isinstance(sample_data, list):
+ 83                return [data[0:1] for data in sample_data]
+ 84
+ 85            if isinstance(sample_data, tuple):
+ 86                return tuple(data[0:1] for data in sample_data)
+ 87
+ 88            if isinstance(sample_data, dict):
+ 89                sample_dict = {}
+ 90                for key, value in sample_data.items():
+ 91                    sample_dict[key] = value[0:1]
+ 92                return sample_dict
+ 93
+ 94            raise ValueError("Provided sample data is not a valid type")
+ 95
+ 96        @model_validator(mode="before")
+ 97        @classmethod
+ 98        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 99            model = model_args.get("model")
+100
+101            if model_args.get("modelcard_uid", False):
+102                return model_args
+103
+104            model, _, bases = get_model_args(model)
+105
+106            for base in bases:
+107                if "torch" in base:
+108                    model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+109
+110            sample_data = cls._get_sample_data(model_args[CommonKwargs.SAMPLE_DATA.value])
+111            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+112            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+113            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+114                model_args.get(CommonKwargs.PREPROCESSOR.value),
+115            )
+116
+117            return model_args
+118
+119        def get_sample_prediction(self) -> SamplePrediction:
+120            assert self.model is not None, "Model is not defined"
+121            assert self.sample_data is not None, "Sample data must be provided"
+122
+123            # test dict input
+124            if isinstance(self.sample_data, dict):
+125                try:
+126                    prediction = self.model(**self.sample_data)
+127                except Exception as _:  # pylint: disable=broad-except
+128                    prediction = self.model(self.sample_data)
+129
+130            # test list and tuple inputs
+131            elif isinstance(self.sample_data, (list, tuple)):
+132                try:
+133                    prediction = self.model(*self.sample_data)
+134                except Exception as _:  # pylint: disable=broad-except
+135                    prediction = self.model(self.sample_data)
+136
+137            # all others
+138            else:
+139                prediction = self.model(self.sample_data)
+140
+141            prediction_type = get_class_name(prediction)
+142
+143            return SamplePrediction(prediction_type, prediction)
+144
+145        def save_model(self, path: Path) -> None:
+146            """Save pytorch model to path
+147
+148            Args:
+149                path:
+150                    pathlib object
+151            """
+152            assert self.model is not None, "No model found"
+153
+154            if self.save_args.as_state_dict:
+155                torch.save(self.model.state_dict(), path)
+156            else:
+157                torch.save(self.model, path)
+158
+159        def load_model(self, path: Path, **kwargs: Any) -> None:
+160            """Load pytorch model from path
+161
+162            Args:
+163                path:
+164                    pathlib object
+165                kwargs:
+166                    Additional arguments to be passed to torch.load
+167            """
+168            model_arch = kwargs.get(CommonKwargs.MODEL_ARCH.value)
+169
+170            if model_arch is not None:
+171                model_arch.load_state_dict(torch.load(path))
+172                model_arch.eval()
+173                self.model = model_arch
+174
+175            else:
+176                self.model = torch.load(path)
+177
+178        def save_onnx(self, path: Path) -> ModelReturn:
+179            """Saves an onnx model
+180
+181            Args:
+182                path:
+183                    Path to save model to
+184
+185            Returns:
+186                ModelReturn
+187            """
+188            import onnxruntime as rt
+189
+190            from opsml.model.onnx import _get_onnx_metadata
+191
+192            if self.onnx_model is None:
+193                self.convert_to_onnx(**{"path": path})
+194
+195            else:
+196                # save onnx model
+197                self.onnx_model.sess_to_path(path)
+198
+199            # no need to save onnx to bytes since its done during onnx conversion
+200            assert self.onnx_model is not None, "No onnx model detected in interface"
+201            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+202
+203        def _convert_to_onnx_inplace(self) -> None:
+204            """Convert to onnx model using temp dir"""
+205            with tempfile.TemporaryDirectory() as tmpdir:
+206                lpath = Path(tmpdir) / SaveName.ONNX_MODEL.value
+207                onnx_path = lpath.with_suffix(Suffix.ONNX.value)
+208                self.convert_to_onnx(**{"path": onnx_path})
+209
+210        def convert_to_onnx(self, **kwargs: Path) -> None:
+211            # import packages for onnx conversion
+212            OpsmlImportExceptions.try_torchonnx_imports()
+213            if self.onnx_model is not None:
+214                return None
+215
+216            from opsml.model.onnx.torch_converter import _PyTorchOnnxModel
+217
+218            path: Optional[Path] = kwargs.get("path")
+219
+220            if path is None:
+221                return self._convert_to_onnx_inplace()
+222
+223            self.onnx_model = _PyTorchOnnxModel(self).convert_to_onnx(path=path)
+224            return None
+225
+226        def save_preprocessor(self, path: Path) -> None:
+227            """Saves preprocessor to path if present. Base implementation use Joblib
+228
+229            Args:
+230                path:
+231                    Pathlib object
+232            """
+233            assert self.preprocessor is not None, "No preprocessor detected in interface"
+234            joblib.dump(self.preprocessor, path)
+235
+236        def load_preprocessor(self, path: Path) -> None:
+237            """Load preprocessor from pathlib object
+238
+239            Args:
+240                path:
+241                    Pathlib object
+242            """
+243            self.preprocessor = joblib.load(path)
+244
+245        @property
+246        def preprocessor_suffix(self) -> str:
+247            """Returns suffix for storage"""
+248            return Suffix.JOBLIB.value
+249
+250        @property
+251        def model_suffix(self) -> str:
+252            """Returns suffix for storage"""
+253            return Suffix.PT.value
+254
+255        @staticmethod
+256        def name() -> str:
+257            return TorchModel.__name__
+
+ + +

Model interface for Pytorch models.

+ +
Arguments:
+ +
    +
  • model: Torch model
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference and ONNX conversion/validation. +This should match exactly what the model expects as input.
  • +
  • save_args: Optional arguments for saving model. See TorchSaveArgs for supported arguments.
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a +preprocessor is provided.
  • +
  • onnx_args: Optional arguments for ONNX conversion. See TorchOnnxArgs for supported arguments.
  • +
+ +

Returns: +TorchModel

+
+ + +
+
+ model: Optional[torch.nn.modules.module.Module] + + +
+ + + + +
+
+
+ sample_data: Union[torch.Tensor, Dict[str, torch.Tensor], List[torch.Tensor], Tuple[torch.Tensor], NoneType] + + +
+ + + + +
+
+
+ onnx_args: Optional[opsml.types.model.TorchOnnxArgs] + + +
+ + + + +
+
+
+ save_args: opsml.types.model.TorchSaveArgs + + +
+ + + + +
+
+
+ preprocessor: Optional[Any] + + +
+ + + + +
+
+
+ preprocessor_name: str + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
67        @property
+68        def model_class(self) -> str:
+69            return TrainedModelType.PYTORCH.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
 96        @model_validator(mode="before")
+ 97        @classmethod
+ 98        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 99            model = model_args.get("model")
+100
+101            if model_args.get("modelcard_uid", False):
+102                return model_args
+103
+104            model, _, bases = get_model_args(model)
+105
+106            for base in bases:
+107                if "torch" in base:
+108                    model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+109
+110            sample_data = cls._get_sample_data(model_args[CommonKwargs.SAMPLE_DATA.value])
+111            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+112            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+113            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+114                model_args.get(CommonKwargs.PREPROCESSOR.value),
+115            )
+116
+117            return model_args
+
+ + + + +
+
+ +
+ + def + get_sample_prediction(self) -> opsml.model.interfaces.base.SamplePrediction: + + + +
+ +
119        def get_sample_prediction(self) -> SamplePrediction:
+120            assert self.model is not None, "Model is not defined"
+121            assert self.sample_data is not None, "Sample data must be provided"
+122
+123            # test dict input
+124            if isinstance(self.sample_data, dict):
+125                try:
+126                    prediction = self.model(**self.sample_data)
+127                except Exception as _:  # pylint: disable=broad-except
+128                    prediction = self.model(self.sample_data)
+129
+130            # test list and tuple inputs
+131            elif isinstance(self.sample_data, (list, tuple)):
+132                try:
+133                    prediction = self.model(*self.sample_data)
+134                except Exception as _:  # pylint: disable=broad-except
+135                    prediction = self.model(self.sample_data)
+136
+137            # all others
+138            else:
+139                prediction = self.model(self.sample_data)
+140
+141            prediction_type = get_class_name(prediction)
+142
+143            return SamplePrediction(prediction_type, prediction)
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
145        def save_model(self, path: Path) -> None:
+146            """Save pytorch model to path
+147
+148            Args:
+149                path:
+150                    pathlib object
+151            """
+152            assert self.model is not None, "No model found"
+153
+154            if self.save_args.as_state_dict:
+155                torch.save(self.model.state_dict(), path)
+156            else:
+157                torch.save(self.model, path)
+
+ + +

Save pytorch model to path

+ +
Arguments:
+ +
    +
  • path: pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
159        def load_model(self, path: Path, **kwargs: Any) -> None:
+160            """Load pytorch model from path
+161
+162            Args:
+163                path:
+164                    pathlib object
+165                kwargs:
+166                    Additional arguments to be passed to torch.load
+167            """
+168            model_arch = kwargs.get(CommonKwargs.MODEL_ARCH.value)
+169
+170            if model_arch is not None:
+171                model_arch.load_state_dict(torch.load(path))
+172                model_arch.eval()
+173                self.model = model_arch
+174
+175            else:
+176                self.model = torch.load(path)
+
+ + +

Load pytorch model from path

+ +
Arguments:
+ +
    +
  • path: pathlib object
  • +
  • kwargs: Additional arguments to be passed to torch.load
  • +
+
+ + +
+
+ +
+ + def + save_onnx(self, path: pathlib.Path) -> opsml.types.model.ModelReturn: + + + +
+ +
178        def save_onnx(self, path: Path) -> ModelReturn:
+179            """Saves an onnx model
+180
+181            Args:
+182                path:
+183                    Path to save model to
+184
+185            Returns:
+186                ModelReturn
+187            """
+188            import onnxruntime as rt
+189
+190            from opsml.model.onnx import _get_onnx_metadata
+191
+192            if self.onnx_model is None:
+193                self.convert_to_onnx(**{"path": path})
+194
+195            else:
+196                # save onnx model
+197                self.onnx_model.sess_to_path(path)
+198
+199            # no need to save onnx to bytes since its done during onnx conversion
+200            assert self.onnx_model is not None, "No onnx model detected in interface"
+201            return _get_onnx_metadata(self, cast(rt.InferenceSession, self.onnx_model.sess))
+
+ + +

Saves an onnx model

+ +
Arguments:
+ +
    +
  • path: Path to save model to
  • +
+ +
Returns:
+ +
+

ModelReturn

+
+
+ + +
+
+ +
+ + def + convert_to_onnx(self, **kwargs: pathlib.Path) -> None: + + + +
+ +
210        def convert_to_onnx(self, **kwargs: Path) -> None:
+211            # import packages for onnx conversion
+212            OpsmlImportExceptions.try_torchonnx_imports()
+213            if self.onnx_model is not None:
+214                return None
+215
+216            from opsml.model.onnx.torch_converter import _PyTorchOnnxModel
+217
+218            path: Optional[Path] = kwargs.get("path")
+219
+220            if path is None:
+221                return self._convert_to_onnx_inplace()
+222
+223            self.onnx_model = _PyTorchOnnxModel(self).convert_to_onnx(path=path)
+224            return None
+
+ + +

Converts model to onnx format

+
+ + +
+
+ +
+ + def + save_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
226        def save_preprocessor(self, path: Path) -> None:
+227            """Saves preprocessor to path if present. Base implementation use Joblib
+228
+229            Args:
+230                path:
+231                    Pathlib object
+232            """
+233            assert self.preprocessor is not None, "No preprocessor detected in interface"
+234            joblib.dump(self.preprocessor, path)
+
+ + +

Saves preprocessor to path if present. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
236        def load_preprocessor(self, path: Path) -> None:
+237            """Load preprocessor from pathlib object
+238
+239            Args:
+240                path:
+241                    Pathlib object
+242            """
+243            self.preprocessor = joblib.load(path)
+
+ + +

Load preprocessor from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ preprocessor_suffix: str + + + +
+ +
245        @property
+246        def preprocessor_suffix(self) -> str:
+247            """Returns suffix for storage"""
+248            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
250        @property
+251        def model_suffix(self) -> str:
+252            """Returns suffix for storage"""
+253            return Suffix.PT.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
255        @staticmethod
+256        def name() -> str:
+257            return TorchModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Module, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Tensor, Dict[str, Tensor], List[Tensor], Tuple[Tensor], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'onnx_args': FieldInfo(annotation=Union[TorchOnnxArgs, NoneType], required=False), 'save_args': FieldInfo(annotation=TorchSaveArgs, required=False, default=TorchSaveArgs(as_state_dict=False)), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/pytorch_lightning.html b/api/opsml/model/interfaces/pytorch_lightning.html new file mode 100644 index 000000000..c67d6b96f --- /dev/null +++ b/api/opsml/model/interfaces/pytorch_lightning.html @@ -0,0 +1,985 @@ + + + + + + + opsml.model.interfaces.pytorch_lightning API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.pytorch_lightning

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, Optional
+  3
+  4from pydantic import model_validator
+  5
+  6from opsml.helpers.utils import OpsmlImportExceptions, get_class_name
+  7from opsml.model.interfaces.base import (
+  8    SamplePrediction,
+  9    get_model_args,
+ 10    get_processor_name,
+ 11)
+ 12from opsml.model.interfaces.pytorch import TorchModel
+ 13from opsml.types import CommonKwargs, Suffix, TorchOnnxArgs, TrainedModelType
+ 14
+ 15try:
+ 16    from lightning import LightningModule, Trainer
+ 17
+ 18    class LightningModel(TorchModel):
+ 19        """Model interface for Pytorch Lightning models.
+ 20
+ 21        Args:
+ 22            model:
+ 23                Torch lightning model
+ 24            preprocessor:
+ 25                Optional preprocessor
+ 26            sample_data:
+ 27                Sample data to be used for type inference.
+ 28                This should match exactly what the model expects as input.
+ 29            task_type:
+ 30                Task type for model. Defaults to undefined.
+ 31            model_type:
+ 32                Optional model type. This is inferred automatically.
+ 33            preprocessor_name:
+ 34                Optional preprocessor. This is inferred automatically if a
+ 35                preprocessor is provided.
+ 36
+ 37        Returns:
+ 38        LightningModel
+ 39        """
+ 40
+ 41        model: Optional[Trainer] = None  # type: ignore[assignment]
+ 42        onnx_args: Optional[TorchOnnxArgs] = None
+ 43
+ 44        @property
+ 45        def model_class(self) -> str:
+ 46            return TrainedModelType.PYTORCH_LIGHTNING.value
+ 47
+ 48        @model_validator(mode="before")
+ 49        @classmethod
+ 50        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 51            model = model_args.get("model")
+ 52
+ 53            if model_args.get("modelcard_uid", False):
+ 54                return model_args
+ 55
+ 56            model, module, bases = get_model_args(model)
+ 57
+ 58            if "lightning.pytorch" in module:
+ 59                model_args[CommonKwargs.MODEL_TYPE.value] = model.model.__class__.__name__
+ 60
+ 61            for base in bases:
+ 62                if "lightning.pytorch" in base:
+ 63                    model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 64
+ 65            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 66            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 67            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 68            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 69                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 70            )
+ 71
+ 72            return model_args
+ 73
+ 74        def get_sample_prediction(self) -> SamplePrediction:
+ 75            assert self.model is not None, "Trainer is not defined"
+ 76            assert self.sample_data is not None, "Sample data must be provided"
+ 77
+ 78            trainer_model = self.model.model
+ 79            assert trainer_model is not None, "No model provided to trainer"
+ 80
+ 81            # test dict input
+ 82            if isinstance(self.sample_data, dict):
+ 83                try:
+ 84                    prediction = trainer_model(**self.sample_data)
+ 85                except Exception as _:  # pylint: disable=broad-except
+ 86                    prediction = trainer_model(self.sample_data)
+ 87
+ 88            # test list and tuple inputs
+ 89            elif isinstance(self.sample_data, (list, tuple)):
+ 90                try:
+ 91                    prediction = trainer_model(*self.sample_data)
+ 92                except Exception as _:  # pylint: disable=broad-except
+ 93                    prediction = trainer_model(self.sample_data)
+ 94
+ 95            # all others
+ 96            else:
+ 97                prediction = trainer_model(self.sample_data)
+ 98
+ 99            prediction_type = get_class_name(prediction)
+100
+101            return SamplePrediction(prediction_type, prediction)
+102
+103        def save_model(self, path: Path) -> None:
+104            assert self.model is not None, "No model detected in interface"
+105            self.model.save_checkpoint(path)
+106
+107        def load_model(self, path: Path, **kwargs: Any) -> None:
+108            """Load lightning model from path"""
+109
+110            model_arch = kwargs.get(CommonKwargs.MODEL_ARCH.value)
+111
+112            try:
+113                if model_arch is not None:
+114                    # attempt to load checkpoint into model
+115                    assert issubclass(
+116                        model_arch, LightningModule
+117                    ), "Model architecture must be a subclass of LightningModule"
+118                    self.model = model_arch.load_from_checkpoint(checkpoint_path=path, **kwargs)
+119
+120                else:
+121                    # load via torch
+122                    import torch
+123
+124                    self.model = torch.load(path)
+125
+126            except Exception as exc:
+127                raise ValueError(f"Unable to load pytorch lightning model: {exc}") from exc
+128
+129        def convert_to_onnx(self, **kwargs: Path) -> None:
+130            """Converts model to onnx"""
+131            # import packages for onnx conversion
+132            OpsmlImportExceptions.try_torchonnx_imports()
+133
+134            if self.onnx_model is not None:
+135                return None
+136
+137            from opsml.model.onnx.torch_converter import _PyTorchLightningOnnxModel
+138
+139            path: Optional[Path] = kwargs.get("path")
+140            if path is None:
+141                return self._convert_to_onnx_inplace()
+142
+143            self.onnx_model = _PyTorchLightningOnnxModel(self).convert_to_onnx(**{"path": path})
+144            return None
+145
+146        @property
+147        def model_suffix(self) -> str:
+148            """Returns suffix for storage"""
+149            return Suffix.CKPT.value
+150
+151        @staticmethod
+152        def name() -> str:
+153            return LightningModel.__name__
+154
+155except ModuleNotFoundError:
+156    from opsml.model.interfaces.backups import LightningModelNoModule as LightningModel
+
+ + +
+
+ +
+ + class + LightningModel(opsml.model.interfaces.pytorch.TorchModel): + + + +
+ +
 19    class LightningModel(TorchModel):
+ 20        """Model interface for Pytorch Lightning models.
+ 21
+ 22        Args:
+ 23            model:
+ 24                Torch lightning model
+ 25            preprocessor:
+ 26                Optional preprocessor
+ 27            sample_data:
+ 28                Sample data to be used for type inference.
+ 29                This should match exactly what the model expects as input.
+ 30            task_type:
+ 31                Task type for model. Defaults to undefined.
+ 32            model_type:
+ 33                Optional model type. This is inferred automatically.
+ 34            preprocessor_name:
+ 35                Optional preprocessor. This is inferred automatically if a
+ 36                preprocessor is provided.
+ 37
+ 38        Returns:
+ 39        LightningModel
+ 40        """
+ 41
+ 42        model: Optional[Trainer] = None  # type: ignore[assignment]
+ 43        onnx_args: Optional[TorchOnnxArgs] = None
+ 44
+ 45        @property
+ 46        def model_class(self) -> str:
+ 47            return TrainedModelType.PYTORCH_LIGHTNING.value
+ 48
+ 49        @model_validator(mode="before")
+ 50        @classmethod
+ 51        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 52            model = model_args.get("model")
+ 53
+ 54            if model_args.get("modelcard_uid", False):
+ 55                return model_args
+ 56
+ 57            model, module, bases = get_model_args(model)
+ 58
+ 59            if "lightning.pytorch" in module:
+ 60                model_args[CommonKwargs.MODEL_TYPE.value] = model.model.__class__.__name__
+ 61
+ 62            for base in bases:
+ 63                if "lightning.pytorch" in base:
+ 64                    model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 65
+ 66            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 67            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 68            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 69            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 70                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 71            )
+ 72
+ 73            return model_args
+ 74
+ 75        def get_sample_prediction(self) -> SamplePrediction:
+ 76            assert self.model is not None, "Trainer is not defined"
+ 77            assert self.sample_data is not None, "Sample data must be provided"
+ 78
+ 79            trainer_model = self.model.model
+ 80            assert trainer_model is not None, "No model provided to trainer"
+ 81
+ 82            # test dict input
+ 83            if isinstance(self.sample_data, dict):
+ 84                try:
+ 85                    prediction = trainer_model(**self.sample_data)
+ 86                except Exception as _:  # pylint: disable=broad-except
+ 87                    prediction = trainer_model(self.sample_data)
+ 88
+ 89            # test list and tuple inputs
+ 90            elif isinstance(self.sample_data, (list, tuple)):
+ 91                try:
+ 92                    prediction = trainer_model(*self.sample_data)
+ 93                except Exception as _:  # pylint: disable=broad-except
+ 94                    prediction = trainer_model(self.sample_data)
+ 95
+ 96            # all others
+ 97            else:
+ 98                prediction = trainer_model(self.sample_data)
+ 99
+100            prediction_type = get_class_name(prediction)
+101
+102            return SamplePrediction(prediction_type, prediction)
+103
+104        def save_model(self, path: Path) -> None:
+105            assert self.model is not None, "No model detected in interface"
+106            self.model.save_checkpoint(path)
+107
+108        def load_model(self, path: Path, **kwargs: Any) -> None:
+109            """Load lightning model from path"""
+110
+111            model_arch = kwargs.get(CommonKwargs.MODEL_ARCH.value)
+112
+113            try:
+114                if model_arch is not None:
+115                    # attempt to load checkpoint into model
+116                    assert issubclass(
+117                        model_arch, LightningModule
+118                    ), "Model architecture must be a subclass of LightningModule"
+119                    self.model = model_arch.load_from_checkpoint(checkpoint_path=path, **kwargs)
+120
+121                else:
+122                    # load via torch
+123                    import torch
+124
+125                    self.model = torch.load(path)
+126
+127            except Exception as exc:
+128                raise ValueError(f"Unable to load pytorch lightning model: {exc}") from exc
+129
+130        def convert_to_onnx(self, **kwargs: Path) -> None:
+131            """Converts model to onnx"""
+132            # import packages for onnx conversion
+133            OpsmlImportExceptions.try_torchonnx_imports()
+134
+135            if self.onnx_model is not None:
+136                return None
+137
+138            from opsml.model.onnx.torch_converter import _PyTorchLightningOnnxModel
+139
+140            path: Optional[Path] = kwargs.get("path")
+141            if path is None:
+142                return self._convert_to_onnx_inplace()
+143
+144            self.onnx_model = _PyTorchLightningOnnxModel(self).convert_to_onnx(**{"path": path})
+145            return None
+146
+147        @property
+148        def model_suffix(self) -> str:
+149            """Returns suffix for storage"""
+150            return Suffix.CKPT.value
+151
+152        @staticmethod
+153        def name() -> str:
+154            return LightningModel.__name__
+
+ + +

Model interface for Pytorch Lightning models.

+ +
Arguments:
+ +
    +
  • model: Torch lightning model
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference. +This should match exactly what the model expects as input.
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a +preprocessor is provided.
  • +
+ +

Returns: +LightningModel

+
+ + +
+
+ model: Optional[lightning.pytorch.trainer.trainer.Trainer] + + +
+ + + + +
+
+
+ onnx_args: Optional[opsml.types.model.TorchOnnxArgs] + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
45        @property
+46        def model_class(self) -> str:
+47            return TrainedModelType.PYTORCH_LIGHTNING.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
49        @model_validator(mode="before")
+50        @classmethod
+51        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+52            model = model_args.get("model")
+53
+54            if model_args.get("modelcard_uid", False):
+55                return model_args
+56
+57            model, module, bases = get_model_args(model)
+58
+59            if "lightning.pytorch" in module:
+60                model_args[CommonKwargs.MODEL_TYPE.value] = model.model.__class__.__name__
+61
+62            for base in bases:
+63                if "lightning.pytorch" in base:
+64                    model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+65
+66            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+67            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+68            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+69            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+70                model_args.get(CommonKwargs.PREPROCESSOR.value),
+71            )
+72
+73            return model_args
+
+ + + + +
+
+ +
+ + def + get_sample_prediction(self) -> opsml.model.interfaces.base.SamplePrediction: + + + +
+ +
 75        def get_sample_prediction(self) -> SamplePrediction:
+ 76            assert self.model is not None, "Trainer is not defined"
+ 77            assert self.sample_data is not None, "Sample data must be provided"
+ 78
+ 79            trainer_model = self.model.model
+ 80            assert trainer_model is not None, "No model provided to trainer"
+ 81
+ 82            # test dict input
+ 83            if isinstance(self.sample_data, dict):
+ 84                try:
+ 85                    prediction = trainer_model(**self.sample_data)
+ 86                except Exception as _:  # pylint: disable=broad-except
+ 87                    prediction = trainer_model(self.sample_data)
+ 88
+ 89            # test list and tuple inputs
+ 90            elif isinstance(self.sample_data, (list, tuple)):
+ 91                try:
+ 92                    prediction = trainer_model(*self.sample_data)
+ 93                except Exception as _:  # pylint: disable=broad-except
+ 94                    prediction = trainer_model(self.sample_data)
+ 95
+ 96            # all others
+ 97            else:
+ 98                prediction = trainer_model(self.sample_data)
+ 99
+100            prediction_type = get_class_name(prediction)
+101
+102            return SamplePrediction(prediction_type, prediction)
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
104        def save_model(self, path: Path) -> None:
+105            assert self.model is not None, "No model detected in interface"
+106            self.model.save_checkpoint(path)
+
+ + +

Save pytorch model to path

+ +
Arguments:
+ +
    +
  • path: pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
108        def load_model(self, path: Path, **kwargs: Any) -> None:
+109            """Load lightning model from path"""
+110
+111            model_arch = kwargs.get(CommonKwargs.MODEL_ARCH.value)
+112
+113            try:
+114                if model_arch is not None:
+115                    # attempt to load checkpoint into model
+116                    assert issubclass(
+117                        model_arch, LightningModule
+118                    ), "Model architecture must be a subclass of LightningModule"
+119                    self.model = model_arch.load_from_checkpoint(checkpoint_path=path, **kwargs)
+120
+121                else:
+122                    # load via torch
+123                    import torch
+124
+125                    self.model = torch.load(path)
+126
+127            except Exception as exc:
+128                raise ValueError(f"Unable to load pytorch lightning model: {exc}") from exc
+
+ + +

Load lightning model from path

+
+ + +
+
+ +
+ + def + convert_to_onnx(self, **kwargs: pathlib.Path) -> None: + + + +
+ +
130        def convert_to_onnx(self, **kwargs: Path) -> None:
+131            """Converts model to onnx"""
+132            # import packages for onnx conversion
+133            OpsmlImportExceptions.try_torchonnx_imports()
+134
+135            if self.onnx_model is not None:
+136                return None
+137
+138            from opsml.model.onnx.torch_converter import _PyTorchLightningOnnxModel
+139
+140            path: Optional[Path] = kwargs.get("path")
+141            if path is None:
+142                return self._convert_to_onnx_inplace()
+143
+144            self.onnx_model = _PyTorchLightningOnnxModel(self).convert_to_onnx(**{"path": path})
+145            return None
+
+ + +

Converts model to onnx

+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
147        @property
+148        def model_suffix(self) -> str:
+149            """Returns suffix for storage"""
+150            return Suffix.CKPT.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
152        @staticmethod
+153        def name() -> str:
+154            return LightningModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Trainer, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Tensor, Dict[str, Tensor], List[Tensor], Tuple[Tensor], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'onnx_args': FieldInfo(annotation=Union[TorchOnnxArgs, NoneType], required=False), 'save_args': FieldInfo(annotation=TorchSaveArgs, required=False, default=TorchSaveArgs(as_state_dict=False)), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.pytorch.TorchModel
+
sample_data
+
save_args
+
preprocessor
+
preprocessor_name
+
save_onnx
+
save_preprocessor
+
load_preprocessor
+
preprocessor_suffix
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/sklearn.html b/api/opsml/model/interfaces/sklearn.html new file mode 100644 index 000000000..fbd48e109 --- /dev/null +++ b/api/opsml/model/interfaces/sklearn.html @@ -0,0 +1,827 @@ + + + + + + + opsml.model.interfaces.sklearn API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.sklearn

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, Optional, Union
+  3
+  4import joblib
+  5import pandas as pd
+  6from numpy.typing import NDArray
+  7from pydantic import model_validator
+  8
+  9from opsml.helpers.utils import get_class_name
+ 10from opsml.model.interfaces.base import (
+ 11    ModelInterface,
+ 12    get_model_args,
+ 13    get_processor_name,
+ 14)
+ 15from opsml.types import CommonKwargs, Suffix, TrainedModelType
+ 16
+ 17try:
+ 18    from sklearn.base import BaseEstimator
+ 19
+ 20    class SklearnModel(ModelInterface):
+ 21        """Model interface for Sklearn models.
+ 22
+ 23        Args:
+ 24            model:
+ 25                Sklearn model
+ 26            preprocessor:
+ 27                Optional preprocessor
+ 28            sample_data:
+ 29                Sample data to be used for type inference.
+ 30                For sklearn models this should be a pandas DataFrame or numpy array.
+ 31                This should match exactly what the model expects as input.
+ 32            task_type:
+ 33                Task type for model. Defaults to undefined.
+ 34            model_type:
+ 35                Optional model type. This is inferred automatically.
+ 36            preprocessor_name:
+ 37                Optional preprocessor name. This is inferred automatically if a
+ 38                preprocessor is provided.
+ 39
+ 40        Returns:
+ 41        SklearnModel
+ 42        """
+ 43
+ 44        model: Optional[BaseEstimator] = None
+ 45        sample_data: Optional[Union[pd.DataFrame, NDArray[Any]]] = None
+ 46        preprocessor: Optional[Any] = None
+ 47        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 48
+ 49        @property
+ 50        def model_class(self) -> str:
+ 51            return TrainedModelType.SKLEARN_ESTIMATOR.value
+ 52
+ 53        @model_validator(mode="before")
+ 54        @classmethod
+ 55        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 56            model = model_args.get("model")
+ 57
+ 58            if model_args.get("modelcard_uid", False):
+ 59                return model_args
+ 60
+ 61            model, module, bases = get_model_args(model)
+ 62
+ 63            if "sklearn" in module:
+ 64                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 65
+ 66            else:
+ 67                for base in bases:
+ 68                    if "sklearn" in base:
+ 69                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 70
+ 71            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 72            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 73            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 74            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 75                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 76            )
+ 77
+ 78            return model_args
+ 79
+ 80        def save_preprocessor(self, path: Path) -> None:
+ 81            """Saves preprocessor to path if present. Base implementation use Joblib
+ 82
+ 83            Args:
+ 84                path:
+ 85                    Pathlib object
+ 86            """
+ 87            assert self.preprocessor is not None, "No preprocessor detected in interface"
+ 88            joblib.dump(self.preprocessor, path)
+ 89
+ 90        def load_preprocessor(self, path: Path) -> None:
+ 91            """Load preprocessor from pathlib object
+ 92
+ 93            Args:
+ 94                path:
+ 95                    Pathlib object
+ 96            """
+ 97            self.preprocessor = joblib.load(path)
+ 98
+ 99        @property
+100        def preprocessor_suffix(self) -> str:
+101            """Returns suffix for storage"""
+102            return Suffix.JOBLIB.value
+103
+104        @staticmethod
+105        def name() -> str:
+106            return SklearnModel.__name__
+107
+108except ModuleNotFoundError:
+109    from opsml.model.interfaces.backups import SklearnModelNoModule as SklearnModel
+
+ + +
+
+ +
+ + class + SklearnModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 21    class SklearnModel(ModelInterface):
+ 22        """Model interface for Sklearn models.
+ 23
+ 24        Args:
+ 25            model:
+ 26                Sklearn model
+ 27            preprocessor:
+ 28                Optional preprocessor
+ 29            sample_data:
+ 30                Sample data to be used for type inference.
+ 31                For sklearn models this should be a pandas DataFrame or numpy array.
+ 32                This should match exactly what the model expects as input.
+ 33            task_type:
+ 34                Task type for model. Defaults to undefined.
+ 35            model_type:
+ 36                Optional model type. This is inferred automatically.
+ 37            preprocessor_name:
+ 38                Optional preprocessor name. This is inferred automatically if a
+ 39                preprocessor is provided.
+ 40
+ 41        Returns:
+ 42        SklearnModel
+ 43        """
+ 44
+ 45        model: Optional[BaseEstimator] = None
+ 46        sample_data: Optional[Union[pd.DataFrame, NDArray[Any]]] = None
+ 47        preprocessor: Optional[Any] = None
+ 48        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 49
+ 50        @property
+ 51        def model_class(self) -> str:
+ 52            return TrainedModelType.SKLEARN_ESTIMATOR.value
+ 53
+ 54        @model_validator(mode="before")
+ 55        @classmethod
+ 56        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 57            model = model_args.get("model")
+ 58
+ 59            if model_args.get("modelcard_uid", False):
+ 60                return model_args
+ 61
+ 62            model, module, bases = get_model_args(model)
+ 63
+ 64            if "sklearn" in module:
+ 65                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 66
+ 67            else:
+ 68                for base in bases:
+ 69                    if "sklearn" in base:
+ 70                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 71
+ 72            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 73            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 74            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 75            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 76                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 77            )
+ 78
+ 79            return model_args
+ 80
+ 81        def save_preprocessor(self, path: Path) -> None:
+ 82            """Saves preprocessor to path if present. Base implementation use Joblib
+ 83
+ 84            Args:
+ 85                path:
+ 86                    Pathlib object
+ 87            """
+ 88            assert self.preprocessor is not None, "No preprocessor detected in interface"
+ 89            joblib.dump(self.preprocessor, path)
+ 90
+ 91        def load_preprocessor(self, path: Path) -> None:
+ 92            """Load preprocessor from pathlib object
+ 93
+ 94            Args:
+ 95                path:
+ 96                    Pathlib object
+ 97            """
+ 98            self.preprocessor = joblib.load(path)
+ 99
+100        @property
+101        def preprocessor_suffix(self) -> str:
+102            """Returns suffix for storage"""
+103            return Suffix.JOBLIB.value
+104
+105        @staticmethod
+106        def name() -> str:
+107            return SklearnModel.__name__
+
+ + +

Model interface for Sklearn models.

+ +
Arguments:
+ +
    +
  • model: Sklearn model
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference. +For sklearn models this should be a pandas DataFrame or numpy array. +This should match exactly what the model expects as input.
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor name. This is inferred automatically if a +preprocessor is provided.
  • +
+ +

Returns: +SklearnModel

+
+ + +
+
+ model: Optional[sklearn.base.BaseEstimator] + + +
+ + + + +
+
+
+ sample_data: Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], NoneType] + + +
+ + + + +
+
+
+ preprocessor: Optional[Any] + + +
+ + + + +
+
+
+ preprocessor_name: str + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
50        @property
+51        def model_class(self) -> str:
+52            return TrainedModelType.SKLEARN_ESTIMATOR.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
54        @model_validator(mode="before")
+55        @classmethod
+56        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+57            model = model_args.get("model")
+58
+59            if model_args.get("modelcard_uid", False):
+60                return model_args
+61
+62            model, module, bases = get_model_args(model)
+63
+64            if "sklearn" in module:
+65                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+66
+67            else:
+68                for base in bases:
+69                    if "sklearn" in base:
+70                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+71
+72            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+73            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+74            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+75            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+76                model_args.get(CommonKwargs.PREPROCESSOR.value),
+77            )
+78
+79            return model_args
+
+ + + + +
+
+ +
+ + def + save_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
81        def save_preprocessor(self, path: Path) -> None:
+82            """Saves preprocessor to path if present. Base implementation use Joblib
+83
+84            Args:
+85                path:
+86                    Pathlib object
+87            """
+88            assert self.preprocessor is not None, "No preprocessor detected in interface"
+89            joblib.dump(self.preprocessor, path)
+
+ + +

Saves preprocessor to path if present. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
91        def load_preprocessor(self, path: Path) -> None:
+92            """Load preprocessor from pathlib object
+93
+94            Args:
+95                path:
+96                    Pathlib object
+97            """
+98            self.preprocessor = joblib.load(path)
+
+ + +

Load preprocessor from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ preprocessor_suffix: str + + + +
+ +
100        @property
+101        def preprocessor_suffix(self) -> str:
+102            """Returns suffix for storage"""
+103            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
105        @staticmethod
+106        def name() -> str:
+107            return SklearnModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[BaseEstimator, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[DataFrame, ndarray[Any, dtype[Any]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
save_model
+
load_model
+
save_onnx
+
convert_to_onnx
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
get_sample_prediction
+
model_suffix
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/tf.html b/api/opsml/model/interfaces/tf.html new file mode 100644 index 000000000..93200ca17 --- /dev/null +++ b/api/opsml/model/interfaces/tf.html @@ -0,0 +1,1038 @@ + + + + + + + opsml.model.interfaces.tf API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.tf

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, List, Optional, Tuple, Union
+  3
+  4import joblib
+  5import numpy as np
+  6from numpy.typing import NDArray
+  7from pydantic import model_validator
+  8
+  9from opsml.helpers.utils import get_class_name
+ 10from opsml.model.interfaces.base import (
+ 11    ModelInterface,
+ 12    get_model_args,
+ 13    get_processor_name,
+ 14)
+ 15from opsml.types import CommonKwargs, Suffix, TrainedModelType
+ 16
+ 17try:
+ 18    import tensorflow as tf
+ 19
+ 20    ArrayType = Union[NDArray[Any], tf.Tensor]
+ 21
+ 22    class TensorFlowModel(ModelInterface):
+ 23        """Model interface for Tensorflow models.
+ 24
+ 25        Args:
+ 26            model:
+ 27                Tensorflow model
+ 28            preprocessor:
+ 29                Optional preprocessor
+ 30            sample_data:
+ 31                Sample data to be used for type inference and ONNX conversion/validation.
+ 32                This should match exactly what the model expects as input. ArrayType = Union[NDArray[Any], tf.Tensor]
+ 33            task_type:
+ 34                Task type for model. Defaults to undefined.
+ 35            model_type:
+ 36                Optional model type. This is inferred automatically.
+ 37            preprocessor_name:
+ 38                Optional preprocessor. This is inferred automatically if a
+ 39                preprocessor is provided.
+ 40
+ 41        Returns:
+ 42            TensorFlowModel
+ 43        """
+ 44
+ 45        model: Optional[tf.keras.Model] = None
+ 46        sample_data: Optional[Union[ArrayType, Dict[str, ArrayType], List[ArrayType], Tuple[ArrayType]]] = None
+ 47        preprocessor: Optional[Any] = None
+ 48        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 49
+ 50        @property
+ 51        def model_class(self) -> str:
+ 52            return TrainedModelType.TF_KERAS.value
+ 53
+ 54        @classmethod
+ 55        def _get_sample_data(cls, sample_data: Any) -> Any:
+ 56            """Check sample data and returns one record to be used
+ 57            during type inference and ONNX conversion/validation.
+ 58
+ 59            Returns:
+ 60                Sample data with only one record
+ 61            """
+ 62
+ 63            if isinstance(sample_data, (np.ndarray, tf.Tensor)):
+ 64                return sample_data[0:1]
+ 65
+ 66            if isinstance(sample_data, list):
+ 67                return [data[0:1] for data in sample_data]
+ 68
+ 69            if isinstance(sample_data, tuple):
+ 70                return (data[0:1] for data in sample_data)
+ 71
+ 72            if isinstance(sample_data, dict):
+ 73                sample_dict = {}
+ 74                for key, value in sample_data.items():
+ 75                    sample_dict[key] = value[0:1]
+ 76                return sample_dict
+ 77
+ 78            raise ValueError("Provided sample data is not a valid type")
+ 79
+ 80        @model_validator(mode="before")
+ 81        @classmethod
+ 82        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 83            model = model_args.get("model")
+ 84
+ 85            if model_args.get("modelcard_uid", False):
+ 86                return model_args
+ 87
+ 88            model, module, bases = get_model_args(model)
+ 89
+ 90            assert isinstance(model, tf.keras.Model), "Model must be a tensorflow keras model"
+ 91
+ 92            if "keras" in module:
+ 93                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 94
+ 95            else:
+ 96                for base in bases:
+ 97                    if "keras" in base:
+ 98                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 99
+100            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+101            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+102            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+103            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+104                model_args.get(CommonKwargs.PREPROCESSOR.value),
+105            )
+106
+107            return model_args
+108
+109        def save_model(self, path: Path) -> None:
+110            """Save tensorflow model to path
+111
+112            Args:
+113                path:
+114                    pathlib object
+115            """
+116            assert self.model is not None, "Model is not initialized"
+117            self.model.save(path)
+118
+119        def load_model(self, path: Path, **kwargs: Any) -> None:
+120            """Load tensorflow model from path
+121
+122            Args:
+123                path:
+124                    pathlib object
+125                kwargs:
+126                    Additional arguments to be passed to load_model
+127            """
+128            self.model = tf.keras.models.load_model(path, **kwargs)
+129
+130        def save_preprocessor(self, path: Path) -> None:
+131            """Saves preprocessor to path if present. Base implementation use Joblib
+132
+133            Args:
+134                path:
+135                    Pathlib object
+136            """
+137            assert self.preprocessor is not None, "No preprocessor detected in interface"
+138            joblib.dump(self.preprocessor, path)
+139
+140        def load_preprocessor(self, path: Path) -> None:
+141            """Load preprocessor from pathlib object
+142
+143            Args:
+144                path:
+145                    Pathlib object
+146            """
+147            self.preprocessor = joblib.load(path)
+148
+149        @property
+150        def preprocessor_suffix(self) -> str:
+151            """Returns suffix for storage"""
+152            return Suffix.JOBLIB.value
+153
+154        @property
+155        def model_suffix(self) -> str:
+156            """Returns suffix for storage"""
+157            return ""
+158
+159        @staticmethod
+160        def name() -> str:
+161            return TensorFlowModel.__name__
+162
+163except ModuleNotFoundError:
+164    from opsml.model.interfaces.backups import (
+165        TensorFlowModelNoModule as TensorFlowModel,
+166    )
+
+ + +
+
+ +
+ + class + TensorFlowModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 23    class TensorFlowModel(ModelInterface):
+ 24        """Model interface for Tensorflow models.
+ 25
+ 26        Args:
+ 27            model:
+ 28                Tensorflow model
+ 29            preprocessor:
+ 30                Optional preprocessor
+ 31            sample_data:
+ 32                Sample data to be used for type inference and ONNX conversion/validation.
+ 33                This should match exactly what the model expects as input. ArrayType = Union[NDArray[Any], tf.Tensor]
+ 34            task_type:
+ 35                Task type for model. Defaults to undefined.
+ 36            model_type:
+ 37                Optional model type. This is inferred automatically.
+ 38            preprocessor_name:
+ 39                Optional preprocessor. This is inferred automatically if a
+ 40                preprocessor is provided.
+ 41
+ 42        Returns:
+ 43            TensorFlowModel
+ 44        """
+ 45
+ 46        model: Optional[tf.keras.Model] = None
+ 47        sample_data: Optional[Union[ArrayType, Dict[str, ArrayType], List[ArrayType], Tuple[ArrayType]]] = None
+ 48        preprocessor: Optional[Any] = None
+ 49        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 50
+ 51        @property
+ 52        def model_class(self) -> str:
+ 53            return TrainedModelType.TF_KERAS.value
+ 54
+ 55        @classmethod
+ 56        def _get_sample_data(cls, sample_data: Any) -> Any:
+ 57            """Check sample data and returns one record to be used
+ 58            during type inference and ONNX conversion/validation.
+ 59
+ 60            Returns:
+ 61                Sample data with only one record
+ 62            """
+ 63
+ 64            if isinstance(sample_data, (np.ndarray, tf.Tensor)):
+ 65                return sample_data[0:1]
+ 66
+ 67            if isinstance(sample_data, list):
+ 68                return [data[0:1] for data in sample_data]
+ 69
+ 70            if isinstance(sample_data, tuple):
+ 71                return (data[0:1] for data in sample_data)
+ 72
+ 73            if isinstance(sample_data, dict):
+ 74                sample_dict = {}
+ 75                for key, value in sample_data.items():
+ 76                    sample_dict[key] = value[0:1]
+ 77                return sample_dict
+ 78
+ 79            raise ValueError("Provided sample data is not a valid type")
+ 80
+ 81        @model_validator(mode="before")
+ 82        @classmethod
+ 83        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 84            model = model_args.get("model")
+ 85
+ 86            if model_args.get("modelcard_uid", False):
+ 87                return model_args
+ 88
+ 89            model, module, bases = get_model_args(model)
+ 90
+ 91            assert isinstance(model, tf.keras.Model), "Model must be a tensorflow keras model"
+ 92
+ 93            if "keras" in module:
+ 94                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 95
+ 96            else:
+ 97                for base in bases:
+ 98                    if "keras" in base:
+ 99                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+100
+101            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+102            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+103            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+104            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+105                model_args.get(CommonKwargs.PREPROCESSOR.value),
+106            )
+107
+108            return model_args
+109
+110        def save_model(self, path: Path) -> None:
+111            """Save tensorflow model to path
+112
+113            Args:
+114                path:
+115                    pathlib object
+116            """
+117            assert self.model is not None, "Model is not initialized"
+118            self.model.save(path)
+119
+120        def load_model(self, path: Path, **kwargs: Any) -> None:
+121            """Load tensorflow model from path
+122
+123            Args:
+124                path:
+125                    pathlib object
+126                kwargs:
+127                    Additional arguments to be passed to load_model
+128            """
+129            self.model = tf.keras.models.load_model(path, **kwargs)
+130
+131        def save_preprocessor(self, path: Path) -> None:
+132            """Saves preprocessor to path if present. Base implementation use Joblib
+133
+134            Args:
+135                path:
+136                    Pathlib object
+137            """
+138            assert self.preprocessor is not None, "No preprocessor detected in interface"
+139            joblib.dump(self.preprocessor, path)
+140
+141        def load_preprocessor(self, path: Path) -> None:
+142            """Load preprocessor from pathlib object
+143
+144            Args:
+145                path:
+146                    Pathlib object
+147            """
+148            self.preprocessor = joblib.load(path)
+149
+150        @property
+151        def preprocessor_suffix(self) -> str:
+152            """Returns suffix for storage"""
+153            return Suffix.JOBLIB.value
+154
+155        @property
+156        def model_suffix(self) -> str:
+157            """Returns suffix for storage"""
+158            return ""
+159
+160        @staticmethod
+161        def name() -> str:
+162            return TensorFlowModel.__name__
+
+ + +

Model interface for Tensorflow models.

+ +
Arguments:
+ +
    +
  • model: Tensorflow model
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference and ONNX conversion/validation. +This should match exactly what the model expects as input. ArrayType = Union[NDArray[Any], tf.Tensor]
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a +preprocessor is provided.
  • +
+ +
Returns:
+ +
+

TensorFlowModel

+
+
+ + +
+
+ model: Optional[keras.engine.training.Model] + + +
+ + + + +
+
+
+ sample_data: Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor, Dict[str, Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor]], List[Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor]], Tuple[Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor]], NoneType] + + +
+ + + + +
+
+
+ preprocessor: Optional[Any] + + +
+ + + + +
+
+
+ preprocessor_name: str + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
51        @property
+52        def model_class(self) -> str:
+53            return TrainedModelType.TF_KERAS.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
 81        @model_validator(mode="before")
+ 82        @classmethod
+ 83        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 84            model = model_args.get("model")
+ 85
+ 86            if model_args.get("modelcard_uid", False):
+ 87                return model_args
+ 88
+ 89            model, module, bases = get_model_args(model)
+ 90
+ 91            assert isinstance(model, tf.keras.Model), "Model must be a tensorflow keras model"
+ 92
+ 93            if "keras" in module:
+ 94                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 95
+ 96            else:
+ 97                for base in bases:
+ 98                    if "keras" in base:
+ 99                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+100
+101            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+102            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+103            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+104            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+105                model_args.get(CommonKwargs.PREPROCESSOR.value),
+106            )
+107
+108            return model_args
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
110        def save_model(self, path: Path) -> None:
+111            """Save tensorflow model to path
+112
+113            Args:
+114                path:
+115                    pathlib object
+116            """
+117            assert self.model is not None, "Model is not initialized"
+118            self.model.save(path)
+
+ + +

Save tensorflow model to path

+ +
Arguments:
+ +
    +
  • path: pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
120        def load_model(self, path: Path, **kwargs: Any) -> None:
+121            """Load tensorflow model from path
+122
+123            Args:
+124                path:
+125                    pathlib object
+126                kwargs:
+127                    Additional arguments to be passed to load_model
+128            """
+129            self.model = tf.keras.models.load_model(path, **kwargs)
+
+ + +

Load tensorflow model from path

+ +
Arguments:
+ +
    +
  • path: pathlib object
  • +
  • kwargs: Additional arguments to be passed to load_model
  • +
+
+ + +
+
+ +
+ + def + save_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
131        def save_preprocessor(self, path: Path) -> None:
+132            """Saves preprocessor to path if present. Base implementation use Joblib
+133
+134            Args:
+135                path:
+136                    Pathlib object
+137            """
+138            assert self.preprocessor is not None, "No preprocessor detected in interface"
+139            joblib.dump(self.preprocessor, path)
+
+ + +

Saves preprocessor to path if present. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
141        def load_preprocessor(self, path: Path) -> None:
+142            """Load preprocessor from pathlib object
+143
+144            Args:
+145                path:
+146                    Pathlib object
+147            """
+148            self.preprocessor = joblib.load(path)
+
+ + +

Load preprocessor from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ preprocessor_suffix: str + + + +
+ +
150        @property
+151        def preprocessor_suffix(self) -> str:
+152            """Returns suffix for storage"""
+153            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
155        @property
+156        def model_suffix(self) -> str:
+157            """Returns suffix for storage"""
+158            return ""
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
160        @staticmethod
+161        def name() -> str:
+162            return TensorFlowModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Model, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[ndarray[Any, dtype[Any]], Tensor, Dict[str, Union[ndarray[Any, dtype[Any]], Tensor]], List[Union[ndarray[Any, dtype[Any]], Tensor]], Tuple[Union[ndarray[Any, dtype[Any]], Tensor]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
save_onnx
+
convert_to_onnx
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
get_sample_prediction
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/vowpal.html b/api/opsml/model/interfaces/vowpal.html new file mode 100644 index 000000000..e22f84f47 --- /dev/null +++ b/api/opsml/model/interfaces/vowpal.html @@ -0,0 +1,931 @@ + + + + + + + opsml.model.interfaces.vowpal API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.vowpal

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, Optional
+  3
+  4from pydantic import model_validator
+  5
+  6from opsml.helpers.utils import get_class_name
+  7from opsml.model.interfaces.base import ModelInterface
+  8from opsml.types import CommonKwargs, ModelReturn, Suffix, TrainedModelType
+  9
+ 10try:
+ 11    import vowpalwabbit as vw
+ 12
+ 13    class VowpalWabbitModel(ModelInterface):
+ 14        """Model interface for VowPal Wabbit model.
+ 15
+ 16        Args:
+ 17            model:
+ 18                vowpal wabbit workspace
+ 19            sample_data:
+ 20                Sample data to be used for type inference.
+ 21                For vowpal wabbit models this should be a string.
+ 22            arguments:
+ 23                Vowpal Wabbit arguments. This will be inferred automatically from the workspace
+ 24
+ 25        Returns:
+ 26            VowpalWabbitModel
+ 27        """
+ 28
+ 29        model: Optional[vw.Workspace] = None
+ 30        sample_data: Optional[str] = None
+ 31        arguments: str = ""
+ 32
+ 33        @property
+ 34        def model_class(self) -> str:
+ 35            return TrainedModelType.VOWPAL.value
+ 36
+ 37        @classmethod
+ 38        def _get_sample_data(cls, sample_data: str) -> str:
+ 39            """Check sample data and returns one record to be used
+ 40            during type inference and ONNX conversion/validation.
+ 41
+ 42            Returns:
+ 43                Sample data with only one record
+ 44            """
+ 45
+ 46            assert isinstance(sample_data, str), "Sample data must be a string"
+ 47            return sample_data
+ 48
+ 49        @model_validator(mode="before")
+ 50        @classmethod
+ 51        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 52            model = model_args.get("model")
+ 53
+ 54            if model_args.get("modelcard_uid", False):
+ 55                return model_args
+ 56
+ 57            assert model is not None, "Model must not be None"
+ 58
+ 59            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 60            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 61            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 62            model_args[CommonKwargs.VOWPAL_ARGS.value] = model.get_arguments()
+ 63
+ 64            return model_args
+ 65
+ 66        def save_model(self, path: Path) -> None:
+ 67            """Saves vowpal model to ".model" file.
+ 68
+ 69            Args:
+ 70                path:
+ 71                    base path to save model to
+ 72            """
+ 73            assert self.model is not None, "No model found"
+ 74            self.model.save(path.as_posix())
+ 75
+ 76        def load_model(self, path: Path, **kwargs: Any) -> None:
+ 77            """Loads a vowpal model from ".model" file with arguments.
+ 78
+ 79            Args:
+ 80                path:
+ 81                    base path to load from
+ 82                **kwargs:
+ 83                    Additional arguments to be passed to the workspace. This is supplied via
+ 84                    "arguments" key.
+ 85
+ 86                    Example:
+ 87                        arguments="--cb 4"
+ 88                        or
+ 89                        arguments=["--cb", "4"]
+ 90
+ 91                    There is no need to specify "-i" argument. This is done automatically during loading.
+ 92            """
+ 93            args = kwargs.get("arguments", self.arguments)
+ 94
+ 95            if args is None:
+ 96                args = self.arguments
+ 97
+ 98            elif isinstance(args, str):
+ 99                args = args + f" -i {path.as_posix()}"
+100
+101            elif isinstance(args, list):
+102                args.append(f"-i {path.as_posix()}")
+103                args = " ".join(args)
+104
+105            else:
+106                raise ValueError("Arguments must be a string or a list")
+107
+108            self.model = vw.Workspace(args)
+109
+110        def save_onnx(self, path: Path) -> ModelReturn:  # pylint: disable=redundant-returns-doc
+111            """Onnx is not supported for vowpal wabbit models.
+112
+113            Args:
+114                path:
+115                    Path to save
+116
+117            Returns:
+118                ModelReturn
+119            """
+120            raise ValueError("Onnx is not supported for vowpal wabbit models")
+121
+122        @property
+123        def model_suffix(self) -> str:
+124            """Returns suffix for model storage"""
+125            return Suffix.MODEL.value
+126
+127        @staticmethod
+128        def name() -> str:
+129            return VowpalWabbitModel.__name__
+130
+131except ModuleNotFoundError:
+132    from opsml.model.interfaces.backups import (
+133        VowpalWabbitModelNoModule as VowpalWabbitModel,
+134    )
+
+ + +
+
+ +
+ + class + VowpalWabbitModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 14    class VowpalWabbitModel(ModelInterface):
+ 15        """Model interface for VowPal Wabbit model.
+ 16
+ 17        Args:
+ 18            model:
+ 19                vowpal wabbit workspace
+ 20            sample_data:
+ 21                Sample data to be used for type inference.
+ 22                For vowpal wabbit models this should be a string.
+ 23            arguments:
+ 24                Vowpal Wabbit arguments. This will be inferred automatically from the workspace
+ 25
+ 26        Returns:
+ 27            VowpalWabbitModel
+ 28        """
+ 29
+ 30        model: Optional[vw.Workspace] = None
+ 31        sample_data: Optional[str] = None
+ 32        arguments: str = ""
+ 33
+ 34        @property
+ 35        def model_class(self) -> str:
+ 36            return TrainedModelType.VOWPAL.value
+ 37
+ 38        @classmethod
+ 39        def _get_sample_data(cls, sample_data: str) -> str:
+ 40            """Check sample data and returns one record to be used
+ 41            during type inference and ONNX conversion/validation.
+ 42
+ 43            Returns:
+ 44                Sample data with only one record
+ 45            """
+ 46
+ 47            assert isinstance(sample_data, str), "Sample data must be a string"
+ 48            return sample_data
+ 49
+ 50        @model_validator(mode="before")
+ 51        @classmethod
+ 52        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 53            model = model_args.get("model")
+ 54
+ 55            if model_args.get("modelcard_uid", False):
+ 56                return model_args
+ 57
+ 58            assert model is not None, "Model must not be None"
+ 59
+ 60            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 61            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 62            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 63            model_args[CommonKwargs.VOWPAL_ARGS.value] = model.get_arguments()
+ 64
+ 65            return model_args
+ 66
+ 67        def save_model(self, path: Path) -> None:
+ 68            """Saves vowpal model to ".model" file.
+ 69
+ 70            Args:
+ 71                path:
+ 72                    base path to save model to
+ 73            """
+ 74            assert self.model is not None, "No model found"
+ 75            self.model.save(path.as_posix())
+ 76
+ 77        def load_model(self, path: Path, **kwargs: Any) -> None:
+ 78            """Loads a vowpal model from ".model" file with arguments.
+ 79
+ 80            Args:
+ 81                path:
+ 82                    base path to load from
+ 83                **kwargs:
+ 84                    Additional arguments to be passed to the workspace. This is supplied via
+ 85                    "arguments" key.
+ 86
+ 87                    Example:
+ 88                        arguments="--cb 4"
+ 89                        or
+ 90                        arguments=["--cb", "4"]
+ 91
+ 92                    There is no need to specify "-i" argument. This is done automatically during loading.
+ 93            """
+ 94            args = kwargs.get("arguments", self.arguments)
+ 95
+ 96            if args is None:
+ 97                args = self.arguments
+ 98
+ 99            elif isinstance(args, str):
+100                args = args + f" -i {path.as_posix()}"
+101
+102            elif isinstance(args, list):
+103                args.append(f"-i {path.as_posix()}")
+104                args = " ".join(args)
+105
+106            else:
+107                raise ValueError("Arguments must be a string or a list")
+108
+109            self.model = vw.Workspace(args)
+110
+111        def save_onnx(self, path: Path) -> ModelReturn:  # pylint: disable=redundant-returns-doc
+112            """Onnx is not supported for vowpal wabbit models.
+113
+114            Args:
+115                path:
+116                    Path to save
+117
+118            Returns:
+119                ModelReturn
+120            """
+121            raise ValueError("Onnx is not supported for vowpal wabbit models")
+122
+123        @property
+124        def model_suffix(self) -> str:
+125            """Returns suffix for model storage"""
+126            return Suffix.MODEL.value
+127
+128        @staticmethod
+129        def name() -> str:
+130            return VowpalWabbitModel.__name__
+
+ + +

Model interface for VowPal Wabbit model.

+ +
Arguments:
+ +
    +
  • model: vowpal wabbit workspace
  • +
  • sample_data: Sample data to be used for type inference. +For vowpal wabbit models this should be a string.
  • +
  • arguments: Vowpal Wabbit arguments. This will be inferred automatically from the workspace
  • +
+ +
Returns:
+ +
+

VowpalWabbitModel

+
+
+ + +
+
+ model: Optional[vowpalwabbit.pyvw.Workspace] + + +
+ + + + +
+
+
+ sample_data: Optional[str] + + +
+ + + + +
+
+
+ arguments: str + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
34        @property
+35        def model_class(self) -> str:
+36            return TrainedModelType.VOWPAL.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
50        @model_validator(mode="before")
+51        @classmethod
+52        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+53            model = model_args.get("model")
+54
+55            if model_args.get("modelcard_uid", False):
+56                return model_args
+57
+58            assert model is not None, "Model must not be None"
+59
+60            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+61            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+62            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+63            model_args[CommonKwargs.VOWPAL_ARGS.value] = model.get_arguments()
+64
+65            return model_args
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
67        def save_model(self, path: Path) -> None:
+68            """Saves vowpal model to ".model" file.
+69
+70            Args:
+71                path:
+72                    base path to save model to
+73            """
+74            assert self.model is not None, "No model found"
+75            self.model.save(path.as_posix())
+
+ + +

Saves vowpal model to ".model" file.

+ +
Arguments:
+ +
    +
  • path: base path to save model to
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
 77        def load_model(self, path: Path, **kwargs: Any) -> None:
+ 78            """Loads a vowpal model from ".model" file with arguments.
+ 79
+ 80            Args:
+ 81                path:
+ 82                    base path to load from
+ 83                **kwargs:
+ 84                    Additional arguments to be passed to the workspace. This is supplied via
+ 85                    "arguments" key.
+ 86
+ 87                    Example:
+ 88                        arguments="--cb 4"
+ 89                        or
+ 90                        arguments=["--cb", "4"]
+ 91
+ 92                    There is no need to specify "-i" argument. This is done automatically during loading.
+ 93            """
+ 94            args = kwargs.get("arguments", self.arguments)
+ 95
+ 96            if args is None:
+ 97                args = self.arguments
+ 98
+ 99            elif isinstance(args, str):
+100                args = args + f" -i {path.as_posix()}"
+101
+102            elif isinstance(args, list):
+103                args.append(f"-i {path.as_posix()}")
+104                args = " ".join(args)
+105
+106            else:
+107                raise ValueError("Arguments must be a string or a list")
+108
+109            self.model = vw.Workspace(args)
+
+ + +

Loads a vowpal model from ".model" file with arguments.

+ +
Arguments:
+ +
    +
  • path: base path to load from
  • +
  • **kwargs: Additional arguments to be passed to the workspace. This is supplied via +"arguments" key.

    + +

    Example: + arguments="--cb 4" + or + arguments=["--cb", "4"]

    + +

    There is no need to specify "-i" argument. This is done automatically during loading.

  • +
+
+ + +
+
+ +
+ + def + save_onnx(self, path: pathlib.Path) -> opsml.types.model.ModelReturn: + + + +
+ +
111        def save_onnx(self, path: Path) -> ModelReturn:  # pylint: disable=redundant-returns-doc
+112            """Onnx is not supported for vowpal wabbit models.
+113
+114            Args:
+115                path:
+116                    Path to save
+117
+118            Returns:
+119                ModelReturn
+120            """
+121            raise ValueError("Onnx is not supported for vowpal wabbit models")
+
+ + +

Onnx is not supported for vowpal wabbit models.

+ +
Arguments:
+ +
    +
  • path: Path to save
  • +
+ +
Returns:
+ +
+

ModelReturn

+
+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
123        @property
+124        def model_suffix(self) -> str:
+125            """Returns suffix for model storage"""
+126            return Suffix.MODEL.value
+
+ + +

Returns suffix for model storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
128        @staticmethod
+129        def name() -> str:
+130            return VowpalWabbitModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Workspace, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[str, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'arguments': FieldInfo(annotation=str, required=False, default='')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
convert_to_onnx
+
load_onnx_model
+
save_sample_data
+
load_sample_data
+
get_sample_prediction
+
data_suffix
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/interfaces/xgb.html b/api/opsml/model/interfaces/xgb.html new file mode 100644 index 000000000..2dd0ff7e3 --- /dev/null +++ b/api/opsml/model/interfaces/xgb.html @@ -0,0 +1,1316 @@ + + + + + + + opsml.model.interfaces.xgb API documentation + + + + + + + + + +
+
+

+opsml.model.interfaces.xgb

+ + + + + + +
  1from pathlib import Path
+  2from typing import Any, Dict, Optional, Union
+  3
+  4import joblib
+  5import pandas as pd
+  6from numpy.typing import NDArray
+  7from pydantic import model_validator
+  8
+  9from opsml.helpers.logging import ArtifactLogger
+ 10from opsml.helpers.utils import get_class_name
+ 11from opsml.model import ModelInterface
+ 12from opsml.model.interfaces.base import get_model_args, get_processor_name
+ 13from opsml.types import CommonKwargs, ModelReturn, Suffix, TrainedModelType
+ 14
+ 15logger = ArtifactLogger.get_logger()
+ 16
+ 17try:
+ 18    from xgboost import Booster, DMatrix, XGBModel
+ 19
+ 20    class XGBoostModel(ModelInterface):
+ 21        """Model interface for XGBoost model class. Currently, only Sklearn flavor of XGBoost
+ 22        regressor and classifier are supported.
+ 23
+ 24        Args:
+ 25            model:
+ 26                XGBoost model. Can be either a Booster or XGBModel.
+ 27            preprocessor:
+ 28                Optional preprocessor
+ 29            sample_data:
+ 30                Sample data to be used for type inference and ONNX conversion/validation.
+ 31                This should match exactly what the model expects as input.
+ 32            task_type:
+ 33                Task type for model. Defaults to undefined.
+ 34            model_type:
+ 35                Optional model type. This is inferred automatically.
+ 36            preprocessor_name:
+ 37                Optional preprocessor. This is inferred automatically if a
+ 38                preprocessor is provided.
+ 39
+ 40        Returns:
+ 41            XGBoostModel
+ 42        """
+ 43
+ 44        model: Optional[Union[Booster, XGBModel]] = None
+ 45        sample_data: Optional[Union[pd.DataFrame, NDArray[Any], DMatrix]] = None
+ 46        preprocessor: Optional[Any] = None
+ 47        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 48
+ 49        @property
+ 50        def model_class(self) -> str:
+ 51            if "Booster" in self.model_type:
+ 52                return TrainedModelType.XGB_BOOSTER.value
+ 53            return TrainedModelType.SKLEARN_ESTIMATOR.value
+ 54
+ 55        @classmethod
+ 56        def _get_sample_data(cls, sample_data: Any) -> Union[pd.DataFrame, NDArray[Any], DMatrix]:
+ 57            """Check sample data and returns one record to be used
+ 58            during type inference and ONNX conversion/validation.
+ 59
+ 60            Returns:
+ 61                Sample data with only one record
+ 62            """
+ 63            if isinstance(sample_data, DMatrix):
+ 64                return sample_data.slice([0])
+ 65            return super()._get_sample_data(sample_data)
+ 66
+ 67        @model_validator(mode="before")
+ 68        @classmethod
+ 69        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 70            model = model_args.get("model")
+ 71
+ 72            if model_args.get("modelcard_uid", False):
+ 73                return model_args
+ 74
+ 75            model, _, bases = get_model_args(model)
+ 76
+ 77            if isinstance(model, XGBModel):
+ 78                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 79
+ 80            elif isinstance(model, Booster):
+ 81                model_args[CommonKwargs.MODEL_TYPE.value] = "Booster"
+ 82
+ 83            else:
+ 84                for base in bases:
+ 85                    if "sklearn" in base:
+ 86                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 87
+ 88            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 89            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 90            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 91            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 92                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 93            )
+ 94
+ 95            return model_args
+ 96
+ 97        def save_model(self, path: Path) -> None:
+ 98            """Saves lgb model according to model format. Booster models are saved to text.
+ 99            Sklearn models are saved via joblib.
+100
+101            Args:
+102                path:
+103                    base path to save model to
+104            """
+105            assert self.model is not None, "No model found"
+106            if isinstance(self.model, Booster):
+107                self.model.save_model(path)
+108
+109            else:
+110                super().save_model(path)
+111
+112        def load_model(self, path: Path, **kwargs: Any) -> None:
+113            """Loads lightgbm booster or sklearn model
+114
+115
+116            Args:
+117                path:
+118                    base path to load from
+119                **kwargs:
+120                    Additional keyword arguments
+121            """
+122
+123            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+124                self.model = Booster(model_file=path)
+125            else:
+126                super().load_model(path)
+127
+128        def save_preprocessor(self, path: Path) -> None:
+129            """Saves preprocessor to path if present. Base implementation use Joblib
+130
+131            Args:
+132                path:
+133                    Pathlib object
+134            """
+135            assert self.preprocessor is not None, "No preprocessor detected in interface"
+136            joblib.dump(self.preprocessor, path)
+137
+138        def load_preprocessor(self, path: Path) -> None:
+139            """Load preprocessor from pathlib object
+140
+141            Args:
+142                path:
+143                    Pathlib object
+144            """
+145            self.preprocessor = joblib.load(path)
+146
+147        def save_onnx(self, path: Path) -> ModelReturn:
+148            """Saves the onnx model
+149
+150            Args:
+151                path:
+152                    Path to save
+153
+154            Returns:
+155                ModelReturn
+156            """
+157
+158            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+159                logger.warning("ONNX conversion for XGBoost Booster is not supported")
+160
+161            return super().save_onnx(path)
+162
+163        def save_sample_data(self, path: Path) -> None:
+164            """Serialized and save sample data to path.
+165
+166            Args:
+167                path:
+168                    Pathlib object
+169            """
+170            if isinstance(self.sample_data, DMatrix):
+171                self.sample_data.save_binary(path)
+172
+173            else:
+174                joblib.dump(self.sample_data, path)
+175
+176        def load_sample_data(self, path: Path) -> None:
+177            """Serialized and save sample data to path.
+178
+179            Args:
+180                path:
+181                    Pathlib object
+182            """
+183            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+184                self.sample_data = DMatrix(path)
+185            else:
+186                self.sample_data = joblib.load(path)
+187
+188        @property
+189        def model_suffix(self) -> str:
+190            if self.model_type == TrainedModelType.XGB_BOOSTER.value:
+191                return Suffix.JSON.value
+192
+193            return super().model_suffix
+194
+195        @property
+196        def preprocessor_suffix(self) -> str:
+197            """Returns suffix for storage"""
+198            return Suffix.JOBLIB.value
+199
+200        @property
+201        def data_suffix(self) -> str:
+202            """Returns suffix for storage"""
+203            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+204                return Suffix.DMATRIX.value
+205            return Suffix.JOBLIB.value
+206
+207        @staticmethod
+208        def name() -> str:
+209            return XGBoostModel.__name__
+210
+211except ModuleNotFoundError:
+212    from opsml.model.interfaces.backups import XGBoostModelNoModule as XGBoostModel
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + XGBoostModel(opsml.model.interfaces.base.ModelInterface): + + + +
+ +
 21    class XGBoostModel(ModelInterface):
+ 22        """Model interface for XGBoost model class. Currently, only Sklearn flavor of XGBoost
+ 23        regressor and classifier are supported.
+ 24
+ 25        Args:
+ 26            model:
+ 27                XGBoost model. Can be either a Booster or XGBModel.
+ 28            preprocessor:
+ 29                Optional preprocessor
+ 30            sample_data:
+ 31                Sample data to be used for type inference and ONNX conversion/validation.
+ 32                This should match exactly what the model expects as input.
+ 33            task_type:
+ 34                Task type for model. Defaults to undefined.
+ 35            model_type:
+ 36                Optional model type. This is inferred automatically.
+ 37            preprocessor_name:
+ 38                Optional preprocessor. This is inferred automatically if a
+ 39                preprocessor is provided.
+ 40
+ 41        Returns:
+ 42            XGBoostModel
+ 43        """
+ 44
+ 45        model: Optional[Union[Booster, XGBModel]] = None
+ 46        sample_data: Optional[Union[pd.DataFrame, NDArray[Any], DMatrix]] = None
+ 47        preprocessor: Optional[Any] = None
+ 48        preprocessor_name: str = CommonKwargs.UNDEFINED.value
+ 49
+ 50        @property
+ 51        def model_class(self) -> str:
+ 52            if "Booster" in self.model_type:
+ 53                return TrainedModelType.XGB_BOOSTER.value
+ 54            return TrainedModelType.SKLEARN_ESTIMATOR.value
+ 55
+ 56        @classmethod
+ 57        def _get_sample_data(cls, sample_data: Any) -> Union[pd.DataFrame, NDArray[Any], DMatrix]:
+ 58            """Check sample data and returns one record to be used
+ 59            during type inference and ONNX conversion/validation.
+ 60
+ 61            Returns:
+ 62                Sample data with only one record
+ 63            """
+ 64            if isinstance(sample_data, DMatrix):
+ 65                return sample_data.slice([0])
+ 66            return super()._get_sample_data(sample_data)
+ 67
+ 68        @model_validator(mode="before")
+ 69        @classmethod
+ 70        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+ 71            model = model_args.get("model")
+ 72
+ 73            if model_args.get("modelcard_uid", False):
+ 74                return model_args
+ 75
+ 76            model, _, bases = get_model_args(model)
+ 77
+ 78            if isinstance(model, XGBModel):
+ 79                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+ 80
+ 81            elif isinstance(model, Booster):
+ 82                model_args[CommonKwargs.MODEL_TYPE.value] = "Booster"
+ 83
+ 84            else:
+ 85                for base in bases:
+ 86                    if "sklearn" in base:
+ 87                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+ 88
+ 89            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+ 90            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+ 91            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+ 92            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+ 93                model_args.get(CommonKwargs.PREPROCESSOR.value),
+ 94            )
+ 95
+ 96            return model_args
+ 97
+ 98        def save_model(self, path: Path) -> None:
+ 99            """Saves lgb model according to model format. Booster models are saved to text.
+100            Sklearn models are saved via joblib.
+101
+102            Args:
+103                path:
+104                    base path to save model to
+105            """
+106            assert self.model is not None, "No model found"
+107            if isinstance(self.model, Booster):
+108                self.model.save_model(path)
+109
+110            else:
+111                super().save_model(path)
+112
+113        def load_model(self, path: Path, **kwargs: Any) -> None:
+114            """Loads lightgbm booster or sklearn model
+115
+116
+117            Args:
+118                path:
+119                    base path to load from
+120                **kwargs:
+121                    Additional keyword arguments
+122            """
+123
+124            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+125                self.model = Booster(model_file=path)
+126            else:
+127                super().load_model(path)
+128
+129        def save_preprocessor(self, path: Path) -> None:
+130            """Saves preprocessor to path if present. Base implementation use Joblib
+131
+132            Args:
+133                path:
+134                    Pathlib object
+135            """
+136            assert self.preprocessor is not None, "No preprocessor detected in interface"
+137            joblib.dump(self.preprocessor, path)
+138
+139        def load_preprocessor(self, path: Path) -> None:
+140            """Load preprocessor from pathlib object
+141
+142            Args:
+143                path:
+144                    Pathlib object
+145            """
+146            self.preprocessor = joblib.load(path)
+147
+148        def save_onnx(self, path: Path) -> ModelReturn:
+149            """Saves the onnx model
+150
+151            Args:
+152                path:
+153                    Path to save
+154
+155            Returns:
+156                ModelReturn
+157            """
+158
+159            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+160                logger.warning("ONNX conversion for XGBoost Booster is not supported")
+161
+162            return super().save_onnx(path)
+163
+164        def save_sample_data(self, path: Path) -> None:
+165            """Serialized and save sample data to path.
+166
+167            Args:
+168                path:
+169                    Pathlib object
+170            """
+171            if isinstance(self.sample_data, DMatrix):
+172                self.sample_data.save_binary(path)
+173
+174            else:
+175                joblib.dump(self.sample_data, path)
+176
+177        def load_sample_data(self, path: Path) -> None:
+178            """Serialized and save sample data to path.
+179
+180            Args:
+181                path:
+182                    Pathlib object
+183            """
+184            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+185                self.sample_data = DMatrix(path)
+186            else:
+187                self.sample_data = joblib.load(path)
+188
+189        @property
+190        def model_suffix(self) -> str:
+191            if self.model_type == TrainedModelType.XGB_BOOSTER.value:
+192                return Suffix.JSON.value
+193
+194            return super().model_suffix
+195
+196        @property
+197        def preprocessor_suffix(self) -> str:
+198            """Returns suffix for storage"""
+199            return Suffix.JOBLIB.value
+200
+201        @property
+202        def data_suffix(self) -> str:
+203            """Returns suffix for storage"""
+204            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+205                return Suffix.DMATRIX.value
+206            return Suffix.JOBLIB.value
+207
+208        @staticmethod
+209        def name() -> str:
+210            return XGBoostModel.__name__
+
+ + +

Model interface for XGBoost model class. Currently, only Sklearn flavor of XGBoost +regressor and classifier are supported.

+ +
Arguments:
+ +
    +
  • model: XGBoost model. Can be either a Booster or XGBModel.
  • +
  • preprocessor: Optional preprocessor
  • +
  • sample_data: Sample data to be used for type inference and ONNX conversion/validation. +This should match exactly what the model expects as input.
  • +
  • task_type: Task type for model. Defaults to undefined.
  • +
  • model_type: Optional model type. This is inferred automatically.
  • +
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a +preprocessor is provided.
  • +
+ +
Returns:
+ +
+

XGBoostModel

+
+
+ + +
+
+ model: Union[xgboost.core.Booster, xgboost.sklearn.XGBModel, NoneType] + + +
+ + + + +
+
+
+ sample_data: Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], xgboost.core.DMatrix, NoneType] + + +
+ + + + +
+
+
+ preprocessor: Optional[Any] + + +
+ + + + +
+
+
+ preprocessor_name: str + + +
+ + + + +
+
+ +
+ model_class: str + + + +
+ +
50        @property
+51        def model_class(self) -> str:
+52            if "Booster" in self.model_type:
+53                return TrainedModelType.XGB_BOOSTER.value
+54            return TrainedModelType.SKLEARN_ESTIMATOR.value
+
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]: + + + +
+ +
68        @model_validator(mode="before")
+69        @classmethod
+70        def check_model(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:
+71            model = model_args.get("model")
+72
+73            if model_args.get("modelcard_uid", False):
+74                return model_args
+75
+76            model, _, bases = get_model_args(model)
+77
+78            if isinstance(model, XGBModel):
+79                model_args[CommonKwargs.MODEL_TYPE.value] = model.__class__.__name__
+80
+81            elif isinstance(model, Booster):
+82                model_args[CommonKwargs.MODEL_TYPE.value] = "Booster"
+83
+84            else:
+85                for base in bases:
+86                    if "sklearn" in base:
+87                        model_args[CommonKwargs.MODEL_TYPE.value] = "subclass"
+88
+89            sample_data = cls._get_sample_data(sample_data=model_args[CommonKwargs.SAMPLE_DATA.value])
+90            model_args[CommonKwargs.SAMPLE_DATA.value] = sample_data
+91            model_args[CommonKwargs.DATA_TYPE.value] = get_class_name(sample_data)
+92            model_args[CommonKwargs.PREPROCESSOR_NAME.value] = get_processor_name(
+93                model_args.get(CommonKwargs.PREPROCESSOR.value),
+94            )
+95
+96            return model_args
+
+ + + + +
+
+ +
+ + def + save_model(self, path: pathlib.Path) -> None: + + + +
+ +
 98        def save_model(self, path: Path) -> None:
+ 99            """Saves lgb model according to model format. Booster models are saved to text.
+100            Sklearn models are saved via joblib.
+101
+102            Args:
+103                path:
+104                    base path to save model to
+105            """
+106            assert self.model is not None, "No model found"
+107            if isinstance(self.model, Booster):
+108                self.model.save_model(path)
+109
+110            else:
+111                super().save_model(path)
+
+ + +

Saves lgb model according to model format. Booster models are saved to text. +Sklearn models are saved via joblib.

+ +
Arguments:
+ +
    +
  • path: base path to save model to
  • +
+
+ + +
+
+ +
+ + def + load_model(self, path: pathlib.Path, **kwargs: Any) -> None: + + + +
+ +
113        def load_model(self, path: Path, **kwargs: Any) -> None:
+114            """Loads lightgbm booster or sklearn model
+115
+116
+117            Args:
+118                path:
+119                    base path to load from
+120                **kwargs:
+121                    Additional keyword arguments
+122            """
+123
+124            if self.model_type == TrainedModelType.LGBM_BOOSTER.value:
+125                self.model = Booster(model_file=path)
+126            else:
+127                super().load_model(path)
+
+ + +

Loads lightgbm booster or sklearn model

+ +
Arguments:
+ +
    +
  • path: base path to load from
  • +
  • **kwargs: Additional keyword arguments
  • +
+
+ + +
+
+ +
+ + def + save_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
129        def save_preprocessor(self, path: Path) -> None:
+130            """Saves preprocessor to path if present. Base implementation use Joblib
+131
+132            Args:
+133                path:
+134                    Pathlib object
+135            """
+136            assert self.preprocessor is not None, "No preprocessor detected in interface"
+137            joblib.dump(self.preprocessor, path)
+
+ + +

Saves preprocessor to path if present. Base implementation use Joblib

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_preprocessor(self, path: pathlib.Path) -> None: + + + +
+ +
139        def load_preprocessor(self, path: Path) -> None:
+140            """Load preprocessor from pathlib object
+141
+142            Args:
+143                path:
+144                    Pathlib object
+145            """
+146            self.preprocessor = joblib.load(path)
+
+ + +

Load preprocessor from pathlib object

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + save_onnx(self, path: pathlib.Path) -> opsml.types.model.ModelReturn: + + + +
+ +
148        def save_onnx(self, path: Path) -> ModelReturn:
+149            """Saves the onnx model
+150
+151            Args:
+152                path:
+153                    Path to save
+154
+155            Returns:
+156                ModelReturn
+157            """
+158
+159            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+160                logger.warning("ONNX conversion for XGBoost Booster is not supported")
+161
+162            return super().save_onnx(path)
+
+ + +

Saves the onnx model

+ +
Arguments:
+ +
    +
  • path: Path to save
  • +
+ +
Returns:
+ +
+

ModelReturn

+
+
+ + +
+
+ +
+ + def + save_sample_data(self, path: pathlib.Path) -> None: + + + +
+ +
164        def save_sample_data(self, path: Path) -> None:
+165            """Serialized and save sample data to path.
+166
+167            Args:
+168                path:
+169                    Pathlib object
+170            """
+171            if isinstance(self.sample_data, DMatrix):
+172                self.sample_data.save_binary(path)
+173
+174            else:
+175                joblib.dump(self.sample_data, path)
+
+ + +

Serialized and save sample data to path.

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ + def + load_sample_data(self, path: pathlib.Path) -> None: + + + +
+ +
177        def load_sample_data(self, path: Path) -> None:
+178            """Serialized and save sample data to path.
+179
+180            Args:
+181                path:
+182                    Pathlib object
+183            """
+184            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+185                self.sample_data = DMatrix(path)
+186            else:
+187                self.sample_data = joblib.load(path)
+
+ + +

Serialized and save sample data to path.

+ +
Arguments:
+ +
    +
  • path: Pathlib object
  • +
+
+ + +
+
+ +
+ model_suffix: str + + + +
+ +
189        @property
+190        def model_suffix(self) -> str:
+191            if self.model_type == TrainedModelType.XGB_BOOSTER.value:
+192                return Suffix.JSON.value
+193
+194            return super().model_suffix
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ preprocessor_suffix: str + + + +
+ +
196        @property
+197        def preprocessor_suffix(self) -> str:
+198            """Returns suffix for storage"""
+199            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+ data_suffix: str + + + +
+ +
201        @property
+202        def data_suffix(self) -> str:
+203            """Returns suffix for storage"""
+204            if self.model_class == TrainedModelType.XGB_BOOSTER.value:
+205                return Suffix.DMATRIX.value
+206            return Suffix.JOBLIB.value
+
+ + +

Returns suffix for storage

+
+ + +
+
+ +
+
@staticmethod
+ + def + name() -> str: + + + +
+ +
208        @staticmethod
+209        def name() -> str:
+210            return XGBoostModel.__name__
+
+ + + + +
+
+
+ model_config = + + {'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'} + + +
+ + + + +
+
+
+ model_fields = + + {'model': FieldInfo(annotation=Union[Booster, XGBModel, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[DataFrame, ndarray[Any, dtype[Any]], DMatrix, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
opsml.model.interfaces.base.ModelInterface
+
onnx_model
+
task_type
+
model_type
+
data_type
+
modelcard_uid
+
check_modelcard_uid
+
convert_to_onnx
+
load_onnx_model
+
get_sample_prediction
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/opsml/model/loader.html b/api/opsml/model/loader.html new file mode 100644 index 000000000..b32f39bc8 --- /dev/null +++ b/api/opsml/model/loader.html @@ -0,0 +1,894 @@ + + + + + + + opsml.model.loader API documentation + + + + + + + + + +
+
+

+opsml.model.loader

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4
+  5# mypy: disable-error-code="arg-type"
+  6
+  7import json
+  8from pathlib import Path
+  9from typing import Any
+ 10
+ 11from opsml.model import HuggingFaceModel, ModelInterface
+ 12from opsml.types import ModelMetadata, OnnxModel, SaveName, Suffix
+ 13
+ 14
+ 15class ModelLoader:
+ 16    """Helper class for loading models from disk and downloading via opsml-cli"""
+ 17
+ 18    def __init__(self, path: Path):
+ 19        """Initialize ModelLoader
+ 20
+ 21        Args:
+ 22            interface:
+ 23                ModelInterface for the model
+ 24            path:
+ 25                Directory path to the model artifacts
+ 26        """
+ 27
+ 28        self.path = path
+ 29        self.metadata = self._load_metadata()
+ 30        self.interface = self._load_interface()
+ 31
+ 32    def _load_interface(self) -> ModelInterface:
+ 33        """Loads a ModelInterface from disk using metadata
+ 34
+ 35        Args:
+ 36            interface:
+ 37                ModelInterface to load
+ 38
+ 39        Returns:
+ 40            ModelInterface
+ 41        """
+ 42        from opsml.storage.card_loader import _get_model_interface
+ 43
+ 44        Interface = _get_model_interface(self.metadata.model_interface)  # pylint: disable=invalid-name
+ 45
+ 46        loaded_interface = Interface.model_construct(
+ 47            _fields_set={"name", "repository", "version"},
+ 48            **{
+ 49                "name": self.metadata.model_name,
+ 50                "repository": self.metadata.model_repository,
+ 51                "version": self.metadata.model_version,
+ 52            },
+ 53        )
+ 54
+ 55        loaded_interface.model_type = self.metadata.model_type
+ 56
+ 57        if hasattr(self.metadata, "prepocessor_name"):
+ 58            loaded_interface.preprocessor_name = self.metadata.preprocessor_name
+ 59
+ 60        if hasattr(self.metadata, "tokenizer_name"):
+ 61            loaded_interface.tokenizer_name = self.metadata.tokenizer_name
+ 62
+ 63        if hasattr(self.metadata, "feature_extractor_name"):
+ 64            loaded_interface.feature_extractor_name = self.metadata.feature_extractor_name
+ 65
+ 66        return loaded_interface
+ 67
+ 68    @property
+ 69    def model(self) -> Any:
+ 70        return self.interface.model
+ 71
+ 72    @property
+ 73    def onnx_model(self) -> OnnxModel:
+ 74        assert self.interface.onnx_model is not None, "OnnxModel not loaded"
+ 75        return self.interface.onnx_model
+ 76
+ 77    @property
+ 78    def preprocessor(self) -> Any:
+ 79        """Quick access to preprocessor from interface"""
+ 80
+ 81        if hasattr(self.interface, "preprocessor"):
+ 82            return self.interface.preprocessor
+ 83
+ 84        if hasattr(self.interface, "tokenizer"):
+ 85            if self.interface.tokenizer is not None:
+ 86                return self.interface.tokenizer
+ 87
+ 88        if hasattr(self.interface, "feature_extractor"):
+ 89            if self.interface.feature_extractor is not None:
+ 90                return self.interface.feature_extractor
+ 91
+ 92        return None
+ 93
+ 94    def _load_metadata(self) -> ModelMetadata:
+ 95        """Load metadata from disk"""
+ 96        metadata_path = (self.path / SaveName.MODEL_METADATA.value).with_suffix(Suffix.JSON.value)
+ 97
+ 98        with metadata_path.open("r") as file_:
+ 99            return ModelMetadata(**json.load(file_))
+100
+101    def _load_huggingface_preprocessors(self) -> None:
+102        """Load huggingface preprocessors from disk"""
+103
+104        assert isinstance(self.interface, HuggingFaceModel), "HuggingFaceModel interface required"
+105
+106        if self.preprocessor is not None:
+107            return
+108
+109        if hasattr(self.metadata, "tokenizer_name"):
+110            load_path = (self.path / SaveName.TOKENIZER.value).with_suffix("")
+111            self.interface.load_tokenizer(load_path)
+112            return
+113
+114        if hasattr(self.metadata, "feature_extractor_name"):
+115            load_path = (self.path / SaveName.FEATURE_EXTRACTOR.value).with_suffix("")
+116            self.interface.load_feature_extractor(load_path)
+117            return
+118
+119        return
+120
+121    def load_preprocessor(self) -> None:
+122        """Load preprocessor from disk"""
+123
+124        if isinstance(self.interface, HuggingFaceModel):
+125            self._load_huggingface_preprocessors()
+126            return
+127
+128        if hasattr(self.metadata, "preprocessor_name"):
+129            load_path = (self.path / SaveName.PREPROCESSOR.value).with_suffix(self.interface.preprocessor_suffix)
+130            self.interface.load_preprocessor(load_path)
+131            return
+132
+133        return
+134
+135    def load_model(self, **kwargs: Any) -> None:
+136        load_path = (self.path / SaveName.TRAINED_MODEL.value).with_suffix(self.interface.model_suffix)
+137        self.interface.load_model(load_path, **kwargs)
+138
+139        if isinstance(self.interface, HuggingFaceModel):
+140            if self.interface.is_pipeline:
+141                self.interface.to_pipeline()
+142
+143    def _load_huggingface_onnx_model(self, **kwargs: Any) -> None:
+144        assert isinstance(self.interface, HuggingFaceModel), "Expected HuggingFaceModel"
+145        load_quantized = kwargs.get("load_quantized", False)
+146        save_name = SaveName.QUANTIZED_MODEL.value if load_quantized else SaveName.ONNX_MODEL.value
+147
+148        if self.interface.is_pipeline:
+149            self._load_huggingface_preprocessors()
+150
+151        load_path = (self.path / save_name).with_suffix(self.interface.model_suffix)
+152        self.interface.onnx_model = OnnxModel(onnx_version=self.metadata.onnx_version)
+153        self.interface.load_onnx_model(load_path)
+154
+155    def load_onnx_model(self, **kwargs: Any) -> None:
+156        """Load onnx model from disk
+157
+158        Kwargs:
+159
+160            ------Note: These kwargs only apply to HuggingFace models------
+161
+162            kwargs:
+163                load_quantized:
+164                    If True, load quantized model
+165
+166                onnx_args:
+167                    Additional onnx args needed to load the model
+168
+169        """
+170        if isinstance(self.interface, HuggingFaceModel):
+171            self.interface.onnx_args = kwargs.get("onnx_args", None)
+172            self._load_huggingface_onnx_model(**kwargs)
+173            return
+174
+175        load_path = (self.path / SaveName.ONNX_MODEL.value).with_suffix(Suffix.ONNX.value)
+176        self.interface.onnx_model = OnnxModel(onnx_version=self.metadata.onnx_version)
+177        self.interface.load_onnx_model(load_path)
+178        return
+
+ + +
+
+ +
+ + class + ModelLoader: + + + +
+ +
 16class ModelLoader:
+ 17    """Helper class for loading models from disk and downloading via opsml-cli"""
+ 18
+ 19    def __init__(self, path: Path):
+ 20        """Initialize ModelLoader
+ 21
+ 22        Args:
+ 23            interface:
+ 24                ModelInterface for the model
+ 25            path:
+ 26                Directory path to the model artifacts
+ 27        """
+ 28
+ 29        self.path = path
+ 30        self.metadata = self._load_metadata()
+ 31        self.interface = self._load_interface()
+ 32
+ 33    def _load_interface(self) -> ModelInterface:
+ 34        """Loads a ModelInterface from disk using metadata
+ 35
+ 36        Args:
+ 37            interface:
+ 38                ModelInterface to load
+ 39
+ 40        Returns:
+ 41            ModelInterface
+ 42        """
+ 43        from opsml.storage.card_loader import _get_model_interface
+ 44
+ 45        Interface = _get_model_interface(self.metadata.model_interface)  # pylint: disable=invalid-name
+ 46
+ 47        loaded_interface = Interface.model_construct(
+ 48            _fields_set={"name", "repository", "version"},
+ 49            **{
+ 50                "name": self.metadata.model_name,
+ 51                "repository": self.metadata.model_repository,
+ 52                "version": self.metadata.model_version,
+ 53            },
+ 54        )
+ 55
+ 56        loaded_interface.model_type = self.metadata.model_type
+ 57
+ 58        if hasattr(self.metadata, "prepocessor_name"):
+ 59            loaded_interface.preprocessor_name = self.metadata.preprocessor_name
+ 60
+ 61        if hasattr(self.metadata, "tokenizer_name"):
+ 62            loaded_interface.tokenizer_name = self.metadata.tokenizer_name
+ 63
+ 64        if hasattr(self.metadata, "feature_extractor_name"):
+ 65            loaded_interface.feature_extractor_name = self.metadata.feature_extractor_name
+ 66
+ 67        return loaded_interface
+ 68
+ 69    @property
+ 70    def model(self) -> Any:
+ 71        return self.interface.model
+ 72
+ 73    @property
+ 74    def onnx_model(self) -> OnnxModel:
+ 75        assert self.interface.onnx_model is not None, "OnnxModel not loaded"
+ 76        return self.interface.onnx_model
+ 77
+ 78    @property
+ 79    def preprocessor(self) -> Any:
+ 80        """Quick access to preprocessor from interface"""
+ 81
+ 82        if hasattr(self.interface, "preprocessor"):
+ 83            return self.interface.preprocessor
+ 84
+ 85        if hasattr(self.interface, "tokenizer"):
+ 86            if self.interface.tokenizer is not None:
+ 87                return self.interface.tokenizer
+ 88
+ 89        if hasattr(self.interface, "feature_extractor"):
+ 90            if self.interface.feature_extractor is not None:
+ 91                return self.interface.feature_extractor
+ 92
+ 93        return None
+ 94
+ 95    def _load_metadata(self) -> ModelMetadata:
+ 96        """Load metadata from disk"""
+ 97        metadata_path = (self.path / SaveName.MODEL_METADATA.value).with_suffix(Suffix.JSON.value)
+ 98
+ 99        with metadata_path.open("r") as file_:
+100            return ModelMetadata(**json.load(file_))
+101
+102    def _load_huggingface_preprocessors(self) -> None:
+103        """Load huggingface preprocessors from disk"""
+104
+105        assert isinstance(self.interface, HuggingFaceModel), "HuggingFaceModel interface required"
+106
+107        if self.preprocessor is not None:
+108            return
+109
+110        if hasattr(self.metadata, "tokenizer_name"):
+111            load_path = (self.path / SaveName.TOKENIZER.value).with_suffix("")
+112            self.interface.load_tokenizer(load_path)
+113            return
+114
+115        if hasattr(self.metadata, "feature_extractor_name"):
+116            load_path = (self.path / SaveName.FEATURE_EXTRACTOR.value).with_suffix("")
+117            self.interface.load_feature_extractor(load_path)
+118            return
+119
+120        return
+121
+122    def load_preprocessor(self) -> None:
+123        """Load preprocessor from disk"""
+124
+125        if isinstance(self.interface, HuggingFaceModel):
+126            self._load_huggingface_preprocessors()
+127            return
+128
+129        if hasattr(self.metadata, "preprocessor_name"):
+130            load_path = (self.path / SaveName.PREPROCESSOR.value).with_suffix(self.interface.preprocessor_suffix)
+131            self.interface.load_preprocessor(load_path)
+132            return
+133
+134        return
+135
+136    def load_model(self, **kwargs: Any) -> None:
+137        load_path = (self.path / SaveName.TRAINED_MODEL.value).with_suffix(self.interface.model_suffix)
+138        self.interface.load_model(load_path, **kwargs)
+139
+140        if isinstance(self.interface, HuggingFaceModel):
+141            if self.interface.is_pipeline:
+142                self.interface.to_pipeline()
+143
+144    def _load_huggingface_onnx_model(self, **kwargs: Any) -> None:
+145        assert isinstance(self.interface, HuggingFaceModel), "Expected HuggingFaceModel"
+146        load_quantized = kwargs.get("load_quantized", False)
+147        save_name = SaveName.QUANTIZED_MODEL.value if load_quantized else SaveName.ONNX_MODEL.value
+148
+149        if self.interface.is_pipeline:
+150            self._load_huggingface_preprocessors()
+151
+152        load_path = (self.path / save_name).with_suffix(self.interface.model_suffix)
+153        self.interface.onnx_model = OnnxModel(onnx_version=self.metadata.onnx_version)
+154        self.interface.load_onnx_model(load_path)
+155
+156    def load_onnx_model(self, **kwargs: Any) -> None:
+157        """Load onnx model from disk
+158
+159        Kwargs:
+160
+161            ------Note: These kwargs only apply to HuggingFace models------
+162
+163            kwargs:
+164                load_quantized:
+165                    If True, load quantized model
+166
+167                onnx_args:
+168                    Additional onnx args needed to load the model
+169
+170        """
+171        if isinstance(self.interface, HuggingFaceModel):
+172            self.interface.onnx_args = kwargs.get("onnx_args", None)
+173            self._load_huggingface_onnx_model(**kwargs)
+174            return
+175
+176        load_path = (self.path / SaveName.ONNX_MODEL.value).with_suffix(Suffix.ONNX.value)
+177        self.interface.onnx_model = OnnxModel(onnx_version=self.metadata.onnx_version)
+178        self.interface.load_onnx_model(load_path)
+179        return
+
+ + +

Helper class for loading models from disk and downloading via opsml-cli

+
+ + +
+ +
+ + ModelLoader(path: pathlib.Path) + + + +
+ +
19    def __init__(self, path: Path):
+20        """Initialize ModelLoader
+21
+22        Args:
+23            interface:
+24                ModelInterface for the model
+25            path:
+26                Directory path to the model artifacts
+27        """
+28
+29        self.path = path
+30        self.metadata = self._load_metadata()
+31        self.interface = self._load_interface()
+
+ + +

Initialize ModelLoader

+ +
Arguments:
+ +
    +
  • interface: ModelInterface for the model
  • +
  • path: Directory path to the model artifacts
  • +
+
+ + +
+
+
+ path + + +
+ + + + +
+
+
+ metadata + + +
+ + + + +
+
+
+ interface + + +
+ + + + +
+
+ +
+ model: Any + + + +
+ +
69    @property
+70    def model(self) -> Any:
+71        return self.interface.model
+
+ + + + +
+
+ +
+ onnx_model: opsml.types.model.OnnxModel + + + +
+ +
73    @property
+74    def onnx_model(self) -> OnnxModel:
+75        assert self.interface.onnx_model is not None, "OnnxModel not loaded"
+76        return self.interface.onnx_model
+
+ + + + +
+
+ +
+ preprocessor: Any + + + +
+ +
78    @property
+79    def preprocessor(self) -> Any:
+80        """Quick access to preprocessor from interface"""
+81
+82        if hasattr(self.interface, "preprocessor"):
+83            return self.interface.preprocessor
+84
+85        if hasattr(self.interface, "tokenizer"):
+86            if self.interface.tokenizer is not None:
+87                return self.interface.tokenizer
+88
+89        if hasattr(self.interface, "feature_extractor"):
+90            if self.interface.feature_extractor is not None:
+91                return self.interface.feature_extractor
+92
+93        return None
+
+ + +

Quick access to preprocessor from interface

+
+ + +
+
+ +
+ + def + load_preprocessor(self) -> None: + + + +
+ +
122    def load_preprocessor(self) -> None:
+123        """Load preprocessor from disk"""
+124
+125        if isinstance(self.interface, HuggingFaceModel):
+126            self._load_huggingface_preprocessors()
+127            return
+128
+129        if hasattr(self.metadata, "preprocessor_name"):
+130            load_path = (self.path / SaveName.PREPROCESSOR.value).with_suffix(self.interface.preprocessor_suffix)
+131            self.interface.load_preprocessor(load_path)
+132            return
+133
+134        return
+
+ + +

Load preprocessor from disk

+
+ + +
+
+ +
+ + def + load_model(self, **kwargs: Any) -> None: + + + +
+ +
136    def load_model(self, **kwargs: Any) -> None:
+137        load_path = (self.path / SaveName.TRAINED_MODEL.value).with_suffix(self.interface.model_suffix)
+138        self.interface.load_model(load_path, **kwargs)
+139
+140        if isinstance(self.interface, HuggingFaceModel):
+141            if self.interface.is_pipeline:
+142                self.interface.to_pipeline()
+
+ + + + +
+
+ +
+ + def + load_onnx_model(self, **kwargs: Any) -> None: + + + +
+ +
156    def load_onnx_model(self, **kwargs: Any) -> None:
+157        """Load onnx model from disk
+158
+159        Kwargs:
+160
+161            ------Note: These kwargs only apply to HuggingFace models------
+162
+163            kwargs:
+164                load_quantized:
+165                    If True, load quantized model
+166
+167                onnx_args:
+168                    Additional onnx args needed to load the model
+169
+170        """
+171        if isinstance(self.interface, HuggingFaceModel):
+172            self.interface.onnx_args = kwargs.get("onnx_args", None)
+173            self._load_huggingface_onnx_model(**kwargs)
+174            return
+175
+176        load_path = (self.path / SaveName.ONNX_MODEL.value).with_suffix(Suffix.ONNX.value)
+177        self.interface.onnx_model = OnnxModel(onnx_version=self.metadata.onnx_version)
+178        self.interface.load_onnx_model(load_path)
+179        return
+
+ + +

Load onnx model from disk

+ +
Kwargs:
+ +
+

------Note: These kwargs only apply to HuggingFace models------

+ +

kwargs: + load_quantized: + If True, load quantized model

+ +
onnx_args:
+    Additional onnx args needed to load the model
+
+
+
+ + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/profile/profile_data.html b/api/opsml/profile/profile_data.html new file mode 100644 index 000000000..d6363ded0 --- /dev/null +++ b/api/opsml/profile/profile_data.html @@ -0,0 +1,676 @@ + + + + + + + opsml.profile.profile_data API documentation + + + + + + + + + +
+
+

+opsml.profile.profile_data

+ + + + + + +
  1# pylint: disable=redefined-outer-name,import-outside-toplevel
+  2# Copyright (c) Shipt, Inc.
+  3# This source code is licensed under the MIT license found in the
+  4# LICENSE file in the root directory of this source tree.
+  5
+  6import os
+  7from typing import Any, List, Union
+  8
+  9import pandas as pd
+ 10import polars as pl
+ 11
+ 12DIR_PATH = os.path.dirname(__file__)
+ 13ProfileReport = Any
+ 14
+ 15
+ 16class DataProfiler:
+ 17    @staticmethod
+ 18    def create_profile_report(
+ 19        data: Union[pd.DataFrame, pl.DataFrame],
+ 20        name: str,
+ 21        sample_perc: float = 1,
+ 22    ) -> ProfileReport:
+ 23        """
+ 24        Creates a `ydata-profiling` report
+ 25
+ 26        Args:
+ 27            data:
+ 28                Pandas dataframe
+ 29            sample_perc:
+ 30                Percentage to use for sampling
+ 31            name:
+ 32                Name of the report
+ 33
+ 34        Returns:
+ 35            `ProfileReport`
+ 36        """
+ 37        from ydata_profiling import ProfileReport
+ 38
+ 39        kwargs = {"title": f"Profile report for {name}"}
+ 40
+ 41        if isinstance(data, pl.DataFrame):
+ 42            if sample_perc < 1:
+ 43                return ProfileReport(
+ 44                    df=data.sample(fraction=sample_perc, with_replacement=False, shuffle=True).to_pandas(),
+ 45                    config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 46                    lazy=False,
+ 47                    **kwargs,
+ 48                )
+ 49
+ 50            return ProfileReport(
+ 51                df=data.to_pandas(),
+ 52                config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 53                lazy=False,
+ 54                **kwargs,
+ 55            )
+ 56
+ 57        if sample_perc < 1:
+ 58            return ProfileReport(
+ 59                df=data.sample(frac=sample_perc, replace=False),
+ 60                config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 61                lazy=False,
+ 62                **kwargs,
+ 63            )
+ 64
+ 65        return ProfileReport(
+ 66            df=data,
+ 67            config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 68            lazy=False,
+ 69            **kwargs,
+ 70        )
+ 71
+ 72    @staticmethod
+ 73    def load_profile(data: bytes) -> ProfileReport:
+ 74        """Loads a `ProfileReport` from data bytes
+ 75
+ 76        Args:
+ 77            data:
+ 78                `ProfileReport` in bytes
+ 79
+ 80        Returns:
+ 81            `ProfileReport`
+ 82        """
+ 83        from ydata_profiling import ProfileReport
+ 84
+ 85        profile = ProfileReport()
+ 86        profile.loads(data)
+ 87        return profile
+ 88
+ 89    @staticmethod
+ 90    def compare_reports(reports: List[ProfileReport]) -> ProfileReport:
+ 91        """Compares ProfileReports
+ 92
+ 93        Args:
+ 94            reports:
+ 95                List of `ProfileReport`
+ 96
+ 97        Returns:
+ 98            `ProfileReport`
+ 99        """
+100        from ydata_profiling import compare
+101
+102        return compare(reports=reports)
+
+ + +
+
+
+ DIR_PATH = +'/home/steven_forrester/github/opsml/opsml/profile' + + +
+ + + + +
+
+
+ ProfileReport = +typing.Any + + +
+ + + + +
+
+ +
+ + class + DataProfiler: + + + +
+ +
 17class DataProfiler:
+ 18    @staticmethod
+ 19    def create_profile_report(
+ 20        data: Union[pd.DataFrame, pl.DataFrame],
+ 21        name: str,
+ 22        sample_perc: float = 1,
+ 23    ) -> ProfileReport:
+ 24        """
+ 25        Creates a `ydata-profiling` report
+ 26
+ 27        Args:
+ 28            data:
+ 29                Pandas dataframe
+ 30            sample_perc:
+ 31                Percentage to use for sampling
+ 32            name:
+ 33                Name of the report
+ 34
+ 35        Returns:
+ 36            `ProfileReport`
+ 37        """
+ 38        from ydata_profiling import ProfileReport
+ 39
+ 40        kwargs = {"title": f"Profile report for {name}"}
+ 41
+ 42        if isinstance(data, pl.DataFrame):
+ 43            if sample_perc < 1:
+ 44                return ProfileReport(
+ 45                    df=data.sample(fraction=sample_perc, with_replacement=False, shuffle=True).to_pandas(),
+ 46                    config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 47                    lazy=False,
+ 48                    **kwargs,
+ 49                )
+ 50
+ 51            return ProfileReport(
+ 52                df=data.to_pandas(),
+ 53                config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 54                lazy=False,
+ 55                **kwargs,
+ 56            )
+ 57
+ 58        if sample_perc < 1:
+ 59            return ProfileReport(
+ 60                df=data.sample(frac=sample_perc, replace=False),
+ 61                config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 62                lazy=False,
+ 63                **kwargs,
+ 64            )
+ 65
+ 66        return ProfileReport(
+ 67            df=data,
+ 68            config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+ 69            lazy=False,
+ 70            **kwargs,
+ 71        )
+ 72
+ 73    @staticmethod
+ 74    def load_profile(data: bytes) -> ProfileReport:
+ 75        """Loads a `ProfileReport` from data bytes
+ 76
+ 77        Args:
+ 78            data:
+ 79                `ProfileReport` in bytes
+ 80
+ 81        Returns:
+ 82            `ProfileReport`
+ 83        """
+ 84        from ydata_profiling import ProfileReport
+ 85
+ 86        profile = ProfileReport()
+ 87        profile.loads(data)
+ 88        return profile
+ 89
+ 90    @staticmethod
+ 91    def compare_reports(reports: List[ProfileReport]) -> ProfileReport:
+ 92        """Compares ProfileReports
+ 93
+ 94        Args:
+ 95            reports:
+ 96                List of `ProfileReport`
+ 97
+ 98        Returns:
+ 99            `ProfileReport`
+100        """
+101        from ydata_profiling import compare
+102
+103        return compare(reports=reports)
+
+ + + + +
+ +
+
@staticmethod
+ + def + create_profile_report( data: Union[pandas.core.frame.DataFrame, polars.dataframe.frame.DataFrame], name: str, sample_perc: float = 1) -> Any: + + + +
+ +
18    @staticmethod
+19    def create_profile_report(
+20        data: Union[pd.DataFrame, pl.DataFrame],
+21        name: str,
+22        sample_perc: float = 1,
+23    ) -> ProfileReport:
+24        """
+25        Creates a `ydata-profiling` report
+26
+27        Args:
+28            data:
+29                Pandas dataframe
+30            sample_perc:
+31                Percentage to use for sampling
+32            name:
+33                Name of the report
+34
+35        Returns:
+36            `ProfileReport`
+37        """
+38        from ydata_profiling import ProfileReport
+39
+40        kwargs = {"title": f"Profile report for {name}"}
+41
+42        if isinstance(data, pl.DataFrame):
+43            if sample_perc < 1:
+44                return ProfileReport(
+45                    df=data.sample(fraction=sample_perc, with_replacement=False, shuffle=True).to_pandas(),
+46                    config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+47                    lazy=False,
+48                    **kwargs,
+49                )
+50
+51            return ProfileReport(
+52                df=data.to_pandas(),
+53                config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+54                lazy=False,
+55                **kwargs,
+56            )
+57
+58        if sample_perc < 1:
+59            return ProfileReport(
+60                df=data.sample(frac=sample_perc, replace=False),
+61                config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+62                lazy=False,
+63                **kwargs,
+64            )
+65
+66        return ProfileReport(
+67            df=data,
+68            config_file=os.path.join(DIR_PATH, "profile_config.yml"),
+69            lazy=False,
+70            **kwargs,
+71        )
+
+ + +

Creates a ydata-profiling report

+ +
Arguments:
+ +
    +
  • data: Pandas dataframe
  • +
  • sample_perc: Percentage to use for sampling
  • +
  • name: Name of the report
  • +
+ +
Returns:
+ +
+

ProfileReport

+
+
+ + +
+
+ +
+
@staticmethod
+ + def + load_profile(data: bytes) -> Any: + + + +
+ +
73    @staticmethod
+74    def load_profile(data: bytes) -> ProfileReport:
+75        """Loads a `ProfileReport` from data bytes
+76
+77        Args:
+78            data:
+79                `ProfileReport` in bytes
+80
+81        Returns:
+82            `ProfileReport`
+83        """
+84        from ydata_profiling import ProfileReport
+85
+86        profile = ProfileReport()
+87        profile.loads(data)
+88        return profile
+
+ + +

Loads a ProfileReport from data bytes

+ +
Arguments:
+ + + +
Returns:
+ +
+

ProfileReport

+
+
+ + +
+
+ +
+
@staticmethod
+ + def + compare_reports(reports: List[Any]) -> Any: + + + +
+ +
 90    @staticmethod
+ 91    def compare_reports(reports: List[ProfileReport]) -> ProfileReport:
+ 92        """Compares ProfileReports
+ 93
+ 94        Args:
+ 95            reports:
+ 96                List of `ProfileReport`
+ 97
+ 98        Returns:
+ 99            `ProfileReport`
+100        """
+101        from ydata_profiling import compare
+102
+103        return compare(reports=reports)
+
+ + +

Compares ProfileReports

+ +
Arguments:
+ + + +
Returns:
+ +
+

ProfileReport

+
+
+ + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/projects/active_run.html b/api/opsml/projects/active_run.html new file mode 100644 index 000000000..edcb0502e --- /dev/null +++ b/api/opsml/projects/active_run.html @@ -0,0 +1,2031 @@ + + + + + + + opsml.projects.active_run API documentation + + + + + + + + + +
+
+

+opsml.projects.active_run

+ + + + + + +
  1# pylint: disable=invalid-envvar-value,invalid-name
+  2
+  3# Copyright (c) Shipt, Inc.
+  4# This source code is licensed under the MIT license found in the
+  5# LICENSE file in the root directory of this source tree.
+  6
+  7from pathlib import Path
+  8from typing import Any, Dict, List, Optional, Union, cast
+  9
+ 10from numpy.typing import NDArray
+ 11
+ 12from opsml.cards.base import ArtifactCard
+ 13from opsml.cards.data import DataCard
+ 14from opsml.cards.model import ModelCard
+ 15from opsml.cards.run import RunCard
+ 16from opsml.helpers.logging import ArtifactLogger
+ 17from opsml.registry.registry import CardRegistries, CardRegistry
+ 18from opsml.registry.semver import VersionType
+ 19from opsml.storage import client
+ 20from opsml.types import (
+ 21    ArtifactUris,
+ 22    CardInfo,
+ 23    CardType,
+ 24    CommonKwargs,
+ 25    Metrics,
+ 26    Params,
+ 27    SaveName,
+ 28)
+ 29
+ 30logger = ArtifactLogger.get_logger()
+ 31
+ 32
+ 33# dataclass inheritance doesnt handle default vals well for <= py3.9
+ 34class RunInfo:
+ 35    def __init__(
+ 36        self,
+ 37        runcard: RunCard,
+ 38        run_id: str,
+ 39        run_name: Optional[str] = None,
+ 40    ):
+ 41        self.storage_client = client.storage_client
+ 42        self.registries = CardRegistries()
+ 43        self.runcard = runcard
+ 44        self.run_id = run_id
+ 45        self.run_name = run_name
+ 46
+ 47
+ 48class CardHandler:
+ 49    """DRY helper class for ActiveRun and OpsmlProject"""
+ 50
+ 51    @staticmethod
+ 52    def register_card(
+ 53        registries: CardRegistries,
+ 54        card: ArtifactCard,
+ 55        version_type: Union[VersionType, str] = VersionType.MINOR,
+ 56    ) -> None:
+ 57        """Registers and ArtifactCard"""
+ 58
+ 59        registry: CardRegistry = getattr(registries, card.card_type)
+ 60        registry.register_card(card=card, version_type=version_type)
+ 61
+ 62    @staticmethod
+ 63    def load_card(registries: CardRegistries, registry_name: str, info: CardInfo) -> ArtifactCard:
+ 64        """Loads an ArtifactCard"""
+ 65
+ 66        registry: CardRegistry = getattr(registries, registry_name)
+ 67        return registry.load_card(name=info.name, version=info.version, uid=info.uid)
+ 68
+ 69    @staticmethod
+ 70    def update_card(registries: CardRegistries, card: ArtifactCard) -> None:
+ 71        """Updates an ArtifactCard"""
+ 72        registry: CardRegistry = getattr(registries, card.card_type)
+ 73        registry.update_card(card=card)
+ 74
+ 75
+ 76class ActiveRun:
+ 77    def __init__(self, run_info: RunInfo):
+ 78        """
+ 79        Run object that handles logging artifacts, metrics, cards, and tags for a given run of a Project
+ 80
+ 81        Args:
+ 82            run_info:
+ 83                Run info for a given active run
+ 84        """
+ 85        self._info = run_info
+ 86        self._active = True  # should be active upon instantiation
+ 87        self.runcard = run_info.runcard
+ 88
+ 89    @property
+ 90    def run_id(self) -> str:
+ 91        """Id for current run"""
+ 92        return self._info.run_id
+ 93
+ 94    @property
+ 95    def run_name(self) -> Optional[str]:
+ 96        """Name for current run"""
+ 97        return self._info.run_name
+ 98
+ 99    @property
+100    def active(self) -> bool:
+101        return self._active
+102
+103    def _verify_active(self) -> None:
+104        if not self.active:
+105            raise ValueError("""Run is not active""")
+106
+107    def add_tag(self, key: str, value: str) -> None:
+108        """
+109        Adds a tag to the current run
+110
+111        Args:
+112            key:
+113                Name of the tag
+114            value:
+115                Value to associate with tag
+116        """
+117        self.runcard.add_tag(key=key, value=value)
+118
+119    def add_tags(self, tags: Dict[str, Union[str, float, int]]) -> None:
+120        """
+121        Adds a tag to the current run
+122
+123        Args:
+124            tags:
+125                Dictionary of key, value tags
+126
+127        """
+128        for key, value in tags.items():
+129            self.add_tag(key=key, value=cast(str, value))
+130
+131    def register_card(
+132        self,
+133        card: ArtifactCard,
+134        version_type: Union[VersionType, str] = VersionType.MINOR,
+135    ) -> None:
+136        """
+137        Register a given artifact card.
+138
+139        Args:
+140            card:
+141                The card to register
+142            version_type:
+143                Version type for increment. Options are "major", "minor" and
+144                "patch". Defaults to "minor".
+145        """
+146        self._verify_active()
+147
+148        # add runuid to card
+149        if isinstance(card, (DataCard, ModelCard)):
+150            card.metadata.runcard_uid = self.runcard.uid
+151
+152        CardHandler.register_card(
+153            registries=self._info.registries,
+154            card=card,
+155            version_type=version_type,
+156        )
+157
+158        tag_key = f"{card.card_type}:{card.name}"
+159        self.add_tag(key=tag_key, value=card.version)
+160
+161        # add uid to RunCard
+162        self.runcard.add_card_uid(card_type=card.card_type, uid=str(card.uid))
+163
+164    def load_card(self, registry_name: str, info: CardInfo) -> ArtifactCard:
+165        """
+166        Loads an ArtifactCard.
+167
+168        Args:
+169            registry_name:
+170                Type of card to load (data, model, run, pipeline)
+171            info:
+172                Card information to retrieve. `uid` takes precedence if it
+173                exists. If the optional `version` is specified, that version
+174                will be loaded. If it doesn't exist, the most recent version will
+175                be loaded.
+176
+177        Returns
+178            `ArtifactCard`
+179        """
+180        card_type = CardType(registry_name.lower()).value
+181
+182        return CardHandler.load_card(registries=self._info.registries, registry_name=card_type, info=info)
+183
+184    def log_artifact_from_file(
+185        self,
+186        name: str,
+187        local_path: Union[str, Path],
+188        artifact_path: Optional[Union[str, Path]] = None,
+189    ) -> None:
+190        """
+191        Log a local file or directory to the opsml server and associate with the current run.
+192
+193        Args:
+194            name:
+195                Name to assign to artifact(s)
+196            local_path:
+197                Local path to file or directory. Can be string or pathlike object
+198            artifact_path:
+199                Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
+200        """
+201
+202        self._verify_active()
+203
+204        lpath = Path(local_path)
+205        rpath = self.runcard.uri / (artifact_path or SaveName.ARTIFACTS.value)
+206
+207        if lpath.is_file():
+208            rpath = rpath / lpath.name
+209
+210        self._info.storage_client.put(lpath, rpath)
+211        self.runcard._add_artifact_uri(  # pylint: disable=protected-access
+212            name=name,
+213            local_path=lpath.as_posix(),
+214            remote_path=rpath.as_posix(),
+215        )
+216
+217    def log_metric(
+218        self,
+219        key: str,
+220        value: float,
+221        timestamp: Optional[int] = None,
+222        step: Optional[int] = None,
+223    ) -> None:
+224        """
+225        Log a metric for a given run
+226
+227        Args:
+228            key:
+229                Metric name
+230            value:
+231                Metric value
+232            timestamp:
+233                Optional time indicating metric creation time
+234            step:
+235                Optional step in training when metric was created
+236
+237        """
+238        self._verify_active()
+239        self.runcard.log_metric(
+240            key=key,
+241            value=value,
+242            timestamp=timestamp,
+243            step=step,
+244        )
+245
+246    def log_metrics(
+247        self,
+248        metrics: Dict[str, Union[float, int]],
+249        step: Optional[int] = None,
+250    ) -> None:
+251        """Logs a collection of metrics for a run
+252
+253        Args:
+254            metrics:
+255                Dictionary of metrics
+256            step:
+257                step the metrics are associated with
+258
+259        """
+260        self._verify_active()
+261        self.runcard.log_metrics(metrics=metrics, step=step)
+262
+263    def log_parameter(self, key: str, value: str) -> None:
+264        """
+265        Logs a parameter to project run
+266
+267        Args:
+268            key:
+269                Parameter name
+270            value:
+271                Parameter value
+272        """
+273
+274        self._verify_active()
+275        self.runcard.log_parameter(key=key, value=value)
+276
+277    def log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None:
+278        """
+279        Logs a collection of parameters for a run
+280
+281        Args:
+282            parameters:
+283                Dictionary of parameters
+284        """
+285
+286        self._verify_active()
+287        self.runcard.log_parameters(parameters=parameters)
+288
+289    def log_graph(
+290        self,
+291        name: str,
+292        x: Union[List[Union[float, int]], NDArray[Any]],
+293        y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+294        x_label: str = "x",
+295        y_label: str = "y",
+296        graph_style: str = "line",
+297    ) -> None:
+298        """Logs a graph to the RunCard, which will be rendered in the UI as a line graph
+299
+300        Args:
+301            name:
+302                Name of graph
+303            x:
+304                List or numpy array of x values
+305
+306            x_label:
+307                Label for x axis
+308            y:
+309                Either of the following:
+310                    (1) a list or numpy array of y values
+311                    (2) a dictionary of y values where key is the group label and
+312                        value is a list or numpy array of y values
+313            y_label:
+314                Label for y axis
+315            graph_style:
+316                Style of graph. Options are "line" or "scatter"
+317
+318        example:
+319
+320            ### single line graph
+321            x = np.arange(1, 400, 0.5)
+322            y = x * x
+323            run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+324
+325            ### multi line graph
+326            x = np.arange(1, 1000, 0.5)
+327            y1 = x * x
+328            y2 = y1 * 1.1
+329            y3 = y2 * 3
+330            run.log_graph(
+331                name="multiline",
+332                x=x,
+333                y={"y1": y1, "y2": y2, "y3": y3},
+334                x_label="x",
+335                y_label="y",
+336                graph_style="line",
+337            )
+338
+339        """
+340        self.runcard.log_graph(name=name, x=x, x_label=x_label, y=y, y_label=y_label, graph_style=graph_style)
+341
+342    def create_or_update_runcard(self) -> None:
+343        """Creates or updates an active RunCard"""
+344
+345        self._verify_active()
+346
+347        if self.runcard.uid is not None and self.runcard.version != CommonKwargs.BASE_VERSION.value:
+348            CardHandler.update_card(registries=self._info.registries, card=self.runcard)
+349        else:
+350            CardHandler.register_card(registries=self._info.registries, card=self.runcard)
+351
+352    @property
+353    def run_data(self) -> Any:
+354        raise NotImplementedError
+355
+356    @property
+357    def metrics(self) -> Metrics:
+358        return self.runcard.metrics
+359
+360    @property
+361    def parameters(self) -> Params:
+362        return self.runcard.parameters
+363
+364    @property
+365    def tags(self) -> dict[str, Union[str, int]]:
+366        return self.runcard.tags
+367
+368    @property
+369    def artifact_uris(self) -> ArtifactUris:
+370        return self.runcard.artifact_uris
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + RunInfo: + + + +
+ +
35class RunInfo:
+36    def __init__(
+37        self,
+38        runcard: RunCard,
+39        run_id: str,
+40        run_name: Optional[str] = None,
+41    ):
+42        self.storage_client = client.storage_client
+43        self.registries = CardRegistries()
+44        self.runcard = runcard
+45        self.run_id = run_id
+46        self.run_name = run_name
+
+ + + + +
+ +
+ + RunInfo( runcard: opsml.cards.run.RunCard, run_id: str, run_name: Optional[str] = None) + + + +
+ +
36    def __init__(
+37        self,
+38        runcard: RunCard,
+39        run_id: str,
+40        run_name: Optional[str] = None,
+41    ):
+42        self.storage_client = client.storage_client
+43        self.registries = CardRegistries()
+44        self.runcard = runcard
+45        self.run_id = run_id
+46        self.run_name = run_name
+
+ + + + +
+
+
+ storage_client + + +
+ + + + +
+
+
+ registries + + +
+ + + + +
+
+
+ runcard + + +
+ + + + +
+
+
+ run_id + + +
+ + + + +
+
+
+ run_name + + +
+ + + + +
+
+
+ +
+ + class + CardHandler: + + + +
+ +
49class CardHandler:
+50    """DRY helper class for ActiveRun and OpsmlProject"""
+51
+52    @staticmethod
+53    def register_card(
+54        registries: CardRegistries,
+55        card: ArtifactCard,
+56        version_type: Union[VersionType, str] = VersionType.MINOR,
+57    ) -> None:
+58        """Registers and ArtifactCard"""
+59
+60        registry: CardRegistry = getattr(registries, card.card_type)
+61        registry.register_card(card=card, version_type=version_type)
+62
+63    @staticmethod
+64    def load_card(registries: CardRegistries, registry_name: str, info: CardInfo) -> ArtifactCard:
+65        """Loads an ArtifactCard"""
+66
+67        registry: CardRegistry = getattr(registries, registry_name)
+68        return registry.load_card(name=info.name, version=info.version, uid=info.uid)
+69
+70    @staticmethod
+71    def update_card(registries: CardRegistries, card: ArtifactCard) -> None:
+72        """Updates an ArtifactCard"""
+73        registry: CardRegistry = getattr(registries, card.card_type)
+74        registry.update_card(card=card)
+
+ + +

DRY helper class for ActiveRun and OpsmlProject

+
+ + +
+ +
+
@staticmethod
+ + def + register_card( registries: opsml.registry.registry.CardRegistries, card: opsml.cards.base.ArtifactCard, version_type: Union[opsml.registry.semver.VersionType, str] = <VersionType.MINOR: 'minor'>) -> None: + + + +
+ +
52    @staticmethod
+53    def register_card(
+54        registries: CardRegistries,
+55        card: ArtifactCard,
+56        version_type: Union[VersionType, str] = VersionType.MINOR,
+57    ) -> None:
+58        """Registers and ArtifactCard"""
+59
+60        registry: CardRegistry = getattr(registries, card.card_type)
+61        registry.register_card(card=card, version_type=version_type)
+
+ + +

Registers and ArtifactCard

+
+ + +
+
+ +
+
@staticmethod
+ + def + load_card( registries: opsml.registry.registry.CardRegistries, registry_name: str, info: opsml.types.card.CardInfo) -> opsml.cards.base.ArtifactCard: + + + +
+ +
63    @staticmethod
+64    def load_card(registries: CardRegistries, registry_name: str, info: CardInfo) -> ArtifactCard:
+65        """Loads an ArtifactCard"""
+66
+67        registry: CardRegistry = getattr(registries, registry_name)
+68        return registry.load_card(name=info.name, version=info.version, uid=info.uid)
+
+ + +

Loads an ArtifactCard

+
+ + +
+
+ +
+
@staticmethod
+ + def + update_card( registries: opsml.registry.registry.CardRegistries, card: opsml.cards.base.ArtifactCard) -> None: + + + +
+ +
70    @staticmethod
+71    def update_card(registries: CardRegistries, card: ArtifactCard) -> None:
+72        """Updates an ArtifactCard"""
+73        registry: CardRegistry = getattr(registries, card.card_type)
+74        registry.update_card(card=card)
+
+ + +

Updates an ArtifactCard

+
+ + +
+
+
+ +
+ + class + ActiveRun: + + + +
+ +
 77class ActiveRun:
+ 78    def __init__(self, run_info: RunInfo):
+ 79        """
+ 80        Run object that handles logging artifacts, metrics, cards, and tags for a given run of a Project
+ 81
+ 82        Args:
+ 83            run_info:
+ 84                Run info for a given active run
+ 85        """
+ 86        self._info = run_info
+ 87        self._active = True  # should be active upon instantiation
+ 88        self.runcard = run_info.runcard
+ 89
+ 90    @property
+ 91    def run_id(self) -> str:
+ 92        """Id for current run"""
+ 93        return self._info.run_id
+ 94
+ 95    @property
+ 96    def run_name(self) -> Optional[str]:
+ 97        """Name for current run"""
+ 98        return self._info.run_name
+ 99
+100    @property
+101    def active(self) -> bool:
+102        return self._active
+103
+104    def _verify_active(self) -> None:
+105        if not self.active:
+106            raise ValueError("""Run is not active""")
+107
+108    def add_tag(self, key: str, value: str) -> None:
+109        """
+110        Adds a tag to the current run
+111
+112        Args:
+113            key:
+114                Name of the tag
+115            value:
+116                Value to associate with tag
+117        """
+118        self.runcard.add_tag(key=key, value=value)
+119
+120    def add_tags(self, tags: Dict[str, Union[str, float, int]]) -> None:
+121        """
+122        Adds a tag to the current run
+123
+124        Args:
+125            tags:
+126                Dictionary of key, value tags
+127
+128        """
+129        for key, value in tags.items():
+130            self.add_tag(key=key, value=cast(str, value))
+131
+132    def register_card(
+133        self,
+134        card: ArtifactCard,
+135        version_type: Union[VersionType, str] = VersionType.MINOR,
+136    ) -> None:
+137        """
+138        Register a given artifact card.
+139
+140        Args:
+141            card:
+142                The card to register
+143            version_type:
+144                Version type for increment. Options are "major", "minor" and
+145                "patch". Defaults to "minor".
+146        """
+147        self._verify_active()
+148
+149        # add runuid to card
+150        if isinstance(card, (DataCard, ModelCard)):
+151            card.metadata.runcard_uid = self.runcard.uid
+152
+153        CardHandler.register_card(
+154            registries=self._info.registries,
+155            card=card,
+156            version_type=version_type,
+157        )
+158
+159        tag_key = f"{card.card_type}:{card.name}"
+160        self.add_tag(key=tag_key, value=card.version)
+161
+162        # add uid to RunCard
+163        self.runcard.add_card_uid(card_type=card.card_type, uid=str(card.uid))
+164
+165    def load_card(self, registry_name: str, info: CardInfo) -> ArtifactCard:
+166        """
+167        Loads an ArtifactCard.
+168
+169        Args:
+170            registry_name:
+171                Type of card to load (data, model, run, pipeline)
+172            info:
+173                Card information to retrieve. `uid` takes precedence if it
+174                exists. If the optional `version` is specified, that version
+175                will be loaded. If it doesn't exist, the most recent version will
+176                be loaded.
+177
+178        Returns
+179            `ArtifactCard`
+180        """
+181        card_type = CardType(registry_name.lower()).value
+182
+183        return CardHandler.load_card(registries=self._info.registries, registry_name=card_type, info=info)
+184
+185    def log_artifact_from_file(
+186        self,
+187        name: str,
+188        local_path: Union[str, Path],
+189        artifact_path: Optional[Union[str, Path]] = None,
+190    ) -> None:
+191        """
+192        Log a local file or directory to the opsml server and associate with the current run.
+193
+194        Args:
+195            name:
+196                Name to assign to artifact(s)
+197            local_path:
+198                Local path to file or directory. Can be string or pathlike object
+199            artifact_path:
+200                Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
+201        """
+202
+203        self._verify_active()
+204
+205        lpath = Path(local_path)
+206        rpath = self.runcard.uri / (artifact_path or SaveName.ARTIFACTS.value)
+207
+208        if lpath.is_file():
+209            rpath = rpath / lpath.name
+210
+211        self._info.storage_client.put(lpath, rpath)
+212        self.runcard._add_artifact_uri(  # pylint: disable=protected-access
+213            name=name,
+214            local_path=lpath.as_posix(),
+215            remote_path=rpath.as_posix(),
+216        )
+217
+218    def log_metric(
+219        self,
+220        key: str,
+221        value: float,
+222        timestamp: Optional[int] = None,
+223        step: Optional[int] = None,
+224    ) -> None:
+225        """
+226        Log a metric for a given run
+227
+228        Args:
+229            key:
+230                Metric name
+231            value:
+232                Metric value
+233            timestamp:
+234                Optional time indicating metric creation time
+235            step:
+236                Optional step in training when metric was created
+237
+238        """
+239        self._verify_active()
+240        self.runcard.log_metric(
+241            key=key,
+242            value=value,
+243            timestamp=timestamp,
+244            step=step,
+245        )
+246
+247    def log_metrics(
+248        self,
+249        metrics: Dict[str, Union[float, int]],
+250        step: Optional[int] = None,
+251    ) -> None:
+252        """Logs a collection of metrics for a run
+253
+254        Args:
+255            metrics:
+256                Dictionary of metrics
+257            step:
+258                step the metrics are associated with
+259
+260        """
+261        self._verify_active()
+262        self.runcard.log_metrics(metrics=metrics, step=step)
+263
+264    def log_parameter(self, key: str, value: str) -> None:
+265        """
+266        Logs a parameter to project run
+267
+268        Args:
+269            key:
+270                Parameter name
+271            value:
+272                Parameter value
+273        """
+274
+275        self._verify_active()
+276        self.runcard.log_parameter(key=key, value=value)
+277
+278    def log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None:
+279        """
+280        Logs a collection of parameters for a run
+281
+282        Args:
+283            parameters:
+284                Dictionary of parameters
+285        """
+286
+287        self._verify_active()
+288        self.runcard.log_parameters(parameters=parameters)
+289
+290    def log_graph(
+291        self,
+292        name: str,
+293        x: Union[List[Union[float, int]], NDArray[Any]],
+294        y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+295        x_label: str = "x",
+296        y_label: str = "y",
+297        graph_style: str = "line",
+298    ) -> None:
+299        """Logs a graph to the RunCard, which will be rendered in the UI as a line graph
+300
+301        Args:
+302            name:
+303                Name of graph
+304            x:
+305                List or numpy array of x values
+306
+307            x_label:
+308                Label for x axis
+309            y:
+310                Either of the following:
+311                    (1) a list or numpy array of y values
+312                    (2) a dictionary of y values where key is the group label and
+313                        value is a list or numpy array of y values
+314            y_label:
+315                Label for y axis
+316            graph_style:
+317                Style of graph. Options are "line" or "scatter"
+318
+319        example:
+320
+321            ### single line graph
+322            x = np.arange(1, 400, 0.5)
+323            y = x * x
+324            run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+325
+326            ### multi line graph
+327            x = np.arange(1, 1000, 0.5)
+328            y1 = x * x
+329            y2 = y1 * 1.1
+330            y3 = y2 * 3
+331            run.log_graph(
+332                name="multiline",
+333                x=x,
+334                y={"y1": y1, "y2": y2, "y3": y3},
+335                x_label="x",
+336                y_label="y",
+337                graph_style="line",
+338            )
+339
+340        """
+341        self.runcard.log_graph(name=name, x=x, x_label=x_label, y=y, y_label=y_label, graph_style=graph_style)
+342
+343    def create_or_update_runcard(self) -> None:
+344        """Creates or updates an active RunCard"""
+345
+346        self._verify_active()
+347
+348        if self.runcard.uid is not None and self.runcard.version != CommonKwargs.BASE_VERSION.value:
+349            CardHandler.update_card(registries=self._info.registries, card=self.runcard)
+350        else:
+351            CardHandler.register_card(registries=self._info.registries, card=self.runcard)
+352
+353    @property
+354    def run_data(self) -> Any:
+355        raise NotImplementedError
+356
+357    @property
+358    def metrics(self) -> Metrics:
+359        return self.runcard.metrics
+360
+361    @property
+362    def parameters(self) -> Params:
+363        return self.runcard.parameters
+364
+365    @property
+366    def tags(self) -> dict[str, Union[str, int]]:
+367        return self.runcard.tags
+368
+369    @property
+370    def artifact_uris(self) -> ArtifactUris:
+371        return self.runcard.artifact_uris
+
+ + + + +
+ +
+ + ActiveRun(run_info: RunInfo) + + + +
+ +
78    def __init__(self, run_info: RunInfo):
+79        """
+80        Run object that handles logging artifacts, metrics, cards, and tags for a given run of a Project
+81
+82        Args:
+83            run_info:
+84                Run info for a given active run
+85        """
+86        self._info = run_info
+87        self._active = True  # should be active upon instantiation
+88        self.runcard = run_info.runcard
+
+ + +

Run object that handles logging artifacts, metrics, cards, and tags for a given run of a Project

+ +
Arguments:
+ +
    +
  • run_info: Run info for a given active run
  • +
+
+ + +
+
+
+ runcard + + +
+ + + + +
+
+ +
+ run_id: str + + + +
+ +
90    @property
+91    def run_id(self) -> str:
+92        """Id for current run"""
+93        return self._info.run_id
+
+ + +

Id for current run

+
+ + +
+
+ +
+ run_name: Optional[str] + + + +
+ +
95    @property
+96    def run_name(self) -> Optional[str]:
+97        """Name for current run"""
+98        return self._info.run_name
+
+ + +

Name for current run

+
+ + +
+
+ +
+ active: bool + + + +
+ +
100    @property
+101    def active(self) -> bool:
+102        return self._active
+
+ + + + +
+
+ +
+ + def + add_tag(self, key: str, value: str) -> None: + + + +
+ +
108    def add_tag(self, key: str, value: str) -> None:
+109        """
+110        Adds a tag to the current run
+111
+112        Args:
+113            key:
+114                Name of the tag
+115            value:
+116                Value to associate with tag
+117        """
+118        self.runcard.add_tag(key=key, value=value)
+
+ + +

Adds a tag to the current run

+ +
Arguments:
+ +
    +
  • key: Name of the tag
  • +
  • value: Value to associate with tag
  • +
+
+ + +
+
+ +
+ + def + add_tags(self, tags: Dict[str, Union[float, int, str]]) -> None: + + + +
+ +
120    def add_tags(self, tags: Dict[str, Union[str, float, int]]) -> None:
+121        """
+122        Adds a tag to the current run
+123
+124        Args:
+125            tags:
+126                Dictionary of key, value tags
+127
+128        """
+129        for key, value in tags.items():
+130            self.add_tag(key=key, value=cast(str, value))
+
+ + +

Adds a tag to the current run

+ +
Arguments:
+ +
    +
  • tags: Dictionary of key, value tags
  • +
+
+ + +
+
+ +
+ + def + register_card( self, card: opsml.cards.base.ArtifactCard, version_type: Union[opsml.registry.semver.VersionType, str] = <VersionType.MINOR: 'minor'>) -> None: + + + +
+ +
132    def register_card(
+133        self,
+134        card: ArtifactCard,
+135        version_type: Union[VersionType, str] = VersionType.MINOR,
+136    ) -> None:
+137        """
+138        Register a given artifact card.
+139
+140        Args:
+141            card:
+142                The card to register
+143            version_type:
+144                Version type for increment. Options are "major", "minor" and
+145                "patch". Defaults to "minor".
+146        """
+147        self._verify_active()
+148
+149        # add runuid to card
+150        if isinstance(card, (DataCard, ModelCard)):
+151            card.metadata.runcard_uid = self.runcard.uid
+152
+153        CardHandler.register_card(
+154            registries=self._info.registries,
+155            card=card,
+156            version_type=version_type,
+157        )
+158
+159        tag_key = f"{card.card_type}:{card.name}"
+160        self.add_tag(key=tag_key, value=card.version)
+161
+162        # add uid to RunCard
+163        self.runcard.add_card_uid(card_type=card.card_type, uid=str(card.uid))
+
+ + +

Register a given artifact card.

+ +
Arguments:
+ +
    +
  • card: The card to register
  • +
  • version_type: Version type for increment. Options are "major", "minor" and +"patch". Defaults to "minor".
  • +
+
+ + +
+
+ +
+ + def + load_card( self, registry_name: str, info: opsml.types.card.CardInfo) -> opsml.cards.base.ArtifactCard: + + + +
+ +
165    def load_card(self, registry_name: str, info: CardInfo) -> ArtifactCard:
+166        """
+167        Loads an ArtifactCard.
+168
+169        Args:
+170            registry_name:
+171                Type of card to load (data, model, run, pipeline)
+172            info:
+173                Card information to retrieve. `uid` takes precedence if it
+174                exists. If the optional `version` is specified, that version
+175                will be loaded. If it doesn't exist, the most recent version will
+176                be loaded.
+177
+178        Returns
+179            `ArtifactCard`
+180        """
+181        card_type = CardType(registry_name.lower()).value
+182
+183        return CardHandler.load_card(registries=self._info.registries, registry_name=card_type, info=info)
+
+ + +

Loads an ArtifactCard.

+ +
Arguments:
+ +
    +
  • registry_name: Type of card to load (data, model, run, pipeline)
  • +
  • info: Card information to retrieve. uid takes precedence if it +exists. If the optional version is specified, that version +will be loaded. If it doesn't exist, the most recent version will +be loaded.
  • +
+ +

Returns + ArtifactCard

+
+ + +
+
+ +
+ + def + log_artifact_from_file( self, name: str, local_path: Union[str, pathlib.Path], artifact_path: Union[str, pathlib.Path, NoneType] = None) -> None: + + + +
+ +
185    def log_artifact_from_file(
+186        self,
+187        name: str,
+188        local_path: Union[str, Path],
+189        artifact_path: Optional[Union[str, Path]] = None,
+190    ) -> None:
+191        """
+192        Log a local file or directory to the opsml server and associate with the current run.
+193
+194        Args:
+195            name:
+196                Name to assign to artifact(s)
+197            local_path:
+198                Local path to file or directory. Can be string or pathlike object
+199            artifact_path:
+200                Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
+201        """
+202
+203        self._verify_active()
+204
+205        lpath = Path(local_path)
+206        rpath = self.runcard.uri / (artifact_path or SaveName.ARTIFACTS.value)
+207
+208        if lpath.is_file():
+209            rpath = rpath / lpath.name
+210
+211        self._info.storage_client.put(lpath, rpath)
+212        self.runcard._add_artifact_uri(  # pylint: disable=protected-access
+213            name=name,
+214            local_path=lpath.as_posix(),
+215            remote_path=rpath.as_posix(),
+216        )
+
+ + +

Log a local file or directory to the opsml server and associate with the current run.

+ +
Arguments:
+ +
    +
  • name: Name to assign to artifact(s)
  • +
  • local_path: Local path to file or directory. Can be string or pathlike object
  • +
  • artifact_path: Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
  • +
+
+ + +
+
+ +
+ + def + log_metric( self, key: str, value: float, timestamp: Optional[int] = None, step: Optional[int] = None) -> None: + + + +
+ +
218    def log_metric(
+219        self,
+220        key: str,
+221        value: float,
+222        timestamp: Optional[int] = None,
+223        step: Optional[int] = None,
+224    ) -> None:
+225        """
+226        Log a metric for a given run
+227
+228        Args:
+229            key:
+230                Metric name
+231            value:
+232                Metric value
+233            timestamp:
+234                Optional time indicating metric creation time
+235            step:
+236                Optional step in training when metric was created
+237
+238        """
+239        self._verify_active()
+240        self.runcard.log_metric(
+241            key=key,
+242            value=value,
+243            timestamp=timestamp,
+244            step=step,
+245        )
+
+ + +

Log a metric for a given run

+ +
Arguments:
+ +
    +
  • key: Metric name
  • +
  • value: Metric value
  • +
  • timestamp: Optional time indicating metric creation time
  • +
  • step: Optional step in training when metric was created
  • +
+
+ + +
+
+ +
+ + def + log_metrics( self, metrics: Dict[str, Union[float, int]], step: Optional[int] = None) -> None: + + + +
+ +
247    def log_metrics(
+248        self,
+249        metrics: Dict[str, Union[float, int]],
+250        step: Optional[int] = None,
+251    ) -> None:
+252        """Logs a collection of metrics for a run
+253
+254        Args:
+255            metrics:
+256                Dictionary of metrics
+257            step:
+258                step the metrics are associated with
+259
+260        """
+261        self._verify_active()
+262        self.runcard.log_metrics(metrics=metrics, step=step)
+
+ + +

Logs a collection of metrics for a run

+ +
Arguments:
+ +
    +
  • metrics: Dictionary of metrics
  • +
  • step: step the metrics are associated with
  • +
+
+ + +
+
+ +
+ + def + log_parameter(self, key: str, value: str) -> None: + + + +
+ +
264    def log_parameter(self, key: str, value: str) -> None:
+265        """
+266        Logs a parameter to project run
+267
+268        Args:
+269            key:
+270                Parameter name
+271            value:
+272                Parameter value
+273        """
+274
+275        self._verify_active()
+276        self.runcard.log_parameter(key=key, value=value)
+
+ + +

Logs a parameter to project run

+ +
Arguments:
+ +
    +
  • key: Parameter name
  • +
  • value: Parameter value
  • +
+
+ + +
+
+ +
+ + def + log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None: + + + +
+ +
278    def log_parameters(self, parameters: Dict[str, Union[float, int, str]]) -> None:
+279        """
+280        Logs a collection of parameters for a run
+281
+282        Args:
+283            parameters:
+284                Dictionary of parameters
+285        """
+286
+287        self._verify_active()
+288        self.runcard.log_parameters(parameters=parameters)
+
+ + +

Logs a collection of parameters for a run

+ +
Arguments:
+ +
    +
  • parameters: Dictionary of parameters
  • +
+
+ + +
+
+ +
+ + def + log_graph( self, name: str, x: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]], y: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]], Dict[str, Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]]]], x_label: str = 'x', y_label: str = 'y', graph_style: str = 'line') -> None: + + + +
+ +
290    def log_graph(
+291        self,
+292        name: str,
+293        x: Union[List[Union[float, int]], NDArray[Any]],
+294        y: Union[List[Union[float, int]], NDArray[Any], Dict[str, Union[List[Union[float, int]], NDArray[Any]]]],
+295        x_label: str = "x",
+296        y_label: str = "y",
+297        graph_style: str = "line",
+298    ) -> None:
+299        """Logs a graph to the RunCard, which will be rendered in the UI as a line graph
+300
+301        Args:
+302            name:
+303                Name of graph
+304            x:
+305                List or numpy array of x values
+306
+307            x_label:
+308                Label for x axis
+309            y:
+310                Either of the following:
+311                    (1) a list or numpy array of y values
+312                    (2) a dictionary of y values where key is the group label and
+313                        value is a list or numpy array of y values
+314            y_label:
+315                Label for y axis
+316            graph_style:
+317                Style of graph. Options are "line" or "scatter"
+318
+319        example:
+320
+321            ### single line graph
+322            x = np.arange(1, 400, 0.5)
+323            y = x * x
+324            run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+325
+326            ### multi line graph
+327            x = np.arange(1, 1000, 0.5)
+328            y1 = x * x
+329            y2 = y1 * 1.1
+330            y3 = y2 * 3
+331            run.log_graph(
+332                name="multiline",
+333                x=x,
+334                y={"y1": y1, "y2": y2, "y3": y3},
+335                x_label="x",
+336                y_label="y",
+337                graph_style="line",
+338            )
+339
+340        """
+341        self.runcard.log_graph(name=name, x=x, x_label=x_label, y=y, y_label=y_label, graph_style=graph_style)
+
+ + +

Logs a graph to the RunCard, which will be rendered in the UI as a line graph

+ +
Arguments:
+ +
    +
  • name: Name of graph
  • +
  • x: List or numpy array of x values
  • +
  • x_label: Label for x axis
  • +
  • y: Either of the following: +(1) a list or numpy array of y values +(2) a dictionary of y values where key is the group label and + value is a list or numpy array of y values
  • +
  • y_label: Label for y axis
  • +
  • graph_style: Style of graph. Options are "line" or "scatter"
  • +
+ +

example:

+ +
### single line graph
+x = np.arange(1, 400, 0.5)
+y = x * x
+run.log_graph(name="graph1", x=x, y=y, x_label="x", y_label="y", graph_style="line")
+
+### multi line graph
+x = np.arange(1, 1000, 0.5)
+y1 = x * x
+y2 = y1 * 1.1
+y3 = y2 * 3
+run.log_graph(
+    name="multiline",
+    x=x,
+    y={"y1": y1, "y2": y2, "y3": y3},
+    x_label="x",
+    y_label="y",
+    graph_style="line",
+)
+
+
+ + +
+
+ +
+ + def + create_or_update_runcard(self) -> None: + + + +
+ +
343    def create_or_update_runcard(self) -> None:
+344        """Creates or updates an active RunCard"""
+345
+346        self._verify_active()
+347
+348        if self.runcard.uid is not None and self.runcard.version != CommonKwargs.BASE_VERSION.value:
+349            CardHandler.update_card(registries=self._info.registries, card=self.runcard)
+350        else:
+351            CardHandler.register_card(registries=self._info.registries, card=self.runcard)
+
+ + +

Creates or updates an active RunCard

+
+ + +
+
+ +
+ run_data: Any + + + +
+ +
353    @property
+354    def run_data(self) -> Any:
+355        raise NotImplementedError
+
+ + + + +
+
+ +
+ metrics: Dict[str, List[opsml.types.card.Metric]] + + + +
+ +
357    @property
+358    def metrics(self) -> Metrics:
+359        return self.runcard.metrics
+
+ + + + +
+
+ +
+ parameters: Dict[str, List[opsml.types.card.Param]] + + + +
+ +
361    @property
+362    def parameters(self) -> Params:
+363        return self.runcard.parameters
+
+ + + + +
+
+ +
+ tags: dict[str, typing.Union[str, int]] + + + +
+ +
365    @property
+366    def tags(self) -> dict[str, Union[str, int]]:
+367        return self.runcard.tags
+
+ + + + +
+
+ +
+ artifact_uris: Dict[str, opsml.types.card.Artifact] + + + +
+ +
369    @property
+370    def artifact_uris(self) -> ArtifactUris:
+371        return self.runcard.artifact_uris
+
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/projects/project.html b/api/opsml/projects/project.html new file mode 100644 index 000000000..e1d2db0b7 --- /dev/null +++ b/api/opsml/projects/project.html @@ -0,0 +1,1251 @@ + + + + + + + opsml.projects.project API documentation + + + + + + + + + +
+
+

+opsml.projects.project

+ + + + + + +
  1# pylint: disable=invalid-envvar-value
+  2# Copyright (c) Shipt, Inc.
+  3# This source code is licensed under the MIT license found in the
+  4# LICENSE file in the root directory of this source tree.
+  5# pylint: disable=protected-access
+  6
+  7from contextlib import contextmanager
+  8from typing import Any, Dict, Iterator, List, Optional, Union, cast
+  9
+ 10from opsml.cards.base import ArtifactCard
+ 11from opsml.cards.project import ProjectCard
+ 12from opsml.cards.run import RunCard
+ 13from opsml.helpers.logging import ArtifactLogger
+ 14from opsml.projects._run_manager import ActiveRunException, _RunManager
+ 15from opsml.projects.active_run import ActiveRun, CardHandler
+ 16from opsml.projects.types import ProjectInfo
+ 17from opsml.registry import CardRegistries
+ 18from opsml.registry.sql.base.client import ClientProjectCardRegistry
+ 19from opsml.types import CardInfo, CardType, Metric, Metrics, Param, Params
+ 20
+ 21logger = ArtifactLogger.get_logger()
+ 22
+ 23
+ 24class _ProjectRegistrar:
+ 25    def __init__(self, project_info: ProjectInfo):
+ 26        self._project_info = project_info
+ 27        self.registries = CardRegistries()
+ 28
+ 29    @property
+ 30    def project_registry(self) -> ClientProjectCardRegistry:
+ 31        # both server and client registries are the same for methods
+ 32        return cast(ClientProjectCardRegistry, self.registries.project._registry)
+ 33
+ 34    def register_project(self) -> int:
+ 35        """
+ 36        Checks if the project name exists in the project registry. A ProjectCard is created if it
+ 37        doesn't exist.
+ 38
+ 39        Returns:
+ 40            project_id: int
+ 41        """
+ 42
+ 43        card = ProjectCard(
+ 44            name=self._project_info.name,
+ 45            repository=self._project_info.repository,
+ 46            contact=self._project_info.contact,
+ 47        )
+ 48        self.registries.project.register_card(card=card)
+ 49
+ 50        return card.project_id
+ 51
+ 52
+ 53class OpsmlProject:
+ 54    def __init__(self, info: ProjectInfo):
+ 55        """
+ 56        Instantiates a project which creates cards, metrics and parameters to
+ 57        the opsml registry via a "run" object.
+ 58
+ 59        If info.run_id is set, that run_id will be loaded as read only. In read
+ 60        only mode, you can retrieve cards, metrics, and parameters, however you
+ 61        cannot write new data. If you wish to record data/create a new run, you will
+ 62        need to enter the run context.
+ 63
+ 64        In order to create new cards, you need to create a run using the `run`
+ 65        context manager.
+ 66
+ 67        Example:
+ 68
+ 69            project: OpsmlProject = OpsmlProject(
+ 70                ProjectInfo(
+ 71                    name="test-project",
+ 72                    # If run_id is omitted, a new run is created.
+ 73                    run_id="123ab123kaj8u8naskdfh813",
+ 74                )
+ 75            )
+ 76            # the project is in "read only" mode. all read operations will work
+ 77            for k, v in project.parameters:
+ 78                logger.info("{} = {}", k, v)
+ 79
+ 80            # creating a project run
+ 81            with project.run() as run:
+ 82                # Now that the run context is entered, it's in read/write mode
+ 83                # You can write cards, parameters, and metrics to the project.
+ 84                run.log_parameter(key="my_param", value="12.34")
+ 85
+ 86        Args:
+ 87            info:
+ 88                Run information. if a run_id is given, that run is set
+ 89                as the project's current run.
+ 90        """
+ 91        # Set the run manager and project_id (creates ProjectCard if project doesn't exist)
+ 92        registrar = _ProjectRegistrar(project_info=info)
+ 93
+ 94        # get project id or register new project
+ 95        info.project_id = registrar.register_project()
+ 96
+ 97        # crete run manager
+ 98        self._run_mgr = _RunManager(project_info=info, registries=registrar.registries)
+ 99
+100    @property
+101    def run_id(self) -> str:
+102        """Current run id associated with project"""
+103        if self._run_mgr.run_id is not None:
+104            return self._run_mgr.run_id
+105        raise ValueError("Run id not set for current project")
+106
+107    @run_id.setter
+108    def run_id(self, run_id: str) -> None:
+109        """Set the run_id to use with the active project"""
+110        self._run_mgr.run_id = run_id
+111
+112    @property
+113    def project_id(self) -> int:
+114        return self._run_mgr.project_id
+115
+116    @property
+117    def project_name(self) -> str:
+118        return self._run_mgr._project_info.name  # pylint: disable=protected-access
+119
+120    @contextmanager
+121    def run(self, run_name: Optional[str] = None) -> Iterator[ActiveRun]:
+122        """
+123        Starts a new run for the project
+124
+125        Args:
+126            run_name:
+127                Optional run name
+128        """
+129
+130        try:
+131            yield self._run_mgr.start_run(run_name=run_name)  # self._run_mgr.active_run
+132
+133        except ActiveRunException as error:
+134            logger.error("Run already active. Ending run.")
+135            raise error
+136
+137        except Exception as error:
+138            logger.error("Error encountered. Ending run. {}", error)
+139            self._run_mgr.end_run()
+140            raise error
+141
+142        self._run_mgr.end_run()
+143
+144    def load_card(self, registry_name: str, info: CardInfo) -> ArtifactCard:
+145        """
+146        Loads an ArtifactCard.
+147
+148        Args:
+149            registry_name:
+150                Name of registry to load card from
+151            info:
+152                Card information to retrieve. `uid` takes precedence if it
+153                exists. If the optional `version` is specified, that version
+154                will be loaded. If it doesn't exist, the most recent ersion will
+155                be loaded.
+156
+157        Returns
+158            `ArtifactCard`
+159        """
+160        card_type = CardType(registry_name.lower()).value
+161        return CardHandler.load_card(
+162            registries=self._run_mgr.registries,
+163            registry_name=card_type,
+164            info=info,
+165        )
+166
+167    def list_runs(self, limit: int = 100) -> List[Dict[str, Any]]:
+168        """
+169        Lists all runs for the current project, sorted by timestamp
+170
+171        Returns:
+172            List of RunCard
+173        """
+174        logger.info("Listing runs for project {}", self.project_name)
+175
+176        project_runs = self._run_mgr.registries.run._registry.list_cards(  # pylint: disable=protected-access
+177            limit=limit,
+178            query_terms={"project": self.project_name},
+179        )
+180
+181        return sorted(project_runs, key=lambda k: k["timestamp"], reverse=True)
+182
+183    @property
+184    def runcard(self) -> RunCard:
+185        return cast(RunCard, self._run_mgr.registries.run.load_card(uid=self.run_id))
+186
+187    @property
+188    def metrics(self) -> Metrics:
+189        runcard = self.runcard
+190        runcard.load_metrics()
+191        return runcard.metrics
+192
+193    def get_metric(self, name: str) -> Union[List[Metric], Metric]:
+194        """
+195        Get metric by name
+196
+197        Args:
+198            name: str
+199
+200        Returns:
+201            List of Metric or Metric
+202
+203        """
+204        return self.runcard.get_metric(name=name)
+205
+206    @property
+207    def parameters(self) -> Params:
+208        return self.runcard.parameters
+209
+210    def get_parameter(self, name: str) -> Union[List[Param], Param]:
+211        """
+212        Get param by name
+213
+214        Args:
+215            name: str
+216
+217        Returns:
+218            List of Param or Param
+219
+220        """
+221        return self.runcard.get_parameter(name=name)
+222
+223    @property
+224    def tags(self) -> Dict[str, Union[str, int]]:
+225        return self.runcard.tags
+226
+227    @property
+228    def datacard_uids(self) -> List[str]:
+229        """DataCards associated with the current run"""
+230        return self.runcard.datacard_uids
+231
+232    @property
+233    def modelcard_uids(self) -> List[str]:
+234        """ModelCards associated with the current run"""
+235        return self.runcard.modelcard_uids
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + OpsmlProject: + + + +
+ +
 54class OpsmlProject:
+ 55    def __init__(self, info: ProjectInfo):
+ 56        """
+ 57        Instantiates a project which creates cards, metrics and parameters to
+ 58        the opsml registry via a "run" object.
+ 59
+ 60        If info.run_id is set, that run_id will be loaded as read only. In read
+ 61        only mode, you can retrieve cards, metrics, and parameters, however you
+ 62        cannot write new data. If you wish to record data/create a new run, you will
+ 63        need to enter the run context.
+ 64
+ 65        In order to create new cards, you need to create a run using the `run`
+ 66        context manager.
+ 67
+ 68        Example:
+ 69
+ 70            project: OpsmlProject = OpsmlProject(
+ 71                ProjectInfo(
+ 72                    name="test-project",
+ 73                    # If run_id is omitted, a new run is created.
+ 74                    run_id="123ab123kaj8u8naskdfh813",
+ 75                )
+ 76            )
+ 77            # the project is in "read only" mode. all read operations will work
+ 78            for k, v in project.parameters:
+ 79                logger.info("{} = {}", k, v)
+ 80
+ 81            # creating a project run
+ 82            with project.run() as run:
+ 83                # Now that the run context is entered, it's in read/write mode
+ 84                # You can write cards, parameters, and metrics to the project.
+ 85                run.log_parameter(key="my_param", value="12.34")
+ 86
+ 87        Args:
+ 88            info:
+ 89                Run information. if a run_id is given, that run is set
+ 90                as the project's current run.
+ 91        """
+ 92        # Set the run manager and project_id (creates ProjectCard if project doesn't exist)
+ 93        registrar = _ProjectRegistrar(project_info=info)
+ 94
+ 95        # get project id or register new project
+ 96        info.project_id = registrar.register_project()
+ 97
+ 98        # crete run manager
+ 99        self._run_mgr = _RunManager(project_info=info, registries=registrar.registries)
+100
+101    @property
+102    def run_id(self) -> str:
+103        """Current run id associated with project"""
+104        if self._run_mgr.run_id is not None:
+105            return self._run_mgr.run_id
+106        raise ValueError("Run id not set for current project")
+107
+108    @run_id.setter
+109    def run_id(self, run_id: str) -> None:
+110        """Set the run_id to use with the active project"""
+111        self._run_mgr.run_id = run_id
+112
+113    @property
+114    def project_id(self) -> int:
+115        return self._run_mgr.project_id
+116
+117    @property
+118    def project_name(self) -> str:
+119        return self._run_mgr._project_info.name  # pylint: disable=protected-access
+120
+121    @contextmanager
+122    def run(self, run_name: Optional[str] = None) -> Iterator[ActiveRun]:
+123        """
+124        Starts a new run for the project
+125
+126        Args:
+127            run_name:
+128                Optional run name
+129        """
+130
+131        try:
+132            yield self._run_mgr.start_run(run_name=run_name)  # self._run_mgr.active_run
+133
+134        except ActiveRunException as error:
+135            logger.error("Run already active. Ending run.")
+136            raise error
+137
+138        except Exception as error:
+139            logger.error("Error encountered. Ending run. {}", error)
+140            self._run_mgr.end_run()
+141            raise error
+142
+143        self._run_mgr.end_run()
+144
+145    def load_card(self, registry_name: str, info: CardInfo) -> ArtifactCard:
+146        """
+147        Loads an ArtifactCard.
+148
+149        Args:
+150            registry_name:
+151                Name of registry to load card from
+152            info:
+153                Card information to retrieve. `uid` takes precedence if it
+154                exists. If the optional `version` is specified, that version
+155                will be loaded. If it doesn't exist, the most recent ersion will
+156                be loaded.
+157
+158        Returns
+159            `ArtifactCard`
+160        """
+161        card_type = CardType(registry_name.lower()).value
+162        return CardHandler.load_card(
+163            registries=self._run_mgr.registries,
+164            registry_name=card_type,
+165            info=info,
+166        )
+167
+168    def list_runs(self, limit: int = 100) -> List[Dict[str, Any]]:
+169        """
+170        Lists all runs for the current project, sorted by timestamp
+171
+172        Returns:
+173            List of RunCard
+174        """
+175        logger.info("Listing runs for project {}", self.project_name)
+176
+177        project_runs = self._run_mgr.registries.run._registry.list_cards(  # pylint: disable=protected-access
+178            limit=limit,
+179            query_terms={"project": self.project_name},
+180        )
+181
+182        return sorted(project_runs, key=lambda k: k["timestamp"], reverse=True)
+183
+184    @property
+185    def runcard(self) -> RunCard:
+186        return cast(RunCard, self._run_mgr.registries.run.load_card(uid=self.run_id))
+187
+188    @property
+189    def metrics(self) -> Metrics:
+190        runcard = self.runcard
+191        runcard.load_metrics()
+192        return runcard.metrics
+193
+194    def get_metric(self, name: str) -> Union[List[Metric], Metric]:
+195        """
+196        Get metric by name
+197
+198        Args:
+199            name: str
+200
+201        Returns:
+202            List of Metric or Metric
+203
+204        """
+205        return self.runcard.get_metric(name=name)
+206
+207    @property
+208    def parameters(self) -> Params:
+209        return self.runcard.parameters
+210
+211    def get_parameter(self, name: str) -> Union[List[Param], Param]:
+212        """
+213        Get param by name
+214
+215        Args:
+216            name: str
+217
+218        Returns:
+219            List of Param or Param
+220
+221        """
+222        return self.runcard.get_parameter(name=name)
+223
+224    @property
+225    def tags(self) -> Dict[str, Union[str, int]]:
+226        return self.runcard.tags
+227
+228    @property
+229    def datacard_uids(self) -> List[str]:
+230        """DataCards associated with the current run"""
+231        return self.runcard.datacard_uids
+232
+233    @property
+234    def modelcard_uids(self) -> List[str]:
+235        """ModelCards associated with the current run"""
+236        return self.runcard.modelcard_uids
+
+ + + + +
+ +
+ + OpsmlProject(info: opsml.projects.types.ProjectInfo) + + + +
+ +
55    def __init__(self, info: ProjectInfo):
+56        """
+57        Instantiates a project which creates cards, metrics and parameters to
+58        the opsml registry via a "run" object.
+59
+60        If info.run_id is set, that run_id will be loaded as read only. In read
+61        only mode, you can retrieve cards, metrics, and parameters, however you
+62        cannot write new data. If you wish to record data/create a new run, you will
+63        need to enter the run context.
+64
+65        In order to create new cards, you need to create a run using the `run`
+66        context manager.
+67
+68        Example:
+69
+70            project: OpsmlProject = OpsmlProject(
+71                ProjectInfo(
+72                    name="test-project",
+73                    # If run_id is omitted, a new run is created.
+74                    run_id="123ab123kaj8u8naskdfh813",
+75                )
+76            )
+77            # the project is in "read only" mode. all read operations will work
+78            for k, v in project.parameters:
+79                logger.info("{} = {}", k, v)
+80
+81            # creating a project run
+82            with project.run() as run:
+83                # Now that the run context is entered, it's in read/write mode
+84                # You can write cards, parameters, and metrics to the project.
+85                run.log_parameter(key="my_param", value="12.34")
+86
+87        Args:
+88            info:
+89                Run information. if a run_id is given, that run is set
+90                as the project's current run.
+91        """
+92        # Set the run manager and project_id (creates ProjectCard if project doesn't exist)
+93        registrar = _ProjectRegistrar(project_info=info)
+94
+95        # get project id or register new project
+96        info.project_id = registrar.register_project()
+97
+98        # crete run manager
+99        self._run_mgr = _RunManager(project_info=info, registries=registrar.registries)
+
+ + +

Instantiates a project which creates cards, metrics and parameters to +the opsml registry via a "run" object.

+ +

If info.run_id is set, that run_id will be loaded as read only. In read +only mode, you can retrieve cards, metrics, and parameters, however you +cannot write new data. If you wish to record data/create a new run, you will +need to enter the run context.

+ +

In order to create new cards, you need to create a run using the run +context manager.

+ +
Example:
+ +
+

project: OpsmlProject = OpsmlProject( + ProjectInfo( + name="test-project", + # If run_id is omitted, a new run is created. + run_id="123ab123kaj8u8naskdfh813", + ) + )

+ +

the project is in "read only" mode. all read operations will work

+ +

for k, v in project.parameters: + logger.info("{} = {}", k, v)

+ +

creating a project run

+ +

with project.run() as run: + # Now that the run context is entered, it's in read/write mode + # You can write cards, parameters, and metrics to the project. + run.log_parameter(key="my_param", value="12.34")

+
+ +
Arguments:
+ +
    +
  • info: Run information. if a run_id is given, that run is set +as the project's current run.
  • +
+
+ + +
+
+ +
+ run_id: str + + + +
+ +
101    @property
+102    def run_id(self) -> str:
+103        """Current run id associated with project"""
+104        if self._run_mgr.run_id is not None:
+105            return self._run_mgr.run_id
+106        raise ValueError("Run id not set for current project")
+
+ + +

Current run id associated with project

+
+ + +
+
+ +
+ project_id: int + + + +
+ +
113    @property
+114    def project_id(self) -> int:
+115        return self._run_mgr.project_id
+
+ + + + +
+
+ +
+ project_name: str + + + +
+ +
117    @property
+118    def project_name(self) -> str:
+119        return self._run_mgr._project_info.name  # pylint: disable=protected-access
+
+ + + + +
+
+ +
+
@contextmanager
+ + def + run( self, run_name: Optional[str] = None) -> Iterator[opsml.projects.active_run.ActiveRun]: + + + +
+ +
121    @contextmanager
+122    def run(self, run_name: Optional[str] = None) -> Iterator[ActiveRun]:
+123        """
+124        Starts a new run for the project
+125
+126        Args:
+127            run_name:
+128                Optional run name
+129        """
+130
+131        try:
+132            yield self._run_mgr.start_run(run_name=run_name)  # self._run_mgr.active_run
+133
+134        except ActiveRunException as error:
+135            logger.error("Run already active. Ending run.")
+136            raise error
+137
+138        except Exception as error:
+139            logger.error("Error encountered. Ending run. {}", error)
+140            self._run_mgr.end_run()
+141            raise error
+142
+143        self._run_mgr.end_run()
+
+ + +

Starts a new run for the project

+ +
Arguments:
+ +
    +
  • run_name: Optional run name
  • +
+
+ + +
+
+ +
+ + def + load_card( self, registry_name: str, info: opsml.types.card.CardInfo) -> opsml.cards.base.ArtifactCard: + + + +
+ +
145    def load_card(self, registry_name: str, info: CardInfo) -> ArtifactCard:
+146        """
+147        Loads an ArtifactCard.
+148
+149        Args:
+150            registry_name:
+151                Name of registry to load card from
+152            info:
+153                Card information to retrieve. `uid` takes precedence if it
+154                exists. If the optional `version` is specified, that version
+155                will be loaded. If it doesn't exist, the most recent ersion will
+156                be loaded.
+157
+158        Returns
+159            `ArtifactCard`
+160        """
+161        card_type = CardType(registry_name.lower()).value
+162        return CardHandler.load_card(
+163            registries=self._run_mgr.registries,
+164            registry_name=card_type,
+165            info=info,
+166        )
+
+ + +

Loads an ArtifactCard.

+ +
Arguments:
+ +
    +
  • registry_name: Name of registry to load card from
  • +
  • info: Card information to retrieve. uid takes precedence if it +exists. If the optional version is specified, that version +will be loaded. If it doesn't exist, the most recent ersion will +be loaded.
  • +
+ +

Returns + ArtifactCard

+
+ + +
+
+ +
+ + def + list_runs(self, limit: int = 100) -> List[Dict[str, Any]]: + + + +
+ +
168    def list_runs(self, limit: int = 100) -> List[Dict[str, Any]]:
+169        """
+170        Lists all runs for the current project, sorted by timestamp
+171
+172        Returns:
+173            List of RunCard
+174        """
+175        logger.info("Listing runs for project {}", self.project_name)
+176
+177        project_runs = self._run_mgr.registries.run._registry.list_cards(  # pylint: disable=protected-access
+178            limit=limit,
+179            query_terms={"project": self.project_name},
+180        )
+181
+182        return sorted(project_runs, key=lambda k: k["timestamp"], reverse=True)
+
+ + +

Lists all runs for the current project, sorted by timestamp

+ +
Returns:
+ +
+

List of RunCard

+
+
+ + +
+
+ +
+ runcard: opsml.cards.run.RunCard + + + +
+ +
184    @property
+185    def runcard(self) -> RunCard:
+186        return cast(RunCard, self._run_mgr.registries.run.load_card(uid=self.run_id))
+
+ + + + +
+
+ +
+ metrics: Dict[str, List[opsml.types.card.Metric]] + + + +
+ +
188    @property
+189    def metrics(self) -> Metrics:
+190        runcard = self.runcard
+191        runcard.load_metrics()
+192        return runcard.metrics
+
+ + + + +
+
+ +
+ + def + get_metric( self, name: str) -> Union[List[opsml.types.card.Metric], opsml.types.card.Metric]: + + + +
+ +
194    def get_metric(self, name: str) -> Union[List[Metric], Metric]:
+195        """
+196        Get metric by name
+197
+198        Args:
+199            name: str
+200
+201        Returns:
+202            List of Metric or Metric
+203
+204        """
+205        return self.runcard.get_metric(name=name)
+
+ + +

Get metric by name

+ +
Arguments:
+ +
    +
  • name: str
  • +
+ +
Returns:
+ +
+

List of Metric or Metric

+
+
+ + +
+
+ +
+ parameters: Dict[str, List[opsml.types.card.Param]] + + + +
+ +
207    @property
+208    def parameters(self) -> Params:
+209        return self.runcard.parameters
+
+ + + + +
+
+ +
+ + def + get_parameter( self, name: str) -> Union[List[opsml.types.card.Param], opsml.types.card.Param]: + + + +
+ +
211    def get_parameter(self, name: str) -> Union[List[Param], Param]:
+212        """
+213        Get param by name
+214
+215        Args:
+216            name: str
+217
+218        Returns:
+219            List of Param or Param
+220
+221        """
+222        return self.runcard.get_parameter(name=name)
+
+ + +

Get param by name

+ +
Arguments:
+ +
    +
  • name: str
  • +
+ +
Returns:
+ +
+

List of Param or Param

+
+
+ + +
+
+ +
+ tags: Dict[str, Union[int, str]] + + + +
+ +
224    @property
+225    def tags(self) -> Dict[str, Union[str, int]]:
+226        return self.runcard.tags
+
+ + + + +
+
+ +
+ datacard_uids: List[str] + + + +
+ +
228    @property
+229    def datacard_uids(self) -> List[str]:
+230        """DataCards associated with the current run"""
+231        return self.runcard.datacard_uids
+
+ + +

DataCards associated with the current run

+
+ + +
+
+ +
+ modelcard_uids: List[str] + + + +
+ +
233    @property
+234    def modelcard_uids(self) -> List[str]:
+235        """ModelCards associated with the current run"""
+236        return self.runcard.modelcard_uids
+
+ + +

ModelCards associated with the current run

+
+ + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/registry/registry.html b/api/opsml/registry/registry.html new file mode 100644 index 000000000..74449ed63 --- /dev/null +++ b/api/opsml/registry/registry.html @@ -0,0 +1,1467 @@ + + + + + + + opsml.registry.registry API documentation + + + + + + + + + +
+
+

+opsml.registry.registry

+ + + + + + +
  1# pylint: disable=protected-access
+  2# Copyright (c) Shipt, Inc.
+  3# This source code is licensed under the MIT license found in the
+  4# LICENSE file in the root directory of this source tree.
+  5import textwrap
+  6from typing import Any, Dict, List, Optional, Type, Union
+  7
+  8from opsml.cards import ArtifactCard, CardInfo
+  9from opsml.data import DataInterface
+ 10from opsml.helpers.logging import ArtifactLogger
+ 11from opsml.helpers.utils import clean_string
+ 12from opsml.model import ModelInterface
+ 13from opsml.registry.backend import _set_registry
+ 14from opsml.registry.semver import VersionType
+ 15from opsml.storage.card_loader import CardLoader
+ 16from opsml.types import CommonKwargs, RegistryType
+ 17
+ 18logger = ArtifactLogger.get_logger()
+ 19
+ 20
+ 21class CardRegistry:
+ 22    def __init__(self, registry_type: Union[RegistryType, str]):
+ 23        """
+ 24        Interface for connecting to any of the ArtifactCard registries
+ 25
+ 26        Args:
+ 27            registry_type:
+ 28                Type of card registry to create
+ 29            settings:
+ 30                Storage settings
+ 31
+ 32        Returns:
+ 33            Instantiated connection to specific Card registry
+ 34
+ 35        Example:
+ 36            data_registry = CardRegistry(RegistryType.DATA)
+ 37            data_registry.list_cards()
+ 38
+ 39            or
+ 40            data_registry = CardRegistry("data")
+ 41            data_registry.list_cards()
+ 42        """
+ 43
+ 44        _registry_type = (
+ 45            registry_type if isinstance(registry_type, RegistryType) else RegistryType.from_str(registry_type)
+ 46        )
+ 47
+ 48        self._registry = _set_registry(_registry_type)
+ 49        self.table_name = self._registry.table_name
+ 50
+ 51    @property
+ 52    def registry_type(self) -> RegistryType:
+ 53        "Registry type for card registry"
+ 54        return self._registry.registry_type
+ 55
+ 56    def list_cards(
+ 57        self,
+ 58        uid: Optional[str] = None,
+ 59        name: Optional[str] = None,
+ 60        repository: Optional[str] = None,
+ 61        version: Optional[str] = None,
+ 62        tags: Optional[Dict[str, str]] = None,
+ 63        info: Optional[CardInfo] = None,
+ 64        max_date: Optional[str] = None,
+ 65        limit: Optional[int] = None,
+ 66        ignore_release_candidates: bool = False,
+ 67    ) -> List[Dict[str, Any]]:
+ 68        """Retrieves records from registry
+ 69
+ 70        Args:
+ 71            name:
+ 72                Card name
+ 73            repository:
+ 74                Repository associated with card
+ 75            version:
+ 76                Optional version number of existing data. If not specified, the
+ 77                most recent version will be used
+ 78            tags:
+ 79                Dictionary of key, value tags to search for
+ 80            uid:
+ 81                Unique identifier for Card. If present, the uid takes precedence
+ 82            max_date:
+ 83                Max date to search. (e.g. "2023-05-01" would search for cards up to and including "2023-05-01")
+ 84            limit:
+ 85                Places a limit on result list. Results are sorted by SemVer
+ 86            info:
+ 87                CardInfo object. If present, the info object takes precedence
+ 88            ignore_release_candidates:
+ 89                If True, ignores release candidates
+ 90
+ 91        Returns:
+ 92            pandas dataframe of records or list of dictionaries
+ 93        """
+ 94
+ 95        if info is not None:
+ 96            name = name or info.name
+ 97            repository = repository or info.repository
+ 98            uid = uid or info.uid
+ 99            version = version or info.version
+100            tags = tags or info.tags
+101
+102        if name is not None:
+103            name = name.lower()
+104
+105        if repository is not None:
+106            repository = repository.lower()
+107
+108        if all(not bool(var) for var in [name, repository, version, uid, tags]):
+109            limit = limit or 25
+110
+111        card_list = self._registry.list_cards(
+112            uid=uid,
+113            name=name,
+114            repository=repository,
+115            version=version,
+116            max_date=max_date,
+117            limit=limit,
+118            tags=tags,
+119            ignore_release_candidates=ignore_release_candidates,
+120        )
+121
+122        return card_list
+123
+124    def load_card(
+125        self,
+126        name: Optional[str] = None,
+127        repository: Optional[str] = None,
+128        uid: Optional[str] = None,
+129        tags: Optional[Dict[str, str]] = None,
+130        version: Optional[str] = None,
+131        info: Optional[CardInfo] = None,
+132        ignore_release_candidates: bool = False,
+133        interface: Optional[Union[Type[ModelInterface], Type[DataInterface]]] = None,
+134    ) -> ArtifactCard:
+135        """Loads a specific card
+136
+137        Args:
+138            name:
+139                Optional Card name
+140            uid:
+141                Unique identifier for card. If present, the uid takes
+142                precedence.
+143            tags:
+144                Optional tags associated with model.
+145            repository:
+146                Optional repository associated with card
+147            version:
+148                Optional version number of existing data. If not specified, the
+149                most recent version will be used
+150            info:
+151                Optional CardInfo object. If present, the info takes precedence
+152            ignore_release_candidates:
+153                If True, ignores release candidates
+154            interface:
+155                Optional interface to use for loading card. This is required for when using
+156                subclassed interfaces.
+157
+158        Returns
+159            ArtifactCard
+160        """
+161
+162        # find better way to do this later
+163        if info is not None:
+164            name = name or info.name
+165            uid = uid or info.uid
+166            version = version or info.version
+167            tags = tags or info.tags
+168
+169        name = clean_string(name)
+170
+171        records = self.list_cards(
+172            uid=uid,
+173            name=name,
+174            repository=repository,
+175            version=version,
+176            tags=tags,
+177            ignore_release_candidates=ignore_release_candidates,
+178            limit=1,
+179        )
+180
+181        return CardLoader(
+182            card_args=records[0],
+183            registry_type=self.registry_type,
+184        ).load_card(interface=interface)
+185
+186    def register_card(
+187        self,
+188        card: ArtifactCard,
+189        version_type: Union[VersionType, str] = VersionType.MINOR,
+190        pre_tag: str = "rc",
+191        build_tag: str = "build",
+192    ) -> None:
+193        """
+194        Adds a new `Card` record to registry. Registration will be skipped if the card already exists.
+195
+196        Args:
+197            card:
+198                card to register
+199            version_type:
+200                Version type for increment. Options are "major", "minor" and
+201                "patch". Defaults to "minor".
+202            pre_tag:
+203                pre-release tag to add to card version
+204            build_tag:
+205                build tag to add to card version
+206        """
+207
+208        _version_type = version_type if isinstance(version_type, VersionType) else VersionType.from_str(version_type)
+209
+210        if card.uid is not None and card.version != CommonKwargs.BASE_VERSION.value:
+211            logger.info(
+212                textwrap.dedent(
+213                    f"""
+214                Card {card.uid} already exists. Skipping registration. If you'd like to register
+215                a new card, please instantiate a new Card object. If you'd like to update the
+216                existing card, please use the update_card method.
+217                """
+218                )
+219            )
+220
+221        else:
+222            self._registry.register_card(
+223                card=card,
+224                version_type=_version_type,
+225                pre_tag=pre_tag,
+226                build_tag=build_tag,
+227            )
+228
+229    def update_card(self, card: ArtifactCard) -> None:
+230        """
+231        Update an artifact card based on current registry
+232
+233        Args:
+234            card:
+235                Card to register
+236        """
+237        return self._registry.update_card(card=card)
+238
+239    def query_value_from_card(self, uid: str, columns: List[str]) -> Dict[str, Any]:
+240        """
+241        Query column values from a specific Card
+242
+243        Args:
+244            uid:
+245                Uid of Card
+246            columns:
+247                List of columns to query
+248
+249        Returns:
+250            Dictionary of column, values pairs
+251        """
+252        results = self._registry.list_cards(uid=uid)[0]
+253        return {col: results[col] for col in columns}
+254
+255    def delete_card(self, card: ArtifactCard) -> None:
+256        """
+257        Delete a specific Card
+258
+259        Args:
+260            card:
+261                Card to delete
+262        """
+263        return self._registry.delete_card(card)
+264
+265
+266class CardRegistries:
+267    def __init__(self) -> None:
+268        """Instantiates class that contains all registries"""
+269
+270        self.data = CardRegistry(registry_type=RegistryType.DATA)
+271        self.model = CardRegistry(registry_type=RegistryType.MODEL)
+272        self.run = CardRegistry(registry_type=RegistryType.RUN)
+273        self.pipeline = CardRegistry(registry_type=RegistryType.PIPELINE)
+274        self.project = CardRegistry(registry_type=RegistryType.PROJECT)
+275        self.audit = CardRegistry(registry_type=RegistryType.AUDIT)
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + CardRegistry: + + + +
+ +
 22class CardRegistry:
+ 23    def __init__(self, registry_type: Union[RegistryType, str]):
+ 24        """
+ 25        Interface for connecting to any of the ArtifactCard registries
+ 26
+ 27        Args:
+ 28            registry_type:
+ 29                Type of card registry to create
+ 30            settings:
+ 31                Storage settings
+ 32
+ 33        Returns:
+ 34            Instantiated connection to specific Card registry
+ 35
+ 36        Example:
+ 37            data_registry = CardRegistry(RegistryType.DATA)
+ 38            data_registry.list_cards()
+ 39
+ 40            or
+ 41            data_registry = CardRegistry("data")
+ 42            data_registry.list_cards()
+ 43        """
+ 44
+ 45        _registry_type = (
+ 46            registry_type if isinstance(registry_type, RegistryType) else RegistryType.from_str(registry_type)
+ 47        )
+ 48
+ 49        self._registry = _set_registry(_registry_type)
+ 50        self.table_name = self._registry.table_name
+ 51
+ 52    @property
+ 53    def registry_type(self) -> RegistryType:
+ 54        "Registry type for card registry"
+ 55        return self._registry.registry_type
+ 56
+ 57    def list_cards(
+ 58        self,
+ 59        uid: Optional[str] = None,
+ 60        name: Optional[str] = None,
+ 61        repository: Optional[str] = None,
+ 62        version: Optional[str] = None,
+ 63        tags: Optional[Dict[str, str]] = None,
+ 64        info: Optional[CardInfo] = None,
+ 65        max_date: Optional[str] = None,
+ 66        limit: Optional[int] = None,
+ 67        ignore_release_candidates: bool = False,
+ 68    ) -> List[Dict[str, Any]]:
+ 69        """Retrieves records from registry
+ 70
+ 71        Args:
+ 72            name:
+ 73                Card name
+ 74            repository:
+ 75                Repository associated with card
+ 76            version:
+ 77                Optional version number of existing data. If not specified, the
+ 78                most recent version will be used
+ 79            tags:
+ 80                Dictionary of key, value tags to search for
+ 81            uid:
+ 82                Unique identifier for Card. If present, the uid takes precedence
+ 83            max_date:
+ 84                Max date to search. (e.g. "2023-05-01" would search for cards up to and including "2023-05-01")
+ 85            limit:
+ 86                Places a limit on result list. Results are sorted by SemVer
+ 87            info:
+ 88                CardInfo object. If present, the info object takes precedence
+ 89            ignore_release_candidates:
+ 90                If True, ignores release candidates
+ 91
+ 92        Returns:
+ 93            pandas dataframe of records or list of dictionaries
+ 94        """
+ 95
+ 96        if info is not None:
+ 97            name = name or info.name
+ 98            repository = repository or info.repository
+ 99            uid = uid or info.uid
+100            version = version or info.version
+101            tags = tags or info.tags
+102
+103        if name is not None:
+104            name = name.lower()
+105
+106        if repository is not None:
+107            repository = repository.lower()
+108
+109        if all(not bool(var) for var in [name, repository, version, uid, tags]):
+110            limit = limit or 25
+111
+112        card_list = self._registry.list_cards(
+113            uid=uid,
+114            name=name,
+115            repository=repository,
+116            version=version,
+117            max_date=max_date,
+118            limit=limit,
+119            tags=tags,
+120            ignore_release_candidates=ignore_release_candidates,
+121        )
+122
+123        return card_list
+124
+125    def load_card(
+126        self,
+127        name: Optional[str] = None,
+128        repository: Optional[str] = None,
+129        uid: Optional[str] = None,
+130        tags: Optional[Dict[str, str]] = None,
+131        version: Optional[str] = None,
+132        info: Optional[CardInfo] = None,
+133        ignore_release_candidates: bool = False,
+134        interface: Optional[Union[Type[ModelInterface], Type[DataInterface]]] = None,
+135    ) -> ArtifactCard:
+136        """Loads a specific card
+137
+138        Args:
+139            name:
+140                Optional Card name
+141            uid:
+142                Unique identifier for card. If present, the uid takes
+143                precedence.
+144            tags:
+145                Optional tags associated with model.
+146            repository:
+147                Optional repository associated with card
+148            version:
+149                Optional version number of existing data. If not specified, the
+150                most recent version will be used
+151            info:
+152                Optional CardInfo object. If present, the info takes precedence
+153            ignore_release_candidates:
+154                If True, ignores release candidates
+155            interface:
+156                Optional interface to use for loading card. This is required for when using
+157                subclassed interfaces.
+158
+159        Returns
+160            ArtifactCard
+161        """
+162
+163        # find better way to do this later
+164        if info is not None:
+165            name = name or info.name
+166            uid = uid or info.uid
+167            version = version or info.version
+168            tags = tags or info.tags
+169
+170        name = clean_string(name)
+171
+172        records = self.list_cards(
+173            uid=uid,
+174            name=name,
+175            repository=repository,
+176            version=version,
+177            tags=tags,
+178            ignore_release_candidates=ignore_release_candidates,
+179            limit=1,
+180        )
+181
+182        return CardLoader(
+183            card_args=records[0],
+184            registry_type=self.registry_type,
+185        ).load_card(interface=interface)
+186
+187    def register_card(
+188        self,
+189        card: ArtifactCard,
+190        version_type: Union[VersionType, str] = VersionType.MINOR,
+191        pre_tag: str = "rc",
+192        build_tag: str = "build",
+193    ) -> None:
+194        """
+195        Adds a new `Card` record to registry. Registration will be skipped if the card already exists.
+196
+197        Args:
+198            card:
+199                card to register
+200            version_type:
+201                Version type for increment. Options are "major", "minor" and
+202                "patch". Defaults to "minor".
+203            pre_tag:
+204                pre-release tag to add to card version
+205            build_tag:
+206                build tag to add to card version
+207        """
+208
+209        _version_type = version_type if isinstance(version_type, VersionType) else VersionType.from_str(version_type)
+210
+211        if card.uid is not None and card.version != CommonKwargs.BASE_VERSION.value:
+212            logger.info(
+213                textwrap.dedent(
+214                    f"""
+215                Card {card.uid} already exists. Skipping registration. If you'd like to register
+216                a new card, please instantiate a new Card object. If you'd like to update the
+217                existing card, please use the update_card method.
+218                """
+219                )
+220            )
+221
+222        else:
+223            self._registry.register_card(
+224                card=card,
+225                version_type=_version_type,
+226                pre_tag=pre_tag,
+227                build_tag=build_tag,
+228            )
+229
+230    def update_card(self, card: ArtifactCard) -> None:
+231        """
+232        Update an artifact card based on current registry
+233
+234        Args:
+235            card:
+236                Card to register
+237        """
+238        return self._registry.update_card(card=card)
+239
+240    def query_value_from_card(self, uid: str, columns: List[str]) -> Dict[str, Any]:
+241        """
+242        Query column values from a specific Card
+243
+244        Args:
+245            uid:
+246                Uid of Card
+247            columns:
+248                List of columns to query
+249
+250        Returns:
+251            Dictionary of column, values pairs
+252        """
+253        results = self._registry.list_cards(uid=uid)[0]
+254        return {col: results[col] for col in columns}
+255
+256    def delete_card(self, card: ArtifactCard) -> None:
+257        """
+258        Delete a specific Card
+259
+260        Args:
+261            card:
+262                Card to delete
+263        """
+264        return self._registry.delete_card(card)
+
+ + + + +
+ +
+ + CardRegistry(registry_type: Union[opsml.types.card.RegistryType, str]) + + + +
+ +
23    def __init__(self, registry_type: Union[RegistryType, str]):
+24        """
+25        Interface for connecting to any of the ArtifactCard registries
+26
+27        Args:
+28            registry_type:
+29                Type of card registry to create
+30            settings:
+31                Storage settings
+32
+33        Returns:
+34            Instantiated connection to specific Card registry
+35
+36        Example:
+37            data_registry = CardRegistry(RegistryType.DATA)
+38            data_registry.list_cards()
+39
+40            or
+41            data_registry = CardRegistry("data")
+42            data_registry.list_cards()
+43        """
+44
+45        _registry_type = (
+46            registry_type if isinstance(registry_type, RegistryType) else RegistryType.from_str(registry_type)
+47        )
+48
+49        self._registry = _set_registry(_registry_type)
+50        self.table_name = self._registry.table_name
+
+ + +

Interface for connecting to any of the ArtifactCard registries

+ +
Arguments:
+ +
    +
  • registry_type: Type of card registry to create
  • +
  • settings: Storage settings
  • +
+ +
Returns:
+ +
+

Instantiated connection to specific Card registry

+
+ +
Example:
+ +
+

data_registry = CardRegistry(RegistryType.DATA) + data_registry.list_cards()

+ +

or + data_registry = CardRegistry("data") + data_registry.list_cards()

+
+
+ + +
+
+
+ table_name + + +
+ + + + +
+
+ +
+ registry_type: opsml.types.card.RegistryType + + + +
+ +
52    @property
+53    def registry_type(self) -> RegistryType:
+54        "Registry type for card registry"
+55        return self._registry.registry_type
+
+ + +

Registry type for card registry

+
+ + +
+
+ +
+ + def + list_cards( self, uid: Optional[str] = None, name: Optional[str] = None, repository: Optional[str] = None, version: Optional[str] = None, tags: Optional[Dict[str, str]] = None, info: Optional[opsml.types.card.CardInfo] = None, max_date: Optional[str] = None, limit: Optional[int] = None, ignore_release_candidates: bool = False) -> List[Dict[str, Any]]: + + + +
+ +
 57    def list_cards(
+ 58        self,
+ 59        uid: Optional[str] = None,
+ 60        name: Optional[str] = None,
+ 61        repository: Optional[str] = None,
+ 62        version: Optional[str] = None,
+ 63        tags: Optional[Dict[str, str]] = None,
+ 64        info: Optional[CardInfo] = None,
+ 65        max_date: Optional[str] = None,
+ 66        limit: Optional[int] = None,
+ 67        ignore_release_candidates: bool = False,
+ 68    ) -> List[Dict[str, Any]]:
+ 69        """Retrieves records from registry
+ 70
+ 71        Args:
+ 72            name:
+ 73                Card name
+ 74            repository:
+ 75                Repository associated with card
+ 76            version:
+ 77                Optional version number of existing data. If not specified, the
+ 78                most recent version will be used
+ 79            tags:
+ 80                Dictionary of key, value tags to search for
+ 81            uid:
+ 82                Unique identifier for Card. If present, the uid takes precedence
+ 83            max_date:
+ 84                Max date to search. (e.g. "2023-05-01" would search for cards up to and including "2023-05-01")
+ 85            limit:
+ 86                Places a limit on result list. Results are sorted by SemVer
+ 87            info:
+ 88                CardInfo object. If present, the info object takes precedence
+ 89            ignore_release_candidates:
+ 90                If True, ignores release candidates
+ 91
+ 92        Returns:
+ 93            pandas dataframe of records or list of dictionaries
+ 94        """
+ 95
+ 96        if info is not None:
+ 97            name = name or info.name
+ 98            repository = repository or info.repository
+ 99            uid = uid or info.uid
+100            version = version or info.version
+101            tags = tags or info.tags
+102
+103        if name is not None:
+104            name = name.lower()
+105
+106        if repository is not None:
+107            repository = repository.lower()
+108
+109        if all(not bool(var) for var in [name, repository, version, uid, tags]):
+110            limit = limit or 25
+111
+112        card_list = self._registry.list_cards(
+113            uid=uid,
+114            name=name,
+115            repository=repository,
+116            version=version,
+117            max_date=max_date,
+118            limit=limit,
+119            tags=tags,
+120            ignore_release_candidates=ignore_release_candidates,
+121        )
+122
+123        return card_list
+
+ + +

Retrieves records from registry

+ +
Arguments:
+ +
    +
  • name: Card name
  • +
  • repository: Repository associated with card
  • +
  • version: Optional version number of existing data. If not specified, the +most recent version will be used
  • +
  • tags: Dictionary of key, value tags to search for
  • +
  • uid: Unique identifier for Card. If present, the uid takes precedence
  • +
  • max_date: Max date to search. (e.g. "2023-05-01" would search for cards up to and including "2023-05-01")
  • +
  • limit: Places a limit on result list. Results are sorted by SemVer
  • +
  • info: CardInfo object. If present, the info object takes precedence
  • +
  • ignore_release_candidates: If True, ignores release candidates
  • +
+ +
Returns:
+ +
+

pandas dataframe of records or list of dictionaries

+
+
+ + +
+
+ +
+ + def + load_card( self, name: Optional[str] = None, repository: Optional[str] = None, uid: Optional[str] = None, tags: Optional[Dict[str, str]] = None, version: Optional[str] = None, info: Optional[opsml.types.card.CardInfo] = None, ignore_release_candidates: bool = False, interface: Union[Type[opsml.data.interfaces._base.DataInterface], Type[opsml.model.interfaces.base.ModelInterface], NoneType] = None) -> opsml.cards.base.ArtifactCard: + + + +
+ +
125    def load_card(
+126        self,
+127        name: Optional[str] = None,
+128        repository: Optional[str] = None,
+129        uid: Optional[str] = None,
+130        tags: Optional[Dict[str, str]] = None,
+131        version: Optional[str] = None,
+132        info: Optional[CardInfo] = None,
+133        ignore_release_candidates: bool = False,
+134        interface: Optional[Union[Type[ModelInterface], Type[DataInterface]]] = None,
+135    ) -> ArtifactCard:
+136        """Loads a specific card
+137
+138        Args:
+139            name:
+140                Optional Card name
+141            uid:
+142                Unique identifier for card. If present, the uid takes
+143                precedence.
+144            tags:
+145                Optional tags associated with model.
+146            repository:
+147                Optional repository associated with card
+148            version:
+149                Optional version number of existing data. If not specified, the
+150                most recent version will be used
+151            info:
+152                Optional CardInfo object. If present, the info takes precedence
+153            ignore_release_candidates:
+154                If True, ignores release candidates
+155            interface:
+156                Optional interface to use for loading card. This is required for when using
+157                subclassed interfaces.
+158
+159        Returns
+160            ArtifactCard
+161        """
+162
+163        # find better way to do this later
+164        if info is not None:
+165            name = name or info.name
+166            uid = uid or info.uid
+167            version = version or info.version
+168            tags = tags or info.tags
+169
+170        name = clean_string(name)
+171
+172        records = self.list_cards(
+173            uid=uid,
+174            name=name,
+175            repository=repository,
+176            version=version,
+177            tags=tags,
+178            ignore_release_candidates=ignore_release_candidates,
+179            limit=1,
+180        )
+181
+182        return CardLoader(
+183            card_args=records[0],
+184            registry_type=self.registry_type,
+185        ).load_card(interface=interface)
+
+ + +

Loads a specific card

+ +
Arguments:
+ +
    +
  • name: Optional Card name
  • +
  • uid: Unique identifier for card. If present, the uid takes +precedence.
  • +
  • tags: Optional tags associated with model.
  • +
  • repository: Optional repository associated with card
  • +
  • version: Optional version number of existing data. If not specified, the +most recent version will be used
  • +
  • info: Optional CardInfo object. If present, the info takes precedence
  • +
  • ignore_release_candidates: If True, ignores release candidates
  • +
  • interface: Optional interface to use for loading card. This is required for when using +subclassed interfaces.
  • +
+ +

Returns + ArtifactCard

+
+ + +
+
+ +
+ + def + register_card( self, card: opsml.cards.base.ArtifactCard, version_type: Union[opsml.registry.semver.VersionType, str] = <VersionType.MINOR: 'minor'>, pre_tag: str = 'rc', build_tag: str = 'build') -> None: + + + +
+ +
187    def register_card(
+188        self,
+189        card: ArtifactCard,
+190        version_type: Union[VersionType, str] = VersionType.MINOR,
+191        pre_tag: str = "rc",
+192        build_tag: str = "build",
+193    ) -> None:
+194        """
+195        Adds a new `Card` record to registry. Registration will be skipped if the card already exists.
+196
+197        Args:
+198            card:
+199                card to register
+200            version_type:
+201                Version type for increment. Options are "major", "minor" and
+202                "patch". Defaults to "minor".
+203            pre_tag:
+204                pre-release tag to add to card version
+205            build_tag:
+206                build tag to add to card version
+207        """
+208
+209        _version_type = version_type if isinstance(version_type, VersionType) else VersionType.from_str(version_type)
+210
+211        if card.uid is not None and card.version != CommonKwargs.BASE_VERSION.value:
+212            logger.info(
+213                textwrap.dedent(
+214                    f"""
+215                Card {card.uid} already exists. Skipping registration. If you'd like to register
+216                a new card, please instantiate a new Card object. If you'd like to update the
+217                existing card, please use the update_card method.
+218                """
+219                )
+220            )
+221
+222        else:
+223            self._registry.register_card(
+224                card=card,
+225                version_type=_version_type,
+226                pre_tag=pre_tag,
+227                build_tag=build_tag,
+228            )
+
+ + +

Adds a new Card record to registry. Registration will be skipped if the card already exists.

+ +
Arguments:
+ +
    +
  • card: card to register
  • +
  • version_type: Version type for increment. Options are "major", "minor" and +"patch". Defaults to "minor".
  • +
  • pre_tag: pre-release tag to add to card version
  • +
  • build_tag: build tag to add to card version
  • +
+
+ + +
+
+ +
+ + def + update_card(self, card: opsml.cards.base.ArtifactCard) -> None: + + + +
+ +
230    def update_card(self, card: ArtifactCard) -> None:
+231        """
+232        Update an artifact card based on current registry
+233
+234        Args:
+235            card:
+236                Card to register
+237        """
+238        return self._registry.update_card(card=card)
+
+ + +

Update an artifact card based on current registry

+ +
Arguments:
+ +
    +
  • card: Card to register
  • +
+
+ + +
+
+ +
+ + def + query_value_from_card(self, uid: str, columns: List[str]) -> Dict[str, Any]: + + + +
+ +
240    def query_value_from_card(self, uid: str, columns: List[str]) -> Dict[str, Any]:
+241        """
+242        Query column values from a specific Card
+243
+244        Args:
+245            uid:
+246                Uid of Card
+247            columns:
+248                List of columns to query
+249
+250        Returns:
+251            Dictionary of column, values pairs
+252        """
+253        results = self._registry.list_cards(uid=uid)[0]
+254        return {col: results[col] for col in columns}
+
+ + +

Query column values from a specific Card

+ +
Arguments:
+ +
    +
  • uid: Uid of Card
  • +
  • columns: List of columns to query
  • +
+ +
Returns:
+ +
+

Dictionary of column, values pairs

+
+
+ + +
+
+ +
+ + def + delete_card(self, card: opsml.cards.base.ArtifactCard) -> None: + + + +
+ +
256    def delete_card(self, card: ArtifactCard) -> None:
+257        """
+258        Delete a specific Card
+259
+260        Args:
+261            card:
+262                Card to delete
+263        """
+264        return self._registry.delete_card(card)
+
+ + +

Delete a specific Card

+ +
Arguments:
+ +
    +
  • card: Card to delete
  • +
+
+ + +
+
+
+ +
+ + class + CardRegistries: + + + +
+ +
267class CardRegistries:
+268    def __init__(self) -> None:
+269        """Instantiates class that contains all registries"""
+270
+271        self.data = CardRegistry(registry_type=RegistryType.DATA)
+272        self.model = CardRegistry(registry_type=RegistryType.MODEL)
+273        self.run = CardRegistry(registry_type=RegistryType.RUN)
+274        self.pipeline = CardRegistry(registry_type=RegistryType.PIPELINE)
+275        self.project = CardRegistry(registry_type=RegistryType.PROJECT)
+276        self.audit = CardRegistry(registry_type=RegistryType.AUDIT)
+
+ + + + +
+ +
+ + CardRegistries() + + + +
+ +
268    def __init__(self) -> None:
+269        """Instantiates class that contains all registries"""
+270
+271        self.data = CardRegistry(registry_type=RegistryType.DATA)
+272        self.model = CardRegistry(registry_type=RegistryType.MODEL)
+273        self.run = CardRegistry(registry_type=RegistryType.RUN)
+274        self.pipeline = CardRegistry(registry_type=RegistryType.PIPELINE)
+275        self.project = CardRegistry(registry_type=RegistryType.PROJECT)
+276        self.audit = CardRegistry(registry_type=RegistryType.AUDIT)
+
+ + +

Instantiates class that contains all registries

+
+ + +
+
+
+ data + + +
+ + + + +
+
+
+ model + + +
+ + + + +
+
+
+ run + + +
+ + + + +
+
+
+ pipeline + + +
+ + + + +
+
+
+ project + + +
+ + + + +
+
+
+ audit + + +
+ + + + +
+
+
+ + \ No newline at end of file diff --git a/api/opsml/registry/semver.html b/api/opsml/registry/semver.html new file mode 100644 index 000000000..d4811523a --- /dev/null +++ b/api/opsml/registry/semver.html @@ -0,0 +1,2869 @@ + + + + + + + opsml.registry.semver API documentation + + + + + + + + + +
+
+

+opsml.registry.semver

+ + + + + + +
  1# Copyright (c) Shipt, Inc.
+  2# This source code is licensed under the MIT license found in the
+  3# LICENSE file in the root directory of this source tree.
+  4import re
+  5from enum import Enum
+  6from typing import Any, List, Optional
+  7
+  8import semver
+  9from pydantic import BaseModel, model_validator
+ 10
+ 11from opsml.helpers.exceptions import VersionError
+ 12from opsml.helpers.logging import ArtifactLogger
+ 13
+ 14logger = ArtifactLogger.get_logger()
+ 15
+ 16
+ 17class VersionType(str, Enum):
+ 18    MAJOR = "major"
+ 19    MINOR = "minor"
+ 20    PATCH = "patch"
+ 21    PRE = "pre"
+ 22    BUILD = "build"
+ 23    PRE_BUILD = "pre_build"
+ 24
+ 25    @staticmethod
+ 26    def from_str(name: str) -> "VersionType":
+ 27        l_name = name.strip().lower()
+ 28        if l_name == "major":
+ 29            return VersionType.MAJOR
+ 30        if l_name == "minor":
+ 31            return VersionType.MINOR
+ 32        if l_name == "patch":
+ 33            return VersionType.PATCH
+ 34        if l_name == "pre":
+ 35            return VersionType.PRE
+ 36        if l_name == "build":
+ 37            return VersionType.BUILD
+ 38        if l_name == "pre_build":
+ 39            return VersionType.PRE_BUILD
+ 40        raise NotImplementedError()
+ 41
+ 42
+ 43class CardVersion(BaseModel):
+ 44    version: str
+ 45    version_splits: List[str] = []
+ 46    is_full_semver: bool = False
+ 47
+ 48    @model_validator(mode="before")
+ 49    @classmethod
+ 50    def validate_inputs(cls, values: Any) -> Any:
+ 51        """Validates a user-supplied version"""
+ 52        version = values.get("version")
+ 53        splits = version.split(".")
+ 54        values["version_splits"] = splits
+ 55
+ 56        if cls.check_full_semver(splits):
+ 57            values["is_full_semver"] = True
+ 58            cls._validate_full_semver(version)
+ 59        else:
+ 60            values["is_full_semver"] = False
+ 61            cls._validate_partial_semver(splits)
+ 62
+ 63        return values
+ 64
+ 65    @classmethod
+ 66    def check_full_semver(cls, version_splits: List[str]) -> bool:
+ 67        """Checks if a version is a full semver"""
+ 68        return len(version_splits) >= 3
+ 69
+ 70    @classmethod
+ 71    def _validate_full_semver(cls, version: str) -> None:
+ 72        """Validates a full semver"""
+ 73        if not semver.VersionInfo.isvalid(version):
+ 74            raise ValueError("Version is not a valid Semver")
+ 75
+ 76    @classmethod
+ 77    def _validate_partial_semver(cls, version_splits: List[str]) -> None:
+ 78        """Validates a partial semver"""
+ 79        try:
+ 80            assert all((i.isdigit() for i in version_splits))
+ 81        except AssertionError as exc:
+ 82            version = ".".join(version_splits)
+ 83            raise AssertionError(f"Version {version} is not a valid semver or partial semver") from exc
+ 84
+ 85    def _get_version_split(self, split: int) -> str:
+ 86        """Splits a version into its major, minor, and patch components"""
+ 87
+ 88        try:
+ 89            return self.version_splits[split]
+ 90        except IndexError as exc:
+ 91            raise IndexError(f"Version split {split} not found: {self.version}") from exc
+ 92
+ 93    @property
+ 94    def has_major_minor(self) -> bool:
+ 95        """Checks if a version has a major and minor component"""
+ 96        return len(self.version_splits) >= 2
+ 97
+ 98    @property
+ 99    def major(self) -> str:
+100        return self._get_version_split(0)
+101
+102    @property
+103    def minor(self) -> str:
+104        return self._get_version_split(1)
+105
+106    @property
+107    def patch(self) -> str:
+108        return self._get_version_split(2)
+109
+110    @property
+111    def valid_version(self) -> str:
+112        if self.is_full_semver:
+113            return str(semver.VersionInfo.parse(self.version).finalize_version())
+114        return self.version
+115
+116    @staticmethod
+117    def finalize_partial_version(version: str) -> str:
+118        """Finalizes a partial semver version
+119
+120        Args:
+121            version:
+122                version to finalize
+123        Returns:
+124            str: finalized version
+125        """
+126        version_splits = version.split(".")
+127
+128        if len(version_splits) == 1:
+129            return f"{version}.0.0"
+130        if len(version_splits) == 2:
+131            return f"{version}.0"
+132
+133        return version
+134
+135    def get_version_to_search(self, version_type: VersionType) -> Optional[str]:
+136        """Gets a version to search for in the database
+137
+138        Args:
+139            version_type:
+140                type of version to search for
+141        Returns:
+142            str: version to search for
+143        """
+144
+145        if version_type == VersionType.PATCH:  # want to search major and minor if exists
+146            if self.has_major_minor:
+147                return f"{self.major}.{self.minor}"
+148            return str(self.major)
+149
+150        if version_type == VersionType.MINOR:  # want to search major
+151            return str(self.major)
+152
+153        if version_type in [VersionType.PRE, VersionType.BUILD, VersionType.PRE_BUILD]:
+154            return self.valid_version
+155
+156        return None
+157
+158
+159class SemVerUtils:
+160    """Class for general semver-related functions"""
+161
+162    @staticmethod
+163    def sort_semvers(versions: List[str]) -> List[str]:
+164        """Implements bubble sort for semvers
+165
+166        Args:
+167            versions:
+168                list of versions to sort
+169
+170        Returns:
+171            sorted list of versions with highest version first
+172        """
+173
+174        n_ver = len(versions)
+175
+176        for i in range(n_ver):
+177            already_sorted = True
+178
+179            for j in range(n_ver - i - 1):
+180                j_version = semver.VersionInfo.parse(versions[j])
+181                j1_version = semver.VersionInfo.parse(versions[j + 1])
+182
+183                # use semver comparison logic
+184                if j_version > j1_version:
+185                    # swap
+186                    versions[j], versions[j + 1] = versions[j + 1], versions[j]
+187
+188                    already_sorted = False
+189
+190            if already_sorted:
+191                break
+192
+193        versions.reverse()
+194        return versions
+195
+196    @staticmethod
+197    def is_release_candidate(version: str) -> bool:
+198        """Ignores pre-release versions"""
+199        ver = semver.VersionInfo.parse(version)
+200        return bool(ver.prerelease)
+201
+202    @staticmethod
+203    def increment_version(
+204        version: str,
+205        version_type: VersionType,
+206        pre_tag: str,
+207        build_tag: str,
+208    ) -> str:
+209        """
+210        Increments a version based on version type
+211
+212        Args:
+213            version:
+214                Current version
+215            version_type:
+216                Type of version increment.
+217            pre_tag:
+218                Pre-release tag
+219            build_tag:
+220                Build tag
+221
+222        Raises:
+223            ValueError:
+224                unknown version_type
+225
+226        Returns:
+227            New version
+228        """
+229        ver: semver.VersionInfo = semver.VersionInfo.parse(version)
+230
+231        # Set major, minor, patch
+232        if version_type == VersionType.MAJOR:
+233            return str(ver.bump_major())
+234        if version_type == VersionType.MINOR:
+235            return str(ver.bump_minor())
+236        if version_type == VersionType.PATCH:
+237            return str(ver.bump_patch())
+238
+239        # Set pre-release
+240        if version_type == VersionType.PRE:
+241            return str(ver.bump_prerelease(token=pre_tag))
+242
+243        # Set build
+244        if version_type == VersionType.BUILD:
+245            return str(ver.bump_build(token=build_tag))
+246
+247        if version_type == VersionType.PRE_BUILD:
+248            ver = ver.bump_prerelease(token=pre_tag)
+249            ver = ver.bump_build(token=build_tag)
+250
+251            return str(ver)
+252
+253        raise ValueError(f"Unknown version_type: {version_type}")
+254
+255    @staticmethod
+256    def add_tags(
+257        version: str,
+258        pre_tag: Optional[str] = None,
+259        build_tag: Optional[str] = None,
+260    ) -> str:
+261        if pre_tag is not None:
+262            version = f"{version}-{pre_tag}"
+263        if build_tag is not None:
+264            version = f"{version}+{build_tag}"
+265
+266        return version
+267
+268
+269class SemVerRegistryValidator:
+270    """Class for obtaining the correct registry version"""
+271
+272    def __init__(
+273        self,
+274        name: str,
+275        version_type: VersionType,
+276        pre_tag: str,
+277        build_tag: str,
+278        version: Optional[CardVersion] = None,
+279    ) -> None:
+280        """Instantiate SemverValidator
+281
+282        Args:
+283            name:
+284                name of the artifact
+285            version_type:
+286                type of version increment
+287            version:
+288                version to use
+289            pre_tag:
+290                pre-release tag
+291            build_tag:
+292                build tag
+293
+294        Returns:
+295            None
+296        """
+297        self.version = version
+298        self._version_to_search = None
+299        self.final_version = None
+300        self.version_type = version_type
+301        self.name = name
+302        self.pre_tag = pre_tag
+303        self.build_tag = build_tag
+304
+305    @property
+306    def version_to_search(self) -> Optional[str]:
+307        """Parses version and returns version to search for in the registry"""
+308        if self.version is not None:
+309            return self.version.get_version_to_search(version_type=self.version_type)
+310        return self._version_to_search
+311
+312    def _set_version_from_existing(self, versions: List[str]) -> str:
+313        """Search existing versions to find the correct version to use
+314
+315        Args:
+316            versions:
+317                list of existing versions
+318
+319        Returns:
+320            str: version to use
+321        """
+322        version = versions[0]
+323        recent_ver = semver.VersionInfo.parse(version)
+324        # first need to check if increment is mmp
+325        if self.version_type in [VersionType.MAJOR, VersionType.MINOR, VersionType.PATCH]:
+326            # check if most recent version is a pre-release or build
+327            if recent_ver.prerelease is not None:
+328                version = str(recent_ver.finalize_version())
+329                try:
+330                    # if all versions are pre-release use finalized version
+331                    # if not, increment version
+332                    for ver in versions:
+333                        parsed_ver = semver.VersionInfo.parse(ver)
+334                        if parsed_ver.prerelease is None:
+335                            raise VersionError("Major, minor and patch version combination already exists")
+336                    return version
+337                except VersionError:
+338                    logger.info("Major, minor and patch version combination already exists")
+339
+340        while version in versions:
+341            version = SemVerUtils.increment_version(
+342                version=version,
+343                version_type=self.version_type,
+344                pre_tag=self.pre_tag,
+345                build_tag=self.build_tag,
+346            )
+347
+348        return version
+349
+350    def set_version(self, versions: List[str]) -> str:
+351        """Sets the correct version to use for incrementing and adding the the registry
+352
+353        Args:
+354            versions:
+355                list of existing versions
+356
+357        Returns:
+358            str: version to use
+359        """
+360        if bool(versions):
+361            return self._set_version_from_existing(versions=versions)
+362
+363        final_version = None
+364        if self.version is not None:
+365            final_version = CardVersion.finalize_partial_version(version=self.version.valid_version)
+366
+367        version = final_version or "1.0.0"
+368
+369        if self.version_type in [VersionType.PRE, VersionType.BUILD, VersionType.PRE_BUILD]:
+370            return SemVerUtils.increment_version(
+371                version=version,
+372                version_type=self.version_type,
+373                pre_tag=self.pre_tag,
+374                build_tag=self.build_tag,
+375            )
+376
+377        return version
+378
+379
+380class SemVerSymbols(str, Enum):
+381    STAR = "*"
+382    CARET = "^"
+383    TILDE = "~"
+384
+385
+386class SemVerParser:
+387    """Base class for semver parsing"""
+388
+389    @staticmethod
+390    def parse_version(version: str) -> str:
+391        raise NotImplementedError
+392
+393    @staticmethod
+394    def validate(version: str) -> bool:
+395        raise NotImplementedError
+396
+397
+398class StarParser(SemVerParser):
+399    """Parses versions that contain * symbol"""
+400
+401    @staticmethod
+402    def parse_version(version: str) -> str:
+403        version_ = version.split(SemVerSymbols.STAR)[0]
+404        return re.sub(".$", "", version_)
+405
+406    @staticmethod
+407    def validate(version: str) -> bool:
+408        return SemVerSymbols.STAR in version
+409
+410
+411class CaretParser(SemVerParser):
+412    """Parses versions that contain ^ symbol"""
+413
+414    @staticmethod
+415    def parse_version(version: str) -> str:
+416        return version.split(".")[0].replace(SemVerSymbols.CARET, "")
+417
+418    @staticmethod
+419    def validate(version: str) -> bool:
+420        return SemVerSymbols.CARET in version
+421
+422
+423class TildeParser(SemVerParser):
+424    """Parses versions that contain ~ symbol"""
+425
+426    @staticmethod
+427    def parse_version(version: str) -> str:
+428        return ".".join(version.split(".")[0:2]).replace(SemVerSymbols.TILDE, "")
+429
+430    @staticmethod
+431    def validate(version: str) -> bool:
+432        return SemVerSymbols.TILDE in version
+433
+434
+435class NoParser(SemVerParser):
+436    """Does not parse version"""
+437
+438    @staticmethod
+439    def parse_version(version: str) -> str:
+440        return version
+441
+442    @staticmethod
+443    def validate(version: str) -> bool:
+444        return version not in list(SemVerSymbols)
+445
+446
+447def get_version_to_search(version: str) -> str:
+448    """Parses a current version based on SemVer characters.
+449
+450    Args:
+451        version (str): ArtifactCard version
+452
+453    Returns:
+454        Version (str) to search based on presence of SemVer characters
+455    """
+456
+457    # gut check
+458    if sum(symbol in version for symbol in SemVerSymbols) > 1:
+459        raise ValueError("Only one SemVer character is allowed in the version string")
+460
+461    parser = next(
+462        (parser for parser in SemVerParser.__subclasses__() if parser.validate(version=version)),
+463        NoParser,
+464    )
+465    return parser.parse_version(version=version)
+
+ + +
+
+
+ logger = +<builtins.Logger object> + + +
+ + + + +
+
+ +
+ + class + VersionType(builtins.str, enum.Enum): + + + +
+ +
18class VersionType(str, Enum):
+19    MAJOR = "major"
+20    MINOR = "minor"
+21    PATCH = "patch"
+22    PRE = "pre"
+23    BUILD = "build"
+24    PRE_BUILD = "pre_build"
+25
+26    @staticmethod
+27    def from_str(name: str) -> "VersionType":
+28        l_name = name.strip().lower()
+29        if l_name == "major":
+30            return VersionType.MAJOR
+31        if l_name == "minor":
+32            return VersionType.MINOR
+33        if l_name == "patch":
+34            return VersionType.PATCH
+35        if l_name == "pre":
+36            return VersionType.PRE
+37        if l_name == "build":
+38            return VersionType.BUILD
+39        if l_name == "pre_build":
+40            return VersionType.PRE_BUILD
+41        raise NotImplementedError()
+
+ + +

An enumeration.

+
+ + +
+
+ MAJOR = +<VersionType.MAJOR: 'major'> + + +
+ + + + +
+
+
+ MINOR = +<VersionType.MINOR: 'minor'> + + +
+ + + + +
+
+
+ PATCH = +<VersionType.PATCH: 'patch'> + + +
+ + + + +
+
+
+ PRE = +<VersionType.PRE: 'pre'> + + +
+ + + + +
+
+
+ BUILD = +<VersionType.BUILD: 'build'> + + +
+ + + + +
+
+
+ PRE_BUILD = +<VersionType.PRE_BUILD: 'pre_build'> + + +
+ + + + +
+
+ +
+
@staticmethod
+ + def + from_str(name: str) -> VersionType: + + + +
+ +
26    @staticmethod
+27    def from_str(name: str) -> "VersionType":
+28        l_name = name.strip().lower()
+29        if l_name == "major":
+30            return VersionType.MAJOR
+31        if l_name == "minor":
+32            return VersionType.MINOR
+33        if l_name == "patch":
+34            return VersionType.PATCH
+35        if l_name == "pre":
+36            return VersionType.PRE
+37        if l_name == "build":
+38            return VersionType.BUILD
+39        if l_name == "pre_build":
+40            return VersionType.PRE_BUILD
+41        raise NotImplementedError()
+
+ + + + +
+
+
Inherited Members
+
+
enum.Enum
+
name
+
value
+ +
+
builtins.str
+
encode
+
replace
+
split
+
rsplit
+
join
+
capitalize
+
casefold
+
title
+
center
+
count
+
expandtabs
+
find
+
partition
+
index
+
ljust
+
lower
+
lstrip
+
rfind
+
rindex
+
rjust
+
rstrip
+
rpartition
+
splitlines
+
strip
+
swapcase
+
translate
+
upper
+
startswith
+
endswith
+
removeprefix
+
removesuffix
+
isascii
+
islower
+
isupper
+
istitle
+
isspace
+
isdecimal
+
isdigit
+
isnumeric
+
isalpha
+
isalnum
+
isidentifier
+
isprintable
+
zfill
+
format
+
format_map
+
maketrans
+ +
+
+
+
+
+ +
+ + class + CardVersion(pydantic.main.BaseModel): + + + +
+ +
 44class CardVersion(BaseModel):
+ 45    version: str
+ 46    version_splits: List[str] = []
+ 47    is_full_semver: bool = False
+ 48
+ 49    @model_validator(mode="before")
+ 50    @classmethod
+ 51    def validate_inputs(cls, values: Any) -> Any:
+ 52        """Validates a user-supplied version"""
+ 53        version = values.get("version")
+ 54        splits = version.split(".")
+ 55        values["version_splits"] = splits
+ 56
+ 57        if cls.check_full_semver(splits):
+ 58            values["is_full_semver"] = True
+ 59            cls._validate_full_semver(version)
+ 60        else:
+ 61            values["is_full_semver"] = False
+ 62            cls._validate_partial_semver(splits)
+ 63
+ 64        return values
+ 65
+ 66    @classmethod
+ 67    def check_full_semver(cls, version_splits: List[str]) -> bool:
+ 68        """Checks if a version is a full semver"""
+ 69        return len(version_splits) >= 3
+ 70
+ 71    @classmethod
+ 72    def _validate_full_semver(cls, version: str) -> None:
+ 73        """Validates a full semver"""
+ 74        if not semver.VersionInfo.isvalid(version):
+ 75            raise ValueError("Version is not a valid Semver")
+ 76
+ 77    @classmethod
+ 78    def _validate_partial_semver(cls, version_splits: List[str]) -> None:
+ 79        """Validates a partial semver"""
+ 80        try:
+ 81            assert all((i.isdigit() for i in version_splits))
+ 82        except AssertionError as exc:
+ 83            version = ".".join(version_splits)
+ 84            raise AssertionError(f"Version {version} is not a valid semver or partial semver") from exc
+ 85
+ 86    def _get_version_split(self, split: int) -> str:
+ 87        """Splits a version into its major, minor, and patch components"""
+ 88
+ 89        try:
+ 90            return self.version_splits[split]
+ 91        except IndexError as exc:
+ 92            raise IndexError(f"Version split {split} not found: {self.version}") from exc
+ 93
+ 94    @property
+ 95    def has_major_minor(self) -> bool:
+ 96        """Checks if a version has a major and minor component"""
+ 97        return len(self.version_splits) >= 2
+ 98
+ 99    @property
+100    def major(self) -> str:
+101        return self._get_version_split(0)
+102
+103    @property
+104    def minor(self) -> str:
+105        return self._get_version_split(1)
+106
+107    @property
+108    def patch(self) -> str:
+109        return self._get_version_split(2)
+110
+111    @property
+112    def valid_version(self) -> str:
+113        if self.is_full_semver:
+114            return str(semver.VersionInfo.parse(self.version).finalize_version())
+115        return self.version
+116
+117    @staticmethod
+118    def finalize_partial_version(version: str) -> str:
+119        """Finalizes a partial semver version
+120
+121        Args:
+122            version:
+123                version to finalize
+124        Returns:
+125            str: finalized version
+126        """
+127        version_splits = version.split(".")
+128
+129        if len(version_splits) == 1:
+130            return f"{version}.0.0"
+131        if len(version_splits) == 2:
+132            return f"{version}.0"
+133
+134        return version
+135
+136    def get_version_to_search(self, version_type: VersionType) -> Optional[str]:
+137        """Gets a version to search for in the database
+138
+139        Args:
+140            version_type:
+141                type of version to search for
+142        Returns:
+143            str: version to search for
+144        """
+145
+146        if version_type == VersionType.PATCH:  # want to search major and minor if exists
+147            if self.has_major_minor:
+148                return f"{self.major}.{self.minor}"
+149            return str(self.major)
+150
+151        if version_type == VersionType.MINOR:  # want to search major
+152            return str(self.major)
+153
+154        if version_type in [VersionType.PRE, VersionType.BUILD, VersionType.PRE_BUILD]:
+155            return self.valid_version
+156
+157        return None
+
+ + +

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

+ +

A base class for creating Pydantic models.

+ +
Attributes:
+ +
    +
  • __class_vars__: The names of classvars defined on the model.
  • +
  • __private_attributes__: Metadata about the private attributes of the model.
  • +
  • __signature__: The signature for instantiating the model.
  • +
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • +
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • +
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • +
  • __pydantic_decorators__: Metadata containing the decorators defined on the model. +This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • +
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to +__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • +
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • +
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • +
  • __pydantic_root_model__: Whether the model is a RootModel.
  • +
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • +
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • +
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when +model_config['extra'] == 'allow'.
  • +
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • +
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • +
+
+ + +
+
+ version: str + + +
+ + + + +
+
+
+ version_splits: List[str] + + +
+ + + + +
+
+
+ is_full_semver: bool + + +
+ + + + +
+
+ +
+
@model_validator(mode='before')
+
@classmethod
+ + def + validate_inputs(cls, values: Any) -> Any: + + + +
+ +
49    @model_validator(mode="before")
+50    @classmethod
+51    def validate_inputs(cls, values: Any) -> Any:
+52        """Validates a user-supplied version"""
+53        version = values.get("version")
+54        splits = version.split(".")
+55        values["version_splits"] = splits
+56
+57        if cls.check_full_semver(splits):
+58            values["is_full_semver"] = True
+59            cls._validate_full_semver(version)
+60        else:
+61            values["is_full_semver"] = False
+62            cls._validate_partial_semver(splits)
+63
+64        return values
+
+ + +

Validates a user-supplied version

+
+ + +
+
+ +
+
@classmethod
+ + def + check_full_semver(cls, version_splits: List[str]) -> bool: + + + +
+ +
66    @classmethod
+67    def check_full_semver(cls, version_splits: List[str]) -> bool:
+68        """Checks if a version is a full semver"""
+69        return len(version_splits) >= 3
+
+ + +

Checks if a version is a full semver

+
+ + +
+
+ +
+ has_major_minor: bool + + + +
+ +
94    @property
+95    def has_major_minor(self) -> bool:
+96        """Checks if a version has a major and minor component"""
+97        return len(self.version_splits) >= 2
+
+ + +

Checks if a version has a major and minor component

+
+ + +
+
+ +
+ major: str + + + +
+ +
 99    @property
+100    def major(self) -> str:
+101        return self._get_version_split(0)
+
+ + + + +
+
+ +
+ minor: str + + + +
+ +
103    @property
+104    def minor(self) -> str:
+105        return self._get_version_split(1)
+
+ + + + +
+
+ +
+ patch: str + + + +
+ +
107    @property
+108    def patch(self) -> str:
+109        return self._get_version_split(2)
+
+ + + + +
+
+ +
+ valid_version: str + + + +
+ +
111    @property
+112    def valid_version(self) -> str:
+113        if self.is_full_semver:
+114            return str(semver.VersionInfo.parse(self.version).finalize_version())
+115        return self.version
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + finalize_partial_version(version: str) -> str: + + + +
+ +
117    @staticmethod
+118    def finalize_partial_version(version: str) -> str:
+119        """Finalizes a partial semver version
+120
+121        Args:
+122            version:
+123                version to finalize
+124        Returns:
+125            str: finalized version
+126        """
+127        version_splits = version.split(".")
+128
+129        if len(version_splits) == 1:
+130            return f"{version}.0.0"
+131        if len(version_splits) == 2:
+132            return f"{version}.0"
+133
+134        return version
+
+ + +

Finalizes a partial semver version

+ +
Arguments:
+ +
    +
  • version: version to finalize
  • +
+ +
Returns:
+ +
+

str: finalized version

+
+
+ + +
+ +
+
+ model_config = +{} + + +
+ + + + +
+
+
+ model_fields = + + {'version': FieldInfo(annotation=str, required=True), 'version_splits': FieldInfo(annotation=List[str], required=False, default=[]), 'is_full_semver': FieldInfo(annotation=bool, required=False, default=False)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic.main.BaseModel
+
BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+ +
+ + class + SemVerUtils: + + + +
+ +
160class SemVerUtils:
+161    """Class for general semver-related functions"""
+162
+163    @staticmethod
+164    def sort_semvers(versions: List[str]) -> List[str]:
+165        """Implements bubble sort for semvers
+166
+167        Args:
+168            versions:
+169                list of versions to sort
+170
+171        Returns:
+172            sorted list of versions with highest version first
+173        """
+174
+175        n_ver = len(versions)
+176
+177        for i in range(n_ver):
+178            already_sorted = True
+179
+180            for j in range(n_ver - i - 1):
+181                j_version = semver.VersionInfo.parse(versions[j])
+182                j1_version = semver.VersionInfo.parse(versions[j + 1])
+183
+184                # use semver comparison logic
+185                if j_version > j1_version:
+186                    # swap
+187                    versions[j], versions[j + 1] = versions[j + 1], versions[j]
+188
+189                    already_sorted = False
+190
+191            if already_sorted:
+192                break
+193
+194        versions.reverse()
+195        return versions
+196
+197    @staticmethod
+198    def is_release_candidate(version: str) -> bool:
+199        """Ignores pre-release versions"""
+200        ver = semver.VersionInfo.parse(version)
+201        return bool(ver.prerelease)
+202
+203    @staticmethod
+204    def increment_version(
+205        version: str,
+206        version_type: VersionType,
+207        pre_tag: str,
+208        build_tag: str,
+209    ) -> str:
+210        """
+211        Increments a version based on version type
+212
+213        Args:
+214            version:
+215                Current version
+216            version_type:
+217                Type of version increment.
+218            pre_tag:
+219                Pre-release tag
+220            build_tag:
+221                Build tag
+222
+223        Raises:
+224            ValueError:
+225                unknown version_type
+226
+227        Returns:
+228            New version
+229        """
+230        ver: semver.VersionInfo = semver.VersionInfo.parse(version)
+231
+232        # Set major, minor, patch
+233        if version_type == VersionType.MAJOR:
+234            return str(ver.bump_major())
+235        if version_type == VersionType.MINOR:
+236            return str(ver.bump_minor())
+237        if version_type == VersionType.PATCH:
+238            return str(ver.bump_patch())
+239
+240        # Set pre-release
+241        if version_type == VersionType.PRE:
+242            return str(ver.bump_prerelease(token=pre_tag))
+243
+244        # Set build
+245        if version_type == VersionType.BUILD:
+246            return str(ver.bump_build(token=build_tag))
+247
+248        if version_type == VersionType.PRE_BUILD:
+249            ver = ver.bump_prerelease(token=pre_tag)
+250            ver = ver.bump_build(token=build_tag)
+251
+252            return str(ver)
+253
+254        raise ValueError(f"Unknown version_type: {version_type}")
+255
+256    @staticmethod
+257    def add_tags(
+258        version: str,
+259        pre_tag: Optional[str] = None,
+260        build_tag: Optional[str] = None,
+261    ) -> str:
+262        if pre_tag is not None:
+263            version = f"{version}-{pre_tag}"
+264        if build_tag is not None:
+265            version = f"{version}+{build_tag}"
+266
+267        return version
+
+ + +

Class for general semver-related functions

+
+ + +
+ +
+
@staticmethod
+ + def + sort_semvers(versions: List[str]) -> List[str]: + + + +
+ +
163    @staticmethod
+164    def sort_semvers(versions: List[str]) -> List[str]:
+165        """Implements bubble sort for semvers
+166
+167        Args:
+168            versions:
+169                list of versions to sort
+170
+171        Returns:
+172            sorted list of versions with highest version first
+173        """
+174
+175        n_ver = len(versions)
+176
+177        for i in range(n_ver):
+178            already_sorted = True
+179
+180            for j in range(n_ver - i - 1):
+181                j_version = semver.VersionInfo.parse(versions[j])
+182                j1_version = semver.VersionInfo.parse(versions[j + 1])
+183
+184                # use semver comparison logic
+185                if j_version > j1_version:
+186                    # swap
+187                    versions[j], versions[j + 1] = versions[j + 1], versions[j]
+188
+189                    already_sorted = False
+190
+191            if already_sorted:
+192                break
+193
+194        versions.reverse()
+195        return versions
+
+ + +

Implements bubble sort for semvers

+ +
Arguments:
+ +
    +
  • versions: list of versions to sort
  • +
+ +
Returns:
+ +
+

sorted list of versions with highest version first

+
+
+ + +
+
+ +
+
@staticmethod
+ + def + is_release_candidate(version: str) -> bool: + + + +
+ +
197    @staticmethod
+198    def is_release_candidate(version: str) -> bool:
+199        """Ignores pre-release versions"""
+200        ver = semver.VersionInfo.parse(version)
+201        return bool(ver.prerelease)
+
+ + +

Ignores pre-release versions

+
+ + +
+
+ +
+
@staticmethod
+ + def + increment_version( version: str, version_type: VersionType, pre_tag: str, build_tag: str) -> str: + + + +
+ +
203    @staticmethod
+204    def increment_version(
+205        version: str,
+206        version_type: VersionType,
+207        pre_tag: str,
+208        build_tag: str,
+209    ) -> str:
+210        """
+211        Increments a version based on version type
+212
+213        Args:
+214            version:
+215                Current version
+216            version_type:
+217                Type of version increment.
+218            pre_tag:
+219                Pre-release tag
+220            build_tag:
+221                Build tag
+222
+223        Raises:
+224            ValueError:
+225                unknown version_type
+226
+227        Returns:
+228            New version
+229        """
+230        ver: semver.VersionInfo = semver.VersionInfo.parse(version)
+231
+232        # Set major, minor, patch
+233        if version_type == VersionType.MAJOR:
+234            return str(ver.bump_major())
+235        if version_type == VersionType.MINOR:
+236            return str(ver.bump_minor())
+237        if version_type == VersionType.PATCH:
+238            return str(ver.bump_patch())
+239
+240        # Set pre-release
+241        if version_type == VersionType.PRE:
+242            return str(ver.bump_prerelease(token=pre_tag))
+243
+244        # Set build
+245        if version_type == VersionType.BUILD:
+246            return str(ver.bump_build(token=build_tag))
+247
+248        if version_type == VersionType.PRE_BUILD:
+249            ver = ver.bump_prerelease(token=pre_tag)
+250            ver = ver.bump_build(token=build_tag)
+251
+252            return str(ver)
+253
+254        raise ValueError(f"Unknown version_type: {version_type}")
+
+ + +

Increments a version based on version type

+ +
Arguments:
+ +
    +
  • version: Current version
  • +
  • version_type: Type of version increment.
  • +
  • pre_tag: Pre-release tag
  • +
  • build_tag: Build tag
  • +
+ +
Raises:
+ +
    +
  • ValueError: unknown version_type
  • +
+ +
Returns:
+ +
+

New version

+
+
+ + +
+
+ +
+
@staticmethod
+ + def + add_tags( version: str, pre_tag: Optional[str] = None, build_tag: Optional[str] = None) -> str: + + + +
+ +
256    @staticmethod
+257    def add_tags(
+258        version: str,
+259        pre_tag: Optional[str] = None,
+260        build_tag: Optional[str] = None,
+261    ) -> str:
+262        if pre_tag is not None:
+263            version = f"{version}-{pre_tag}"
+264        if build_tag is not None:
+265            version = f"{version}+{build_tag}"
+266
+267        return version
+
+ + + + +
+
+
+ +
+ + class + SemVerRegistryValidator: + + + +
+ +
270class SemVerRegistryValidator:
+271    """Class for obtaining the correct registry version"""
+272
+273    def __init__(
+274        self,
+275        name: str,
+276        version_type: VersionType,
+277        pre_tag: str,
+278        build_tag: str,
+279        version: Optional[CardVersion] = None,
+280    ) -> None:
+281        """Instantiate SemverValidator
+282
+283        Args:
+284            name:
+285                name of the artifact
+286            version_type:
+287                type of version increment
+288            version:
+289                version to use
+290            pre_tag:
+291                pre-release tag
+292            build_tag:
+293                build tag
+294
+295        Returns:
+296            None
+297        """
+298        self.version = version
+299        self._version_to_search = None
+300        self.final_version = None
+301        self.version_type = version_type
+302        self.name = name
+303        self.pre_tag = pre_tag
+304        self.build_tag = build_tag
+305
+306    @property
+307    def version_to_search(self) -> Optional[str]:
+308        """Parses version and returns version to search for in the registry"""
+309        if self.version is not None:
+310            return self.version.get_version_to_search(version_type=self.version_type)
+311        return self._version_to_search
+312
+313    def _set_version_from_existing(self, versions: List[str]) -> str:
+314        """Search existing versions to find the correct version to use
+315
+316        Args:
+317            versions:
+318                list of existing versions
+319
+320        Returns:
+321            str: version to use
+322        """
+323        version = versions[0]
+324        recent_ver = semver.VersionInfo.parse(version)
+325        # first need to check if increment is mmp
+326        if self.version_type in [VersionType.MAJOR, VersionType.MINOR, VersionType.PATCH]:
+327            # check if most recent version is a pre-release or build
+328            if recent_ver.prerelease is not None:
+329                version = str(recent_ver.finalize_version())
+330                try:
+331                    # if all versions are pre-release use finalized version
+332                    # if not, increment version
+333                    for ver in versions:
+334                        parsed_ver = semver.VersionInfo.parse(ver)
+335                        if parsed_ver.prerelease is None:
+336                            raise VersionError("Major, minor and patch version combination already exists")
+337                    return version
+338                except VersionError:
+339                    logger.info("Major, minor and patch version combination already exists")
+340
+341        while version in versions:
+342            version = SemVerUtils.increment_version(
+343                version=version,
+344                version_type=self.version_type,
+345                pre_tag=self.pre_tag,
+346                build_tag=self.build_tag,
+347            )
+348
+349        return version
+350
+351    def set_version(self, versions: List[str]) -> str:
+352        """Sets the correct version to use for incrementing and adding the the registry
+353
+354        Args:
+355            versions:
+356                list of existing versions
+357
+358        Returns:
+359            str: version to use
+360        """
+361        if bool(versions):
+362            return self._set_version_from_existing(versions=versions)
+363
+364        final_version = None
+365        if self.version is not None:
+366            final_version = CardVersion.finalize_partial_version(version=self.version.valid_version)
+367
+368        version = final_version or "1.0.0"
+369
+370        if self.version_type in [VersionType.PRE, VersionType.BUILD, VersionType.PRE_BUILD]:
+371            return SemVerUtils.increment_version(
+372                version=version,
+373                version_type=self.version_type,
+374                pre_tag=self.pre_tag,
+375                build_tag=self.build_tag,
+376            )
+377
+378        return version
+
+ + +

Class for obtaining the correct registry version

+
+ + +
+ +
+ + SemVerRegistryValidator( name: str, version_type: VersionType, pre_tag: str, build_tag: str, version: Optional[CardVersion] = None) + + + +
+ +
273    def __init__(
+274        self,
+275        name: str,
+276        version_type: VersionType,
+277        pre_tag: str,
+278        build_tag: str,
+279        version: Optional[CardVersion] = None,
+280    ) -> None:
+281        """Instantiate SemverValidator
+282
+283        Args:
+284            name:
+285                name of the artifact
+286            version_type:
+287                type of version increment
+288            version:
+289                version to use
+290            pre_tag:
+291                pre-release tag
+292            build_tag:
+293                build tag
+294
+295        Returns:
+296            None
+297        """
+298        self.version = version
+299        self._version_to_search = None
+300        self.final_version = None
+301        self.version_type = version_type
+302        self.name = name
+303        self.pre_tag = pre_tag
+304        self.build_tag = build_tag
+
+ + +

Instantiate SemverValidator

+ +
Arguments:
+ +
    +
  • name: name of the artifact
  • +
  • version_type: type of version increment
  • +
  • version: version to use
  • +
  • pre_tag: pre-release tag
  • +
  • build_tag: build tag
  • +
+ +
Returns:
+ +
+

None

+
+
+ + +
+
+
+ version + + +
+ + + + +
+
+
+ final_version + + +
+ + + + +
+
+
+ version_type + + +
+ + + + +
+
+
+ name + + +
+ + + + +
+
+
+ pre_tag + + +
+ + + + +
+
+
+ build_tag + + +
+ + + + +
+ +
+ +
+ + def + set_version(self, versions: List[str]) -> str: + + + +
+ +
351    def set_version(self, versions: List[str]) -> str:
+352        """Sets the correct version to use for incrementing and adding the the registry
+353
+354        Args:
+355            versions:
+356                list of existing versions
+357
+358        Returns:
+359            str: version to use
+360        """
+361        if bool(versions):
+362            return self._set_version_from_existing(versions=versions)
+363
+364        final_version = None
+365        if self.version is not None:
+366            final_version = CardVersion.finalize_partial_version(version=self.version.valid_version)
+367
+368        version = final_version or "1.0.0"
+369
+370        if self.version_type in [VersionType.PRE, VersionType.BUILD, VersionType.PRE_BUILD]:
+371            return SemVerUtils.increment_version(
+372                version=version,
+373                version_type=self.version_type,
+374                pre_tag=self.pre_tag,
+375                build_tag=self.build_tag,
+376            )
+377
+378        return version
+
+ + +

Sets the correct version to use for incrementing and adding the the registry

+ +
Arguments:
+ +
    +
  • versions: list of existing versions
  • +
+ +
Returns:
+ +
+

str: version to use

+
+
+ + +
+
+
+ +
+ + class + SemVerSymbols(builtins.str, enum.Enum): + + + +
+ +
381class SemVerSymbols(str, Enum):
+382    STAR = "*"
+383    CARET = "^"
+384    TILDE = "~"
+
+ + +

An enumeration.

+
+ + +
+
+ STAR = +<SemVerSymbols.STAR: '*'> + + +
+ + + + +
+
+
+ CARET = +<SemVerSymbols.CARET: '^'> + + +
+ + + + +
+
+
+ TILDE = +<SemVerSymbols.TILDE: '~'> + + +
+ + + + +
+
+
Inherited Members
+
+
enum.Enum
+
name
+
value
+ +
+
builtins.str
+
encode
+
replace
+
split
+
rsplit
+
join
+
capitalize
+
casefold
+
title
+
center
+
count
+
expandtabs
+
find
+
partition
+
index
+
ljust
+
lower
+
lstrip
+
rfind
+
rindex
+
rjust
+
rstrip
+
rpartition
+
splitlines
+
strip
+
swapcase
+
translate
+
upper
+
startswith
+
endswith
+
removeprefix
+
removesuffix
+
isascii
+
islower
+
isupper
+
istitle
+
isspace
+
isdecimal
+
isdigit
+
isnumeric
+
isalpha
+
isalnum
+
isidentifier
+
isprintable
+
zfill
+
format
+
format_map
+
maketrans
+ +
+
+
+
+
+ +
+ + class + SemVerParser: + + + +
+ +
387class SemVerParser:
+388    """Base class for semver parsing"""
+389
+390    @staticmethod
+391    def parse_version(version: str) -> str:
+392        raise NotImplementedError
+393
+394    @staticmethod
+395    def validate(version: str) -> bool:
+396        raise NotImplementedError
+
+ + +

Base class for semver parsing

+
+ + +
+ +
+
@staticmethod
+ + def + parse_version(version: str) -> str: + + + +
+ +
390    @staticmethod
+391    def parse_version(version: str) -> str:
+392        raise NotImplementedError
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(version: str) -> bool: + + + +
+ +
394    @staticmethod
+395    def validate(version: str) -> bool:
+396        raise NotImplementedError
+
+ + + + +
+
+
+ +
+ + class + StarParser(SemVerParser): + + + +
+ +
399class StarParser(SemVerParser):
+400    """Parses versions that contain * symbol"""
+401
+402    @staticmethod
+403    def parse_version(version: str) -> str:
+404        version_ = version.split(SemVerSymbols.STAR)[0]
+405        return re.sub(".$", "", version_)
+406
+407    @staticmethod
+408    def validate(version: str) -> bool:
+409        return SemVerSymbols.STAR in version
+
+ + +

Parses versions that contain * symbol

+
+ + +
+ +
+
@staticmethod
+ + def + parse_version(version: str) -> str: + + + +
+ +
402    @staticmethod
+403    def parse_version(version: str) -> str:
+404        version_ = version.split(SemVerSymbols.STAR)[0]
+405        return re.sub(".$", "", version_)
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(version: str) -> bool: + + + +
+ +
407    @staticmethod
+408    def validate(version: str) -> bool:
+409        return SemVerSymbols.STAR in version
+
+ + + + +
+
+
+ +
+ + class + CaretParser(SemVerParser): + + + +
+ +
412class CaretParser(SemVerParser):
+413    """Parses versions that contain ^ symbol"""
+414
+415    @staticmethod
+416    def parse_version(version: str) -> str:
+417        return version.split(".")[0].replace(SemVerSymbols.CARET, "")
+418
+419    @staticmethod
+420    def validate(version: str) -> bool:
+421        return SemVerSymbols.CARET in version
+
+ + +

Parses versions that contain ^ symbol

+
+ + +
+ +
+
@staticmethod
+ + def + parse_version(version: str) -> str: + + + +
+ +
415    @staticmethod
+416    def parse_version(version: str) -> str:
+417        return version.split(".")[0].replace(SemVerSymbols.CARET, "")
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(version: str) -> bool: + + + +
+ +
419    @staticmethod
+420    def validate(version: str) -> bool:
+421        return SemVerSymbols.CARET in version
+
+ + + + +
+
+
+ +
+ + class + TildeParser(SemVerParser): + + + +
+ +
424class TildeParser(SemVerParser):
+425    """Parses versions that contain ~ symbol"""
+426
+427    @staticmethod
+428    def parse_version(version: str) -> str:
+429        return ".".join(version.split(".")[0:2]).replace(SemVerSymbols.TILDE, "")
+430
+431    @staticmethod
+432    def validate(version: str) -> bool:
+433        return SemVerSymbols.TILDE in version
+
+ + +

Parses versions that contain ~ symbol

+
+ + +
+ +
+
@staticmethod
+ + def + parse_version(version: str) -> str: + + + +
+ +
427    @staticmethod
+428    def parse_version(version: str) -> str:
+429        return ".".join(version.split(".")[0:2]).replace(SemVerSymbols.TILDE, "")
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(version: str) -> bool: + + + +
+ +
431    @staticmethod
+432    def validate(version: str) -> bool:
+433        return SemVerSymbols.TILDE in version
+
+ + + + +
+
+
+ +
+ + class + NoParser(SemVerParser): + + + +
+ +
436class NoParser(SemVerParser):
+437    """Does not parse version"""
+438
+439    @staticmethod
+440    def parse_version(version: str) -> str:
+441        return version
+442
+443    @staticmethod
+444    def validate(version: str) -> bool:
+445        return version not in list(SemVerSymbols)
+
+ + +

Does not parse version

+
+ + +
+ +
+
@staticmethod
+ + def + parse_version(version: str) -> str: + + + +
+ +
439    @staticmethod
+440    def parse_version(version: str) -> str:
+441        return version
+
+ + + + +
+
+ +
+
@staticmethod
+ + def + validate(version: str) -> bool: + + + +
+ +
443    @staticmethod
+444    def validate(version: str) -> bool:
+445        return version not in list(SemVerSymbols)
+
+ + + + +
+
+ +
+ + \ No newline at end of file diff --git a/api/opsml/settings/config.html b/api/opsml/settings/config.html new file mode 100644 index 000000000..82099d923 --- /dev/null +++ b/api/opsml/settings/config.html @@ -0,0 +1,836 @@ + + + + + + + opsml.settings.config API documentation + + + + + + + + + +
+
+

+opsml.settings.config

+ + + + + + +
 1# Copyright (c) Shipt, Inc.
+ 2# This source code is licensed under the MIT license found in the
+ 3# LICENSE file in the root directory of this source tree.
+ 4
+ 5import re
+ 6from pathlib import Path
+ 7from typing import Optional
+ 8
+ 9from pydantic import field_validator
+10from pydantic_settings import BaseSettings
+11
+12from opsml.types import StorageSystem
+13
+14
+15class OpsmlConfig(BaseSettings):
+16    app_name: str = "opsml"
+17    app_env: str = "development"
+18
+19    opsml_storage_uri: str = "./mlruns"
+20    opsml_tracking_uri: str = "sqlite:///tmp.db"
+21    opsml_prod_token: str = "staging"
+22    opsml_proxy_root: str = "opsml-root:/"
+23    opsml_registry_path: str = "model_registry"
+24    opsml_testing: bool = bool(0)
+25    download_chunk_size: int = 31457280  # 30MB
+26    upload_chunk_size: int = 31457280  # 30MB
+27
+28    # API client username / password
+29    opsml_username: Optional[str] = None
+30    opsml_password: Optional[str] = None
+31
+32    # The current RUN_ID to load when creating a new project
+33    opsml_run_id: Optional[str] = None
+34
+35    @field_validator("opsml_storage_uri", mode="before")
+36    @classmethod
+37    def set_opsml_storage_uri(cls, opsml_storage_uri: str) -> str:
+38        """Opsml uses storage cients that follow fsspec guidelines. LocalFileSytem only deals
+39        in absolutes, so we need to convert relative paths to absolute paths.
+40        """
+41        if opsml_storage_uri.startswith("gs://") or opsml_storage_uri.startswith("s3://"):
+42            return opsml_storage_uri
+43
+44        return Path(opsml_storage_uri).absolute().as_posix()
+45
+46    @property
+47    def is_tracking_local(self) -> bool:
+48        """Used to determine if an API client will be used.
+49
+50        If tracking is local, the [server] extra is required.
+51        """
+52        return not self.opsml_tracking_uri.lower().strip().startswith("http")
+53
+54    @property
+55    def storage_system(self) -> StorageSystem:
+56        """Returns the storage system used for the current tracking URI"""
+57        if self.is_tracking_local:
+58            if self.opsml_storage_uri.startswith("gs://"):
+59                return StorageSystem.GCS
+60            if self.opsml_storage_uri.startswith("s3://"):
+61                return StorageSystem.S3
+62            return StorageSystem.LOCAL
+63        return StorageSystem.API
+64
+65    @property
+66    def storage_root(self) -> str:
+67        """Returns the root of the storage URI"""
+68        if self.is_tracking_local:
+69            storage_uri_lower = self.opsml_storage_uri.lower()
+70            if storage_uri_lower.startswith("gs://"):
+71                return re.sub("^gs://", "", storage_uri_lower)
+72            if storage_uri_lower.startswith("s3://"):
+73                return re.sub("^s3://", "", storage_uri_lower)
+74            return storage_uri_lower
+75        return self.opsml_proxy_root
+76
+77
+78config = OpsmlConfig()
+
+ + +
+
+ +
+ + class + OpsmlConfig(pydantic_settings.main.BaseSettings): + + + +
+ +
16class OpsmlConfig(BaseSettings):
+17    app_name: str = "opsml"
+18    app_env: str = "development"
+19
+20    opsml_storage_uri: str = "./mlruns"
+21    opsml_tracking_uri: str = "sqlite:///tmp.db"
+22    opsml_prod_token: str = "staging"
+23    opsml_proxy_root: str = "opsml-root:/"
+24    opsml_registry_path: str = "model_registry"
+25    opsml_testing: bool = bool(0)
+26    download_chunk_size: int = 31457280  # 30MB
+27    upload_chunk_size: int = 31457280  # 30MB
+28
+29    # API client username / password
+30    opsml_username: Optional[str] = None
+31    opsml_password: Optional[str] = None
+32
+33    # The current RUN_ID to load when creating a new project
+34    opsml_run_id: Optional[str] = None
+35
+36    @field_validator("opsml_storage_uri", mode="before")
+37    @classmethod
+38    def set_opsml_storage_uri(cls, opsml_storage_uri: str) -> str:
+39        """Opsml uses storage cients that follow fsspec guidelines. LocalFileSytem only deals
+40        in absolutes, so we need to convert relative paths to absolute paths.
+41        """
+42        if opsml_storage_uri.startswith("gs://") or opsml_storage_uri.startswith("s3://"):
+43            return opsml_storage_uri
+44
+45        return Path(opsml_storage_uri).absolute().as_posix()
+46
+47    @property
+48    def is_tracking_local(self) -> bool:
+49        """Used to determine if an API client will be used.
+50
+51        If tracking is local, the [server] extra is required.
+52        """
+53        return not self.opsml_tracking_uri.lower().strip().startswith("http")
+54
+55    @property
+56    def storage_system(self) -> StorageSystem:
+57        """Returns the storage system used for the current tracking URI"""
+58        if self.is_tracking_local:
+59            if self.opsml_storage_uri.startswith("gs://"):
+60                return StorageSystem.GCS
+61            if self.opsml_storage_uri.startswith("s3://"):
+62                return StorageSystem.S3
+63            return StorageSystem.LOCAL
+64        return StorageSystem.API
+65
+66    @property
+67    def storage_root(self) -> str:
+68        """Returns the root of the storage URI"""
+69        if self.is_tracking_local:
+70            storage_uri_lower = self.opsml_storage_uri.lower()
+71            if storage_uri_lower.startswith("gs://"):
+72                return re.sub("^gs://", "", storage_uri_lower)
+73            if storage_uri_lower.startswith("s3://"):
+74                return re.sub("^s3://", "", storage_uri_lower)
+75            return storage_uri_lower
+76        return self.opsml_proxy_root
+
+ + +

Base class for settings, allowing values to be overridden by environment variables.

+ +

This is useful in production for secrets you do not wish to save in code, it plays nicely with docker(-compose), +Heroku and any 12 factor app design.

+ +

All the below attributes can be set via model_config.

+ +
Arguments:
+ +
    +
  • _case_sensitive: Whether environment variables names should be read with case-sensitivity. Defaults to None.
  • +
  • _env_prefix: Prefix for all environment variables. Defaults to None.
  • +
  • _env_file: The env file(s) to load settings values from. Defaults to Path(''), which +means that the value from model_config['env_file'] should be used. You can also pass +None to indicate that environment variables should not be loaded from an env file.
  • +
  • _env_file_encoding: The env file encoding, e.g. 'latin-1'. Defaults to None.
  • +
  • _env_ignore_empty: Ignore environment variables where the value is an empty string. Default to False.
  • +
  • _env_nested_delimiter: The nested env values delimiter. Defaults to None.
  • +
  • _env_parse_none_str: The env string value that should be parsed (e.g. "null", "void", "None", etc.) +into None type(None). Defaults to None type(None), which means no parsing should occur.
  • +
  • _secrets_dir: The secret files directory. Defaults to None.
  • +
+
+ + +
+
+ app_name: str + + +
+ + + + +
+
+
+ app_env: str + + +
+ + + + +
+
+
+ opsml_storage_uri: str + + +
+ + + + +
+
+
+ opsml_tracking_uri: str + + +
+ + + + +
+
+
+ opsml_prod_token: str + + +
+ + + + +
+
+
+ opsml_proxy_root: str + + +
+ + + + +
+
+
+ opsml_registry_path: str + + +
+ + + + +
+
+
+ opsml_testing: bool + + +
+ + + + +
+
+
+ download_chunk_size: int + + +
+ + + + +
+
+
+ upload_chunk_size: int + + +
+ + + + +
+
+
+ opsml_username: Optional[str] + + +
+ + + + +
+
+
+ opsml_password: Optional[str] + + +
+ + + + +
+
+
+ opsml_run_id: Optional[str] + + +
+ + + + +
+
+ +
+
@field_validator('opsml_storage_uri', mode='before')
+
@classmethod
+ + def + set_opsml_storage_uri(cls, opsml_storage_uri: str) -> str: + + + +
+ +
36    @field_validator("opsml_storage_uri", mode="before")
+37    @classmethod
+38    def set_opsml_storage_uri(cls, opsml_storage_uri: str) -> str:
+39        """Opsml uses storage cients that follow fsspec guidelines. LocalFileSytem only deals
+40        in absolutes, so we need to convert relative paths to absolute paths.
+41        """
+42        if opsml_storage_uri.startswith("gs://") or opsml_storage_uri.startswith("s3://"):
+43            return opsml_storage_uri
+44
+45        return Path(opsml_storage_uri).absolute().as_posix()
+
+ + +

Opsml uses storage cients that follow fsspec guidelines. LocalFileSytem only deals +in absolutes, so we need to convert relative paths to absolute paths.

+
+ + +
+
+ +
+ is_tracking_local: bool + + + +
+ +
47    @property
+48    def is_tracking_local(self) -> bool:
+49        """Used to determine if an API client will be used.
+50
+51        If tracking is local, the [server] extra is required.
+52        """
+53        return not self.opsml_tracking_uri.lower().strip().startswith("http")
+
+ + +

Used to determine if an API client will be used.

+ +

If tracking is local, the [server] extra is required.

+
+ + +
+
+ +
+ storage_system: opsml.types.storage.StorageSystem + + + +
+ +
55    @property
+56    def storage_system(self) -> StorageSystem:
+57        """Returns the storage system used for the current tracking URI"""
+58        if self.is_tracking_local:
+59            if self.opsml_storage_uri.startswith("gs://"):
+60                return StorageSystem.GCS
+61            if self.opsml_storage_uri.startswith("s3://"):
+62                return StorageSystem.S3
+63            return StorageSystem.LOCAL
+64        return StorageSystem.API
+
+ + +

Returns the storage system used for the current tracking URI

+
+ + +
+
+ +
+ storage_root: str + + + +
+ +
66    @property
+67    def storage_root(self) -> str:
+68        """Returns the root of the storage URI"""
+69        if self.is_tracking_local:
+70            storage_uri_lower = self.opsml_storage_uri.lower()
+71            if storage_uri_lower.startswith("gs://"):
+72                return re.sub("^gs://", "", storage_uri_lower)
+73            if storage_uri_lower.startswith("s3://"):
+74                return re.sub("^s3://", "", storage_uri_lower)
+75            return storage_uri_lower
+76        return self.opsml_proxy_root
+
+ + +

Returns the root of the storage URI

+
+ + +
+
+
+ model_config: ClassVar[pydantic_settings.main.SettingsConfigDict] = + + {'extra': 'forbid', 'arbitrary_types_allowed': True, 'validate_default': True, 'case_sensitive': False, 'env_prefix': '', 'env_file': None, 'env_file_encoding': None, 'env_ignore_empty': False, 'env_nested_delimiter': None, 'env_parse_none_str': None, 'json_file': None, 'json_file_encoding': None, 'yaml_file': None, 'yaml_file_encoding': None, 'toml_file': None, 'secrets_dir': None, 'protected_namespaces': ('model_', 'settings_')} + + +
+ + + + +
+
+
+ model_fields = + + {'app_name': FieldInfo(annotation=str, required=False, default='opsml'), 'app_env': FieldInfo(annotation=str, required=False, default='development'), 'opsml_storage_uri': FieldInfo(annotation=str, required=False, default='./mlruns'), 'opsml_tracking_uri': FieldInfo(annotation=str, required=False, default='sqlite:///tmp.db'), 'opsml_prod_token': FieldInfo(annotation=str, required=False, default='staging'), 'opsml_proxy_root': FieldInfo(annotation=str, required=False, default='opsml-root:/'), 'opsml_registry_path': FieldInfo(annotation=str, required=False, default='model_registry'), 'opsml_testing': FieldInfo(annotation=bool, required=False, default=False), 'download_chunk_size': FieldInfo(annotation=int, required=False, default=31457280), 'upload_chunk_size': FieldInfo(annotation=int, required=False, default=31457280), 'opsml_username': FieldInfo(annotation=Union[str, NoneType], required=False), 'opsml_password': FieldInfo(annotation=Union[str, NoneType], required=False), 'opsml_run_id': FieldInfo(annotation=Union[str, NoneType], required=False)} + + +
+ + + + +
+
+
+ model_computed_fields = +{} + + +
+ + + + +
+
+
Inherited Members
+
+
pydantic_settings.main.BaseSettings
+
BaseSettings
+
settings_customise_sources
+ +
+
pydantic.main.BaseModel
+
model_extra
+
model_fields_set
+
model_construct
+
model_copy
+
model_dump
+
model_dump_json
+
model_json_schema
+
model_parametrized_name
+
model_post_init
+
model_rebuild
+
model_validate
+
model_validate_json
+
model_validate_strings
+
dict
+
json
+
parse_obj
+
parse_raw
+
parse_file
+
from_orm
+
construct
+
copy
+
schema
+
schema_json
+
validate
+
update_forward_refs
+ +
+
+
+
+
+
+ config = + + OpsmlConfig(app_name='opsml', app_env='development', opsml_storage_uri='gs://opsml-integration', opsml_tracking_uri='sqlite:///tmp.db', opsml_prod_token='staging', opsml_proxy_root='opsml-root:/', opsml_registry_path='model_registry', opsml_testing=False, download_chunk_size=31457280, upload_chunk_size=31457280, opsml_username=None, opsml_password=None, opsml_run_id=None) + + +
+ + + + +
+
+ + \ No newline at end of file diff --git a/api/opsml/types/huggingface.html b/api/opsml/types/huggingface.html new file mode 100644 index 000000000..b1aef0340 --- /dev/null +++ b/api/opsml/types/huggingface.html @@ -0,0 +1,1431 @@ + + + + + + + opsml.types.huggingface API documentation + + + + + + + + + +
+
+

+opsml.types.huggingface

+ + + + + + +
 1from enum import Enum
+ 2
+ 3
+ 4class HuggingFaceTask(str, Enum):
+ 5    AUDIO_CLASSIFICATION = "audio-classification"
+ 6    AUTOMATIC_SPEECH_RECOGNITION = "automatic-speech-recognition"
+ 7    CONVERSATIONAL = "conversational"
+ 8    DEPTH_ESTIMATION = "depth-estimation"
+ 9    DOCUMENT_QUESTION_ANSWERING = "document-question-answering"
+10    FEATURE_EXTRACTION = "feature-extraction"
+11    FILL_MASK = "fill-mask"
+12    IMAGE_CLASSIFICATION = "image-classification"
+13    IMAGE_SEGMENTATION = "image-segmentation"
+14    IMAGE_TO_IMAGE = "image-to-image"
+15    IMAGE_TO_TEXT = "image-to-text"
+16    MASK_GENERATION = "mask-generation"
+17    OBJECT_DETECTION = "object-detection"
+18    QUESTION_ANSWERING = "question-answering"
+19    SUMMARIZATION = "summarization"
+20    TABLE_QUESTION_ANSWERING = "table-question-answering"
+21    TEXT2TEXT_GENERATION = "text2text-generation"
+22    TEXT_CLASSIFICATION = "text-classification"
+23    TEXT_GENERATION = "text-generation"
+24    TEXT_TO_AUDIO = "text-to-audio"
+25    TOKEN_CLASSIFICATION = "token-classification"
+26    TRANSLATION = "translation"
+27    TRANSLATION_XX_TO_YY = "translation_xx_to_yy"
+28    VIDEO_CLASSIFICATION = "video-classification"
+29    VISUAL_QUESTION_ANSWERING = "visual-question-answering"
+30    ZERO_SHOT_CLASSIFICATION = "zero-shot-classification"
+31    ZERO_SHOT_IMAGE_CLASSIFICATION = "zero-shot-image-classification"
+32    ZERO_SHOT_AUDIO_CLASSIFICATION = "zero-shot-audio-classification"
+33    ZERO_SHOT_OBJECT_DETECTION = "zero-shot-object-detection"
+34
+35
+36GENERATION_TYPES = [
+37    HuggingFaceTask.MASK_GENERATION.value,
+38    HuggingFaceTask.TEXT_GENERATION.value,
+39    HuggingFaceTask.TEXT2TEXT_GENERATION.value,
+40]
+41
+42
+43class HuggingFaceORTModel(str, Enum):
+44    ORT_AUDIO_CLASSIFICATION = "ORTModelForAudioClassification"
+45    ORT_AUDIO_FRAME_CLASSIFICATION = "ORTModelForAudioFrameClassification"
+46    ORT_AUDIO_XVECTOR = "ORTModelForAudioXVector"
+47    ORT_CUSTOM_TASKS = "ORTModelForCustomTasks"
+48    ORT_CTC = "ORTModelForCTC"
+49    ORT_FEATURE_EXTRACTION = "ORTModelForFeatureExtraction"
+50    ORT_IMAGE_CLASSIFICATION = "ORTModelForImageClassification"
+51    ORT_MASKED_LM = "ORTModelForMaskedLM"
+52    ORT_MULTIPLE_CHOICE = "ORTModelForMultipleChoice"
+53    ORT_QUESTION_ANSWERING = "ORTModelForQuestionAnswering"
+54    ORT_SEMANTIC_SEGMENTATION = "ORTModelForSemanticSegmentation"
+55    ORT_SEQUENCE_CLASSIFICATION = "ORTModelForSequenceClassification"
+56    ORT_TOKEN_CLASSIFICATION = "ORTModelForTokenClassification"
+57    ORT_SEQ2SEQ_LM = "ORTModelForSeq2SeqLM"
+58    ORT_SPEECH_SEQ2SEQ = "ORTModelForSpeechSeq2Seq"
+59    ORT_VISION2SEQ = "ORTModelForVision2Seq"
+60    ORT_PIX2STRUCT = "ORTModelForPix2Struct"
+61    ORT_CAUSAL_LM = "ORTModelForCausalLM"
+62    ORT_OPTIMIZER = "ORTOptimizer"
+63    ORT_QUANTIZER = "ORTQuantizer"
+64    ORT_TRAINER = "ORTTrainer"
+65    ORT_SEQ2SEQ_TRAINER = "ORTSeq2SeqTrainer"
+66    ORT_TRAINING_ARGUMENTS = "ORTTrainingArguments"
+67    ORT_SEQ2SEQ_TRAINING_ARGUMENTS = "ORTSeq2SeqTrainingArguments"
+68    ORT_STABLE_DIFFUSION_PIPELINE = "ORTStableDiffusionPipeline"
+69    ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE = "ORTStableDiffusionImg2ImgPipeline"
+70    ORT_STABLE_DIFFUSION_INPAINT_PIPELINE = "ORTStableDiffusionInpaintPipeline"
+71    ORT_STABLE_DIFFUSION_XL_PIPELINE = "ORTStableDiffusionXLPipeline"
+72    ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE = "ORTStableDiffusionXLImg2ImgPipeline"
+
+ + +
+
+ +
+ + class + HuggingFaceTask(builtins.str, enum.Enum): + + + +
+ +
 5class HuggingFaceTask(str, Enum):
+ 6    AUDIO_CLASSIFICATION = "audio-classification"
+ 7    AUTOMATIC_SPEECH_RECOGNITION = "automatic-speech-recognition"
+ 8    CONVERSATIONAL = "conversational"
+ 9    DEPTH_ESTIMATION = "depth-estimation"
+10    DOCUMENT_QUESTION_ANSWERING = "document-question-answering"
+11    FEATURE_EXTRACTION = "feature-extraction"
+12    FILL_MASK = "fill-mask"
+13    IMAGE_CLASSIFICATION = "image-classification"
+14    IMAGE_SEGMENTATION = "image-segmentation"
+15    IMAGE_TO_IMAGE = "image-to-image"
+16    IMAGE_TO_TEXT = "image-to-text"
+17    MASK_GENERATION = "mask-generation"
+18    OBJECT_DETECTION = "object-detection"
+19    QUESTION_ANSWERING = "question-answering"
+20    SUMMARIZATION = "summarization"
+21    TABLE_QUESTION_ANSWERING = "table-question-answering"
+22    TEXT2TEXT_GENERATION = "text2text-generation"
+23    TEXT_CLASSIFICATION = "text-classification"
+24    TEXT_GENERATION = "text-generation"
+25    TEXT_TO_AUDIO = "text-to-audio"
+26    TOKEN_CLASSIFICATION = "token-classification"
+27    TRANSLATION = "translation"
+28    TRANSLATION_XX_TO_YY = "translation_xx_to_yy"
+29    VIDEO_CLASSIFICATION = "video-classification"
+30    VISUAL_QUESTION_ANSWERING = "visual-question-answering"
+31    ZERO_SHOT_CLASSIFICATION = "zero-shot-classification"
+32    ZERO_SHOT_IMAGE_CLASSIFICATION = "zero-shot-image-classification"
+33    ZERO_SHOT_AUDIO_CLASSIFICATION = "zero-shot-audio-classification"
+34    ZERO_SHOT_OBJECT_DETECTION = "zero-shot-object-detection"
+
+ + +

An enumeration.

+
+ + +
+
+ AUDIO_CLASSIFICATION = +<HuggingFaceTask.AUDIO_CLASSIFICATION: 'audio-classification'> + + +
+ + + + +
+
+
+ AUTOMATIC_SPEECH_RECOGNITION = +<HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION: 'automatic-speech-recognition'> + + +
+ + + + +
+
+
+ CONVERSATIONAL = +<HuggingFaceTask.CONVERSATIONAL: 'conversational'> + + +
+ + + + +
+
+
+ DEPTH_ESTIMATION = +<HuggingFaceTask.DEPTH_ESTIMATION: 'depth-estimation'> + + +
+ + + + +
+
+
+ DOCUMENT_QUESTION_ANSWERING = +<HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING: 'document-question-answering'> + + +
+ + + + +
+
+
+ FEATURE_EXTRACTION = +<HuggingFaceTask.FEATURE_EXTRACTION: 'feature-extraction'> + + +
+ + + + +
+
+
+ FILL_MASK = +<HuggingFaceTask.FILL_MASK: 'fill-mask'> + + +
+ + + + +
+
+
+ IMAGE_CLASSIFICATION = +<HuggingFaceTask.IMAGE_CLASSIFICATION: 'image-classification'> + + +
+ + + + +
+
+
+ IMAGE_SEGMENTATION = +<HuggingFaceTask.IMAGE_SEGMENTATION: 'image-segmentation'> + + +
+ + + + +
+
+
+ IMAGE_TO_IMAGE = +<HuggingFaceTask.IMAGE_TO_IMAGE: 'image-to-image'> + + +
+ + + + +
+
+
+ IMAGE_TO_TEXT = +<HuggingFaceTask.IMAGE_TO_TEXT: 'image-to-text'> + + +
+ + + + +
+
+
+ MASK_GENERATION = +<HuggingFaceTask.MASK_GENERATION: 'mask-generation'> + + +
+ + + + +
+
+
+ OBJECT_DETECTION = +<HuggingFaceTask.OBJECT_DETECTION: 'object-detection'> + + +
+ + + + +
+
+
+ QUESTION_ANSWERING = +<HuggingFaceTask.QUESTION_ANSWERING: 'question-answering'> + + +
+ + + + +
+
+
+ SUMMARIZATION = +<HuggingFaceTask.SUMMARIZATION: 'summarization'> + + +
+ + + + +
+
+
+ TABLE_QUESTION_ANSWERING = +<HuggingFaceTask.TABLE_QUESTION_ANSWERING: 'table-question-answering'> + + +
+ + + + +
+
+
+ TEXT2TEXT_GENERATION = +<HuggingFaceTask.TEXT2TEXT_GENERATION: 'text2text-generation'> + + +
+ + + + +
+
+
+ TEXT_CLASSIFICATION = +<HuggingFaceTask.TEXT_CLASSIFICATION: 'text-classification'> + + +
+ + + + +
+
+
+ TEXT_GENERATION = +<HuggingFaceTask.TEXT_GENERATION: 'text-generation'> + + +
+ + + + +
+
+
+ TEXT_TO_AUDIO = +<HuggingFaceTask.TEXT_TO_AUDIO: 'text-to-audio'> + + +
+ + + + +
+
+
+ TOKEN_CLASSIFICATION = +<HuggingFaceTask.TOKEN_CLASSIFICATION: 'token-classification'> + + +
+ + + + +
+
+
+ TRANSLATION = +<HuggingFaceTask.TRANSLATION: 'translation'> + + +
+ + + + +
+
+
+ TRANSLATION_XX_TO_YY = +<HuggingFaceTask.TRANSLATION_XX_TO_YY: 'translation_xx_to_yy'> + + +
+ + + + +
+
+
+ VIDEO_CLASSIFICATION = +<HuggingFaceTask.VIDEO_CLASSIFICATION: 'video-classification'> + + +
+ + + + +
+
+
+ VISUAL_QUESTION_ANSWERING = +<HuggingFaceTask.VISUAL_QUESTION_ANSWERING: 'visual-question-answering'> + + +
+ + + + +
+
+
+ ZERO_SHOT_CLASSIFICATION = +<HuggingFaceTask.ZERO_SHOT_CLASSIFICATION: 'zero-shot-classification'> + + +
+ + + + +
+
+
+ ZERO_SHOT_IMAGE_CLASSIFICATION = +<HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION: 'zero-shot-image-classification'> + + +
+ + + + +
+
+
+ ZERO_SHOT_AUDIO_CLASSIFICATION = +<HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION: 'zero-shot-audio-classification'> + + +
+ + + + +
+
+
+ ZERO_SHOT_OBJECT_DETECTION = +<HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION: 'zero-shot-object-detection'> + + +
+ + + + +
+
+
Inherited Members
+
+
enum.Enum
+
name
+
value
+ +
+
builtins.str
+
encode
+
replace
+
split
+
rsplit
+
join
+
capitalize
+
casefold
+
title
+
center
+
count
+
expandtabs
+
find
+
partition
+
index
+
ljust
+
lower
+
lstrip
+
rfind
+
rindex
+
rjust
+
rstrip
+
rpartition
+
splitlines
+
strip
+
swapcase
+
translate
+
upper
+
startswith
+
endswith
+
removeprefix
+
removesuffix
+
isascii
+
islower
+
isupper
+
istitle
+
isspace
+
isdecimal
+
isdigit
+
isnumeric
+
isalpha
+
isalnum
+
isidentifier
+
isprintable
+
zfill
+
format
+
format_map
+
maketrans
+ +
+
+
+
+
+
+ GENERATION_TYPES = +['mask-generation', 'text-generation', 'text2text-generation'] + + +
+ + + + +
+
+ +
+ + class + HuggingFaceORTModel(builtins.str, enum.Enum): + + + +
+ +
44class HuggingFaceORTModel(str, Enum):
+45    ORT_AUDIO_CLASSIFICATION = "ORTModelForAudioClassification"
+46    ORT_AUDIO_FRAME_CLASSIFICATION = "ORTModelForAudioFrameClassification"
+47    ORT_AUDIO_XVECTOR = "ORTModelForAudioXVector"
+48    ORT_CUSTOM_TASKS = "ORTModelForCustomTasks"
+49    ORT_CTC = "ORTModelForCTC"
+50    ORT_FEATURE_EXTRACTION = "ORTModelForFeatureExtraction"
+51    ORT_IMAGE_CLASSIFICATION = "ORTModelForImageClassification"
+52    ORT_MASKED_LM = "ORTModelForMaskedLM"
+53    ORT_MULTIPLE_CHOICE = "ORTModelForMultipleChoice"
+54    ORT_QUESTION_ANSWERING = "ORTModelForQuestionAnswering"
+55    ORT_SEMANTIC_SEGMENTATION = "ORTModelForSemanticSegmentation"
+56    ORT_SEQUENCE_CLASSIFICATION = "ORTModelForSequenceClassification"
+57    ORT_TOKEN_CLASSIFICATION = "ORTModelForTokenClassification"
+58    ORT_SEQ2SEQ_LM = "ORTModelForSeq2SeqLM"
+59    ORT_SPEECH_SEQ2SEQ = "ORTModelForSpeechSeq2Seq"
+60    ORT_VISION2SEQ = "ORTModelForVision2Seq"
+61    ORT_PIX2STRUCT = "ORTModelForPix2Struct"
+62    ORT_CAUSAL_LM = "ORTModelForCausalLM"
+63    ORT_OPTIMIZER = "ORTOptimizer"
+64    ORT_QUANTIZER = "ORTQuantizer"
+65    ORT_TRAINER = "ORTTrainer"
+66    ORT_SEQ2SEQ_TRAINER = "ORTSeq2SeqTrainer"
+67    ORT_TRAINING_ARGUMENTS = "ORTTrainingArguments"
+68    ORT_SEQ2SEQ_TRAINING_ARGUMENTS = "ORTSeq2SeqTrainingArguments"
+69    ORT_STABLE_DIFFUSION_PIPELINE = "ORTStableDiffusionPipeline"
+70    ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE = "ORTStableDiffusionImg2ImgPipeline"
+71    ORT_STABLE_DIFFUSION_INPAINT_PIPELINE = "ORTStableDiffusionInpaintPipeline"
+72    ORT_STABLE_DIFFUSION_XL_PIPELINE = "ORTStableDiffusionXLPipeline"
+73    ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE = "ORTStableDiffusionXLImg2ImgPipeline"
+
+ + +

An enumeration.

+
+ + +
+
+ ORT_AUDIO_CLASSIFICATION = +<HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION: 'ORTModelForAudioClassification'> + + +
+ + + + +
+
+
+ ORT_AUDIO_FRAME_CLASSIFICATION = +<HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION: 'ORTModelForAudioFrameClassification'> + + +
+ + + + +
+
+
+ ORT_AUDIO_XVECTOR = +<HuggingFaceORTModel.ORT_AUDIO_XVECTOR: 'ORTModelForAudioXVector'> + + +
+ + + + +
+
+
+ ORT_CUSTOM_TASKS = +<HuggingFaceORTModel.ORT_CUSTOM_TASKS: 'ORTModelForCustomTasks'> + + +
+ + + + +
+
+
+ ORT_CTC = +<HuggingFaceORTModel.ORT_CTC: 'ORTModelForCTC'> + + +
+ + + + +
+
+
+ ORT_FEATURE_EXTRACTION = +<HuggingFaceORTModel.ORT_FEATURE_EXTRACTION: 'ORTModelForFeatureExtraction'> + + +
+ + + + +
+
+
+ ORT_IMAGE_CLASSIFICATION = +<HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION: 'ORTModelForImageClassification'> + + +
+ + + + +
+
+
+ ORT_MASKED_LM = +<HuggingFaceORTModel.ORT_MASKED_LM: 'ORTModelForMaskedLM'> + + +
+ + + + +
+
+
+ ORT_MULTIPLE_CHOICE = +<HuggingFaceORTModel.ORT_MULTIPLE_CHOICE: 'ORTModelForMultipleChoice'> + + +
+ + + + +
+
+
+ ORT_QUESTION_ANSWERING = +<HuggingFaceORTModel.ORT_QUESTION_ANSWERING: 'ORTModelForQuestionAnswering'> + + +
+ + + + +
+
+
+ ORT_SEMANTIC_SEGMENTATION = +<HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION: 'ORTModelForSemanticSegmentation'> + + +
+ + + + +
+
+
+ ORT_SEQUENCE_CLASSIFICATION = +<HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION: 'ORTModelForSequenceClassification'> + + +
+ + + + +
+
+
+ ORT_TOKEN_CLASSIFICATION = +<HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION: 'ORTModelForTokenClassification'> + + +
+ + + + +
+
+
+ ORT_SEQ2SEQ_LM = +<HuggingFaceORTModel.ORT_SEQ2SEQ_LM: 'ORTModelForSeq2SeqLM'> + + +
+ + + + +
+
+
+ ORT_SPEECH_SEQ2SEQ = +<HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ: 'ORTModelForSpeechSeq2Seq'> + + +
+ + + + +
+
+
+ ORT_VISION2SEQ = +<HuggingFaceORTModel.ORT_VISION2SEQ: 'ORTModelForVision2Seq'> + + +
+ + + + +
+
+
+ ORT_PIX2STRUCT = +<HuggingFaceORTModel.ORT_PIX2STRUCT: 'ORTModelForPix2Struct'> + + +
+ + + + +
+
+
+ ORT_CAUSAL_LM = +<HuggingFaceORTModel.ORT_CAUSAL_LM: 'ORTModelForCausalLM'> + + +
+ + + + +
+
+
+ ORT_OPTIMIZER = +<HuggingFaceORTModel.ORT_OPTIMIZER: 'ORTOptimizer'> + + +
+ + + + +
+
+
+ ORT_QUANTIZER = +<HuggingFaceORTModel.ORT_QUANTIZER: 'ORTQuantizer'> + + +
+ + + + +
+
+
+ ORT_TRAINER = +<HuggingFaceORTModel.ORT_TRAINER: 'ORTTrainer'> + + +
+ + + + +
+
+
+ ORT_SEQ2SEQ_TRAINER = +<HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER: 'ORTSeq2SeqTrainer'> + + +
+ + + + +
+
+
+ ORT_TRAINING_ARGUMENTS = +<HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS: 'ORTTrainingArguments'> + + +
+ + + + +
+
+
+ ORT_SEQ2SEQ_TRAINING_ARGUMENTS = +<HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS: 'ORTSeq2SeqTrainingArguments'> + + +
+ + + + +
+
+
+ ORT_STABLE_DIFFUSION_PIPELINE = +<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE: 'ORTStableDiffusionPipeline'> + + +
+ + + + +
+
+
+ ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE = +<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE: 'ORTStableDiffusionImg2ImgPipeline'> + + +
+ + + + +
+
+
+ ORT_STABLE_DIFFUSION_INPAINT_PIPELINE = +<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE: 'ORTStableDiffusionInpaintPipeline'> + + +
+ + + + +
+
+
+ ORT_STABLE_DIFFUSION_XL_PIPELINE = +<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE: 'ORTStableDiffusionXLPipeline'> + + +
+ + + + +
+
+
+ ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE = + + <HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE: 'ORTStableDiffusionXLImg2ImgPipeline'> + + +
+ + + + +
+
+
Inherited Members
+
+
enum.Enum
+
name
+
value
+ +
+
builtins.str
+
encode
+
replace
+
split
+
rsplit
+
join
+
capitalize
+
casefold
+
title
+
center
+
count
+
expandtabs
+
find
+
partition
+
index
+
ljust
+
lower
+
lstrip
+
rfind
+
rindex
+
rjust
+
rstrip
+
rpartition
+
splitlines
+
strip
+
swapcase
+
translate
+
upper
+
startswith
+
endswith
+
removeprefix
+
removesuffix
+
isascii
+
islower
+
isupper
+
istitle
+
isspace
+
isdecimal
+
isdigit
+
isnumeric
+
isalpha
+
isalnum
+
isidentifier
+
isprintable
+
zfill
+
format
+
format_map
+
maketrans
+ +
+
+
+
+
+ + \ No newline at end of file diff --git a/api/search.js b/api/search.js new file mode 100644 index 000000000..94872c6d3 --- /dev/null +++ b/api/search.js @@ -0,0 +1,46 @@ +window.pdocSearch = (function(){ +/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o

\n"}, "opsml.cards.base.logger": {"fullname": "opsml.cards.base.logger", "modulename": "opsml.cards.base", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.cards.base.ArtifactCard": {"fullname": "opsml.cards.base.ArtifactCard", "modulename": "opsml.cards.base", "qualname": "ArtifactCard", "kind": "class", "doc": "

Base pydantic class for artifact cards

\n", "bases": "pydantic.main.BaseModel"}, "opsml.cards.base.ArtifactCard.model_config": {"fullname": "opsml.cards.base.ArtifactCard.model_config", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True}"}, "opsml.cards.base.ArtifactCard.name": {"fullname": "opsml.cards.base.ArtifactCard.name", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.base.ArtifactCard.repository": {"fullname": "opsml.cards.base.ArtifactCard.repository", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.repository", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.base.ArtifactCard.contact": {"fullname": "opsml.cards.base.ArtifactCard.contact", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.contact", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.base.ArtifactCard.version": {"fullname": "opsml.cards.base.ArtifactCard.version", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.version", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.base.ArtifactCard.uid": {"fullname": "opsml.cards.base.ArtifactCard.uid", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.uid", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.cards.base.ArtifactCard.info": {"fullname": "opsml.cards.base.ArtifactCard.info", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.info", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.card.CardInfo]"}, "opsml.cards.base.ArtifactCard.tags": {"fullname": "opsml.cards.base.ArtifactCard.tags", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.tags", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, str]"}, "opsml.cards.base.ArtifactCard.validate_args": {"fullname": "opsml.cards.base.ArtifactCard.validate_args", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.validate_args", "kind": "function", "doc": "

Validate base args and Lowercase name and repository

\n\n
Arguments:
\n\n
    \n
  • card_args: named args passed to card
  • \n
\n\n
Returns:
\n\n
\n

validated card_args

\n
\n", "signature": "(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.base.ArtifactCard.create_registry_record": {"fullname": "opsml.cards.base.ArtifactCard.create_registry_record", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.create_registry_record", "kind": "function", "doc": "

Creates a registry record from self attributes

\n", "signature": "(self) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.base.ArtifactCard.add_tag": {"fullname": "opsml.cards.base.ArtifactCard.add_tag", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.add_tag", "kind": "function", "doc": "

\n", "signature": "(self, key: str, value: str) -> None:", "funcdef": "def"}, "opsml.cards.base.ArtifactCard.uri": {"fullname": "opsml.cards.base.ArtifactCard.uri", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.uri", "kind": "variable", "doc": "

The base URI to use for the card and it's artifacts.

\n", "annotation": ": pathlib.Path"}, "opsml.cards.base.ArtifactCard.artifact_uri": {"fullname": "opsml.cards.base.ArtifactCard.artifact_uri", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.artifact_uri", "kind": "variable", "doc": "

Returns the root URI to which artifacts associated with this card should be saved.

\n", "annotation": ": pathlib.Path"}, "opsml.cards.base.ArtifactCard.card_type": {"fullname": "opsml.cards.base.ArtifactCard.card_type", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.card_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.base.ArtifactCard.model_fields": {"fullname": "opsml.cards.base.ArtifactCard.model_fields", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={})}"}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"fullname": "opsml.cards.base.ArtifactCard.model_computed_fields", "modulename": "opsml.cards.base", "qualname": "ArtifactCard.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.audit": {"fullname": "opsml.cards.audit", "modulename": "opsml.cards.audit", "kind": "module", "doc": "

\n"}, "opsml.cards.audit.logger": {"fullname": "opsml.cards.audit.logger", "modulename": "opsml.cards.audit", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.cards.audit.DIR_PATH": {"fullname": "opsml.cards.audit.DIR_PATH", "modulename": "opsml.cards.audit", "qualname": "DIR_PATH", "kind": "variable", "doc": "

\n", "default_value": "'/home/steven_forrester/github/opsml/opsml/cards'"}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"fullname": "opsml.cards.audit.AUDIT_TEMPLATE_PATH", "modulename": "opsml.cards.audit", "qualname": "AUDIT_TEMPLATE_PATH", "kind": "variable", "doc": "

\n", "default_value": "'/home/steven_forrester/github/opsml/opsml/cards/templates/audit_card.yaml'"}, "opsml.cards.audit.Question": {"fullname": "opsml.cards.audit.Question", "modulename": "opsml.cards.audit", "qualname": "Question", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.cards.audit.Question.question": {"fullname": "opsml.cards.audit.Question.question", "modulename": "opsml.cards.audit", "qualname": "Question.question", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.audit.Question.purpose": {"fullname": "opsml.cards.audit.Question.purpose", "modulename": "opsml.cards.audit", "qualname": "Question.purpose", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.audit.Question.response": {"fullname": "opsml.cards.audit.Question.response", "modulename": "opsml.cards.audit", "qualname": "Question.response", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.cards.audit.Question.model_config": {"fullname": "opsml.cards.audit.Question.model_config", "modulename": "opsml.cards.audit", "qualname": "Question.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'frozen': False}"}, "opsml.cards.audit.Question.model_fields": {"fullname": "opsml.cards.audit.Question.model_fields", "modulename": "opsml.cards.audit", "qualname": "Question.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'question': FieldInfo(annotation=str, required=True), 'purpose': FieldInfo(annotation=str, required=True), 'response': FieldInfo(annotation=Union[str, NoneType], required=False)}"}, "opsml.cards.audit.Question.model_computed_fields": {"fullname": "opsml.cards.audit.Question.model_computed_fields", "modulename": "opsml.cards.audit", "qualname": "Question.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.audit.AuditSections": {"fullname": "opsml.cards.audit.AuditSections", "modulename": "opsml.cards.audit", "qualname": "AuditSections", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.cards.audit.AuditSections.business_understanding": {"fullname": "opsml.cards.audit.AuditSections.business_understanding", "modulename": "opsml.cards.audit", "qualname": "AuditSections.business_understanding", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.data_understanding": {"fullname": "opsml.cards.audit.AuditSections.data_understanding", "modulename": "opsml.cards.audit", "qualname": "AuditSections.data_understanding", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.data_preparation": {"fullname": "opsml.cards.audit.AuditSections.data_preparation", "modulename": "opsml.cards.audit", "qualname": "AuditSections.data_preparation", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.modeling": {"fullname": "opsml.cards.audit.AuditSections.modeling", "modulename": "opsml.cards.audit", "qualname": "AuditSections.modeling", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.evaluation": {"fullname": "opsml.cards.audit.AuditSections.evaluation", "modulename": "opsml.cards.audit", "qualname": "AuditSections.evaluation", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.deployment_ops": {"fullname": "opsml.cards.audit.AuditSections.deployment_ops", "modulename": "opsml.cards.audit", "qualname": "AuditSections.deployment_ops", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.misc": {"fullname": "opsml.cards.audit.AuditSections.misc", "modulename": "opsml.cards.audit", "qualname": "AuditSections.misc", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, Annotated[opsml.cards.audit.Question, SerializeAsAny()]]"}, "opsml.cards.audit.AuditSections.load_sections": {"fullname": "opsml.cards.audit.AuditSections.load_sections", "modulename": "opsml.cards.audit", "qualname": "AuditSections.load_sections", "kind": "function", "doc": "

Loads audit sections from template if no values are provided

\n", "signature": "(cls, values: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.audit.AuditSections.load_yaml_template": {"fullname": "opsml.cards.audit.AuditSections.load_yaml_template", "modulename": "opsml.cards.audit", "qualname": "AuditSections.load_yaml_template", "kind": "function", "doc": "

\n", "signature": "() -> Dict[str, Dict[int, Dict[str, str]]]:", "funcdef": "def"}, "opsml.cards.audit.AuditSections.model_config": {"fullname": "opsml.cards.audit.AuditSections.model_config", "modulename": "opsml.cards.audit", "qualname": "AuditSections.model_config", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.audit.AuditSections.model_fields": {"fullname": "opsml.cards.audit.AuditSections.model_fields", "modulename": "opsml.cards.audit", "qualname": "AuditSections.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'business_understanding': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'data_understanding': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'data_preparation': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'modeling': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'evaluation': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'deployment_ops': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True), 'misc': FieldInfo(annotation=Dict[int, Annotated[Question, SerializeAsAny]], required=True)}"}, "opsml.cards.audit.AuditSections.model_computed_fields": {"fullname": "opsml.cards.audit.AuditSections.model_computed_fields", "modulename": "opsml.cards.audit", "qualname": "AuditSections.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.audit.AuditQuestionTable": {"fullname": "opsml.cards.audit.AuditQuestionTable", "modulename": "opsml.cards.audit", "qualname": "AuditQuestionTable", "kind": "class", "doc": "

Helper class for creating a rich table to be used with an AuditCard

\n"}, "opsml.cards.audit.AuditQuestionTable.table": {"fullname": "opsml.cards.audit.AuditQuestionTable.table", "modulename": "opsml.cards.audit", "qualname": "AuditQuestionTable.table", "kind": "variable", "doc": "

\n"}, "opsml.cards.audit.AuditQuestionTable.create_table": {"fullname": "opsml.cards.audit.AuditQuestionTable.create_table", "modulename": "opsml.cards.audit", "qualname": "AuditQuestionTable.create_table", "kind": "function", "doc": "

Create Rich table of Audit

\n", "signature": "(self) -> rich.table.Table:", "funcdef": "def"}, "opsml.cards.audit.AuditQuestionTable.add_row": {"fullname": "opsml.cards.audit.AuditQuestionTable.add_row", "modulename": "opsml.cards.audit", "qualname": "AuditQuestionTable.add_row", "kind": "function", "doc": "

Add row to table

\n", "signature": "(\tself,\tsection_name: str,\tnbr: int,\tquestion: opsml.cards.audit.Question) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditQuestionTable.add_section": {"fullname": "opsml.cards.audit.AuditQuestionTable.add_section", "modulename": "opsml.cards.audit", "qualname": "AuditQuestionTable.add_section", "kind": "function", "doc": "

Add section

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditQuestionTable.print_table": {"fullname": "opsml.cards.audit.AuditQuestionTable.print_table", "modulename": "opsml.cards.audit", "qualname": "AuditQuestionTable.print_table", "kind": "function", "doc": "

Print table

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditCard": {"fullname": "opsml.cards.audit.AuditCard", "modulename": "opsml.cards.audit", "qualname": "AuditCard", "kind": "class", "doc": "

Creates an AuditCard for storing audit-related information about a\nmachine learning project.

\n\n
Arguments:
\n\n
    \n
  • name: What to name the AuditCard
  • \n
  • repository: Repository that this card is associated with
  • \n
  • contact: Contact to associate with the AuditCard
  • \n
  • info: CardInfo object containing additional metadata. If provided, it will override any\nvalues provided for name, repository, contact, and version.

    \n\n

    Name, repository, and contact are required arguments for all cards. They can be provided\ndirectly or through a CardInfo object.

  • \n
  • audit: AuditSections object containing the audit questions and responses
  • \n
  • approved: Whether the audit has been approved
  • \n
\n", "bases": "opsml.cards.base.ArtifactCard"}, "opsml.cards.audit.AuditCard.audit": {"fullname": "opsml.cards.audit.AuditCard.audit", "modulename": "opsml.cards.audit", "qualname": "AuditCard.audit", "kind": "variable", "doc": "

\n", "annotation": ": opsml.cards.audit.AuditSections"}, "opsml.cards.audit.AuditCard.approved": {"fullname": "opsml.cards.audit.AuditCard.approved", "modulename": "opsml.cards.audit", "qualname": "AuditCard.approved", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.cards.audit.AuditCard.comments": {"fullname": "opsml.cards.audit.AuditCard.comments", "modulename": "opsml.cards.audit", "qualname": "AuditCard.comments", "kind": "variable", "doc": "

\n", "annotation": ": List[Annotated[opsml.types.card.Comment, SerializeAsAny()]]"}, "opsml.cards.audit.AuditCard.metadata": {"fullname": "opsml.cards.audit.AuditCard.metadata", "modulename": "opsml.cards.audit", "qualname": "AuditCard.metadata", "kind": "variable", "doc": "

\n", "annotation": ": opsml.types.card.AuditCardMetadata"}, "opsml.cards.audit.AuditCard.add_comment": {"fullname": "opsml.cards.audit.AuditCard.add_comment", "modulename": "opsml.cards.audit", "qualname": "AuditCard.add_comment", "kind": "function", "doc": "

Adds comment to AuditCard

\n\n
Arguments:
\n\n
    \n
  • name: Name of person making comment
  • \n
  • comment: Comment to add
  • \n
\n", "signature": "(self, name: str, comment: str) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditCard.create_registry_record": {"fullname": "opsml.cards.audit.AuditCard.create_registry_record", "modulename": "opsml.cards.audit", "qualname": "AuditCard.create_registry_record", "kind": "function", "doc": "

Creates a registry record for a audit

\n", "signature": "(self) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.audit.AuditCard.add_card": {"fullname": "opsml.cards.audit.AuditCard.add_card", "modulename": "opsml.cards.audit", "qualname": "AuditCard.add_card", "kind": "function", "doc": "

Adds a card uid to the appropriate card uid list for tracking

\n\n
Arguments:
\n\n
    \n
  • card: Card to add to AuditCard
  • \n
\n", "signature": "(self, card: opsml.cards.base.ArtifactCard) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditCard.business": {"fullname": "opsml.cards.audit.AuditCard.business", "modulename": "opsml.cards.audit", "qualname": "AuditCard.business", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.data_understanding": {"fullname": "opsml.cards.audit.AuditCard.data_understanding", "modulename": "opsml.cards.audit", "qualname": "AuditCard.data_understanding", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.data_preparation": {"fullname": "opsml.cards.audit.AuditCard.data_preparation", "modulename": "opsml.cards.audit", "qualname": "AuditCard.data_preparation", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.modeling": {"fullname": "opsml.cards.audit.AuditCard.modeling", "modulename": "opsml.cards.audit", "qualname": "AuditCard.modeling", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.evaluation": {"fullname": "opsml.cards.audit.AuditCard.evaluation", "modulename": "opsml.cards.audit", "qualname": "AuditCard.evaluation", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.deployment": {"fullname": "opsml.cards.audit.AuditCard.deployment", "modulename": "opsml.cards.audit", "qualname": "AuditCard.deployment", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.misc": {"fullname": "opsml.cards.audit.AuditCard.misc", "modulename": "opsml.cards.audit", "qualname": "AuditCard.misc", "kind": "variable", "doc": "

\n", "annotation": ": Dict[int, opsml.cards.audit.Question]"}, "opsml.cards.audit.AuditCard.list_questions": {"fullname": "opsml.cards.audit.AuditCard.list_questions", "modulename": "opsml.cards.audit", "qualname": "AuditCard.list_questions", "kind": "function", "doc": "

Lists all Audit Card questions in a rich table

\n\n
Arguments:
\n\n
    \n
  • section: Section name. Can be one of: business, data_understanding, data_preparation, modeling,\nevaluation or misc
  • \n
\n", "signature": "(self, section: Optional[str] = None) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditCard.answer_question": {"fullname": "opsml.cards.audit.AuditCard.answer_question", "modulename": "opsml.cards.audit", "qualname": "AuditCard.answer_question", "kind": "function", "doc": "

Answers a question in a section

\n\n
Arguments:
\n\n
    \n
  • section: Section name. Can be one of: business, data_understanding, data_preparation, modeling, evaluation,\ndeployment or misc
  • \n
  • question_nbr: Question number
  • \n
  • response: Response to the question
  • \n
\n", "signature": "(self, section: str, question_nbr: int, response: str) -> None:", "funcdef": "def"}, "opsml.cards.audit.AuditCard.card_type": {"fullname": "opsml.cards.audit.AuditCard.card_type", "modulename": "opsml.cards.audit", "qualname": "AuditCard.card_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.audit.AuditCard.model_config": {"fullname": "opsml.cards.audit.AuditCard.model_config", "modulename": "opsml.cards.audit", "qualname": "AuditCard.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True}"}, "opsml.cards.audit.AuditCard.model_fields": {"fullname": "opsml.cards.audit.AuditCard.model_fields", "modulename": "opsml.cards.audit", "qualname": "AuditCard.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'audit': FieldInfo(annotation=AuditSections, required=False, default=AuditSections(business_understanding={1: Question(question='What business objectives does the product owner pursue?', purpose='\\n- Identify the purposes for which the product owner intends to use the AI application \\n- Identify the quality of target/goal definition and the assessment against SMART criteria by the product owner.', response=None), 2: Question(question='What business requirements has the product owner defined for the application?', purpose='\\n- Identify to what extent business requirements have been derived from the objectives set.\\n- Such requirements may include:\\n--- development costs\\n--- operational costs\\n--- staffing needs for operation and use\\n-- savings sought\\n', response=None), 3: Question(question='What KPIs does the product owner intend to enhance by means of the application?', purpose='\\n- Usually it is impossible for the product owner to enhance all kpis at the same time. Therefore the product owner should specify the reason for selecting a specific kpi and the way of measuring any change. If it is impossible to directly measure a kpi, the product owner should specify any indicator used to indirectly assess whether the kpi is within a pre-set target corridor.\\n- Identify how the product owner seeks to track and measure the changes against the business targets of the application.', response=None), 4: Question(question='In what business processes shall the application be used? ', purpose='- Identify which processes are affected by the application, how critical those processes are, how they are related and what significance the application has for these processes.', response=None), 5: Question(question='What situation has been the driver for introducing the application? ', purpose='- Identify the driver for the decision to develop the application. State the occurrence of a statutory mandate (Ex: Prop 22), cost increases, new types of fraud, etc.', response=None), 6: Question(question='What framework conditions has the product owner put into place to ensure efficient use of the application? ', purpose='\\n- Identify if the product owner is capable to run the system efficiently and to achieve the desired benefits (adequate level of staffing and funds).\\n- Aspects for study may include \\n--- whether the product owner has suitable staff for development, operation and use of the application,\\n--- whether the product owner has put into place an adequate technical and organizational infrastructure,\\n--- whether the users are supported by qualified helpdesk staff, and\\n--- whether the application has been embedded in a quality assurance environment, and/or internal controlling.\\n', response=None), 7: Question(question='What monetary benefits are sought in using the application?', purpose='\\n- Identify the relationship between cost and the targeted savings. \\n- Identify if there is a reasonable monetary benefit ', response=None), 8: Question(question='What qualifiable and strategic benefits are sought in using the system?', purpose='\\n- Identifying any benefits generated by the application beyond financial savings or additional revenue.\\n- It is important to identify if the product owner can actually measure and quantify the benefit made. In particular, the product owner shall state if the benefit generated can in fact be attributed to the application.\\n', response=None), 9: Question(question='How has the value for money of the system been documented?', purpose='- Identify if the efficiency appraisal template for AI projects or another recognized method has been used and if the method requirements have been complied with.', response=None), 10: Question(question='Which of the following components have been studied in a risk analysis and what have the results been?\\n- the application\\n- data preparation and \\n- the processes mapped by the application\\n', purpose='\\n- Risk analyses are critical to accomplishing the objectives, to efficiency appraisal, project run, and use of the application.\\n- Identify if the product owner has carried out a risk analysis, what risks the product owner seeks to counter and which risks the product owner has decided to shoulder.\\n- Identify whether the risks are set off by the benefits associated with the use of the application and if the tolerable risk burden is in accordance with applicable regulations and rules.', response=None)}, data_understanding={1: Question(question='What data are processed by the application?', purpose=' - Learn more about the input data and output data of the application. ', response=None), 2: Question(question='What are the data sources?', purpose='\\n- Learn more about \\n--- what sources the product owner and project leader approved and data scientist uses,\\n--- whether data is up-to-date or not,\\n--- what level of reliability both data source and data have,\\n--- what the consideration for the data source is or if the data source has a mandatory duty to make information available, and\\n\\n', response=None), 3: Question(question='What technical/operational criteria have guided data selection?', purpose='\\n- Learn more about\\n--- the reason for selecting the particular data \\n--- alternative data sources or data beyond those selected, and\\n--- any dependencies on the data source and the data.\\n', response=None), 4: Question(question='How do you assess data quality?', purpose='\\n- Learn more about \\n--- who checks data quality (product owner, data supplier, third parties, automated test system),\\n--- if it is a continuous or a one-off quality assurance process,\\n--- what data aspects are key to data quality and why,\\n--- how data quality is reviewed, and\\n--- what quality criteria have been defined and measured.\\n', response=None), 5: Question(question='What data quality is needed for the application to meet the objectives and requirements set?', purpose='\\n- Learn more about \\n--- how data quality impacts on the application,\\n--- how data quality is measured during operation, and\\n--- how the application\u2019s performance varies in line with the quality indicators selected.\\n', response=None), 6: Question(question='What data quality thresholds have you selected and why?', purpose=' - Learn more about,\\n--- if threshold values have been defined for the data quality and\\n--- for what technical and other reasons these threshold values have been chosen?\\n- The repository should be able to explain what happens when a value is above or below the threshold.', response=None), 7: Question(question='How is the semantic of the data model documented?', purpose=' - Learn more about whether or not semantics and syntax have been defined for all data\\n- e.g. whether the repository knows the abbreviated values i.e S&D, BOO etc', response=None), 8: Question(question='Does the application draw on/use/generate any data that are subject to security requirements (e.g. according to GDPR)? Please specify.', purpose='- Learn more about whether the application is subject to GDPR and what is the reason given by the data scientist to use such data. ', response=None), 9: Question(question='How do you ensure data security? ', purpose='- Learn more about technical, organizational and other steps taken by the product owner/developer to ensure data security.', response=None)}, data_preparation={1: Question(question='Please specify any shortcomings in data quality you noted in the input data of the application.', purpose='\\n- Possible shortcomings include:\\n--- lacking values, \\n--- erroneous entries, \\n--- inaccurate entries (transposed letters etc.),\\n--- lacking datasets, \\n--- obsolete entries, and\\n--- inconsistent entries.\\n', response=None), 2: Question(question='To what extent and how (manually, automatically) do you modify input datasets?', purpose='- Learn more about the steps the product owner/developer/operator takes to address data quality shortcomings. Does the product owner/developer/operator report data errors to data suppliers? Do they replace or ignore missing entries, document data weaknesses to enable benchmarking against future data, etc.?', response=None), 3: Question(question='How has data preparation been documented?', purpose='- Learn more about how data is processed, documented and tracked during operation.', response=None), 4: Question(question='In what way does your data preparation enhance the quality of datasets and how do you measure this impact?', purpose='- Learn more about \\n--- criteria for benchmarking unprocessed and pre-processed data, and\\n--- as to whether the quality of input data can be benchmarked similarly as output data.\\n', response=None), 5: Question(question='How do you assess whether or not pre-processed/unprocessed data make a difference for the run and results of the application?', purpose='- Learn more about any review of application response to diversely cleansed data.', response=None), 6: Question(question='How is the data preparation mapped in the application?', purpose='- Learn more about how data preparation has been integrated in the development, testing, validation, and operation process.\\n', response=None), 7: Question(question='What is the mechanism in place for monitoring the quality of data preparation?', purpose='- Learn more about what type of quality assurance has been put into place for the purpose of data preparation, how quality assurance works, when it starts working and how its work is documented.', response=None), 8: Question(question='In what way does your data preparation process address any risks you detected in the early stages of application development.', purpose='\\n- Learn more about \\n--- any risks posed by data preparation,\\n--- any risks of the application and/or the dev environment that may also impact on data preparation, and\\n--- any risks of the application and/or the dev environment that are to be mitigated by data preparation.\\n', response=None), 9: Question(question='What framework conditions and responsibilities govern data management in this application?', purpose='- Learn more about how data management for the application is structured and what applicable frameworks are in place.', response=None), 10: Question(question='How do you manage the data? ', purpose='\\n- Learn more about what data management system is used and how data is stored, e.g. in a\\n--- SQL database,\\n--- NoSQL database,\\n--- data warehouse, or\\n--- flat file.\\n', response=None)}, modeling={1: Question(question='What data analysis methods have you selected and what are the selection criteria?', purpose='\\nMethods may include but are not limited to: \\nFrequent pattern mining: association mining, correlation mining\\nClassification: decision trees, Bayes classification, rule-based classification, Bayesian belief networks, backpropagation, support vector machines, frequent patterns, lazy learners\\nCluster analysis: partitioning methods, hierarchical methods, density-based methods, grid-based methods, probabilistic model-based clustering, graph and network clustering, clustering with constraints\\nOutlier detection: outlier detection methods, statistical approaches, proximity-based approaches, clustering-based approaches, mining contextual and collective outliers', response=None), 2: Question(question='What training datasets do you use?', purpose='Collect information on the scope, contents and quality of the training datasets.', response=None), 3: Question(question='How have the training datasets been selected or generated?', purpose='Collect information on the training data generation and selection, on the programmes used in the application, and any errors that may occur.', response=None), 4: Question(question='How are the training datasets updated during the life cycle of the system?', purpose='Collect information on training at operational stage, on whether the model is stable after activation or continuously refined with more training data. Key information includes monitoring and quality assurance of continuous training.', response=None), 5: Question(question='What validation datasets do you use?', purpose='Collect information about the scope, contents and quality of validation datasets.', response=None), 6: Question(question='How have the validation datasets been selected or generated?', purpose='Collect information on generating and selecting validation data, on the programmes used by the application, and on any errors likely to occur.', response=None), 7: Question(question='How are the validation datasets updated during the life cycle of the system?', purpose='Collect information on the validation process at operational stage, on whether the model is stable after activation or continuously refined as validation proceeds. Key information includes monitoring and quality assurance of the validation process.', response=None), 8: Question(question='What test datasets do you use?', purpose='Collect information on the scope, contents and quality of test datasets.', response=None), 9: Question(question='How have the test datasets been selected or generated?', purpose='Collect information on test data generation and selection, the programmes used by the application and any errors likely to occur.', response=None), 10: Question(question='How are the test datasets updated during the life cycle of the application?', purpose='Collect information on testing at operational stage, on whether the model is stable after activation or continuously refined as testing proceeds. Key information includes monitoring and quality assurance of testing.', response=None), 11: Question(question='How do you track modelling, training, validation and test runs?', purpose='Collect information on how modelling, model validation and model testing is documented.', response=None), 12: Question(question='In what way has modelling addressed the risks you detected in the application?', purpose='Collect information on the type of risk analysis conducted for modelling and for factors impacting on modelling', response=None)}, evaluation={1: Question(question='What validation methods do you apply and what were the selection criteria?', purpose='\\n- Learn more about\\n--- how model quality has been reviewed,\\n--- how the decisions/forecasts of the application have been tracked,\\n--- how the impact of individual criteria on decisions has been analyzed,\\n--- any checks on whether criteria ignored might enhance decisions, and\\n--- any model fairness measurements.', response=None), 2: Question(question='What were the results of model validation and how have you evaluated these results?', purpose='\\n- Learn more about\\n--- how the results accomplished by the validation methods have been documented,\\n--- how the results have been construed,\\n--- traceability of model response,\\n--- the extent to which the model is sufficiently accurate, \\n--- how potentially contradictory statements have been assessed,\\n--- what empirical data has been used for construing the results, \\n--- who reviewed the validation results, and\\n--- how the validation results will be used for future validation exercises.', response=None), 3: Question(question='Did you benchmark the performance of your model against any alternative methods/models? Please specify.', purpose='- Learn more about any benchmarking of current methods/models for data analysis against alternative methods/models and about the parameters used.', response=None), 4: Question(question='How does the application respond to faulty or manipulated datasets?', purpose='- Learn more about whether at the training, validation, testing and operational stage, the application has deliberately been exposed to faulty or manipulated data and what the result has been.', response=None), 5: Question(question='Have the objectives set been accomplished and has the application achieved the intended purposes?', purpose='- Learn more about \\n--- whether the initial objectives and impacts set by the product owner have been accomplished\\n--- how this has been measured and\\n--- whether or not additional objectives and impacts have been achieved .', response=None)}, deployment_ops={1: Question(question='At what intervals is the model updated (e.g. to reflect current training data)?', purpose='- Learn more about whether the model is static or dynamic.', response=None), 2: Question(question='How is the application embedded in the surrounding system architecture?', purpose='- Learn more about how the system architecture has been designed, how the application has been embedded,\\nwhich interfaces to other system components exist, and how the application depends on these other system components and their changes.', response=None), 3: Question(question='How is the application embedded in the product owner\u2019s process landscape?', purpose='- Understand when and driven by what incidents and framework conditions, users may operate the application as part of technical processes and whether such processes differ on a case-by-case basis or whether the conditions governing the application always remain the same.', response=None), 4: Question(question='What are the major features of human-machine interaction of the application?', purpose='- Understand how the user may influence the application or rely on its results, how the user is informed about actions and results of the application and what autonomy the application may have.', response=None), 5: Question(question='How are the key performance indicators of the application provided to decision-makers?', purpose='- Understand the extent to which decision-makers are informed about decision quality (or uncertainty) of the application.', response=None), 6: Question(question='How is application performance monitored during operation?', purpose='- Understand how and how often performance of the application is monitored or reviewed.', response=None), 7: Question(question='What alternative intervention processes are in place in case of faulty or poor system performance?', purpose='- Understand how business processes depend on the functionality of the application and what happens if the application needs to be bypassed because of erroneous or poor performance (e.g. can staff still manage transactions by using manual inspection or alternative techniques)?\\n- Understand if the application may easily be separated from the operating process or if this means bringing the entire automated or manual processing to a halt.\\n', response=None), 8: Question(question='What qualifications do users of the application need?', purpose='- Understand what application-related knowledge users need to possess to appropriately assess the decisions made by the application.\\n- Understand that users may know nothing at all about the application and its impact on the process.\\n', response=None), 9: Question(question='How can users overrule decisions/proposals made by the application? What autonomy do you grant to the application and do you think the level of autonomy is appropriate? ', purpose='- Understand what autonomy the application has (BITKOM model on decision-making processes).', response=None), 10: Question(question='What criteria govern decisions/proposals of the application that are submitted to the user?', purpose='- Understand what decisions are submitted to the user and which are not.', response=None), 11: Question(question='To what extent do you consider the application to comply with applicable laws and regulations?', purpose='- Understand the laws and regulations the application is subject to.\\n- Obtain assessments on the application of the various parties involved. Possibly, the Data Gov repository holds a different view of the application than the project manager or the DS .', response=None), 12: Question(question='What ethical concerns do you have about using the application?', purpose='-Understand if apart from purely statutory aspects, the application may also affect ethical aspects.', response=None), 13: Question(question='To what extent can you understand or track decisions/proposals made by the application?', purpose='- Understand if the user considers the decisions/proposals of the application to be fair and reasonable and if the user can even list individual criteria that in his/her view underlie a decisions/proposal of the application.', response=None), 14: Question(question='To what extent are you able to understand or track how the application works?', purpose='- Understand if the user knows and is aware of the internal processes underlying the application or if these ideas are mere presumptions.', response=None), 15: Question(question='How do you protect the application from misuse?', purpose='- Understand what possibilities of misuse exist and what steps have been taken to address them.', response=None), 16: Question(question='What potential types of misuse have you explored?', purpose='- Understand what possibilities of misuse have been analyzed more closely and for what types of misuse knowledge is limited to a theoretical idea only. ', response=None), 17: Question(question='What potential types of attacks on the application and on the embedded processes have you explored and addressed at the planning stage?', purpose='- Understand if the "Security by Design" principle has been implemented in developing the process or the embedded application.', response=None), 18: Question(question='What residual risk still persists and needs to be catered for?', purpose='- Understand to what extent informed decisions have been made with regard to residual risks, and specify any criteria used to decide whether a specific residual risk is tolerable.', response=None), 19: Question(question='What factors impact on the reliability of the overall system in which the application is embedded? How do these factors impact on the embedded application?', purpose='- Understand if the IT environment may trigger incidents or manipulation of the embedded process (e.g. a database on which the application relies for data or for storing its decisions may be corrupted, i.e. occurrence of technical malfunction).', response=None), 20: Question(question='What factors impact on the reliability of the decisions/proposals of the application?', purpose='- Understand if apart from the framework conditions defined by the application itself, there are other variables that may impact on the reliability of the application (e.g. user behavior, flawed organizational procedures, computing power).', response=None), 21: Question(question='To what extent can you rule out any unequal treatment of individuals/facts and figures/matters arising from using the application? How do you verify the occurrence of any such incidents?', purpose='- Understand if an impact analysis tailored to the application has been carried out. Understand any impacts specified and measured in the analysis.', response=None), 22: Question(question='To what extent have sustainability considerations been taken into account such as energy efficiency of operating the AI components?', purpose='- Understand if cost of energy consumption of the AI component is in line with the benefit achieved.\\n- Understand if sustainability considerations have duly been taken into account in running the application.', response=None)}, misc={1: Question(question='Demand and change management', purpose='- Understand how demand and change management for developing the application/system have been designed, what tools are used for this purpose, and how the product owner has been involved.', response=None), 2: Question(question='Configuration management', purpose='- Understand how configuration management is structured, how the configuration management database has been designed, how the database is updated and what items it includes.', response=None), 3: Question(question='Software development', purpose='- Understand how software development is structured, what design tools, development tools, and libraries etc. are used.', response=None), 4: Question(question='Quality assurance', purpose='- Understand how quality assurance is structured, how tests and acceptance are structured and how developer tests are designed.', response=None), 5: Question(question='Project management', purpose='- Understand how project management is structured, what approaches and methods have been selected.', response=None), 6: Question(question='Rollout', purpose='- Understand how application/system rollout is structured (e.g. pilot users, gradual rollout, big bang) and what framework conditions have been put into place or are still needed.', response=None), 7: Question(question='Acceptance management', purpose='- Understand how staff, clients etc. have been prepared for application/system rollout and how their understanding and readiness for change has been promoted.', response=None), 8: Question(question='Incident management', purpose='- Understand how users, the operational units etc. can report malfunctions and incidents.', response=None), 9: Question(question='Ombudsman - complaints office', purpose='- Understand if clients (e.g. citizens and private-sector businesses) can address their complaints to a centralized body and how the procedure is structured.', response=None), 10: Question(question='Change management (staff, organization)', purpose='- Understand what changes in practices and procedures, human resources and financial management are associated with rollout and how the organization or its staff have been prepared to face these changes.', response=None)})), 'approved': FieldInfo(annotation=bool, required=False, default=False), 'comments': FieldInfo(annotation=List[Annotated[Comment, SerializeAsAny]], required=False, default=[]), 'metadata': FieldInfo(annotation=AuditCardMetadata, required=False, default=AuditCardMetadata(datacards=[], modelcards=[], runcards=[]))}"}, "opsml.cards.audit.AuditCard.model_computed_fields": {"fullname": "opsml.cards.audit.AuditCard.model_computed_fields", "modulename": "opsml.cards.audit", "qualname": "AuditCard.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.data": {"fullname": "opsml.cards.data", "modulename": "opsml.cards.data", "kind": "module", "doc": "

\n"}, "opsml.cards.data.logger": {"fullname": "opsml.cards.data.logger", "modulename": "opsml.cards.data", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.cards.data.DataCard": {"fullname": "opsml.cards.data.DataCard", "modulename": "opsml.cards.data", "qualname": "DataCard", "kind": "class", "doc": "

Create a DataCard from your data.

\n\n
Arguments:
\n\n
    \n
  • interface: Instance of DataInterface that contains data
  • \n
  • name: What to name the data
  • \n
  • repository: Repository that this data is associated with
  • \n
  • contact: Contact to associate with data card
  • \n
  • info: CardInfo object containing additional metadata. If provided, it will override any\nvalues provided for name, repository, contact, and version.

    \n\n

    Name, repository, and contact are required arguments for all cards. They can be provided\ndirectly or through a CardInfo object.

  • \n
  • version: DataCard version
  • \n
  • uid: Unique id assigned to the DataCard
  • \n
\n\n
Returns:
\n\n
\n

DataCard

\n
\n", "bases": "opsml.cards.base.ArtifactCard"}, "opsml.cards.data.DataCard.interface": {"fullname": "opsml.cards.data.DataCard.interface", "modulename": "opsml.cards.data", "qualname": "DataCard.interface", "kind": "variable", "doc": "

\n", "annotation": ": Annotated[Union[opsml.data.interfaces._base.DataInterface, opsml.data.interfaces.custom_data.base.Dataset], SerializeAsAny()]"}, "opsml.cards.data.DataCard.metadata": {"fullname": "opsml.cards.data.DataCard.metadata", "modulename": "opsml.cards.data", "qualname": "DataCard.metadata", "kind": "variable", "doc": "

\n", "annotation": ": opsml.types.data.DataCardMetadata"}, "opsml.cards.data.DataCard.load_data": {"fullname": "opsml.cards.data.DataCard.load_data", "modulename": "opsml.cards.data", "qualname": "DataCard.load_data", "kind": "function", "doc": "

Load data to interface

\n\n
Arguments:
\n\n
    \n
  • kwargs: Keyword arguments to pass to the data loader
  • \n
  • ---- Supported kwargs for ImageData and TextDataset ----
  • \n
  • split: Split to use for data. If not provided, then all data will be loaded.\nOnly used for subclasses of Dataset.
  • \n
  • batch_size: What batch size to use when loading data. Only used for subclasses of Dataset.\nDefaults to 1000.
  • \n
  • chunk_size: How many files per batch to use when writing arrow back to local file.\nDefaults to 1000.

    \n\n

    Example:

    \n\n
      \n
    • If batch_size=1000 and chunk_size=100, then the loaded batch will be split into\n10 chunks to write in parallel. This is useful for large datasets.
    • \n
  • \n
\n", "signature": "(self, **kwargs: Union[str, int]) -> None:", "funcdef": "def"}, "opsml.cards.data.DataCard.load_data_profile": {"fullname": "opsml.cards.data.DataCard.load_data_profile", "modulename": "opsml.cards.data", "qualname": "DataCard.load_data_profile", "kind": "function", "doc": "

Load data to interface

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.cards.data.DataCard.create_registry_record": {"fullname": "opsml.cards.data.DataCard.create_registry_record", "modulename": "opsml.cards.data", "qualname": "DataCard.create_registry_record", "kind": "function", "doc": "

Creates required metadata for registering the current data card.\nImplemented with a DataRegistry object.\n Returns:\n Registry metadata

\n", "signature": "(self) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.data.DataCard.add_info": {"fullname": "opsml.cards.data.DataCard.add_info", "modulename": "opsml.cards.data", "qualname": "DataCard.add_info", "kind": "function", "doc": "

Adds metadata to the existing DataCard metadata dictionary

\n\n
Arguments:
\n\n
    \n
  • info: Dictionary containing name (str) and value (float, int, str) pairs\nto add to the current metadata set
  • \n
\n", "signature": "(self, info: Dict[str, Union[float, int, str]]) -> None:", "funcdef": "def"}, "opsml.cards.data.DataCard.create_data_profile": {"fullname": "opsml.cards.data.DataCard.create_data_profile", "modulename": "opsml.cards.data", "qualname": "DataCard.create_data_profile", "kind": "function", "doc": "

Creates a data profile report

\n\n
Arguments:
\n\n
    \n
  • sample_perc: Percentage of data to use when creating a profile. Sampling is recommended for large dataframes.\nPercentage is expressed as a decimal (e.g. 1 = 100%, 0.5 = 50%, etc.)
  • \n
\n", "signature": "(\tself,\tsample_perc: float = 1) -> ydata_profiling.profile_report.ProfileReport:", "funcdef": "def"}, "opsml.cards.data.DataCard.split_data": {"fullname": "opsml.cards.data.DataCard.split_data", "modulename": "opsml.cards.data", "qualname": "DataCard.split_data", "kind": "function", "doc": "

Splits data interface according to data split logic

\n", "signature": "(self) -> Dict[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.cards.data.DataCard.data_splits": {"fullname": "opsml.cards.data.DataCard.data_splits", "modulename": "opsml.cards.data", "qualname": "DataCard.data_splits", "kind": "variable", "doc": "

Returns data splits

\n", "annotation": ": List[opsml.data.splitter.DataSplit]"}, "opsml.cards.data.DataCard.data": {"fullname": "opsml.cards.data.DataCard.data", "modulename": "opsml.cards.data", "qualname": "DataCard.data", "kind": "variable", "doc": "

Returns data

\n", "annotation": ": Any"}, "opsml.cards.data.DataCard.data_profile": {"fullname": "opsml.cards.data.DataCard.data_profile", "modulename": "opsml.cards.data", "qualname": "DataCard.data_profile", "kind": "variable", "doc": "

Returns data profile

\n", "annotation": ": Any"}, "opsml.cards.data.DataCard.card_type": {"fullname": "opsml.cards.data.DataCard.card_type", "modulename": "opsml.cards.data", "qualname": "DataCard.card_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.data.DataCard.model_config": {"fullname": "opsml.cards.data.DataCard.model_config", "modulename": "opsml.cards.data", "qualname": "DataCard.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True}"}, "opsml.cards.data.DataCard.model_fields": {"fullname": "opsml.cards.data.DataCard.model_fields", "modulename": "opsml.cards.data", "qualname": "DataCard.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'interface': FieldInfo(annotation=Union[DataInterface, Dataset], required=True, metadata=[SerializeAsAny()]), 'metadata': FieldInfo(annotation=DataCardMetadata, required=False, default=DataCardMetadata(interface_type='', data_type='', description=Description(summary=None, sample_code=None, Notes=None), feature_map={}, additional_info={}, runcard_uid=None, pipelinecard_uid=None, auditcard_uid=None))}"}, "opsml.cards.data.DataCard.model_computed_fields": {"fullname": "opsml.cards.data.DataCard.model_computed_fields", "modulename": "opsml.cards.data", "qualname": "DataCard.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.model": {"fullname": "opsml.cards.model", "modulename": "opsml.cards.model", "kind": "module", "doc": "

\n"}, "opsml.cards.model.logger": {"fullname": "opsml.cards.model.logger", "modulename": "opsml.cards.model", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.cards.model.ModelCard": {"fullname": "opsml.cards.model.ModelCard", "modulename": "opsml.cards.model", "qualname": "ModelCard", "kind": "class", "doc": "

Create a ModelCard from your trained machine learning model.\nThis Card is used in conjunction with the ModelCardCreator class.

\n\n
Arguments:
\n\n
    \n
  • interface: Trained model interface.
  • \n
  • name: Name for the model specific to your current project
  • \n
  • repository: Repository that this model is associated with
  • \n
  • contact: Contact to associate with card
  • \n
  • info: CardInfo object containing additional metadata. If provided, it will override any\nvalues provided for name, repository, contact, and version.

    \n\n

    Name, repository, and contact are required arguments for all cards. They can be provided\ndirectly or through a CardInfo object.

  • \n
  • uid: Unique id (assigned if card has been registered)
  • \n
  • version: Current version (assigned if card has been registered)
  • \n
  • datacard_uid: Uid of the DataCard associated with training the model
  • \n
  • to_onnx: Whether to convert the model to onnx or not
  • \n
  • metadata: ModelCardMetadata associated with the model
  • \n
\n", "bases": "opsml.cards.base.ArtifactCard"}, "opsml.cards.model.ModelCard.model_config": {"fullname": "opsml.cards.model.ModelCard.model_config", "modulename": "opsml.cards.model", "qualname": "ModelCard.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True, 'validate_assignment': True, 'validate_default': True, 'protected_namespaces': ('protect_',)}"}, "opsml.cards.model.ModelCard.interface": {"fullname": "opsml.cards.model.ModelCard.interface", "modulename": "opsml.cards.model", "qualname": "ModelCard.interface", "kind": "variable", "doc": "

\n", "annotation": ": typing.Annotated[opsml.model.interfaces.base.ModelInterface, SerializeAsAny()]"}, "opsml.cards.model.ModelCard.datacard_uid": {"fullname": "opsml.cards.model.ModelCard.datacard_uid", "modulename": "opsml.cards.model", "qualname": "ModelCard.datacard_uid", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.cards.model.ModelCard.to_onnx": {"fullname": "opsml.cards.model.ModelCard.to_onnx", "modulename": "opsml.cards.model", "qualname": "ModelCard.to_onnx", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.cards.model.ModelCard.metadata": {"fullname": "opsml.cards.model.ModelCard.metadata", "modulename": "opsml.cards.model", "qualname": "ModelCard.metadata", "kind": "variable", "doc": "

\n", "annotation": ": opsml.types.model.ModelCardMetadata"}, "opsml.cards.model.ModelCard.check_uid": {"fullname": "opsml.cards.model.ModelCard.check_uid", "modulename": "opsml.cards.model", "qualname": "ModelCard.check_uid", "kind": "function", "doc": "

\n", "signature": "(cls, datacard_uid: Optional[str] = None) -> Optional[str]:", "funcdef": "def"}, "opsml.cards.model.ModelCard.load_model": {"fullname": "opsml.cards.model.ModelCard.load_model", "modulename": "opsml.cards.model", "qualname": "ModelCard.load_model", "kind": "function", "doc": "

Loads model, preprocessor and sample data to interface

\n", "signature": "(self, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.cards.model.ModelCard.download_model": {"fullname": "opsml.cards.model.ModelCard.download_model", "modulename": "opsml.cards.model", "qualname": "ModelCard.download_model", "kind": "function", "doc": "

Downloads model, preprocessor and metadata to path

\n\n
Arguments:
\n\n
    \n
  • path: Path to download model
  • \n
  • kwargs: load_preprocessor:\n Whether to load preprocessor or not. Default is True\nload_onnx:\n Whether to load onnx model or not. Default is False\nquantize:\n Whether to quantize onnx model or not. Default is False
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.cards.model.ModelCard.load_onnx_model": {"fullname": "opsml.cards.model.ModelCard.load_onnx_model", "modulename": "opsml.cards.model", "qualname": "ModelCard.load_onnx_model", "kind": "function", "doc": "

Loads onnx model to interface

\n", "signature": "(self, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.cards.model.ModelCard.load_preprocessor": {"fullname": "opsml.cards.model.ModelCard.load_preprocessor", "modulename": "opsml.cards.model", "qualname": "ModelCard.load_preprocessor", "kind": "function", "doc": "

Loads onnx model to interface

\n", "signature": "(self, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.cards.model.ModelCard.create_registry_record": {"fullname": "opsml.cards.model.ModelCard.create_registry_record", "modulename": "opsml.cards.model", "qualname": "ModelCard.create_registry_record", "kind": "function", "doc": "

Creates a registry record from the current ModelCard

\n", "signature": "(self) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.model.ModelCard.model": {"fullname": "opsml.cards.model.ModelCard.model", "modulename": "opsml.cards.model", "qualname": "ModelCard.model", "kind": "variable", "doc": "

Quick access to model from interface

\n", "annotation": ": Any"}, "opsml.cards.model.ModelCard.sample_data": {"fullname": "opsml.cards.model.ModelCard.sample_data", "modulename": "opsml.cards.model", "qualname": "ModelCard.sample_data", "kind": "variable", "doc": "

Quick access to sample data from interface

\n", "annotation": ": Any"}, "opsml.cards.model.ModelCard.preprocessor": {"fullname": "opsml.cards.model.ModelCard.preprocessor", "modulename": "opsml.cards.model", "qualname": "ModelCard.preprocessor", "kind": "variable", "doc": "

Quick access to preprocessor from interface

\n", "annotation": ": Any"}, "opsml.cards.model.ModelCard.onnx_model": {"fullname": "opsml.cards.model.ModelCard.onnx_model", "modulename": "opsml.cards.model", "qualname": "ModelCard.onnx_model", "kind": "variable", "doc": "

Quick access to onnx model from interface

\n", "annotation": ": Optional[opsml.types.model.OnnxModel]"}, "opsml.cards.model.ModelCard.model_metadata": {"fullname": "opsml.cards.model.ModelCard.model_metadata", "modulename": "opsml.cards.model", "qualname": "ModelCard.model_metadata", "kind": "variable", "doc": "

Loads ModelMetadata class

\n", "annotation": ": opsml.types.model.ModelMetadata"}, "opsml.cards.model.ModelCard.card_type": {"fullname": "opsml.cards.model.ModelCard.card_type", "modulename": "opsml.cards.model", "qualname": "ModelCard.card_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.model.ModelCard.model_fields": {"fullname": "opsml.cards.model.ModelCard.model_fields", "modulename": "opsml.cards.model", "qualname": "ModelCard.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'interface': FieldInfo(annotation=ModelInterface, required=True, metadata=[SerializeAsAny()]), 'datacard_uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'to_onnx': FieldInfo(annotation=bool, required=False, default=False), 'metadata': FieldInfo(annotation=ModelCardMetadata, required=False, default=ModelCardMetadata(interface_type='', description=Description(summary=None, sample_code=None, Notes=None), data_schema=DataSchema(data_type=None, input_features=None, output_features=None, onnx_input_features=None, onnx_output_features=None, onnx_data_type=None, onnx_version=None), runcard_uid=None, pipelinecard_uid=None, auditcard_uid=None))}"}, "opsml.cards.model.ModelCard.model_computed_fields": {"fullname": "opsml.cards.model.ModelCard.model_computed_fields", "modulename": "opsml.cards.model", "qualname": "ModelCard.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.project": {"fullname": "opsml.cards.project", "modulename": "opsml.cards.project", "kind": "module", "doc": "

\n"}, "opsml.cards.project.ProjectCard": {"fullname": "opsml.cards.project.ProjectCard", "modulename": "opsml.cards.project", "qualname": "ProjectCard", "kind": "class", "doc": "

Card containing project information

\n", "bases": "opsml.cards.base.ArtifactCard"}, "opsml.cards.project.ProjectCard.project_id": {"fullname": "opsml.cards.project.ProjectCard.project_id", "modulename": "opsml.cards.project", "qualname": "ProjectCard.project_id", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "opsml.cards.project.ProjectCard.create_registry_record": {"fullname": "opsml.cards.project.ProjectCard.create_registry_record", "modulename": "opsml.cards.project", "qualname": "ProjectCard.create_registry_record", "kind": "function", "doc": "

Creates a registry record for a project

\n", "signature": "(self) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.project.ProjectCard.card_type": {"fullname": "opsml.cards.project.ProjectCard.card_type", "modulename": "opsml.cards.project", "qualname": "ProjectCard.card_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.project.ProjectCard.model_config": {"fullname": "opsml.cards.project.ProjectCard.model_config", "modulename": "opsml.cards.project", "qualname": "ProjectCard.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True}"}, "opsml.cards.project.ProjectCard.model_fields": {"fullname": "opsml.cards.project.ProjectCard.model_fields", "modulename": "opsml.cards.project", "qualname": "ProjectCard.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, str], required=False, default={}), 'project_id': FieldInfo(annotation=int, required=False, default=0)}"}, "opsml.cards.project.ProjectCard.model_computed_fields": {"fullname": "opsml.cards.project.ProjectCard.model_computed_fields", "modulename": "opsml.cards.project", "qualname": "ProjectCard.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.cards.run": {"fullname": "opsml.cards.run", "modulename": "opsml.cards.run", "kind": "module", "doc": "

\n"}, "opsml.cards.run.logger": {"fullname": "opsml.cards.run.logger", "modulename": "opsml.cards.run", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.cards.run.RunCard": {"fullname": "opsml.cards.run.RunCard", "modulename": "opsml.cards.run", "qualname": "RunCard", "kind": "class", "doc": "

Create a RunCard from specified arguments.

\n\n

Apart from required args, a RunCard must be associated with one of\ndatacard_uid, modelcard_uids or pipelinecard_uid

\n\n
Arguments:
\n\n
    \n
  • name: Run name
  • \n
  • repository: Repository that this card is associated with
  • \n
  • contact: Contact to associate with card
  • \n
  • info: CardInfo object containing additional metadata. If provided, it will override any\nvalues provided for name, repository, contact, and version.

    \n\n

    Name, repository, and contact are required arguments for all cards. They can be provided\ndirectly or through a CardInfo object.

  • \n
  • datacard_uids: Optional DataCard uids associated with this run
  • \n
  • modelcard_uids: Optional List of ModelCard uids to associate with this run
  • \n
  • pipelinecard_uid: Optional PipelineCard uid to associate with this experiment
  • \n
  • metrics: Optional dictionary of key (str), value (int, float) metric paris.\nMetrics can also be added via class methods.
  • \n
  • parameters: Parameters associated with a RunCard
  • \n
  • artifact_uris: Optional dictionary of artifact uris associated with artifacts.
  • \n
  • uid: Unique id (assigned if card has been registered)
  • \n
  • version: Current version (assigned if card has been registered)
  • \n
\n", "bases": "opsml.cards.base.ArtifactCard"}, "opsml.cards.run.RunCard.datacard_uids": {"fullname": "opsml.cards.run.RunCard.datacard_uids", "modulename": "opsml.cards.run", "qualname": "RunCard.datacard_uids", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "opsml.cards.run.RunCard.modelcard_uids": {"fullname": "opsml.cards.run.RunCard.modelcard_uids", "modulename": "opsml.cards.run", "qualname": "RunCard.modelcard_uids", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "opsml.cards.run.RunCard.pipelinecard_uid": {"fullname": "opsml.cards.run.RunCard.pipelinecard_uid", "modulename": "opsml.cards.run", "qualname": "RunCard.pipelinecard_uid", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.cards.run.RunCard.metrics": {"fullname": "opsml.cards.run.RunCard.metrics", "modulename": "opsml.cards.run", "qualname": "RunCard.metrics", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, List[opsml.types.card.Metric]]"}, "opsml.cards.run.RunCard.parameters": {"fullname": "opsml.cards.run.RunCard.parameters", "modulename": "opsml.cards.run", "qualname": "RunCard.parameters", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, List[opsml.types.card.Param]]"}, "opsml.cards.run.RunCard.artifact_uris": {"fullname": "opsml.cards.run.RunCard.artifact_uris", "modulename": "opsml.cards.run", "qualname": "RunCard.artifact_uris", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, opsml.types.card.Artifact]"}, "opsml.cards.run.RunCard.tags": {"fullname": "opsml.cards.run.RunCard.tags", "modulename": "opsml.cards.run", "qualname": "RunCard.tags", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, Union[int, str]]"}, "opsml.cards.run.RunCard.project": {"fullname": "opsml.cards.run.RunCard.project", "modulename": "opsml.cards.run", "qualname": "RunCard.project", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.cards.run.RunCard.validate_defaults_args": {"fullname": "opsml.cards.run.RunCard.validate_defaults_args", "modulename": "opsml.cards.run", "qualname": "RunCard.validate_defaults_args", "kind": "function", "doc": "

\n", "signature": "(cls, card_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.run.RunCard.add_tag": {"fullname": "opsml.cards.run.RunCard.add_tag", "modulename": "opsml.cards.run", "qualname": "RunCard.add_tag", "kind": "function", "doc": "

Logs tags to current RunCard

\n\n
Arguments:
\n\n
    \n
  • key: Key for tag
  • \n
  • value: value for tag
  • \n
\n", "signature": "(self, key: str, value: str) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.add_tags": {"fullname": "opsml.cards.run.RunCard.add_tags", "modulename": "opsml.cards.run", "qualname": "RunCard.add_tags", "kind": "function", "doc": "

Logs tags to current RunCard

\n\n
Arguments:
\n\n
    \n
  • tags: Dictionary of tags
  • \n
\n", "signature": "(self, tags: Dict[str, str]) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.log_graph": {"fullname": "opsml.cards.run.RunCard.log_graph", "modulename": "opsml.cards.run", "qualname": "RunCard.log_graph", "kind": "function", "doc": "

Logs a graph to the RunCard, which will be rendered in the UI as a line graph

\n\n
Arguments:
\n\n
    \n
  • name: Name of graph
  • \n
  • x: List or numpy array of x values
  • \n
  • x_label: Label for x axis
  • \n
  • y: Either a list or numpy array of y values or a dictionary of y values where key is the group label and\nvalue is a list or numpy array of y values
  • \n
  • y_label: Label for y axis
  • \n
  • graph_style: Style of graph. Options are \"line\" or \"scatter\"
  • \n
\n\n

example:

\n\n
### single line graph\nx = np.arange(1, 400, 0.5)\ny = x * x\nrun.log_graph(name=\"graph1\", x=x, y=y, x_label=\"x\", y_label=\"y\", graph_style=\"line\")\n\n### multi line graph\nx = np.arange(1, 1000, 0.5)\ny1 = x * x\ny2 = y1 * 1.1\ny3 = y2 * 3\nrun.log_graph(\n    name=\"multiline\",\n    x=x,\n    y={\"y1\": y1, \"y2\": y2, \"y3\": y3},\n    x_label=\"x\",\n    y_label=\"y\",\n    graph_style=\"line\",\n)\n
\n", "signature": "(\tself,\tname: str,\tx: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]],\ty: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]], Dict[str, Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]]]],\ty_label: str,\tx_label: str,\tgraph_style: str) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.log_parameters": {"fullname": "opsml.cards.run.RunCard.log_parameters", "modulename": "opsml.cards.run", "qualname": "RunCard.log_parameters", "kind": "function", "doc": "

Logs parameters to current RunCard

\n\n
Arguments:
\n\n
    \n
  • parameters: Dictionary of parameters
  • \n
\n", "signature": "(self, parameters: Dict[str, Union[float, int, str]]) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.log_parameter": {"fullname": "opsml.cards.run.RunCard.log_parameter", "modulename": "opsml.cards.run", "qualname": "RunCard.log_parameter", "kind": "function", "doc": "

Logs parameter to current RunCard

\n\n
Arguments:
\n\n
    \n
  • key: Param name
  • \n
  • value: Param value
  • \n
\n", "signature": "(self, key: str, value: Union[int, float, str]) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.log_metric": {"fullname": "opsml.cards.run.RunCard.log_metric", "modulename": "opsml.cards.run", "qualname": "RunCard.log_metric", "kind": "function", "doc": "

Logs metric to the existing RunCard metric dictionary

\n\n
Arguments:
\n\n
    \n
  • key: Metric name
  • \n
  • value: Metric value
  • \n
  • timestamp: Optional timestamp
  • \n
  • step: Optional step associated with name and value
  • \n
\n", "signature": "(\tself,\tkey: str,\tvalue: Union[int, float],\ttimestamp: Optional[int] = None,\tstep: Optional[int] = None) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.log_metrics": {"fullname": "opsml.cards.run.RunCard.log_metrics", "modulename": "opsml.cards.run", "qualname": "RunCard.log_metrics", "kind": "function", "doc": "

Log metrics to the existing RunCard metric dictionary

\n\n
Arguments:
\n\n
    \n
  • metrics: Dictionary containing key (str) and value (float or int) pairs\nto add to the current metric set
  • \n
  • step: Optional step associated with metrics
  • \n
\n", "signature": "(\tself,\tmetrics: Dict[str, Union[float, int]],\tstep: Optional[int] = None) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.log_artifact_from_file": {"fullname": "opsml.cards.run.RunCard.log_artifact_from_file", "modulename": "opsml.cards.run", "qualname": "RunCard.log_artifact_from_file", "kind": "function", "doc": "

Log a local file or directory to the opsml server and associate with the current run.

\n\n
Arguments:
\n\n
    \n
  • name: Name to assign to artifact(s)
  • \n
  • local_path: Local path to file or directory. Can be string or pathlike object
  • \n
  • artifact_path: Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
  • \n
\n", "signature": "(\tself,\tname: str,\tlocal_path: Union[str, pathlib.Path],\tartifact_path: Union[str, pathlib.Path, NoneType] = None) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.create_registry_record": {"fullname": "opsml.cards.run.RunCard.create_registry_record", "modulename": "opsml.cards.run", "qualname": "RunCard.create_registry_record", "kind": "function", "doc": "

Creates a registry record from the current RunCard

\n", "signature": "(self) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.cards.run.RunCard.add_card_uid": {"fullname": "opsml.cards.run.RunCard.add_card_uid", "modulename": "opsml.cards.run", "qualname": "RunCard.add_card_uid", "kind": "function", "doc": "

Adds a card uid to the appropriate card uid list for tracking

\n\n
Arguments:
\n\n
    \n
  • card_type: ArtifactCard class name
  • \n
  • uid: Uid of registered ArtifactCard
  • \n
\n", "signature": "(self, card_type: str, uid: str) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.get_metric": {"fullname": "opsml.cards.run.RunCard.get_metric", "modulename": "opsml.cards.run", "qualname": "RunCard.get_metric", "kind": "function", "doc": "

Gets a metric by name

\n\n
Arguments:
\n\n
    \n
  • name: Name of metric
  • \n
\n\n
Returns:
\n\n
\n

List of dictionaries or dictionary containing value

\n
\n", "signature": "(\tself,\tname: str) -> Union[List[opsml.types.card.Metric], opsml.types.card.Metric]:", "funcdef": "def"}, "opsml.cards.run.RunCard.load_metrics": {"fullname": "opsml.cards.run.RunCard.load_metrics", "modulename": "opsml.cards.run", "qualname": "RunCard.load_metrics", "kind": "function", "doc": "

Reloads metrics from registry

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.get_parameter": {"fullname": "opsml.cards.run.RunCard.get_parameter", "modulename": "opsml.cards.run", "qualname": "RunCard.get_parameter", "kind": "function", "doc": "

Gets a parameter by name

\n\n
Arguments:
\n\n
    \n
  • name: Name of parameter
  • \n
\n\n
Returns:
\n\n
\n

List of dictionaries or dictionary containing value

\n
\n", "signature": "(\tself,\tname: str) -> Union[List[opsml.types.card.Param], opsml.types.card.Param]:", "funcdef": "def"}, "opsml.cards.run.RunCard.load_artifacts": {"fullname": "opsml.cards.run.RunCard.load_artifacts", "modulename": "opsml.cards.run", "qualname": "RunCard.load_artifacts", "kind": "function", "doc": "

Loads artifacts from artifact_uris

\n", "signature": "(self, name: Optional[str] = None) -> None:", "funcdef": "def"}, "opsml.cards.run.RunCard.uri": {"fullname": "opsml.cards.run.RunCard.uri", "modulename": "opsml.cards.run", "qualname": "RunCard.uri", "kind": "variable", "doc": "

The base URI to use for the card and it's artifacts.

\n", "annotation": ": pathlib.Path"}, "opsml.cards.run.RunCard.card_type": {"fullname": "opsml.cards.run.RunCard.card_type", "modulename": "opsml.cards.run", "qualname": "RunCard.card_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.cards.run.RunCard.model_config": {"fullname": "opsml.cards.run.RunCard.model_config", "modulename": "opsml.cards.run", "qualname": "RunCard.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True}"}, "opsml.cards.run.RunCard.model_fields": {"fullname": "opsml.cards.run.RunCard.model_fields", "modulename": "opsml.cards.run", "qualname": "RunCard.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'name': FieldInfo(annotation=str, required=False, default='undefined'), 'repository': FieldInfo(annotation=str, required=False, default='undefined'), 'contact': FieldInfo(annotation=str, required=False, default='undefined'), 'version': FieldInfo(annotation=str, required=False, default='0.0.0'), 'uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'info': FieldInfo(annotation=Union[CardInfo, NoneType], required=False), 'tags': FieldInfo(annotation=Dict[str, Union[int, str]], required=False, default={}), 'datacard_uids': FieldInfo(annotation=List[str], required=False, default=[]), 'modelcard_uids': FieldInfo(annotation=List[str], required=False, default=[]), 'pipelinecard_uid': FieldInfo(annotation=Union[str, NoneType], required=False), 'metrics': FieldInfo(annotation=Dict[str, List[Metric]], required=False, default={}), 'parameters': FieldInfo(annotation=Dict[str, List[Param]], required=False, default={}), 'artifact_uris': FieldInfo(annotation=Dict[str, Artifact], required=False, default={}), 'project': FieldInfo(annotation=Union[str, NoneType], required=False)}"}, "opsml.cards.run.RunCard.model_computed_fields": {"fullname": "opsml.cards.run.RunCard.model_computed_fields", "modulename": "opsml.cards.run", "qualname": "RunCard.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.data.splitter": {"fullname": "opsml.data.splitter", "modulename": "opsml.data.splitter", "kind": "module", "doc": "

\n"}, "opsml.data.splitter.Data": {"fullname": "opsml.data.splitter.Data", "modulename": "opsml.data.splitter", "qualname": "Data", "kind": "class", "doc": "

\n"}, "opsml.data.splitter.Data.__init__": {"fullname": "opsml.data.splitter.Data.__init__", "modulename": "opsml.data.splitter", "qualname": "Data.__init__", "kind": "function", "doc": "

\n", "signature": "(X: Any, y: Optional[Any] = None)"}, "opsml.data.splitter.Data.X": {"fullname": "opsml.data.splitter.Data.X", "modulename": "opsml.data.splitter", "qualname": "Data.X", "kind": "variable", "doc": "

\n", "annotation": ": Any"}, "opsml.data.splitter.Data.y": {"fullname": "opsml.data.splitter.Data.y", "modulename": "opsml.data.splitter", "qualname": "Data.y", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]", "default_value": "None"}, "opsml.data.splitter.DataSplit": {"fullname": "opsml.data.splitter.DataSplit", "modulename": "opsml.data.splitter", "qualname": "DataSplit", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.data.splitter.DataSplit.model_config": {"fullname": "opsml.data.splitter.DataSplit.model_config", "modulename": "opsml.data.splitter", "qualname": "DataSplit.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True}"}, "opsml.data.splitter.DataSplit.label": {"fullname": "opsml.data.splitter.DataSplit.label", "modulename": "opsml.data.splitter", "qualname": "DataSplit.label", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.data.splitter.DataSplit.column_name": {"fullname": "opsml.data.splitter.DataSplit.column_name", "modulename": "opsml.data.splitter", "qualname": "DataSplit.column_name", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.data.splitter.DataSplit.column_value": {"fullname": "opsml.data.splitter.DataSplit.column_value", "modulename": "opsml.data.splitter", "qualname": "DataSplit.column_value", "kind": "variable", "doc": "

\n", "annotation": ": Union[str, float, int, pandas._libs.tslibs.timestamps.Timestamp, NoneType]"}, "opsml.data.splitter.DataSplit.inequality": {"fullname": "opsml.data.splitter.DataSplit.inequality", "modulename": "opsml.data.splitter", "qualname": "DataSplit.inequality", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.data.splitter.DataSplit.start": {"fullname": "opsml.data.splitter.DataSplit.start", "modulename": "opsml.data.splitter", "qualname": "DataSplit.start", "kind": "variable", "doc": "

\n", "annotation": ": Optional[int]"}, "opsml.data.splitter.DataSplit.stop": {"fullname": "opsml.data.splitter.DataSplit.stop", "modulename": "opsml.data.splitter", "qualname": "DataSplit.stop", "kind": "variable", "doc": "

\n", "annotation": ": Optional[int]"}, "opsml.data.splitter.DataSplit.indices": {"fullname": "opsml.data.splitter.DataSplit.indices", "modulename": "opsml.data.splitter", "qualname": "DataSplit.indices", "kind": "variable", "doc": "

\n", "annotation": ": Optional[List[int]]"}, "opsml.data.splitter.DataSplit.convert_to_list": {"fullname": "opsml.data.splitter.DataSplit.convert_to_list", "modulename": "opsml.data.splitter", "qualname": "DataSplit.convert_to_list", "kind": "function", "doc": "

Pre to convert indices to list if not None

\n", "signature": "(cls, value: Optional[List[int]]) -> Optional[List[int]]:", "funcdef": "def"}, "opsml.data.splitter.DataSplit.trim_whitespace": {"fullname": "opsml.data.splitter.DataSplit.trim_whitespace", "modulename": "opsml.data.splitter", "qualname": "DataSplit.trim_whitespace", "kind": "function", "doc": "

Trims whitespace from inequality signs

\n", "signature": "(cls, value: str) -> str:", "funcdef": "def"}, "opsml.data.splitter.DataSplit.model_fields": {"fullname": "opsml.data.splitter.DataSplit.model_fields", "modulename": "opsml.data.splitter", "qualname": "DataSplit.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'label': FieldInfo(annotation=str, required=True), 'column_name': FieldInfo(annotation=Union[str, NoneType], required=False), 'column_value': FieldInfo(annotation=Union[str, float, int, Timestamp, NoneType], required=False), 'inequality': FieldInfo(annotation=Union[str, NoneType], required=False), 'start': FieldInfo(annotation=Union[int, NoneType], required=False), 'stop': FieldInfo(annotation=Union[int, NoneType], required=False), 'indices': FieldInfo(annotation=Union[List[int], NoneType], required=False)}"}, "opsml.data.splitter.DataSplit.model_computed_fields": {"fullname": "opsml.data.splitter.DataSplit.model_computed_fields", "modulename": "opsml.data.splitter", "qualname": "DataSplit.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.data.splitter.DataSplitterBase": {"fullname": "opsml.data.splitter.DataSplitterBase", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase", "kind": "class", "doc": "

\n"}, "opsml.data.splitter.DataSplitterBase.__init__": {"fullname": "opsml.data.splitter.DataSplitterBase.__init__", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.__init__", "kind": "function", "doc": "

\n", "signature": "(\tsplit: opsml.data.splitter.DataSplit,\tdependent_vars: List[Union[int, str]])"}, "opsml.data.splitter.DataSplitterBase.split": {"fullname": "opsml.data.splitter.DataSplitterBase.split", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.split", "kind": "variable", "doc": "

\n"}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"fullname": "opsml.data.splitter.DataSplitterBase.dependent_vars", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.dependent_vars", "kind": "variable", "doc": "

\n"}, "opsml.data.splitter.DataSplitterBase.column_name": {"fullname": "opsml.data.splitter.DataSplitterBase.column_name", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.column_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.data.splitter.DataSplitterBase.column_value": {"fullname": "opsml.data.splitter.DataSplitterBase.column_value", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.column_value", "kind": "variable", "doc": "

\n", "annotation": ": Any"}, "opsml.data.splitter.DataSplitterBase.indices": {"fullname": "opsml.data.splitter.DataSplitterBase.indices", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.indices", "kind": "variable", "doc": "

\n", "annotation": ": List[int]"}, "opsml.data.splitter.DataSplitterBase.start": {"fullname": "opsml.data.splitter.DataSplitterBase.start", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.start", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "opsml.data.splitter.DataSplitterBase.stop": {"fullname": "opsml.data.splitter.DataSplitterBase.stop", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.stop", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"fullname": "opsml.data.splitter.DataSplitterBase.get_x_cols", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.get_x_cols", "kind": "function", "doc": "

\n", "signature": "(\tself,\tcolumns: List[str],\tdependent_vars: List[Union[int, str]]) -> List[str]:", "funcdef": "def"}, "opsml.data.splitter.DataSplitterBase.create_split": {"fullname": "opsml.data.splitter.DataSplitterBase.create_split", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.create_split", "kind": "function", "doc": "

\n", "signature": "(self, data: Any) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.DataSplitterBase.validate": {"fullname": "opsml.data.splitter.DataSplitterBase.validate", "modulename": "opsml.data.splitter", "qualname": "DataSplitterBase.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PolarsColumnSplitter": {"fullname": "opsml.data.splitter.PolarsColumnSplitter", "modulename": "opsml.data.splitter", "qualname": "PolarsColumnSplitter", "kind": "class", "doc": "

Column splitter for Polars dataframe

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"fullname": "opsml.data.splitter.PolarsColumnSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PolarsColumnSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: polars.dataframe.frame.DataFrame) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"fullname": "opsml.data.splitter.PolarsColumnSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PolarsColumnSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PolarsIndexSplitter": {"fullname": "opsml.data.splitter.PolarsIndexSplitter", "modulename": "opsml.data.splitter", "qualname": "PolarsIndexSplitter", "kind": "class", "doc": "

Split Polars DataFrame by rows index

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"fullname": "opsml.data.splitter.PolarsIndexSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PolarsIndexSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: polars.dataframe.frame.DataFrame) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"fullname": "opsml.data.splitter.PolarsIndexSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PolarsIndexSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PolarsRowsSplitter": {"fullname": "opsml.data.splitter.PolarsRowsSplitter", "modulename": "opsml.data.splitter", "qualname": "PolarsRowsSplitter", "kind": "class", "doc": "

Split Polars DataFrame by rows slice

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"fullname": "opsml.data.splitter.PolarsRowsSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PolarsRowsSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: polars.dataframe.frame.DataFrame) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"fullname": "opsml.data.splitter.PolarsRowsSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PolarsRowsSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PandasIndexSplitter": {"fullname": "opsml.data.splitter.PandasIndexSplitter", "modulename": "opsml.data.splitter", "qualname": "PandasIndexSplitter", "kind": "class", "doc": "

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"fullname": "opsml.data.splitter.PandasIndexSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PandasIndexSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: pandas.core.frame.DataFrame) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PandasIndexSplitter.validate": {"fullname": "opsml.data.splitter.PandasIndexSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PandasIndexSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PandasRowSplitter": {"fullname": "opsml.data.splitter.PandasRowSplitter", "modulename": "opsml.data.splitter", "qualname": "PandasRowSplitter", "kind": "class", "doc": "

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PandasRowSplitter.create_split": {"fullname": "opsml.data.splitter.PandasRowSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PandasRowSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: pandas.core.frame.DataFrame) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PandasRowSplitter.validate": {"fullname": "opsml.data.splitter.PandasRowSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PandasRowSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PandasColumnSplitter": {"fullname": "opsml.data.splitter.PandasColumnSplitter", "modulename": "opsml.data.splitter", "qualname": "PandasColumnSplitter", "kind": "class", "doc": "

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"fullname": "opsml.data.splitter.PandasColumnSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PandasColumnSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: pandas.core.frame.DataFrame) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PandasColumnSplitter.validate": {"fullname": "opsml.data.splitter.PandasColumnSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PandasColumnSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.PyArrowIndexSplitter": {"fullname": "opsml.data.splitter.PyArrowIndexSplitter", "modulename": "opsml.data.splitter", "qualname": "PyArrowIndexSplitter", "kind": "class", "doc": "

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"fullname": "opsml.data.splitter.PyArrowIndexSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "PyArrowIndexSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(self, data: pyarrow.lib.Table) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"fullname": "opsml.data.splitter.PyArrowIndexSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "PyArrowIndexSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.NumpyIndexSplitter": {"fullname": "opsml.data.splitter.NumpyIndexSplitter", "modulename": "opsml.data.splitter", "qualname": "NumpyIndexSplitter", "kind": "class", "doc": "

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"fullname": "opsml.data.splitter.NumpyIndexSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "NumpyIndexSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"fullname": "opsml.data.splitter.NumpyIndexSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "NumpyIndexSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.NumpyRowSplitter": {"fullname": "opsml.data.splitter.NumpyRowSplitter", "modulename": "opsml.data.splitter", "qualname": "NumpyRowSplitter", "kind": "class", "doc": "

\n", "bases": "DataSplitterBase"}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"fullname": "opsml.data.splitter.NumpyRowSplitter.create_split", "modulename": "opsml.data.splitter", "qualname": "NumpyRowSplitter.create_split", "kind": "function", "doc": "

\n", "signature": "(\tself,\tdata: numpy.ndarray[typing.Any, numpy.dtype[typing.Any]]) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.data.splitter.NumpyRowSplitter.validate": {"fullname": "opsml.data.splitter.NumpyRowSplitter.validate", "modulename": "opsml.data.splitter", "qualname": "NumpyRowSplitter.validate", "kind": "function", "doc": "

\n", "signature": "(data_type: str, split: opsml.data.splitter.DataSplit) -> bool:", "funcdef": "def"}, "opsml.data.splitter.DataSplitter": {"fullname": "opsml.data.splitter.DataSplitter", "modulename": "opsml.data.splitter", "qualname": "DataSplitter", "kind": "class", "doc": "

\n"}, "opsml.data.splitter.DataSplitter.split": {"fullname": "opsml.data.splitter.DataSplitter.split", "modulename": "opsml.data.splitter", "qualname": "DataSplitter.split", "kind": "function", "doc": "

\n", "signature": "(\tsplit: opsml.data.splitter.DataSplit,\tdata: Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], polars.dataframe.frame.DataFrame],\tdata_type: str,\tdependent_vars: List[Union[int, str]]) -> Tuple[str, opsml.data.splitter.Data]:", "funcdef": "def"}, "opsml.model.interfaces.base": {"fullname": "opsml.model.interfaces.base", "modulename": "opsml.model.interfaces.base", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.base.get_processor_name": {"fullname": "opsml.model.interfaces.base.get_processor_name", "modulename": "opsml.model.interfaces.base", "qualname": "get_processor_name", "kind": "function", "doc": "

\n", "signature": "(_class: Optional[Any] = None) -> str:", "funcdef": "def"}, "opsml.model.interfaces.base.get_model_args": {"fullname": "opsml.model.interfaces.base.get_model_args", "modulename": "opsml.model.interfaces.base", "qualname": "get_model_args", "kind": "function", "doc": "

\n", "signature": "(model: Any) -> Tuple[Any, str, List[str]]:", "funcdef": "def"}, "opsml.model.interfaces.base.SamplePrediction": {"fullname": "opsml.model.interfaces.base.SamplePrediction", "modulename": "opsml.model.interfaces.base", "qualname": "SamplePrediction", "kind": "class", "doc": "

Dataclass that holds sample prediction information

\n\n
Arguments:
\n\n
    \n
  • prediction_type: Type of prediction
  • \n
  • prediction: Sample prediction
  • \n
\n"}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"fullname": "opsml.model.interfaces.base.SamplePrediction.__init__", "modulename": "opsml.model.interfaces.base", "qualname": "SamplePrediction.__init__", "kind": "function", "doc": "

\n", "signature": "(prediction_type: str, prediction: Any)"}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"fullname": "opsml.model.interfaces.base.SamplePrediction.prediction_type", "modulename": "opsml.model.interfaces.base", "qualname": "SamplePrediction.prediction_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"fullname": "opsml.model.interfaces.base.SamplePrediction.prediction", "modulename": "opsml.model.interfaces.base", "qualname": "SamplePrediction.prediction", "kind": "variable", "doc": "

\n", "annotation": ": Any"}, "opsml.model.interfaces.base.ModelInterface": {"fullname": "opsml.model.interfaces.base.ModelInterface", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.model.interfaces.base.ModelInterface.model": {"fullname": "opsml.model.interfaces.base.ModelInterface.model", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"fullname": "opsml.model.interfaces.base.ModelInterface.sample_data", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"fullname": "opsml.model.interfaces.base.ModelInterface.onnx_model", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.onnx_model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.model.OnnxModel]"}, "opsml.model.interfaces.base.ModelInterface.task_type": {"fullname": "opsml.model.interfaces.base.ModelInterface.task_type", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.task_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.model_type": {"fullname": "opsml.model.interfaces.base.ModelInterface.model_type", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.data_type": {"fullname": "opsml.model.interfaces.base.ModelInterface.data_type", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.data_type", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"fullname": "opsml.model.interfaces.base.ModelInterface.modelcard_uid", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.modelcard_uid", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.model_config": {"fullname": "opsml.model.interfaces.base.ModelInterface.model_config", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.base.ModelInterface.model_class": {"fullname": "opsml.model.interfaces.base.ModelInterface.model_class", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.check_model": {"fullname": "opsml.model.interfaces.base.ModelInterface.check_model", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"fullname": "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.check_modelcard_uid", "kind": "function", "doc": "

\n", "signature": "(cls, modelcard_uid: str) -> str:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.save_model": {"fullname": "opsml.model.interfaces.base.ModelInterface.save_model", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.save_model", "kind": "function", "doc": "

Saves model to path. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.load_model": {"fullname": "opsml.model.interfaces.base.ModelInterface.load_model", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.load_model", "kind": "function", "doc": "

Load model from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
  • kwargs: Additional kwargs
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"fullname": "opsml.model.interfaces.base.ModelInterface.save_onnx", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.save_onnx", "kind": "function", "doc": "

Saves the onnx model

\n\n
Arguments:
\n\n
    \n
  • path: Path to save
  • \n
\n\n
Returns:
\n\n
\n

ModelReturn

\n
\n", "signature": "(self, path: pathlib.Path) -> opsml.types.model.ModelReturn:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"fullname": "opsml.model.interfaces.base.ModelInterface.convert_to_onnx", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.convert_to_onnx", "kind": "function", "doc": "

Converts model to onnx format

\n", "signature": "(self, **kwargs: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"fullname": "opsml.model.interfaces.base.ModelInterface.load_onnx_model", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.load_onnx_model", "kind": "function", "doc": "

Load onnx model from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"fullname": "opsml.model.interfaces.base.ModelInterface.save_sample_data", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.save_sample_data", "kind": "function", "doc": "

Serialized and save sample data to path.

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"fullname": "opsml.model.interfaces.base.ModelInterface.load_sample_data", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.load_sample_data", "kind": "function", "doc": "

Serialized and save sample data to path.

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"fullname": "opsml.model.interfaces.base.ModelInterface.get_sample_prediction", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.get_sample_prediction", "kind": "function", "doc": "

\n", "signature": "(self) -> opsml.model.interfaces.base.SamplePrediction:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"fullname": "opsml.model.interfaces.base.ModelInterface.model_suffix", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"fullname": "opsml.model.interfaces.base.ModelInterface.data_suffix", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.data_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.base.ModelInterface.name": {"fullname": "opsml.model.interfaces.base.ModelInterface.name", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"fullname": "opsml.model.interfaces.base.ModelInterface.model_fields", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Any, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Any, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default='')}"}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"fullname": "opsml.model.interfaces.base.ModelInterface.model_computed_fields", "modulename": "opsml.model.interfaces.base", "qualname": "ModelInterface.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.catboost_": {"fullname": "opsml.model.interfaces.catboost_", "modulename": "opsml.model.interfaces.catboost_", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.catboost_.logger": {"fullname": "opsml.model.interfaces.catboost_.logger", "modulename": "opsml.model.interfaces.catboost_", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.model.interfaces.catboost_.CatBoostModel": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel", "kind": "class", "doc": "

Model interface for CatBoost models.

\n\n
Arguments:
\n\n
    \n
  • model: CatBoost model (Classifier, Regressor, Ranker)
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference and sample prediction.\nFor catboost models this should be a numpy array (either 1d or 2d) or list of feature values.\nThis should match exactly what the model expects as input.
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor name. This is inferred automatically if a\npreprocessor is provided.
  • \n
\n\n
Returns:
\n\n
\n

CatBoostModel

\n
\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.model", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[catboost.core.CatBoost]"}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.sample_data", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Union[List[Any], numpy.ndarray[Any, numpy.dtype[Any]], NoneType]"}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.preprocessor", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.preprocessor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.get_sample_prediction", "kind": "function", "doc": "

\n", "signature": "(self) -> opsml.model.interfaces.base.SamplePrediction:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.model_class", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.check_model", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.save_model", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.save_model", "kind": "function", "doc": "

Saves model to path. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.load_model", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.load_model", "kind": "function", "doc": "

Load model from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
  • kwargs: Additional kwargs
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.convert_to_onnx", "kind": "function", "doc": "

Converts model to onnx format

\n", "signature": "(self, **kwargs: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.save_onnx", "kind": "function", "doc": "

Saves the onnx model

\n\n
Arguments:
\n\n
    \n
  • path: Path to save
  • \n
\n\n
Returns:
\n\n
\n

ModelReturn

\n
\n", "signature": "(self, path: pathlib.Path) -> opsml.types.model.ModelReturn:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.save_preprocessor", "kind": "function", "doc": "

Saves preprocessor to path if present. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.preprocessor_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.name", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.model_config", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.model_fields", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[CatBoost, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[List[Any], ndarray[Any, dtype[Any]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"fullname": "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields", "modulename": "opsml.model.interfaces.catboost_", "qualname": "CatBoostModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.huggingface": {"fullname": "opsml.model.interfaces.huggingface", "modulename": "opsml.model.interfaces.huggingface", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.huggingface.logger": {"fullname": "opsml.model.interfaces.huggingface.logger", "modulename": "opsml.model.interfaces.huggingface", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel", "kind": "class", "doc": "

Model interface for HuggingFace models

\n\n
Arguments:
\n\n
    \n
  • model: HuggingFace model or pipeline
  • \n
  • tokenizer: HuggingFace tokenizer. If passing pipeline, tokenizer will be extracted
  • \n
  • feature_extractor: HuggingFace feature extractor or image processor. If passing pipeline, feature extractor will be extracted
  • \n
  • sample_data: Sample data to be used for type inference.\nThis should match exactly what the model expects as input.
  • \n
  • task_type: Task type for HuggingFace model. See HuggingFaceTask for supported tasks.
  • \n
  • model_type: Optional model type for HuggingFace model. This is inferred automatically.
  • \n
  • is_pipeline: If model is a pipeline. Defaults to False.
  • \n
  • backend: Backend for HuggingFace model. This is inferred from model
  • \n
  • onnx_args: Optional arguments for ONNX conversion. See HuggingFaceOnnxArgs for supported arguments.
  • \n
  • tokenizer_name: Optional tokenizer name for HuggingFace model. This is inferred automatically.
  • \n
  • feature_extractor_name: Optional feature_extractor name for HuggingFace model. This is inferred automatically.
  • \n
\n\n
Returns:
\n\n
\n

HuggingFaceModel

\n
\n\n

Example::

\n\n
from transformers import BartModel, BartTokenizer\n\ntokenizer = BartTokenizer.from_pretrained(\"facebook/bart-base\")\nmodel = BartModel.from_pretrained(\"facebook/bart-base\")\ninputs = tokenizer([\"Hello. How are you\"], return_tensors=\"pt\")\n\n# this is fed to the ModelCard\nmodel = HuggingFaceModel(\n    model=model,\n    tokenizer=tokenizer,\n    sample_data=inputs,\n    task_type=HuggingFaceTask.TEXT_CLASSIFICATION.value,\n)\n
\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.model", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Union[transformers.pipelines.base.Pipeline, transformers.modeling_utils.PreTrainedModel, transformers.modeling_tf_utils.TFPreTrainedModel, NoneType]"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.tokenizer", "kind": "variable", "doc": "

\n", "annotation": ": Union[transformers.tokenization_utils.PreTrainedTokenizer, transformers.tokenization_utils_fast.PreTrainedTokenizerFast, NoneType]"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.feature_extractor", "kind": "variable", "doc": "

\n", "annotation": ": Union[transformers.feature_extraction_utils.FeatureExtractionMixin, transformers.image_processing_utils.ImageProcessingMixin, NoneType]"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.is_pipeline", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.backend", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.backend", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.onnx_args", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.model.HuggingFaceOnnxArgs]"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.tokenizer_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.feature_extractor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.check_task_type", "kind": "function", "doc": "

Check if task is a huggingface approved task

\n", "signature": "(cls, task_type: str) -> str:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.get_sample_prediction", "kind": "function", "doc": "

Generates prediction from model and provided sample data

\n", "signature": "(self) -> opsml.model.interfaces.base.SamplePrediction:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.convert_to_onnx", "kind": "function", "doc": "

Converts a huggingface model or pipeline to onnx via optimum library.\nConverted model or pipeline is accessible via the onnx_model attribute.

\n", "signature": "(self, **kwargs: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.save_model", "kind": "function", "doc": "

Saves model to path. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.save_tokenizer", "kind": "function", "doc": "

\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.save_feature_extractor", "kind": "function", "doc": "

\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.save_onnx", "kind": "function", "doc": "

Saves the onnx model

\n\n
Arguments:
\n\n
    \n
  • path: Path to save
  • \n
\n\n
Returns:
\n\n
\n

ModelReturn

\n
\n", "signature": "(self, path: pathlib.Path) -> opsml.types.model.ModelReturn:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.load_tokenizer", "kind": "function", "doc": "

\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.load_feature_extractor", "kind": "function", "doc": "

\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.load_model", "kind": "function", "doc": "

Load huggingface model from path

\n\n
Arguments:
\n\n
    \n
  • path: Path to model
  • \n
  • kwargs: Additional kwargs to pass to transformers.load_pretrained
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.to_pipeline", "kind": "function", "doc": "

Converts model to pipeline

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.load_onnx_model", "kind": "function", "doc": "

Load onnx model from path

\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.name", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Pipeline, PreTrainedModel, TFPreTrainedModel, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Any, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'tokenizer': FieldInfo(annotation=Union[PreTrainedTokenizer, PreTrainedTokenizerFast, NoneType], required=False), 'feature_extractor': FieldInfo(annotation=Union[FeatureExtractionMixin, ImageProcessingMixin, NoneType], required=False), 'is_pipeline': FieldInfo(annotation=bool, required=False, default=False), 'backend': FieldInfo(annotation=str, required=False, default='pytorch'), 'onnx_args': FieldInfo(annotation=Union[HuggingFaceOnnxArgs, NoneType], required=False), 'tokenizer_name': FieldInfo(annotation=str, required=False, default='undefined'), 'feature_extractor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"fullname": "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields", "modulename": "opsml.model.interfaces.huggingface", "qualname": "HuggingFaceModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.lgbm": {"fullname": "opsml.model.interfaces.lgbm", "modulename": "opsml.model.interfaces.lgbm", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.lgbm.LightGBMModel": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel", "kind": "class", "doc": "

Model interface for LightGBM Booster model class. If using the sklearn API, use SklearnModel instead.

\n\n
Arguments:
\n\n
    \n
  • model: LightGBM booster model
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference.\nFor lightgbm models this should be a pandas DataFrame or numpy array.\nThis should match exactly what the model expects as input.
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a\npreprocessor is provided.
  • \n
  • onnx_args: Optional arguments for ONNX conversion. See TorchOnnxArgs for supported arguments.
  • \n
\n\n
Returns:
\n\n
\n

LightGBMModel

\n
\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.model", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Union[lightgbm.basic.Booster, lightgbm.sklearn.LGBMModel, NoneType]"}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.sample_data", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], NoneType]"}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.preprocessor", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.preprocessor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.model_class", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.check_model", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.save_model", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.save_model", "kind": "function", "doc": "

Saves lgb model according to model format. Booster models are saved to text.\nSklearn models are saved via joblib.

\n\n
Arguments:
\n\n
    \n
  • path: base path to save model to
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.load_model", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.load_model", "kind": "function", "doc": "

Loads lightgbm booster or sklearn model

\n\n
Arguments:
\n\n
    \n
  • path: base path to load from
  • \n
  • **kwargs: Additional keyword arguments
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.save_preprocessor", "kind": "function", "doc": "

Saves preprocessor to path if present. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.preprocessor_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.name", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.model_config", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.model_fields", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Booster, LGBMModel, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[DataFrame, ndarray[Any, dtype[Any]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"fullname": "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields", "modulename": "opsml.model.interfaces.lgbm", "qualname": "LightGBMModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.pytorch_lightning": {"fullname": "opsml.model.interfaces.pytorch_lightning", "modulename": "opsml.model.interfaces.pytorch_lightning", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel", "kind": "class", "doc": "

Model interface for Pytorch Lightning models.

\n\n
Arguments:
\n\n
    \n
  • model: Torch lightning model
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference.\nThis should match exactly what the model expects as input.
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a\npreprocessor is provided.
  • \n
\n\n

Returns:\nLightningModel

\n", "bases": "opsml.model.interfaces.pytorch.TorchModel"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.model", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[lightning.pytorch.trainer.trainer.Trainer]"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.onnx_args", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.model.TorchOnnxArgs]"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.get_sample_prediction", "kind": "function", "doc": "

\n", "signature": "(self) -> opsml.model.interfaces.base.SamplePrediction:", "funcdef": "def"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.save_model", "kind": "function", "doc": "

Save pytorch model to path

\n\n
Arguments:
\n\n
    \n
  • path: pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.load_model", "kind": "function", "doc": "

Load lightning model from path

\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.convert_to_onnx", "kind": "function", "doc": "

Converts model to onnx

\n", "signature": "(self, **kwargs: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.name", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Trainer, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Tensor, Dict[str, Tensor], List[Tensor], Tuple[Tensor], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'onnx_args': FieldInfo(annotation=Union[TorchOnnxArgs, NoneType], required=False), 'save_args': FieldInfo(annotation=TorchSaveArgs, required=False, default=TorchSaveArgs(as_state_dict=False)), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"fullname": "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields", "modulename": "opsml.model.interfaces.pytorch_lightning", "qualname": "LightningModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.pytorch": {"fullname": "opsml.model.interfaces.pytorch", "modulename": "opsml.model.interfaces.pytorch", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.pytorch.TorchModel": {"fullname": "opsml.model.interfaces.pytorch.TorchModel", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel", "kind": "class", "doc": "

Model interface for Pytorch models.

\n\n
Arguments:
\n\n
    \n
  • model: Torch model
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference and ONNX conversion/validation.\nThis should match exactly what the model expects as input.
  • \n
  • save_args: Optional arguments for saving model. See TorchSaveArgs for supported arguments.
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a\npreprocessor is provided.
  • \n
  • onnx_args: Optional arguments for ONNX conversion. See TorchOnnxArgs for supported arguments.
  • \n
\n\n

Returns:\nTorchModel

\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.pytorch.TorchModel.model": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.model", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[torch.nn.modules.module.Module]"}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.sample_data", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Union[torch.Tensor, Dict[str, torch.Tensor], List[torch.Tensor], Tuple[torch.Tensor], NoneType]"}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.onnx_args", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.onnx_args", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.model.TorchOnnxArgs]"}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.save_args", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.save_args", "kind": "variable", "doc": "

\n", "annotation": ": opsml.types.model.TorchSaveArgs"}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.preprocessor", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.preprocessor", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.preprocessor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.model_class", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.check_model", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.get_sample_prediction", "kind": "function", "doc": "

\n", "signature": "(self) -> opsml.model.interfaces.base.SamplePrediction:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.save_model", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.save_model", "kind": "function", "doc": "

Save pytorch model to path

\n\n
Arguments:
\n\n
    \n
  • path: pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.load_model", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.load_model", "kind": "function", "doc": "

Load pytorch model from path

\n\n
Arguments:
\n\n
    \n
  • path: pathlib object
  • \n
  • kwargs: Additional arguments to be passed to torch.load
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.save_onnx", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.save_onnx", "kind": "function", "doc": "

Saves an onnx model

\n\n
Arguments:
\n\n
    \n
  • path: Path to save model to
  • \n
\n\n
Returns:
\n\n
\n

ModelReturn

\n
\n", "signature": "(self, path: pathlib.Path) -> opsml.types.model.ModelReturn:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.convert_to_onnx", "kind": "function", "doc": "

Converts model to onnx format

\n", "signature": "(self, **kwargs: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.save_preprocessor", "kind": "function", "doc": "

Saves preprocessor to path if present. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.preprocessor_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.model_suffix", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.pytorch.TorchModel.name": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.name", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.model_config", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.model_fields", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Module, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[Tensor, Dict[str, Tensor], List[Tensor], Tuple[Tensor], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'onnx_args': FieldInfo(annotation=Union[TorchOnnxArgs, NoneType], required=False), 'save_args': FieldInfo(annotation=TorchSaveArgs, required=False, default=TorchSaveArgs(as_state_dict=False)), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"fullname": "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields", "modulename": "opsml.model.interfaces.pytorch", "qualname": "TorchModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.sklearn": {"fullname": "opsml.model.interfaces.sklearn", "modulename": "opsml.model.interfaces.sklearn", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.sklearn.SklearnModel": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel", "kind": "class", "doc": "

Model interface for Sklearn models.

\n\n
Arguments:
\n\n
    \n
  • model: Sklearn model
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference.\nFor sklearn models this should be a pandas DataFrame or numpy array.\nThis should match exactly what the model expects as input.
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor name. This is inferred automatically if a\npreprocessor is provided.
  • \n
\n\n

Returns:\nSklearnModel

\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.model", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[sklearn.base.BaseEstimator]"}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.sample_data", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], NoneType]"}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.preprocessor", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.preprocessor", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.preprocessor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.model_class", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.check_model", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.save_preprocessor", "kind": "function", "doc": "

Saves preprocessor to path if present. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.preprocessor_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.name", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.model_config", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.model_fields", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[BaseEstimator, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[DataFrame, ndarray[Any, dtype[Any]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"fullname": "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields", "modulename": "opsml.model.interfaces.sklearn", "qualname": "SklearnModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.tf": {"fullname": "opsml.model.interfaces.tf", "modulename": "opsml.model.interfaces.tf", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.tf.TensorFlowModel": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel", "kind": "class", "doc": "

Model interface for Tensorflow models.

\n\n
Arguments:
\n\n
    \n
  • model: Tensorflow model
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference and ONNX conversion/validation.\nThis should match exactly what the model expects as input. ArrayType = Union[NDArray[Any], tf.Tensor]
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a\npreprocessor is provided.
  • \n
\n\n
Returns:
\n\n
\n

TensorFlowModel

\n
\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.model", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[keras.engine.training.Model]"}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.sample_data", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor, Dict[str, Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor]], List[Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor]], Tuple[Union[numpy.ndarray[Any, numpy.dtype[Any]], tensorflow.python.framework.ops.Tensor]], NoneType]"}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.preprocessor", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.preprocessor", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.preprocessor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.model_class", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.check_model", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.save_model", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.save_model", "kind": "function", "doc": "

Save tensorflow model to path

\n\n
Arguments:
\n\n
    \n
  • path: pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.load_model", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.load_model", "kind": "function", "doc": "

Load tensorflow model from path

\n\n
Arguments:
\n\n
    \n
  • path: pathlib object
  • \n
  • kwargs: Additional arguments to be passed to load_model
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.save_preprocessor", "kind": "function", "doc": "

Saves preprocessor to path if present. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.preprocessor_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.model_suffix", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.name", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.model_config", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.model_fields", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Model, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[ndarray[Any, dtype[Any]], Tensor, Dict[str, Union[ndarray[Any, dtype[Any]], Tensor]], List[Union[ndarray[Any, dtype[Any]], Tensor]], Tuple[Union[ndarray[Any, dtype[Any]], Tensor]], NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"fullname": "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields", "modulename": "opsml.model.interfaces.tf", "qualname": "TensorFlowModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.vowpal": {"fullname": "opsml.model.interfaces.vowpal", "modulename": "opsml.model.interfaces.vowpal", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel", "kind": "class", "doc": "

Model interface for VowPal Wabbit model.

\n\n
Arguments:
\n\n
    \n
  • model: vowpal wabbit workspace
  • \n
  • sample_data: Sample data to be used for type inference.\nFor vowpal wabbit models this should be a string.
  • \n
  • arguments: Vowpal Wabbit arguments. This will be inferred automatically from the workspace
  • \n
\n\n
Returns:
\n\n
\n

VowpalWabbitModel

\n
\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.model", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Optional[vowpalwabbit.pyvw.Workspace]"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.arguments", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.save_model", "kind": "function", "doc": "

Saves vowpal model to \".model\" file.

\n\n
Arguments:
\n\n
    \n
  • path: base path to save model to
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.load_model", "kind": "function", "doc": "

Loads a vowpal model from \".model\" file with arguments.

\n\n
Arguments:
\n\n
    \n
  • path: base path to load from
  • \n
  • **kwargs: Additional arguments to be passed to the workspace. This is supplied via\n\"arguments\" key.

    \n\n

    Example:\n arguments=\"--cb 4\"\n or\n arguments=[\"--cb\", \"4\"]

    \n\n

    There is no need to specify \"-i\" argument. This is done automatically during loading.

  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.save_onnx", "kind": "function", "doc": "

Onnx is not supported for vowpal wabbit models.

\n\n
Arguments:
\n\n
    \n
  • path: Path to save
  • \n
\n\n
Returns:
\n\n
\n

ModelReturn

\n
\n", "signature": "(self, path: pathlib.Path) -> opsml.types.model.ModelReturn:", "funcdef": "def"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for model storage

\n", "annotation": ": str"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.name", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Workspace, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[str, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'arguments': FieldInfo(annotation=str, required=False, default='')}"}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"fullname": "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields", "modulename": "opsml.model.interfaces.vowpal", "qualname": "VowpalWabbitModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.interfaces.xgb": {"fullname": "opsml.model.interfaces.xgb", "modulename": "opsml.model.interfaces.xgb", "kind": "module", "doc": "

\n"}, "opsml.model.interfaces.xgb.logger": {"fullname": "opsml.model.interfaces.xgb.logger", "modulename": "opsml.model.interfaces.xgb", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.model.interfaces.xgb.XGBoostModel": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel", "kind": "class", "doc": "

Model interface for XGBoost model class. Currently, only Sklearn flavor of XGBoost\nregressor and classifier are supported.

\n\n
Arguments:
\n\n
    \n
  • model: XGBoost model. Can be either a Booster or XGBModel.
  • \n
  • preprocessor: Optional preprocessor
  • \n
  • sample_data: Sample data to be used for type inference and ONNX conversion/validation.\nThis should match exactly what the model expects as input.
  • \n
  • task_type: Task type for model. Defaults to undefined.
  • \n
  • model_type: Optional model type. This is inferred automatically.
  • \n
  • preprocessor_name: Optional preprocessor. This is inferred automatically if a\npreprocessor is provided.
  • \n
\n\n
Returns:
\n\n
\n

XGBoostModel

\n
\n", "bases": "opsml.model.interfaces.base.ModelInterface"}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.model", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.model", "kind": "variable", "doc": "

\n", "annotation": ": Union[xgboost.core.Booster, xgboost.sklearn.XGBModel, NoneType]"}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.sample_data", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.sample_data", "kind": "variable", "doc": "

\n", "annotation": ": Union[pandas.core.frame.DataFrame, numpy.ndarray[Any, numpy.dtype[Any]], xgboost.core.DMatrix, NoneType]"}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.preprocessor", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.preprocessor", "kind": "variable", "doc": "

\n", "annotation": ": Optional[Any]"}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.preprocessor_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.model_class", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.model_class", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.check_model", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.check_model", "kind": "function", "doc": "

\n", "signature": "(cls, model_args: Dict[str, Any]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.save_model", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.save_model", "kind": "function", "doc": "

Saves lgb model according to model format. Booster models are saved to text.\nSklearn models are saved via joblib.

\n\n
Arguments:
\n\n
    \n
  • path: base path to save model to
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.load_model", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.load_model", "kind": "function", "doc": "

Loads lightgbm booster or sklearn model

\n\n
Arguments:
\n\n
    \n
  • path: base path to load from
  • \n
  • **kwargs: Additional keyword arguments
  • \n
\n", "signature": "(self, path: pathlib.Path, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.save_preprocessor", "kind": "function", "doc": "

Saves preprocessor to path if present. Base implementation use Joblib

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from pathlib object

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.save_onnx", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.save_onnx", "kind": "function", "doc": "

Saves the onnx model

\n\n
Arguments:
\n\n
    \n
  • path: Path to save
  • \n
\n\n
Returns:
\n\n
\n

ModelReturn

\n
\n", "signature": "(self, path: pathlib.Path) -> opsml.types.model.ModelReturn:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.save_sample_data", "kind": "function", "doc": "

Serialized and save sample data to path.

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.load_sample_data", "kind": "function", "doc": "

Serialized and save sample data to path.

\n\n
Arguments:
\n\n
    \n
  • path: Pathlib object
  • \n
\n", "signature": "(self, path: pathlib.Path) -> None:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.model_suffix", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.model_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.preprocessor_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.data_suffix", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.data_suffix", "kind": "variable", "doc": "

Returns suffix for storage

\n", "annotation": ": str"}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.name", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.name", "kind": "function", "doc": "

\n", "signature": "() -> str:", "funcdef": "def"}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.model_config", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'protected_namespaces': ('protect_',), 'arbitrary_types_allowed': True, 'validate_assignment': False, 'validate_default': True, 'extra': 'allow'}"}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.model_fields", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'model': FieldInfo(annotation=Union[Booster, XGBModel, NoneType], required=False), 'sample_data': FieldInfo(annotation=Union[DataFrame, ndarray[Any, dtype[Any]], DMatrix, NoneType], required=False), 'onnx_model': FieldInfo(annotation=Union[OnnxModel, NoneType], required=False), 'task_type': FieldInfo(annotation=str, required=False, default='undefined'), 'model_type': FieldInfo(annotation=str, required=False, default='undefined'), 'data_type': FieldInfo(annotation=str, required=False, default='undefined'), 'modelcard_uid': FieldInfo(annotation=str, required=False, default=''), 'preprocessor': FieldInfo(annotation=Union[Any, NoneType], required=False), 'preprocessor_name': FieldInfo(annotation=str, required=False, default='undefined')}"}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"fullname": "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields", "modulename": "opsml.model.interfaces.xgb", "qualname": "XGBoostModel.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.challenger": {"fullname": "opsml.model.challenger", "modulename": "opsml.model.challenger", "kind": "module", "doc": "

\n"}, "opsml.model.challenger.logger": {"fullname": "opsml.model.challenger.logger", "modulename": "opsml.model.challenger", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.model.challenger.BattleReport": {"fullname": "opsml.model.challenger.BattleReport", "modulename": "opsml.model.challenger", "qualname": "BattleReport", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.model.challenger.BattleReport.model_config": {"fullname": "opsml.model.challenger.BattleReport.model_config", "modulename": "opsml.model.challenger", "qualname": "BattleReport.model_config", "kind": "variable", "doc": "

\n", "default_value": "{'arbitrary_types_allowed': True}"}, "opsml.model.challenger.BattleReport.champion_name": {"fullname": "opsml.model.challenger.BattleReport.champion_name", "modulename": "opsml.model.challenger", "qualname": "BattleReport.champion_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.challenger.BattleReport.champion_version": {"fullname": "opsml.model.challenger.BattleReport.champion_version", "modulename": "opsml.model.challenger", "qualname": "BattleReport.champion_version", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.model.challenger.BattleReport.champion_metric": {"fullname": "opsml.model.challenger.BattleReport.champion_metric", "modulename": "opsml.model.challenger", "qualname": "BattleReport.champion_metric", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.card.Metric]"}, "opsml.model.challenger.BattleReport.challenger_metric": {"fullname": "opsml.model.challenger.BattleReport.challenger_metric", "modulename": "opsml.model.challenger", "qualname": "BattleReport.challenger_metric", "kind": "variable", "doc": "

\n", "annotation": ": Optional[opsml.types.card.Metric]"}, "opsml.model.challenger.BattleReport.challenger_win": {"fullname": "opsml.model.challenger.BattleReport.challenger_win", "modulename": "opsml.model.challenger", "qualname": "BattleReport.challenger_win", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.model.challenger.BattleReport.model_fields": {"fullname": "opsml.model.challenger.BattleReport.model_fields", "modulename": "opsml.model.challenger", "qualname": "BattleReport.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'champion_name': FieldInfo(annotation=str, required=True), 'champion_version': FieldInfo(annotation=str, required=True), 'champion_metric': FieldInfo(annotation=Union[Metric, NoneType], required=False), 'challenger_metric': FieldInfo(annotation=Union[Metric, NoneType], required=False), 'challenger_win': FieldInfo(annotation=bool, required=True)}"}, "opsml.model.challenger.BattleReport.model_computed_fields": {"fullname": "opsml.model.challenger.BattleReport.model_computed_fields", "modulename": "opsml.model.challenger", "qualname": "BattleReport.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.challenger.MetricName": {"fullname": "opsml.model.challenger.MetricName", "modulename": "opsml.model.challenger", "qualname": "MetricName", "kind": "variable", "doc": "

\n", "default_value": "typing.Union[str, typing.List[str]]"}, "opsml.model.challenger.MetricValue": {"fullname": "opsml.model.challenger.MetricValue", "modulename": "opsml.model.challenger", "qualname": "MetricValue", "kind": "variable", "doc": "

\n", "default_value": "typing.Union[int, float, typing.List[typing.Union[int, float]]]"}, "opsml.model.challenger.ChallengeInputs": {"fullname": "opsml.model.challenger.ChallengeInputs", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.model.challenger.ChallengeInputs.metric_name": {"fullname": "opsml.model.challenger.ChallengeInputs.metric_name", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.metric_name", "kind": "variable", "doc": "

\n", "annotation": ": Union[str, List[str]]"}, "opsml.model.challenger.ChallengeInputs.metric_value": {"fullname": "opsml.model.challenger.ChallengeInputs.metric_value", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.metric_value", "kind": "variable", "doc": "

\n", "annotation": ": Union[int, float, List[Union[int, float]], NoneType]"}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"fullname": "opsml.model.challenger.ChallengeInputs.lower_is_better", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.lower_is_better", "kind": "variable", "doc": "

\n", "annotation": ": Union[bool, List[bool]]"}, "opsml.model.challenger.ChallengeInputs.metric_names": {"fullname": "opsml.model.challenger.ChallengeInputs.metric_names", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.metric_names", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "opsml.model.challenger.ChallengeInputs.metric_values": {"fullname": "opsml.model.challenger.ChallengeInputs.metric_values", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.metric_values", "kind": "variable", "doc": "

\n", "annotation": ": List[Union[int, float, NoneType]]"}, "opsml.model.challenger.ChallengeInputs.thresholds": {"fullname": "opsml.model.challenger.ChallengeInputs.thresholds", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.thresholds", "kind": "variable", "doc": "

\n", "annotation": ": List[bool]"}, "opsml.model.challenger.ChallengeInputs.convert_name": {"fullname": "opsml.model.challenger.ChallengeInputs.convert_name", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.convert_name", "kind": "function", "doc": "

\n", "signature": "(cls, name: Union[List[str], str]) -> List[str]:", "funcdef": "def"}, "opsml.model.challenger.ChallengeInputs.convert_value": {"fullname": "opsml.model.challenger.ChallengeInputs.convert_value", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.convert_value", "kind": "function", "doc": "

\n", "signature": "(\tcls,\tvalue: Union[int, float, List[Union[int, float]], NoneType],\tinfo: pydantic_core.core_schema.ValidationInfo) -> List[Any]:", "funcdef": "def"}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"fullname": "opsml.model.challenger.ChallengeInputs.convert_threshold", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.convert_threshold", "kind": "function", "doc": "

\n", "signature": "(\tcls,\tthreshold: Union[bool, List[bool]],\tinfo: pydantic_core.core_schema.ValidationInfo) -> List[bool]:", "funcdef": "def"}, "opsml.model.challenger.ChallengeInputs.model_config": {"fullname": "opsml.model.challenger.ChallengeInputs.model_config", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.model_config", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.challenger.ChallengeInputs.model_fields": {"fullname": "opsml.model.challenger.ChallengeInputs.model_fields", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'metric_name': FieldInfo(annotation=Union[str, List[str]], required=True), 'metric_value': FieldInfo(annotation=Union[int, float, List[Union[int, float]], NoneType], required=False), 'lower_is_better': FieldInfo(annotation=Union[bool, List[bool]], required=False, default=True)}"}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"fullname": "opsml.model.challenger.ChallengeInputs.model_computed_fields", "modulename": "opsml.model.challenger", "qualname": "ChallengeInputs.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.model.challenger.ModelChallenger": {"fullname": "opsml.model.challenger.ModelChallenger", "modulename": "opsml.model.challenger", "qualname": "ModelChallenger", "kind": "class", "doc": "

\n"}, "opsml.model.challenger.ModelChallenger.__init__": {"fullname": "opsml.model.challenger.ModelChallenger.__init__", "modulename": "opsml.model.challenger", "qualname": "ModelChallenger.__init__", "kind": "function", "doc": "

Instantiates ModelChallenger class

\n\n
Arguments:
\n\n
    \n
  • challenger: ModelCard of challenger
  • \n
\n", "signature": "(challenger: opsml.cards.model.ModelCard)"}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"fullname": "opsml.model.challenger.ModelChallenger.challenger_metric", "modulename": "opsml.model.challenger", "qualname": "ModelChallenger.challenger_metric", "kind": "variable", "doc": "

\n", "annotation": ": opsml.types.card.Metric"}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"fullname": "opsml.model.challenger.ModelChallenger.challenge_champion", "modulename": "opsml.model.challenger", "qualname": "ModelChallenger.challenge_champion", "kind": "function", "doc": "

Challenges n champion models against the challenger model. If no champion is provided,\nthe latest model version is used as a champion.

\n\n
Arguments:
\n\n
    \n
  • champions: Optional list of champion CardInfo
  • \n
  • metric_name: Name of metric to evaluate
  • \n
  • metric_value: Challenger metric value
  • \n
  • lower_is_better: Whether a lower metric value is better or not
  • \n
\n\n

Returns\n BattleReport

\n", "signature": "(\tself,\tmetric_name: Union[str, List[str]],\tmetric_value: Union[int, float, List[Union[int, float]], NoneType] = None,\tchampions: Optional[List[opsml.types.card.CardInfo]] = None,\tlower_is_better: Union[bool, List[bool]] = True) -> Dict[str, List[opsml.model.challenger.BattleReport]]:", "funcdef": "def"}, "opsml.model.loader": {"fullname": "opsml.model.loader", "modulename": "opsml.model.loader", "kind": "module", "doc": "

\n"}, "opsml.model.loader.ModelLoader": {"fullname": "opsml.model.loader.ModelLoader", "modulename": "opsml.model.loader", "qualname": "ModelLoader", "kind": "class", "doc": "

Helper class for loading models from disk and downloading via opsml-cli

\n"}, "opsml.model.loader.ModelLoader.__init__": {"fullname": "opsml.model.loader.ModelLoader.__init__", "modulename": "opsml.model.loader", "qualname": "ModelLoader.__init__", "kind": "function", "doc": "

Initialize ModelLoader

\n\n
Arguments:
\n\n
    \n
  • interface: ModelInterface for the model
  • \n
  • path: Directory path to the model artifacts
  • \n
\n", "signature": "(path: pathlib.Path)"}, "opsml.model.loader.ModelLoader.path": {"fullname": "opsml.model.loader.ModelLoader.path", "modulename": "opsml.model.loader", "qualname": "ModelLoader.path", "kind": "variable", "doc": "

\n"}, "opsml.model.loader.ModelLoader.metadata": {"fullname": "opsml.model.loader.ModelLoader.metadata", "modulename": "opsml.model.loader", "qualname": "ModelLoader.metadata", "kind": "variable", "doc": "

\n"}, "opsml.model.loader.ModelLoader.interface": {"fullname": "opsml.model.loader.ModelLoader.interface", "modulename": "opsml.model.loader", "qualname": "ModelLoader.interface", "kind": "variable", "doc": "

\n"}, "opsml.model.loader.ModelLoader.model": {"fullname": "opsml.model.loader.ModelLoader.model", "modulename": "opsml.model.loader", "qualname": "ModelLoader.model", "kind": "variable", "doc": "

\n", "annotation": ": Any"}, "opsml.model.loader.ModelLoader.onnx_model": {"fullname": "opsml.model.loader.ModelLoader.onnx_model", "modulename": "opsml.model.loader", "qualname": "ModelLoader.onnx_model", "kind": "variable", "doc": "

\n", "annotation": ": opsml.types.model.OnnxModel"}, "opsml.model.loader.ModelLoader.preprocessor": {"fullname": "opsml.model.loader.ModelLoader.preprocessor", "modulename": "opsml.model.loader", "qualname": "ModelLoader.preprocessor", "kind": "variable", "doc": "

Quick access to preprocessor from interface

\n", "annotation": ": Any"}, "opsml.model.loader.ModelLoader.load_preprocessor": {"fullname": "opsml.model.loader.ModelLoader.load_preprocessor", "modulename": "opsml.model.loader", "qualname": "ModelLoader.load_preprocessor", "kind": "function", "doc": "

Load preprocessor from disk

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.model.loader.ModelLoader.load_model": {"fullname": "opsml.model.loader.ModelLoader.load_model", "modulename": "opsml.model.loader", "qualname": "ModelLoader.load_model", "kind": "function", "doc": "

\n", "signature": "(self, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.model.loader.ModelLoader.load_onnx_model": {"fullname": "opsml.model.loader.ModelLoader.load_onnx_model", "modulename": "opsml.model.loader", "qualname": "ModelLoader.load_onnx_model", "kind": "function", "doc": "

Load onnx model from disk

\n\n
Kwargs:
\n\n
\n

------Note: These kwargs only apply to HuggingFace models------

\n \n

kwargs:\n load_quantized:\n If True, load quantized model

\n\n
onnx_args:\n    Additional onnx args needed to load the model\n
\n
\n", "signature": "(self, **kwargs: Any) -> None:", "funcdef": "def"}, "opsml.profile.profile_data": {"fullname": "opsml.profile.profile_data", "modulename": "opsml.profile.profile_data", "kind": "module", "doc": "

\n"}, "opsml.profile.profile_data.DIR_PATH": {"fullname": "opsml.profile.profile_data.DIR_PATH", "modulename": "opsml.profile.profile_data", "qualname": "DIR_PATH", "kind": "variable", "doc": "

\n", "default_value": "'/home/steven_forrester/github/opsml/opsml/profile'"}, "opsml.profile.profile_data.ProfileReport": {"fullname": "opsml.profile.profile_data.ProfileReport", "modulename": "opsml.profile.profile_data", "qualname": "ProfileReport", "kind": "variable", "doc": "

\n", "default_value": "typing.Any"}, "opsml.profile.profile_data.DataProfiler": {"fullname": "opsml.profile.profile_data.DataProfiler", "modulename": "opsml.profile.profile_data", "qualname": "DataProfiler", "kind": "class", "doc": "

\n"}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"fullname": "opsml.profile.profile_data.DataProfiler.create_profile_report", "modulename": "opsml.profile.profile_data", "qualname": "DataProfiler.create_profile_report", "kind": "function", "doc": "

Creates a ydata-profiling report

\n\n
Arguments:
\n\n
    \n
  • data: Pandas dataframe
  • \n
  • sample_perc: Percentage to use for sampling
  • \n
  • name: Name of the report
  • \n
\n\n
Returns:
\n\n
\n

ProfileReport

\n
\n", "signature": "(\tdata: Union[pandas.core.frame.DataFrame, polars.dataframe.frame.DataFrame],\tname: str,\tsample_perc: float = 1) -> Any:", "funcdef": "def"}, "opsml.profile.profile_data.DataProfiler.load_profile": {"fullname": "opsml.profile.profile_data.DataProfiler.load_profile", "modulename": "opsml.profile.profile_data", "qualname": "DataProfiler.load_profile", "kind": "function", "doc": "

Loads a ProfileReport from data bytes

\n\n
Arguments:
\n\n
    \n
  • data: ProfileReport in bytes
  • \n
\n\n
Returns:
\n\n
\n

ProfileReport

\n
\n", "signature": "(data: bytes) -> Any:", "funcdef": "def"}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"fullname": "opsml.profile.profile_data.DataProfiler.compare_reports", "modulename": "opsml.profile.profile_data", "qualname": "DataProfiler.compare_reports", "kind": "function", "doc": "

Compares ProfileReports

\n\n
Arguments:
\n\n
    \n
  • reports: List of ProfileReport
  • \n
\n\n
Returns:
\n\n
\n

ProfileReport

\n
\n", "signature": "(reports: List[Any]) -> Any:", "funcdef": "def"}, "opsml.projects.active_run": {"fullname": "opsml.projects.active_run", "modulename": "opsml.projects.active_run", "kind": "module", "doc": "

\n"}, "opsml.projects.active_run.logger": {"fullname": "opsml.projects.active_run.logger", "modulename": "opsml.projects.active_run", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.projects.active_run.RunInfo": {"fullname": "opsml.projects.active_run.RunInfo", "modulename": "opsml.projects.active_run", "qualname": "RunInfo", "kind": "class", "doc": "

\n"}, "opsml.projects.active_run.RunInfo.__init__": {"fullname": "opsml.projects.active_run.RunInfo.__init__", "modulename": "opsml.projects.active_run", "qualname": "RunInfo.__init__", "kind": "function", "doc": "

\n", "signature": "(\truncard: opsml.cards.run.RunCard,\trun_id: str,\trun_name: Optional[str] = None)"}, "opsml.projects.active_run.RunInfo.storage_client": {"fullname": "opsml.projects.active_run.RunInfo.storage_client", "modulename": "opsml.projects.active_run", "qualname": "RunInfo.storage_client", "kind": "variable", "doc": "

\n"}, "opsml.projects.active_run.RunInfo.registries": {"fullname": "opsml.projects.active_run.RunInfo.registries", "modulename": "opsml.projects.active_run", "qualname": "RunInfo.registries", "kind": "variable", "doc": "

\n"}, "opsml.projects.active_run.RunInfo.runcard": {"fullname": "opsml.projects.active_run.RunInfo.runcard", "modulename": "opsml.projects.active_run", "qualname": "RunInfo.runcard", "kind": "variable", "doc": "

\n"}, "opsml.projects.active_run.RunInfo.run_id": {"fullname": "opsml.projects.active_run.RunInfo.run_id", "modulename": "opsml.projects.active_run", "qualname": "RunInfo.run_id", "kind": "variable", "doc": "

\n"}, "opsml.projects.active_run.RunInfo.run_name": {"fullname": "opsml.projects.active_run.RunInfo.run_name", "modulename": "opsml.projects.active_run", "qualname": "RunInfo.run_name", "kind": "variable", "doc": "

\n"}, "opsml.projects.active_run.CardHandler": {"fullname": "opsml.projects.active_run.CardHandler", "modulename": "opsml.projects.active_run", "qualname": "CardHandler", "kind": "class", "doc": "

DRY helper class for ActiveRun and OpsmlProject

\n"}, "opsml.projects.active_run.CardHandler.register_card": {"fullname": "opsml.projects.active_run.CardHandler.register_card", "modulename": "opsml.projects.active_run", "qualname": "CardHandler.register_card", "kind": "function", "doc": "

Registers and ArtifactCard

\n", "signature": "(\tregistries: opsml.registry.registry.CardRegistries,\tcard: opsml.cards.base.ArtifactCard,\tversion_type: Union[opsml.registry.semver.VersionType, str] = <VersionType.MINOR: 'minor'>) -> None:", "funcdef": "def"}, "opsml.projects.active_run.CardHandler.load_card": {"fullname": "opsml.projects.active_run.CardHandler.load_card", "modulename": "opsml.projects.active_run", "qualname": "CardHandler.load_card", "kind": "function", "doc": "

Loads an ArtifactCard

\n", "signature": "(\tregistries: opsml.registry.registry.CardRegistries,\tregistry_name: str,\tinfo: opsml.types.card.CardInfo) -> opsml.cards.base.ArtifactCard:", "funcdef": "def"}, "opsml.projects.active_run.CardHandler.update_card": {"fullname": "opsml.projects.active_run.CardHandler.update_card", "modulename": "opsml.projects.active_run", "qualname": "CardHandler.update_card", "kind": "function", "doc": "

Updates an ArtifactCard

\n", "signature": "(\tregistries: opsml.registry.registry.CardRegistries,\tcard: opsml.cards.base.ArtifactCard) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun": {"fullname": "opsml.projects.active_run.ActiveRun", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun", "kind": "class", "doc": "

\n"}, "opsml.projects.active_run.ActiveRun.__init__": {"fullname": "opsml.projects.active_run.ActiveRun.__init__", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.__init__", "kind": "function", "doc": "

Run object that handles logging artifacts, metrics, cards, and tags for a given run of a Project

\n\n
Arguments:
\n\n
    \n
  • run_info: Run info for a given active run
  • \n
\n", "signature": "(run_info: opsml.projects.active_run.RunInfo)"}, "opsml.projects.active_run.ActiveRun.runcard": {"fullname": "opsml.projects.active_run.ActiveRun.runcard", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.runcard", "kind": "variable", "doc": "

\n"}, "opsml.projects.active_run.ActiveRun.run_id": {"fullname": "opsml.projects.active_run.ActiveRun.run_id", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.run_id", "kind": "variable", "doc": "

Id for current run

\n", "annotation": ": str"}, "opsml.projects.active_run.ActiveRun.run_name": {"fullname": "opsml.projects.active_run.ActiveRun.run_name", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.run_name", "kind": "variable", "doc": "

Name for current run

\n", "annotation": ": Optional[str]"}, "opsml.projects.active_run.ActiveRun.active": {"fullname": "opsml.projects.active_run.ActiveRun.active", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.active", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.projects.active_run.ActiveRun.add_tag": {"fullname": "opsml.projects.active_run.ActiveRun.add_tag", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.add_tag", "kind": "function", "doc": "

Adds a tag to the current run

\n\n
Arguments:
\n\n
    \n
  • key: Name of the tag
  • \n
  • value: Value to associate with tag
  • \n
\n", "signature": "(self, key: str, value: str) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.add_tags": {"fullname": "opsml.projects.active_run.ActiveRun.add_tags", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.add_tags", "kind": "function", "doc": "

Adds a tag to the current run

\n\n
Arguments:
\n\n
    \n
  • tags: Dictionary of key, value tags
  • \n
\n", "signature": "(self, tags: Dict[str, Union[float, int, str]]) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.register_card": {"fullname": "opsml.projects.active_run.ActiveRun.register_card", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.register_card", "kind": "function", "doc": "

Register a given artifact card.

\n\n
Arguments:
\n\n
    \n
  • card: The card to register
  • \n
  • version_type: Version type for increment. Options are \"major\", \"minor\" and\n\"patch\". Defaults to \"minor\".
  • \n
\n", "signature": "(\tself,\tcard: opsml.cards.base.ArtifactCard,\tversion_type: Union[opsml.registry.semver.VersionType, str] = <VersionType.MINOR: 'minor'>) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.load_card": {"fullname": "opsml.projects.active_run.ActiveRun.load_card", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.load_card", "kind": "function", "doc": "

Loads an ArtifactCard.

\n\n
Arguments:
\n\n
    \n
  • registry_name: Type of card to load (data, model, run, pipeline)
  • \n
  • info: Card information to retrieve. uid takes precedence if it\nexists. If the optional version is specified, that version\nwill be loaded. If it doesn't exist, the most recent version will\nbe loaded.
  • \n
\n\n

Returns\n ArtifactCard

\n", "signature": "(\tself,\tregistry_name: str,\tinfo: opsml.types.card.CardInfo) -> opsml.cards.base.ArtifactCard:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"fullname": "opsml.projects.active_run.ActiveRun.log_artifact_from_file", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.log_artifact_from_file", "kind": "function", "doc": "

Log a local file or directory to the opsml server and associate with the current run.

\n\n
Arguments:
\n\n
    \n
  • name: Name to assign to artifact(s)
  • \n
  • local_path: Local path to file or directory. Can be string or pathlike object
  • \n
  • artifact_path: Optional path to store artifact in opsml server. If not provided, 'artifacts' will be used
  • \n
\n", "signature": "(\tself,\tname: str,\tlocal_path: Union[str, pathlib.Path],\tartifact_path: Union[str, pathlib.Path, NoneType] = None) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.log_metric": {"fullname": "opsml.projects.active_run.ActiveRun.log_metric", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.log_metric", "kind": "function", "doc": "

Log a metric for a given run

\n\n
Arguments:
\n\n
    \n
  • key: Metric name
  • \n
  • value: Metric value
  • \n
  • timestamp: Optional time indicating metric creation time
  • \n
  • step: Optional step in training when metric was created
  • \n
\n", "signature": "(\tself,\tkey: str,\tvalue: float,\ttimestamp: Optional[int] = None,\tstep: Optional[int] = None) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.log_metrics": {"fullname": "opsml.projects.active_run.ActiveRun.log_metrics", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.log_metrics", "kind": "function", "doc": "

Logs a collection of metrics for a run

\n\n
Arguments:
\n\n
    \n
  • metrics: Dictionary of metrics
  • \n
  • step: step the metrics are associated with
  • \n
\n", "signature": "(\tself,\tmetrics: Dict[str, Union[float, int]],\tstep: Optional[int] = None) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.log_parameter": {"fullname": "opsml.projects.active_run.ActiveRun.log_parameter", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.log_parameter", "kind": "function", "doc": "

Logs a parameter to project run

\n\n
Arguments:
\n\n
    \n
  • key: Parameter name
  • \n
  • value: Parameter value
  • \n
\n", "signature": "(self, key: str, value: str) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.log_parameters": {"fullname": "opsml.projects.active_run.ActiveRun.log_parameters", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.log_parameters", "kind": "function", "doc": "

Logs a collection of parameters for a run

\n\n
Arguments:
\n\n
    \n
  • parameters: Dictionary of parameters
  • \n
\n", "signature": "(self, parameters: Dict[str, Union[float, int, str]]) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.log_graph": {"fullname": "opsml.projects.active_run.ActiveRun.log_graph", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.log_graph", "kind": "function", "doc": "

Logs a graph to the RunCard, which will be rendered in the UI as a line graph

\n\n
Arguments:
\n\n
    \n
  • name: Name of graph
  • \n
  • x: List or numpy array of x values
  • \n
  • x_label: Label for x axis
  • \n
  • y: Either of the following:\n(1) a list or numpy array of y values\n(2) a dictionary of y values where key is the group label and\n value is a list or numpy array of y values
  • \n
  • y_label: Label for y axis
  • \n
  • graph_style: Style of graph. Options are \"line\" or \"scatter\"
  • \n
\n\n

example:

\n\n
### single line graph\nx = np.arange(1, 400, 0.5)\ny = x * x\nrun.log_graph(name=\"graph1\", x=x, y=y, x_label=\"x\", y_label=\"y\", graph_style=\"line\")\n\n### multi line graph\nx = np.arange(1, 1000, 0.5)\ny1 = x * x\ny2 = y1 * 1.1\ny3 = y2 * 3\nrun.log_graph(\n    name=\"multiline\",\n    x=x,\n    y={\"y1\": y1, \"y2\": y2, \"y3\": y3},\n    x_label=\"x\",\n    y_label=\"y\",\n    graph_style=\"line\",\n)\n
\n", "signature": "(\tself,\tname: str,\tx: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]],\ty: Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]], Dict[str, Union[List[Union[int, float]], numpy.ndarray[Any, numpy.dtype[Any]]]]],\tx_label: str = 'x',\ty_label: str = 'y',\tgraph_style: str = 'line') -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"fullname": "opsml.projects.active_run.ActiveRun.create_or_update_runcard", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.create_or_update_runcard", "kind": "function", "doc": "

Creates or updates an active RunCard

\n", "signature": "(self) -> None:", "funcdef": "def"}, "opsml.projects.active_run.ActiveRun.run_data": {"fullname": "opsml.projects.active_run.ActiveRun.run_data", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.run_data", "kind": "variable", "doc": "

\n", "annotation": ": Any"}, "opsml.projects.active_run.ActiveRun.metrics": {"fullname": "opsml.projects.active_run.ActiveRun.metrics", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.metrics", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, List[opsml.types.card.Metric]]"}, "opsml.projects.active_run.ActiveRun.parameters": {"fullname": "opsml.projects.active_run.ActiveRun.parameters", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.parameters", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, List[opsml.types.card.Param]]"}, "opsml.projects.active_run.ActiveRun.tags": {"fullname": "opsml.projects.active_run.ActiveRun.tags", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.tags", "kind": "variable", "doc": "

\n", "annotation": ": dict[str, typing.Union[str, int]]"}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"fullname": "opsml.projects.active_run.ActiveRun.artifact_uris", "modulename": "opsml.projects.active_run", "qualname": "ActiveRun.artifact_uris", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, opsml.types.card.Artifact]"}, "opsml.projects.project": {"fullname": "opsml.projects.project", "modulename": "opsml.projects.project", "kind": "module", "doc": "

\n"}, "opsml.projects.project.logger": {"fullname": "opsml.projects.project.logger", "modulename": "opsml.projects.project", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.projects.project.OpsmlProject": {"fullname": "opsml.projects.project.OpsmlProject", "modulename": "opsml.projects.project", "qualname": "OpsmlProject", "kind": "class", "doc": "

\n"}, "opsml.projects.project.OpsmlProject.__init__": {"fullname": "opsml.projects.project.OpsmlProject.__init__", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.__init__", "kind": "function", "doc": "

Instantiates a project which creates cards, metrics and parameters to\nthe opsml registry via a \"run\" object.

\n\n

If info.run_id is set, that run_id will be loaded as read only. In read\nonly mode, you can retrieve cards, metrics, and parameters, however you\ncannot write new data. If you wish to record data/create a new run, you will\nneed to enter the run context.

\n\n

In order to create new cards, you need to create a run using the run\ncontext manager.

\n\n
Example:
\n\n
\n

project: OpsmlProject = OpsmlProject(\n ProjectInfo(\n name=\"test-project\",\n # If run_id is omitted, a new run is created.\n run_id=\"123ab123kaj8u8naskdfh813\",\n )\n )

\n \n

the project is in \"read only\" mode. all read operations will work

\n \n

for k, v in project.parameters:\n logger.info(\"{} = {}\", k, v)

\n \n

creating a project run

\n \n

with project.run() as run:\n # Now that the run context is entered, it's in read/write mode\n # You can write cards, parameters, and metrics to the project.\n run.log_parameter(key=\"my_param\", value=\"12.34\")

\n
\n\n
Arguments:
\n\n
    \n
  • info: Run information. if a run_id is given, that run is set\nas the project's current run.
  • \n
\n", "signature": "(info: opsml.projects.types.ProjectInfo)"}, "opsml.projects.project.OpsmlProject.run_id": {"fullname": "opsml.projects.project.OpsmlProject.run_id", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.run_id", "kind": "variable", "doc": "

Current run id associated with project

\n", "annotation": ": str"}, "opsml.projects.project.OpsmlProject.project_id": {"fullname": "opsml.projects.project.OpsmlProject.project_id", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.project_id", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "opsml.projects.project.OpsmlProject.project_name": {"fullname": "opsml.projects.project.OpsmlProject.project_name", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.project_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.projects.project.OpsmlProject.run": {"fullname": "opsml.projects.project.OpsmlProject.run", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.run", "kind": "function", "doc": "

Starts a new run for the project

\n\n
Arguments:
\n\n
    \n
  • run_name: Optional run name
  • \n
\n", "signature": "(\tself,\trun_name: Optional[str] = None) -> Iterator[opsml.projects.active_run.ActiveRun]:", "funcdef": "def"}, "opsml.projects.project.OpsmlProject.load_card": {"fullname": "opsml.projects.project.OpsmlProject.load_card", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.load_card", "kind": "function", "doc": "

Loads an ArtifactCard.

\n\n
Arguments:
\n\n
    \n
  • registry_name: Name of registry to load card from
  • \n
  • info: Card information to retrieve. uid takes precedence if it\nexists. If the optional version is specified, that version\nwill be loaded. If it doesn't exist, the most recent ersion will\nbe loaded.
  • \n
\n\n

Returns\n ArtifactCard

\n", "signature": "(\tself,\tregistry_name: str,\tinfo: opsml.types.card.CardInfo) -> opsml.cards.base.ArtifactCard:", "funcdef": "def"}, "opsml.projects.project.OpsmlProject.list_runs": {"fullname": "opsml.projects.project.OpsmlProject.list_runs", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.list_runs", "kind": "function", "doc": "

Lists all runs for the current project, sorted by timestamp

\n\n
Returns:
\n\n
\n

List of RunCard

\n
\n", "signature": "(self, limit: int = 100) -> List[Dict[str, Any]]:", "funcdef": "def"}, "opsml.projects.project.OpsmlProject.runcard": {"fullname": "opsml.projects.project.OpsmlProject.runcard", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.runcard", "kind": "variable", "doc": "

\n", "annotation": ": opsml.cards.run.RunCard"}, "opsml.projects.project.OpsmlProject.metrics": {"fullname": "opsml.projects.project.OpsmlProject.metrics", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.metrics", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, List[opsml.types.card.Metric]]"}, "opsml.projects.project.OpsmlProject.get_metric": {"fullname": "opsml.projects.project.OpsmlProject.get_metric", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.get_metric", "kind": "function", "doc": "

Get metric by name

\n\n
Arguments:
\n\n
    \n
  • name: str
  • \n
\n\n
Returns:
\n\n
\n

List of Metric or Metric

\n
\n", "signature": "(\tself,\tname: str) -> Union[List[opsml.types.card.Metric], opsml.types.card.Metric]:", "funcdef": "def"}, "opsml.projects.project.OpsmlProject.parameters": {"fullname": "opsml.projects.project.OpsmlProject.parameters", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.parameters", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, List[opsml.types.card.Param]]"}, "opsml.projects.project.OpsmlProject.get_parameter": {"fullname": "opsml.projects.project.OpsmlProject.get_parameter", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.get_parameter", "kind": "function", "doc": "

Get param by name

\n\n
Arguments:
\n\n
    \n
  • name: str
  • \n
\n\n
Returns:
\n\n
\n

List of Param or Param

\n
\n", "signature": "(\tself,\tname: str) -> Union[List[opsml.types.card.Param], opsml.types.card.Param]:", "funcdef": "def"}, "opsml.projects.project.OpsmlProject.tags": {"fullname": "opsml.projects.project.OpsmlProject.tags", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.tags", "kind": "variable", "doc": "

\n", "annotation": ": Dict[str, Union[int, str]]"}, "opsml.projects.project.OpsmlProject.datacard_uids": {"fullname": "opsml.projects.project.OpsmlProject.datacard_uids", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.datacard_uids", "kind": "variable", "doc": "

DataCards associated with the current run

\n", "annotation": ": List[str]"}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"fullname": "opsml.projects.project.OpsmlProject.modelcard_uids", "modulename": "opsml.projects.project", "qualname": "OpsmlProject.modelcard_uids", "kind": "variable", "doc": "

ModelCards associated with the current run

\n", "annotation": ": List[str]"}, "opsml.registry.registry": {"fullname": "opsml.registry.registry", "modulename": "opsml.registry.registry", "kind": "module", "doc": "

\n"}, "opsml.registry.registry.logger": {"fullname": "opsml.registry.registry.logger", "modulename": "opsml.registry.registry", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.registry.registry.CardRegistry": {"fullname": "opsml.registry.registry.CardRegistry", "modulename": "opsml.registry.registry", "qualname": "CardRegistry", "kind": "class", "doc": "

\n"}, "opsml.registry.registry.CardRegistry.__init__": {"fullname": "opsml.registry.registry.CardRegistry.__init__", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.__init__", "kind": "function", "doc": "

Interface for connecting to any of the ArtifactCard registries

\n\n
Arguments:
\n\n
    \n
  • registry_type: Type of card registry to create
  • \n
  • settings: Storage settings
  • \n
\n\n
Returns:
\n\n
\n

Instantiated connection to specific Card registry

\n
\n\n
Example:
\n\n
\n

data_registry = CardRegistry(RegistryType.DATA)\n data_registry.list_cards()

\n \n

or\n data_registry = CardRegistry(\"data\")\n data_registry.list_cards()

\n
\n", "signature": "(registry_type: Union[opsml.types.card.RegistryType, str])"}, "opsml.registry.registry.CardRegistry.table_name": {"fullname": "opsml.registry.registry.CardRegistry.table_name", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.table_name", "kind": "variable", "doc": "

\n"}, "opsml.registry.registry.CardRegistry.registry_type": {"fullname": "opsml.registry.registry.CardRegistry.registry_type", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.registry_type", "kind": "variable", "doc": "

Registry type for card registry

\n", "annotation": ": opsml.types.card.RegistryType"}, "opsml.registry.registry.CardRegistry.list_cards": {"fullname": "opsml.registry.registry.CardRegistry.list_cards", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.list_cards", "kind": "function", "doc": "

Retrieves records from registry

\n\n
Arguments:
\n\n
    \n
  • name: Card name
  • \n
  • repository: Repository associated with card
  • \n
  • version: Optional version number of existing data. If not specified, the\nmost recent version will be used
  • \n
  • tags: Dictionary of key, value tags to search for
  • \n
  • uid: Unique identifier for Card. If present, the uid takes precedence
  • \n
  • max_date: Max date to search. (e.g. \"2023-05-01\" would search for cards up to and including \"2023-05-01\")
  • \n
  • limit: Places a limit on result list. Results are sorted by SemVer
  • \n
  • info: CardInfo object. If present, the info object takes precedence
  • \n
  • ignore_release_candidates: If True, ignores release candidates
  • \n
\n\n
Returns:
\n\n
\n

pandas dataframe of records or list of dictionaries

\n
\n", "signature": "(\tself,\tuid: Optional[str] = None,\tname: Optional[str] = None,\trepository: Optional[str] = None,\tversion: Optional[str] = None,\ttags: Optional[Dict[str, str]] = None,\tinfo: Optional[opsml.types.card.CardInfo] = None,\tmax_date: Optional[str] = None,\tlimit: Optional[int] = None,\tignore_release_candidates: bool = False) -> List[Dict[str, Any]]:", "funcdef": "def"}, "opsml.registry.registry.CardRegistry.load_card": {"fullname": "opsml.registry.registry.CardRegistry.load_card", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.load_card", "kind": "function", "doc": "

Loads a specific card

\n\n
Arguments:
\n\n
    \n
  • name: Optional Card name
  • \n
  • uid: Unique identifier for card. If present, the uid takes\nprecedence.
  • \n
  • tags: Optional tags associated with model.
  • \n
  • repository: Optional repository associated with card
  • \n
  • version: Optional version number of existing data. If not specified, the\nmost recent version will be used
  • \n
  • info: Optional CardInfo object. If present, the info takes precedence
  • \n
  • ignore_release_candidates: If True, ignores release candidates
  • \n
  • interface: Optional interface to use for loading card. This is required for when using\nsubclassed interfaces.
  • \n
\n\n

Returns\n ArtifactCard

\n", "signature": "(\tself,\tname: Optional[str] = None,\trepository: Optional[str] = None,\tuid: Optional[str] = None,\ttags: Optional[Dict[str, str]] = None,\tversion: Optional[str] = None,\tinfo: Optional[opsml.types.card.CardInfo] = None,\tignore_release_candidates: bool = False,\tinterface: Union[Type[opsml.data.interfaces._base.DataInterface], Type[opsml.model.interfaces.base.ModelInterface], NoneType] = None) -> opsml.cards.base.ArtifactCard:", "funcdef": "def"}, "opsml.registry.registry.CardRegistry.register_card": {"fullname": "opsml.registry.registry.CardRegistry.register_card", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.register_card", "kind": "function", "doc": "

Adds a new Card record to registry. Registration will be skipped if the card already exists.

\n\n
Arguments:
\n\n
    \n
  • card: card to register
  • \n
  • version_type: Version type for increment. Options are \"major\", \"minor\" and\n\"patch\". Defaults to \"minor\".
  • \n
  • pre_tag: pre-release tag to add to card version
  • \n
  • build_tag: build tag to add to card version
  • \n
\n", "signature": "(\tself,\tcard: opsml.cards.base.ArtifactCard,\tversion_type: Union[opsml.registry.semver.VersionType, str] = <VersionType.MINOR: 'minor'>,\tpre_tag: str = 'rc',\tbuild_tag: str = 'build') -> None:", "funcdef": "def"}, "opsml.registry.registry.CardRegistry.update_card": {"fullname": "opsml.registry.registry.CardRegistry.update_card", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.update_card", "kind": "function", "doc": "

Update an artifact card based on current registry

\n\n
Arguments:
\n\n
    \n
  • card: Card to register
  • \n
\n", "signature": "(self, card: opsml.cards.base.ArtifactCard) -> None:", "funcdef": "def"}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"fullname": "opsml.registry.registry.CardRegistry.query_value_from_card", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.query_value_from_card", "kind": "function", "doc": "

Query column values from a specific Card

\n\n
Arguments:
\n\n
    \n
  • uid: Uid of Card
  • \n
  • columns: List of columns to query
  • \n
\n\n
Returns:
\n\n
\n

Dictionary of column, values pairs

\n
\n", "signature": "(self, uid: str, columns: List[str]) -> Dict[str, Any]:", "funcdef": "def"}, "opsml.registry.registry.CardRegistry.delete_card": {"fullname": "opsml.registry.registry.CardRegistry.delete_card", "modulename": "opsml.registry.registry", "qualname": "CardRegistry.delete_card", "kind": "function", "doc": "

Delete a specific Card

\n\n
Arguments:
\n\n
    \n
  • card: Card to delete
  • \n
\n", "signature": "(self, card: opsml.cards.base.ArtifactCard) -> None:", "funcdef": "def"}, "opsml.registry.registry.CardRegistries": {"fullname": "opsml.registry.registry.CardRegistries", "modulename": "opsml.registry.registry", "qualname": "CardRegistries", "kind": "class", "doc": "

\n"}, "opsml.registry.registry.CardRegistries.__init__": {"fullname": "opsml.registry.registry.CardRegistries.__init__", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.__init__", "kind": "function", "doc": "

Instantiates class that contains all registries

\n", "signature": "()"}, "opsml.registry.registry.CardRegistries.data": {"fullname": "opsml.registry.registry.CardRegistries.data", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.data", "kind": "variable", "doc": "

\n"}, "opsml.registry.registry.CardRegistries.model": {"fullname": "opsml.registry.registry.CardRegistries.model", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.model", "kind": "variable", "doc": "

\n"}, "opsml.registry.registry.CardRegistries.run": {"fullname": "opsml.registry.registry.CardRegistries.run", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.run", "kind": "variable", "doc": "

\n"}, "opsml.registry.registry.CardRegistries.pipeline": {"fullname": "opsml.registry.registry.CardRegistries.pipeline", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.pipeline", "kind": "variable", "doc": "

\n"}, "opsml.registry.registry.CardRegistries.project": {"fullname": "opsml.registry.registry.CardRegistries.project", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.project", "kind": "variable", "doc": "

\n"}, "opsml.registry.registry.CardRegistries.audit": {"fullname": "opsml.registry.registry.CardRegistries.audit", "modulename": "opsml.registry.registry", "qualname": "CardRegistries.audit", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver": {"fullname": "opsml.registry.semver", "modulename": "opsml.registry.semver", "kind": "module", "doc": "

\n"}, "opsml.registry.semver.logger": {"fullname": "opsml.registry.semver.logger", "modulename": "opsml.registry.semver", "qualname": "logger", "kind": "variable", "doc": "

\n", "default_value": "<builtins.Logger object>"}, "opsml.registry.semver.VersionType": {"fullname": "opsml.registry.semver.VersionType", "modulename": "opsml.registry.semver", "qualname": "VersionType", "kind": "class", "doc": "

An enumeration.

\n", "bases": "builtins.str, enum.Enum"}, "opsml.registry.semver.VersionType.MAJOR": {"fullname": "opsml.registry.semver.VersionType.MAJOR", "modulename": "opsml.registry.semver", "qualname": "VersionType.MAJOR", "kind": "variable", "doc": "

\n", "default_value": "<VersionType.MAJOR: 'major'>"}, "opsml.registry.semver.VersionType.MINOR": {"fullname": "opsml.registry.semver.VersionType.MINOR", "modulename": "opsml.registry.semver", "qualname": "VersionType.MINOR", "kind": "variable", "doc": "

\n", "default_value": "<VersionType.MINOR: 'minor'>"}, "opsml.registry.semver.VersionType.PATCH": {"fullname": "opsml.registry.semver.VersionType.PATCH", "modulename": "opsml.registry.semver", "qualname": "VersionType.PATCH", "kind": "variable", "doc": "

\n", "default_value": "<VersionType.PATCH: 'patch'>"}, "opsml.registry.semver.VersionType.PRE": {"fullname": "opsml.registry.semver.VersionType.PRE", "modulename": "opsml.registry.semver", "qualname": "VersionType.PRE", "kind": "variable", "doc": "

\n", "default_value": "<VersionType.PRE: 'pre'>"}, "opsml.registry.semver.VersionType.BUILD": {"fullname": "opsml.registry.semver.VersionType.BUILD", "modulename": "opsml.registry.semver", "qualname": "VersionType.BUILD", "kind": "variable", "doc": "

\n", "default_value": "<VersionType.BUILD: 'build'>"}, "opsml.registry.semver.VersionType.PRE_BUILD": {"fullname": "opsml.registry.semver.VersionType.PRE_BUILD", "modulename": "opsml.registry.semver", "qualname": "VersionType.PRE_BUILD", "kind": "variable", "doc": "

\n", "default_value": "<VersionType.PRE_BUILD: 'pre_build'>"}, "opsml.registry.semver.VersionType.from_str": {"fullname": "opsml.registry.semver.VersionType.from_str", "modulename": "opsml.registry.semver", "qualname": "VersionType.from_str", "kind": "function", "doc": "

\n", "signature": "(name: str) -> opsml.registry.semver.VersionType:", "funcdef": "def"}, "opsml.registry.semver.CardVersion": {"fullname": "opsml.registry.semver.CardVersion", "modulename": "opsml.registry.semver", "qualname": "CardVersion", "kind": "class", "doc": "

Usage docs: https://docs.pydantic.dev/2.6/concepts/models/

\n\n

A base class for creating Pydantic models.

\n\n
Attributes:
\n\n
    \n
  • __class_vars__: The names of classvars defined on the model.
  • \n
  • __private_attributes__: Metadata about the private attributes of the model.
  • \n
  • __signature__: The signature for instantiating the model.
  • \n
  • __pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
  • \n
  • __pydantic_core_schema__: The pydantic-core schema used to build the SchemaValidator and SchemaSerializer.
  • \n
  • __pydantic_custom_init__: Whether the model has a custom __init__ function.
  • \n
  • __pydantic_decorators__: Metadata containing the decorators defined on the model.\nThis replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.
  • \n
  • __pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to\n__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
  • \n
  • __pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
  • \n
  • __pydantic_post_init__: The name of the post-init method for the model, if defined.
  • \n
  • __pydantic_root_model__: Whether the model is a RootModel.
  • \n
  • __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model.
  • \n
  • __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.
  • \n
  • __pydantic_extra__: An instance attribute with the values of extra fields from validation when\nmodel_config['extra'] == 'allow'.
  • \n
  • __pydantic_fields_set__: An instance attribute with the names of fields explicitly set.
  • \n
  • __pydantic_private__: Instance attribute with the values of private attributes set on the model instance.
  • \n
\n", "bases": "pydantic.main.BaseModel"}, "opsml.registry.semver.CardVersion.version": {"fullname": "opsml.registry.semver.CardVersion.version", "modulename": "opsml.registry.semver", "qualname": "CardVersion.version", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.registry.semver.CardVersion.version_splits": {"fullname": "opsml.registry.semver.CardVersion.version_splits", "modulename": "opsml.registry.semver", "qualname": "CardVersion.version_splits", "kind": "variable", "doc": "

\n", "annotation": ": List[str]"}, "opsml.registry.semver.CardVersion.is_full_semver": {"fullname": "opsml.registry.semver.CardVersion.is_full_semver", "modulename": "opsml.registry.semver", "qualname": "CardVersion.is_full_semver", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.registry.semver.CardVersion.validate_inputs": {"fullname": "opsml.registry.semver.CardVersion.validate_inputs", "modulename": "opsml.registry.semver", "qualname": "CardVersion.validate_inputs", "kind": "function", "doc": "

Validates a user-supplied version

\n", "signature": "(cls, values: Any) -> Any:", "funcdef": "def"}, "opsml.registry.semver.CardVersion.check_full_semver": {"fullname": "opsml.registry.semver.CardVersion.check_full_semver", "modulename": "opsml.registry.semver", "qualname": "CardVersion.check_full_semver", "kind": "function", "doc": "

Checks if a version is a full semver

\n", "signature": "(cls, version_splits: List[str]) -> bool:", "funcdef": "def"}, "opsml.registry.semver.CardVersion.has_major_minor": {"fullname": "opsml.registry.semver.CardVersion.has_major_minor", "modulename": "opsml.registry.semver", "qualname": "CardVersion.has_major_minor", "kind": "variable", "doc": "

Checks if a version has a major and minor component

\n", "annotation": ": bool"}, "opsml.registry.semver.CardVersion.major": {"fullname": "opsml.registry.semver.CardVersion.major", "modulename": "opsml.registry.semver", "qualname": "CardVersion.major", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.registry.semver.CardVersion.minor": {"fullname": "opsml.registry.semver.CardVersion.minor", "modulename": "opsml.registry.semver", "qualname": "CardVersion.minor", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.registry.semver.CardVersion.patch": {"fullname": "opsml.registry.semver.CardVersion.patch", "modulename": "opsml.registry.semver", "qualname": "CardVersion.patch", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.registry.semver.CardVersion.valid_version": {"fullname": "opsml.registry.semver.CardVersion.valid_version", "modulename": "opsml.registry.semver", "qualname": "CardVersion.valid_version", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"fullname": "opsml.registry.semver.CardVersion.finalize_partial_version", "modulename": "opsml.registry.semver", "qualname": "CardVersion.finalize_partial_version", "kind": "function", "doc": "

Finalizes a partial semver version

\n\n
Arguments:
\n\n
    \n
  • version: version to finalize
  • \n
\n\n
Returns:
\n\n
\n

str: finalized version

\n
\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.CardVersion.get_version_to_search": {"fullname": "opsml.registry.semver.CardVersion.get_version_to_search", "modulename": "opsml.registry.semver", "qualname": "CardVersion.get_version_to_search", "kind": "function", "doc": "

Gets a version to search for in the database

\n\n
Arguments:
\n\n
    \n
  • version_type: type of version to search for
  • \n
\n\n
Returns:
\n\n
\n

str: version to search for

\n
\n", "signature": "(self, version_type: opsml.registry.semver.VersionType) -> Optional[str]:", "funcdef": "def"}, "opsml.registry.semver.CardVersion.model_config": {"fullname": "opsml.registry.semver.CardVersion.model_config", "modulename": "opsml.registry.semver", "qualname": "CardVersion.model_config", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.registry.semver.CardVersion.model_fields": {"fullname": "opsml.registry.semver.CardVersion.model_fields", "modulename": "opsml.registry.semver", "qualname": "CardVersion.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'version': FieldInfo(annotation=str, required=True), 'version_splits': FieldInfo(annotation=List[str], required=False, default=[]), 'is_full_semver': FieldInfo(annotation=bool, required=False, default=False)}"}, "opsml.registry.semver.CardVersion.model_computed_fields": {"fullname": "opsml.registry.semver.CardVersion.model_computed_fields", "modulename": "opsml.registry.semver", "qualname": "CardVersion.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.registry.semver.SemVerUtils": {"fullname": "opsml.registry.semver.SemVerUtils", "modulename": "opsml.registry.semver", "qualname": "SemVerUtils", "kind": "class", "doc": "

Class for general semver-related functions

\n"}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"fullname": "opsml.registry.semver.SemVerUtils.sort_semvers", "modulename": "opsml.registry.semver", "qualname": "SemVerUtils.sort_semvers", "kind": "function", "doc": "

Implements bubble sort for semvers

\n\n
Arguments:
\n\n
    \n
  • versions: list of versions to sort
  • \n
\n\n
Returns:
\n\n
\n

sorted list of versions with highest version first

\n
\n", "signature": "(versions: List[str]) -> List[str]:", "funcdef": "def"}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"fullname": "opsml.registry.semver.SemVerUtils.is_release_candidate", "modulename": "opsml.registry.semver", "qualname": "SemVerUtils.is_release_candidate", "kind": "function", "doc": "

Ignores pre-release versions

\n", "signature": "(version: str) -> bool:", "funcdef": "def"}, "opsml.registry.semver.SemVerUtils.increment_version": {"fullname": "opsml.registry.semver.SemVerUtils.increment_version", "modulename": "opsml.registry.semver", "qualname": "SemVerUtils.increment_version", "kind": "function", "doc": "

Increments a version based on version type

\n\n
Arguments:
\n\n
    \n
  • version: Current version
  • \n
  • version_type: Type of version increment.
  • \n
  • pre_tag: Pre-release tag
  • \n
  • build_tag: Build tag
  • \n
\n\n
Raises:
\n\n
    \n
  • ValueError: unknown version_type
  • \n
\n\n
Returns:
\n\n
\n

New version

\n
\n", "signature": "(\tversion: str,\tversion_type: opsml.registry.semver.VersionType,\tpre_tag: str,\tbuild_tag: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.SemVerUtils.add_tags": {"fullname": "opsml.registry.semver.SemVerUtils.add_tags", "modulename": "opsml.registry.semver", "qualname": "SemVerUtils.add_tags", "kind": "function", "doc": "

\n", "signature": "(\tversion: str,\tpre_tag: Optional[str] = None,\tbuild_tag: Optional[str] = None) -> str:", "funcdef": "def"}, "opsml.registry.semver.SemVerRegistryValidator": {"fullname": "opsml.registry.semver.SemVerRegistryValidator", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator", "kind": "class", "doc": "

Class for obtaining the correct registry version

\n"}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.__init__", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.__init__", "kind": "function", "doc": "

Instantiate SemverValidator

\n\n
Arguments:
\n\n
    \n
  • name: name of the artifact
  • \n
  • version_type: type of version increment
  • \n
  • version: version to use
  • \n
  • pre_tag: pre-release tag
  • \n
  • build_tag: build tag
  • \n
\n\n
Returns:
\n\n
\n

None

\n
\n", "signature": "(\tname: str,\tversion_type: opsml.registry.semver.VersionType,\tpre_tag: str,\tbuild_tag: str,\tversion: Optional[opsml.registry.semver.CardVersion] = None)"}, "opsml.registry.semver.SemVerRegistryValidator.version": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.version", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.version", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.final_version", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.final_version", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.version_type", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.version_type", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver.SemVerRegistryValidator.name": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.name", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.name", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.pre_tag", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.pre_tag", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.build_tag", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.build_tag", "kind": "variable", "doc": "

\n"}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.version_to_search", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.version_to_search", "kind": "variable", "doc": "

Parses version and returns version to search for in the registry

\n", "annotation": ": Optional[str]"}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"fullname": "opsml.registry.semver.SemVerRegistryValidator.set_version", "modulename": "opsml.registry.semver", "qualname": "SemVerRegistryValidator.set_version", "kind": "function", "doc": "

Sets the correct version to use for incrementing and adding the the registry

\n\n
Arguments:
\n\n
    \n
  • versions: list of existing versions
  • \n
\n\n
Returns:
\n\n
\n

str: version to use

\n
\n", "signature": "(self, versions: List[str]) -> str:", "funcdef": "def"}, "opsml.registry.semver.SemVerSymbols": {"fullname": "opsml.registry.semver.SemVerSymbols", "modulename": "opsml.registry.semver", "qualname": "SemVerSymbols", "kind": "class", "doc": "

An enumeration.

\n", "bases": "builtins.str, enum.Enum"}, "opsml.registry.semver.SemVerSymbols.STAR": {"fullname": "opsml.registry.semver.SemVerSymbols.STAR", "modulename": "opsml.registry.semver", "qualname": "SemVerSymbols.STAR", "kind": "variable", "doc": "

\n", "default_value": "<SemVerSymbols.STAR: '*'>"}, "opsml.registry.semver.SemVerSymbols.CARET": {"fullname": "opsml.registry.semver.SemVerSymbols.CARET", "modulename": "opsml.registry.semver", "qualname": "SemVerSymbols.CARET", "kind": "variable", "doc": "

\n", "default_value": "<SemVerSymbols.CARET: '^'>"}, "opsml.registry.semver.SemVerSymbols.TILDE": {"fullname": "opsml.registry.semver.SemVerSymbols.TILDE", "modulename": "opsml.registry.semver", "qualname": "SemVerSymbols.TILDE", "kind": "variable", "doc": "

\n", "default_value": "<SemVerSymbols.TILDE: '~'>"}, "opsml.registry.semver.SemVerParser": {"fullname": "opsml.registry.semver.SemVerParser", "modulename": "opsml.registry.semver", "qualname": "SemVerParser", "kind": "class", "doc": "

Base class for semver parsing

\n"}, "opsml.registry.semver.SemVerParser.parse_version": {"fullname": "opsml.registry.semver.SemVerParser.parse_version", "modulename": "opsml.registry.semver", "qualname": "SemVerParser.parse_version", "kind": "function", "doc": "

\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.SemVerParser.validate": {"fullname": "opsml.registry.semver.SemVerParser.validate", "modulename": "opsml.registry.semver", "qualname": "SemVerParser.validate", "kind": "function", "doc": "

\n", "signature": "(version: str) -> bool:", "funcdef": "def"}, "opsml.registry.semver.StarParser": {"fullname": "opsml.registry.semver.StarParser", "modulename": "opsml.registry.semver", "qualname": "StarParser", "kind": "class", "doc": "

Parses versions that contain * symbol

\n", "bases": "SemVerParser"}, "opsml.registry.semver.StarParser.parse_version": {"fullname": "opsml.registry.semver.StarParser.parse_version", "modulename": "opsml.registry.semver", "qualname": "StarParser.parse_version", "kind": "function", "doc": "

\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.StarParser.validate": {"fullname": "opsml.registry.semver.StarParser.validate", "modulename": "opsml.registry.semver", "qualname": "StarParser.validate", "kind": "function", "doc": "

\n", "signature": "(version: str) -> bool:", "funcdef": "def"}, "opsml.registry.semver.CaretParser": {"fullname": "opsml.registry.semver.CaretParser", "modulename": "opsml.registry.semver", "qualname": "CaretParser", "kind": "class", "doc": "

Parses versions that contain ^ symbol

\n", "bases": "SemVerParser"}, "opsml.registry.semver.CaretParser.parse_version": {"fullname": "opsml.registry.semver.CaretParser.parse_version", "modulename": "opsml.registry.semver", "qualname": "CaretParser.parse_version", "kind": "function", "doc": "

\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.CaretParser.validate": {"fullname": "opsml.registry.semver.CaretParser.validate", "modulename": "opsml.registry.semver", "qualname": "CaretParser.validate", "kind": "function", "doc": "

\n", "signature": "(version: str) -> bool:", "funcdef": "def"}, "opsml.registry.semver.TildeParser": {"fullname": "opsml.registry.semver.TildeParser", "modulename": "opsml.registry.semver", "qualname": "TildeParser", "kind": "class", "doc": "

Parses versions that contain ~ symbol

\n", "bases": "SemVerParser"}, "opsml.registry.semver.TildeParser.parse_version": {"fullname": "opsml.registry.semver.TildeParser.parse_version", "modulename": "opsml.registry.semver", "qualname": "TildeParser.parse_version", "kind": "function", "doc": "

\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.TildeParser.validate": {"fullname": "opsml.registry.semver.TildeParser.validate", "modulename": "opsml.registry.semver", "qualname": "TildeParser.validate", "kind": "function", "doc": "

\n", "signature": "(version: str) -> bool:", "funcdef": "def"}, "opsml.registry.semver.NoParser": {"fullname": "opsml.registry.semver.NoParser", "modulename": "opsml.registry.semver", "qualname": "NoParser", "kind": "class", "doc": "

Does not parse version

\n", "bases": "SemVerParser"}, "opsml.registry.semver.NoParser.parse_version": {"fullname": "opsml.registry.semver.NoParser.parse_version", "modulename": "opsml.registry.semver", "qualname": "NoParser.parse_version", "kind": "function", "doc": "

\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.registry.semver.NoParser.validate": {"fullname": "opsml.registry.semver.NoParser.validate", "modulename": "opsml.registry.semver", "qualname": "NoParser.validate", "kind": "function", "doc": "

\n", "signature": "(version: str) -> bool:", "funcdef": "def"}, "opsml.registry.semver.get_version_to_search": {"fullname": "opsml.registry.semver.get_version_to_search", "modulename": "opsml.registry.semver", "qualname": "get_version_to_search", "kind": "function", "doc": "

Parses a current version based on SemVer characters.

\n\n
Arguments:
\n\n
    \n
  • version (str): ArtifactCard version
  • \n
\n\n
Returns:
\n\n
\n

Version (str) to search based on presence of SemVer characters

\n
\n", "signature": "(version: str) -> str:", "funcdef": "def"}, "opsml.settings.config": {"fullname": "opsml.settings.config", "modulename": "opsml.settings.config", "kind": "module", "doc": "

\n"}, "opsml.settings.config.OpsmlConfig": {"fullname": "opsml.settings.config.OpsmlConfig", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig", "kind": "class", "doc": "

Base class for settings, allowing values to be overridden by environment variables.

\n\n

This is useful in production for secrets you do not wish to save in code, it plays nicely with docker(-compose),\nHeroku and any 12 factor app design.

\n\n

All the below attributes can be set via model_config.

\n\n
Arguments:
\n\n
    \n
  • _case_sensitive: Whether environment variables names should be read with case-sensitivity. Defaults to None.
  • \n
  • _env_prefix: Prefix for all environment variables. Defaults to None.
  • \n
  • _env_file: The env file(s) to load settings values from. Defaults to Path(''), which\nmeans that the value from model_config['env_file'] should be used. You can also pass\nNone to indicate that environment variables should not be loaded from an env file.
  • \n
  • _env_file_encoding: The env file encoding, e.g. 'latin-1'. Defaults to None.
  • \n
  • _env_ignore_empty: Ignore environment variables where the value is an empty string. Default to False.
  • \n
  • _env_nested_delimiter: The nested env values delimiter. Defaults to None.
  • \n
  • _env_parse_none_str: The env string value that should be parsed (e.g. \"null\", \"void\", \"None\", etc.)\ninto None type(None). Defaults to None type(None), which means no parsing should occur.
  • \n
  • _secrets_dir: The secret files directory. Defaults to None.
  • \n
\n", "bases": "pydantic_settings.main.BaseSettings"}, "opsml.settings.config.OpsmlConfig.app_name": {"fullname": "opsml.settings.config.OpsmlConfig.app_name", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.app_name", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.app_env": {"fullname": "opsml.settings.config.OpsmlConfig.app_env", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.app_env", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_storage_uri", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_storage_uri", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_tracking_uri", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_tracking_uri", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_prod_token", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_prod_token", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_proxy_root", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_proxy_root", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_registry_path", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_registry_path", "kind": "variable", "doc": "

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_testing", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_testing", "kind": "variable", "doc": "

\n", "annotation": ": bool"}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"fullname": "opsml.settings.config.OpsmlConfig.download_chunk_size", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.download_chunk_size", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"fullname": "opsml.settings.config.OpsmlConfig.upload_chunk_size", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.upload_chunk_size", "kind": "variable", "doc": "

\n", "annotation": ": int"}, "opsml.settings.config.OpsmlConfig.opsml_username": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_username", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_username", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.settings.config.OpsmlConfig.opsml_password": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_password", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_password", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"fullname": "opsml.settings.config.OpsmlConfig.opsml_run_id", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.opsml_run_id", "kind": "variable", "doc": "

\n", "annotation": ": Optional[str]"}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"fullname": "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.set_opsml_storage_uri", "kind": "function", "doc": "

Opsml uses storage cients that follow fsspec guidelines. LocalFileSytem only deals\nin absolutes, so we need to convert relative paths to absolute paths.

\n", "signature": "(cls, opsml_storage_uri: str) -> str:", "funcdef": "def"}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"fullname": "opsml.settings.config.OpsmlConfig.is_tracking_local", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.is_tracking_local", "kind": "variable", "doc": "

Used to determine if an API client will be used.

\n\n

If tracking is local, the [server] extra is required.

\n", "annotation": ": bool"}, "opsml.settings.config.OpsmlConfig.storage_system": {"fullname": "opsml.settings.config.OpsmlConfig.storage_system", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.storage_system", "kind": "variable", "doc": "

Returns the storage system used for the current tracking URI

\n", "annotation": ": opsml.types.storage.StorageSystem"}, "opsml.settings.config.OpsmlConfig.storage_root": {"fullname": "opsml.settings.config.OpsmlConfig.storage_root", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.storage_root", "kind": "variable", "doc": "

Returns the root of the storage URI

\n", "annotation": ": str"}, "opsml.settings.config.OpsmlConfig.model_config": {"fullname": "opsml.settings.config.OpsmlConfig.model_config", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.model_config", "kind": "variable", "doc": "

\n", "annotation": ": ClassVar[pydantic_settings.main.SettingsConfigDict]", "default_value": "{'extra': 'forbid', 'arbitrary_types_allowed': True, 'validate_default': True, 'case_sensitive': False, 'env_prefix': '', 'env_file': None, 'env_file_encoding': None, 'env_ignore_empty': False, 'env_nested_delimiter': None, 'env_parse_none_str': None, 'json_file': None, 'json_file_encoding': None, 'yaml_file': None, 'yaml_file_encoding': None, 'toml_file': None, 'secrets_dir': None, 'protected_namespaces': ('model_', 'settings_')}"}, "opsml.settings.config.OpsmlConfig.model_fields": {"fullname": "opsml.settings.config.OpsmlConfig.model_fields", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.model_fields", "kind": "variable", "doc": "

\n", "default_value": "{'app_name': FieldInfo(annotation=str, required=False, default='opsml'), 'app_env': FieldInfo(annotation=str, required=False, default='development'), 'opsml_storage_uri': FieldInfo(annotation=str, required=False, default='./mlruns'), 'opsml_tracking_uri': FieldInfo(annotation=str, required=False, default='sqlite:///tmp.db'), 'opsml_prod_token': FieldInfo(annotation=str, required=False, default='staging'), 'opsml_proxy_root': FieldInfo(annotation=str, required=False, default='opsml-root:/'), 'opsml_registry_path': FieldInfo(annotation=str, required=False, default='model_registry'), 'opsml_testing': FieldInfo(annotation=bool, required=False, default=False), 'download_chunk_size': FieldInfo(annotation=int, required=False, default=31457280), 'upload_chunk_size': FieldInfo(annotation=int, required=False, default=31457280), 'opsml_username': FieldInfo(annotation=Union[str, NoneType], required=False), 'opsml_password': FieldInfo(annotation=Union[str, NoneType], required=False), 'opsml_run_id': FieldInfo(annotation=Union[str, NoneType], required=False)}"}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"fullname": "opsml.settings.config.OpsmlConfig.model_computed_fields", "modulename": "opsml.settings.config", "qualname": "OpsmlConfig.model_computed_fields", "kind": "variable", "doc": "

\n", "default_value": "{}"}, "opsml.settings.config.config": {"fullname": "opsml.settings.config.config", "modulename": "opsml.settings.config", "qualname": "config", "kind": "variable", "doc": "

\n", "default_value": "OpsmlConfig(app_name='opsml', app_env='development', opsml_storage_uri='gs://opsml-integration', opsml_tracking_uri='sqlite:///tmp.db', opsml_prod_token='staging', opsml_proxy_root='opsml-root:/', opsml_registry_path='model_registry', opsml_testing=False, download_chunk_size=31457280, upload_chunk_size=31457280, opsml_username=None, opsml_password=None, opsml_run_id=None)"}, "opsml.types.huggingface": {"fullname": "opsml.types.huggingface", "modulename": "opsml.types.huggingface", "kind": "module", "doc": "

\n"}, "opsml.types.huggingface.HuggingFaceTask": {"fullname": "opsml.types.huggingface.HuggingFaceTask", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask", "kind": "class", "doc": "

An enumeration.

\n", "bases": "builtins.str, enum.Enum"}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.AUDIO_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.AUDIO_CLASSIFICATION: 'audio-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION: 'automatic-speech-recognition'>"}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"fullname": "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.CONVERSATIONAL", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.CONVERSATIONAL: 'conversational'>"}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.DEPTH_ESTIMATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.DEPTH_ESTIMATION: 'depth-estimation'>"}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"fullname": "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING: 'document-question-answering'>"}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.FEATURE_EXTRACTION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.FEATURE_EXTRACTION: 'feature-extraction'>"}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"fullname": "opsml.types.huggingface.HuggingFaceTask.FILL_MASK", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.FILL_MASK", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.FILL_MASK: 'fill-mask'>"}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.IMAGE_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.IMAGE_CLASSIFICATION: 'image-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.IMAGE_SEGMENTATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.IMAGE_SEGMENTATION: 'image-segmentation'>"}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"fullname": "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.IMAGE_TO_IMAGE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.IMAGE_TO_IMAGE: 'image-to-image'>"}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"fullname": "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.IMAGE_TO_TEXT", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.IMAGE_TO_TEXT: 'image-to-text'>"}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.MASK_GENERATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.MASK_GENERATION: 'mask-generation'>"}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.OBJECT_DETECTION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.OBJECT_DETECTION: 'object-detection'>"}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"fullname": "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.QUESTION_ANSWERING", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.QUESTION_ANSWERING: 'question-answering'>"}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.SUMMARIZATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.SUMMARIZATION: 'summarization'>"}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TABLE_QUESTION_ANSWERING", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TABLE_QUESTION_ANSWERING: 'table-question-answering'>"}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TEXT2TEXT_GENERATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TEXT2TEXT_GENERATION: 'text2text-generation'>"}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TEXT_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TEXT_CLASSIFICATION: 'text-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TEXT_GENERATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TEXT_GENERATION: 'text-generation'>"}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TEXT_TO_AUDIO", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TEXT_TO_AUDIO: 'text-to-audio'>"}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TOKEN_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TOKEN_CLASSIFICATION: 'token-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TRANSLATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TRANSLATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TRANSLATION: 'translation'>"}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"fullname": "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.TRANSLATION_XX_TO_YY", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.TRANSLATION_XX_TO_YY: 'translation_xx_to_yy'>"}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.VIDEO_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.VIDEO_CLASSIFICATION: 'video-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"fullname": "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.VISUAL_QUESTION_ANSWERING", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.VISUAL_QUESTION_ANSWERING: 'visual-question-answering'>"}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.ZERO_SHOT_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.ZERO_SHOT_CLASSIFICATION: 'zero-shot-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION: 'zero-shot-image-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION: 'zero-shot-audio-classification'>"}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"fullname": "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION: 'zero-shot-object-detection'>"}, "opsml.types.huggingface.GENERATION_TYPES": {"fullname": "opsml.types.huggingface.GENERATION_TYPES", "modulename": "opsml.types.huggingface", "qualname": "GENERATION_TYPES", "kind": "variable", "doc": "

\n", "default_value": "['mask-generation', 'text-generation', 'text2text-generation']"}, "opsml.types.huggingface.HuggingFaceORTModel": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel", "kind": "class", "doc": "

An enumeration.

\n", "bases": "builtins.str, enum.Enum"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION: 'ORTModelForAudioClassification'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION: 'ORTModelForAudioFrameClassification'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_AUDIO_XVECTOR", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_AUDIO_XVECTOR: 'ORTModelForAudioXVector'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_CUSTOM_TASKS", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_CUSTOM_TASKS: 'ORTModelForCustomTasks'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_CTC", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_CTC: 'ORTModelForCTC'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_FEATURE_EXTRACTION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_FEATURE_EXTRACTION: 'ORTModelForFeatureExtraction'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION: 'ORTModelForImageClassification'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_MASKED_LM", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_MASKED_LM: 'ORTModelForMaskedLM'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_MULTIPLE_CHOICE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_MULTIPLE_CHOICE: 'ORTModelForMultipleChoice'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_QUESTION_ANSWERING", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_QUESTION_ANSWERING: 'ORTModelForQuestionAnswering'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION: 'ORTModelForSemanticSegmentation'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION: 'ORTModelForSequenceClassification'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION: 'ORTModelForTokenClassification'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_SEQ2SEQ_LM", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_SEQ2SEQ_LM: 'ORTModelForSeq2SeqLM'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ: 'ORTModelForSpeechSeq2Seq'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_VISION2SEQ", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_VISION2SEQ: 'ORTModelForVision2Seq'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_PIX2STRUCT", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_PIX2STRUCT: 'ORTModelForPix2Struct'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_CAUSAL_LM", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_CAUSAL_LM: 'ORTModelForCausalLM'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_OPTIMIZER", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_OPTIMIZER: 'ORTOptimizer'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_QUANTIZER", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_QUANTIZER: 'ORTQuantizer'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_TRAINER", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_TRAINER: 'ORTTrainer'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER: 'ORTSeq2SeqTrainer'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS: 'ORTTrainingArguments'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS: 'ORTSeq2SeqTrainingArguments'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE: 'ORTStableDiffusionPipeline'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE: 'ORTStableDiffusionImg2ImgPipeline'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE: 'ORTStableDiffusionInpaintPipeline'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE: 'ORTStableDiffusionXLPipeline'>"}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"fullname": "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE", "modulename": "opsml.types.huggingface", "qualname": "HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE", "kind": "variable", "doc": "

\n", "default_value": "<HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE: 'ORTStableDiffusionXLImg2ImgPipeline'>"}}, "docInfo": {"opsml.cards.base": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 8}, "opsml.cards.base.ArtifactCard.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 20, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.name": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.repository": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.contact": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.version": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.uid": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.info": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.tags": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.validate_args": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 40}, "opsml.cards.base.ArtifactCard.create_registry_record": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "opsml.cards.base.ArtifactCard.add_tag": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.uri": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "opsml.cards.base.ArtifactCard.artifact_uri": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 17}, "opsml.cards.base.ArtifactCard.card_type": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 88, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.DIR_PATH": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.Question": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.cards.audit.Question.question": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.Question.purpose": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.Question.response": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.Question.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.Question.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 30, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.Question.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.cards.audit.AuditSections.business_understanding": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.data_understanding": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.data_preparation": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.modeling": {"qualname": 2, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.evaluation": {"qualname": 2, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.deployment_ops": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.misc": {"qualname": 2, "fullname": 5, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.load_sections": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 12}, "opsml.cards.audit.AuditSections.load_yaml_template": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 83, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditSections.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditQuestionTable": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "opsml.cards.audit.AuditQuestionTable.table": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditQuestionTable.create_table": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 7}, "opsml.cards.audit.AuditQuestionTable.add_row": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 6}, "opsml.cards.audit.AuditQuestionTable.add_section": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 4}, "opsml.cards.audit.AuditQuestionTable.print_table": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 4}, "opsml.cards.audit.AuditCard": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 142}, "opsml.cards.audit.AuditCard.audit": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.approved": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.comments": {"qualname": 2, "fullname": 5, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.metadata": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.add_comment": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 31}, "opsml.cards.audit.AuditCard.create_registry_record": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "opsml.cards.audit.AuditCard.add_card": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 31}, "opsml.cards.audit.AuditCard.business": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.data_understanding": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.data_preparation": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.modeling": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.evaluation": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.deployment": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.misc": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.list_questions": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 38}, "opsml.cards.audit.AuditCard.answer_question": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 53}, "opsml.cards.audit.AuditCard.card_type": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 20, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 4174, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.audit.AuditCard.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.DataCard": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 152}, "opsml.cards.data.DataCard.interface": {"qualname": 2, "fullname": 5, "annotation": 15, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.DataCard.metadata": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.DataCard.load_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 38, "bases": 0, "doc": 154}, "opsml.cards.data.DataCard.load_data_profile": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 6}, "opsml.cards.data.DataCard.create_registry_record": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 19}, "opsml.cards.data.DataCard.add_info": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 39}, "opsml.cards.data.DataCard.create_data_profile": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 50}, "opsml.cards.data.DataCard.split_data": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 10}, "opsml.cards.data.DataCard.data_splits": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 5}, "opsml.cards.data.DataCard.data": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 4}, "opsml.cards.data.DataCard.data_profile": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 5}, "opsml.cards.data.DataCard.card_type": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.DataCard.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 20, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.DataCard.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 144, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.data.DataCard.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 206}, "opsml.cards.model.ModelCard.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 29, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.interface": {"qualname": 2, "fullname": 5, "annotation": 9, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.datacard_uid": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.to_onnx": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.metadata": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.check_uid": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.load_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 10}, "opsml.cards.model.ModelCard.download_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 64}, "opsml.cards.model.ModelCard.load_onnx_model": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 7}, "opsml.cards.model.ModelCard.load_preprocessor": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 7}, "opsml.cards.model.ModelCard.create_registry_record": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 10}, "opsml.cards.model.ModelCard.model": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.cards.model.ModelCard.sample_data": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "opsml.cards.model.ModelCard.preprocessor": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.cards.model.ModelCard.onnx_model": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "opsml.cards.model.ModelCard.model_metadata": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "opsml.cards.model.ModelCard.card_type": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 183, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.model.ModelCard.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.project": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.project.ProjectCard": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 6}, "opsml.cards.project.ProjectCard.project_id": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.project.ProjectCard.create_registry_record": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 9}, "opsml.cards.project.ProjectCard.card_type": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.project.ProjectCard.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 20, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.project.ProjectCard.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 100, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.project.ProjectCard.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 248}, "opsml.cards.run.RunCard.datacard_uids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.modelcard_uids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.pipelinecard_uid": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.metrics": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.parameters": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.artifact_uris": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.tags": {"qualname": 2, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.project": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.validate_defaults_args": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.add_tag": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 30}, "opsml.cards.run.RunCard.add_tags": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 22}, "opsml.cards.run.RunCard.log_graph": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 248, "bases": 0, "doc": 210}, "opsml.cards.run.RunCard.log_parameters": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 22}, "opsml.cards.run.RunCard.log_parameter": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 28}, "opsml.cards.run.RunCard.log_metric": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 97, "bases": 0, "doc": 50}, "opsml.cards.run.RunCard.log_metrics": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 49}, "opsml.cards.run.RunCard.log_artifact_from_file": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 97, "bases": 0, "doc": 77}, "opsml.cards.run.RunCard.create_registry_record": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 10}, "opsml.cards.run.RunCard.add_card_uid": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 39}, "opsml.cards.run.RunCard.get_metric": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 38}, "opsml.cards.run.RunCard.load_metrics": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 6}, "opsml.cards.run.RunCard.get_parameter": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 38}, "opsml.cards.run.RunCard.load_artifacts": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 7}, "opsml.cards.run.RunCard.uri": {"qualname": 2, "fullname": 5, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 15}, "opsml.cards.run.RunCard.card_type": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 20, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 171, "signature": 0, "bases": 0, "doc": 3}, "opsml.cards.run.RunCard.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.Data": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.Data.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 3}, "opsml.data.splitter.Data.X": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.Data.y": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.data.splitter.DataSplit.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.label": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.column_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.column_value": {"qualname": 3, "fullname": 6, "annotation": 10, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.inequality": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.start": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.stop": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.indices": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.convert_to_list": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 11}, "opsml.data.splitter.DataSplit.trim_whitespace": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 7}, "opsml.data.splitter.DataSplit.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 76, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplit.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.split": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.column_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.column_value": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.indices": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.start": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.stop": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 66, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitterBase.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PolarsColumnSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 7}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PolarsIndexSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 8}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PolarsRowsSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 8}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PandasIndexSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "opsml.data.splitter.PandasIndexSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PandasRowSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "opsml.data.splitter.PandasRowSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "opsml.data.splitter.PandasRowSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PandasColumnSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "opsml.data.splitter.PandasColumnSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.PyArrowIndexSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 3}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.NumpyIndexSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 89, "bases": 0, "doc": 3}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.NumpyRowSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 3}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 89, "bases": 0, "doc": 3}, "opsml.data.splitter.NumpyRowSplitter.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitter": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.data.splitter.DataSplitter.split": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 185, "bases": 0, "doc": 3}, "opsml.model.interfaces.base": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.get_processor_name": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.get_model_args": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.SamplePrediction": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 31}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.model.interfaces.base.ModelInterface.model": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"qualname": 3, "fullname": 7, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.task_type": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.model_type": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.data_type": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.base.ModelInterface.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 28}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 31}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 7}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 22}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.base.ModelInterface.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 89, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 136}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 7, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 28}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 7}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 31}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 26}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 115, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 270}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"qualname": 2, "fullname": 6, "annotation": 15, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"qualname": 2, "fullname": 6, "annotation": 11, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"qualname": 3, "fullname": 7, "annotation": 12, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"qualname": 3, "fullname": 7, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"qualname": 4, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 10}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 10}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 27}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 31}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 35}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 6}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 7}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 179, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 152}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"qualname": 2, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 10, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 40}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 26}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 116, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning": {"qualname": 0, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"qualname": 1, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 106}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"qualname": 2, "fullname": 7, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"qualname": 3, "fullname": 8, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 7}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 6}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"qualname": 3, "fullname": 8, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"qualname": 2, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"qualname": 3, "fullname": 8, "annotation": 0, "default_value": 144, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"qualname": 4, "fullname": 9, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 145}, "opsml.model.interfaces.pytorch.TorchModel.model": {"qualname": 2, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 11, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"qualname": 3, "fullname": 7, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"qualname": 3, "fullname": 7, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 34}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 33}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 7}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 26}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.pytorch.TorchModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 144, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 117}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 10, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 26}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 115, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 116}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"qualname": 2, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 39, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 34}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 26}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 125, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 74}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"qualname": 2, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 27}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 80}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 36}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 101, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 133}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"qualname": 2, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"qualname": 3, "fullname": 7, "annotation": 13, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 40}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 33}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 26}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 21}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 31}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 24}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 117, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.model.challenger.BattleReport.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 8, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.champion_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.champion_version": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.champion_metric": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.challenger_metric": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.challenger_win": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 54, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.BattleReport.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.MetricName": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 4, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.MetricValue": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.model.challenger.ChallengeInputs.metric_name": {"qualname": 3, "fullname": 6, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.metric_value": {"qualname": 3, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"qualname": 4, "fullname": 7, "annotation": 3, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.metric_names": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.metric_values": {"qualname": 3, "fullname": 6, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.thresholds": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.convert_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.convert_value": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 41, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ModelChallenger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ModelChallenger.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 20}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 210, "bases": 0, "doc": 84}, "opsml.model.loader": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 14}, "opsml.model.loader.ModelLoader.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 31}, "opsml.model.loader.ModelLoader.path": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader.metadata": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader.interface": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader.model": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader.onnx_model": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader.preprocessor": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.model.loader.ModelLoader.load_preprocessor": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 6}, "opsml.model.loader.ModelLoader.load_model": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "opsml.model.loader.ModelLoader.load_onnx_model": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 51}, "opsml.profile.profile_data": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.profile.profile_data.DIR_PATH": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 6, "signature": 0, "bases": 0, "doc": 3}, "opsml.profile.profile_data.ProfileReport": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 2, "signature": 0, "bases": 0, "doc": 3}, "opsml.profile.profile_data.DataProfiler": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"qualname": 4, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 55}, "opsml.profile.profile_data.DataProfiler.load_profile": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 39}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 25, "bases": 0, "doc": 33}, "opsml.projects.active_run": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.logger": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 67, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo.storage_client": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo.registries": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo.runcard": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo.run_id": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.RunInfo.run_name": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.CardHandler": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "opsml.projects.active_run.CardHandler.register_card": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 129, "bases": 0, "doc": 5}, "opsml.projects.active_run.CardHandler.load_card": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 88, "bases": 0, "doc": 5}, "opsml.projects.active_run.CardHandler.update_card": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 5}, "opsml.projects.active_run.ActiveRun": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 39}, "opsml.projects.active_run.ActiveRun.runcard": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.run_id": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.projects.active_run.ActiveRun.run_name": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 6}, "opsml.projects.active_run.ActiveRun.active": {"qualname": 2, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.add_tag": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 35}, "opsml.projects.active_run.ActiveRun.add_tags": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 26}, "opsml.projects.active_run.ActiveRun.register_card": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 109, "bases": 0, "doc": 44}, "opsml.projects.active_run.ActiveRun.load_card": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 78}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 97, "bases": 0, "doc": 77}, "opsml.projects.active_run.ActiveRun.log_metric": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 54}, "opsml.projects.active_run.ActiveRun.log_metrics": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 36}, "opsml.projects.active_run.ActiveRun.log_parameter": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 29}, "opsml.projects.active_run.ActiveRun.log_parameters": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 25}, "opsml.projects.active_run.ActiveRun.log_graph": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 281, "bases": 0, "doc": 214}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 8}, "opsml.projects.active_run.ActiveRun.run_data": {"qualname": 3, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.metrics": {"qualname": 2, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.parameters": {"qualname": 2, "fullname": 6, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.tags": {"qualname": 2, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"qualname": 3, "fullname": 7, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 232}, "opsml.projects.project.OpsmlProject.run_id": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.projects.project.OpsmlProject.project_id": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.project_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 25}, "opsml.projects.project.OpsmlProject.load_card": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 75}, "opsml.projects.project.OpsmlProject.list_runs": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 24}, "opsml.projects.project.OpsmlProject.runcard": {"qualname": 2, "fullname": 5, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.metrics": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.get_metric": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 33}, "opsml.projects.project.OpsmlProject.parameters": {"qualname": 2, "fullname": 5, "annotation": 6, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.get_parameter": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 72, "bases": 0, "doc": 33}, "opsml.projects.project.OpsmlProject.tags": {"qualname": 2, "fullname": 5, "annotation": 4, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.projects.project.OpsmlProject.datacard_uids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.registry.registry": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistry": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistry.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 83}, "opsml.registry.registry.CardRegistry.table_name": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistry.registry_type": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "opsml.registry.registry.CardRegistry.list_cards": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 269, "bases": 0, "doc": 164}, "opsml.registry.registry.CardRegistry.load_card": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 304, "bases": 0, "doc": 130}, "opsml.registry.registry.CardRegistry.register_card": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 155, "bases": 0, "doc": 83}, "opsml.registry.registry.CardRegistry.update_card": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 25}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 48}, "opsml.registry.registry.CardRegistry.delete_card": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 21}, "opsml.registry.registry.CardRegistries": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistries.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 8}, "opsml.registry.registry.CardRegistries.data": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistries.model": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistries.run": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistries.pipeline": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistries.project": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.registry.CardRegistries.audit": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.logger": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 7, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 5}, "opsml.registry.semver.VersionType.MAJOR": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType.MINOR": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType.PATCH": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType.PRE": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType.BUILD": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType.PRE_BUILD": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.VersionType.from_str": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 380}, "opsml.registry.semver.CardVersion.version": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.version_splits": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.is_full_semver": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.validate_inputs": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 7}, "opsml.registry.semver.CardVersion.check_full_semver": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 10}, "opsml.registry.semver.CardVersion.has_major_minor": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 12}, "opsml.registry.semver.CardVersion.major": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.minor": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.patch": {"qualname": 2, "fullname": 5, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.valid_version": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 34}, "opsml.registry.semver.CardVersion.get_version_to_search": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 46, "bases": 0, "doc": 44}, "opsml.registry.semver.CardVersion.model_config": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 36, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.CardVersion.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerUtils": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 8}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 41}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 6}, "opsml.registry.semver.SemVerUtils.increment_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 77}, "opsml.registry.semver.SemVerUtils.add_tags": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 70, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 105, "bases": 0, "doc": 65}, "opsml.registry.semver.SemVerRegistryValidator.version": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator.name": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 13}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 44}, "opsml.registry.semver.SemVerSymbols": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 5}, "opsml.registry.semver.SemVerSymbols.STAR": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerSymbols.CARET": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerSymbols.TILDE": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerParser": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 7}, "opsml.registry.semver.SemVerParser.parse_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.SemVerParser.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.StarParser": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 8}, "opsml.registry.semver.StarParser.parse_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.StarParser.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.CaretParser": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 8}, "opsml.registry.semver.CaretParser.parse_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.CaretParser.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.TildeParser": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 8}, "opsml.registry.semver.TildeParser.parse_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.TildeParser.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.NoParser": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 1, "doc": 6}, "opsml.registry.semver.NoParser.parse_version": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.NoParser.validate": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 3}, "opsml.registry.semver.get_version_to_search": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 46}, "opsml.settings.config": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 297}, "opsml.settings.config.OpsmlConfig.app_name": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.app_env": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_username": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_password": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 26}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"qualname": 4, "fullname": 7, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 25}, "opsml.settings.config.OpsmlConfig.storage_system": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 0, "signature": 0, "bases": 0, "doc": 12}, "opsml.settings.config.OpsmlConfig.storage_root": {"qualname": 3, "fullname": 6, "annotation": 2, "default_value": 0, "signature": 0, "bases": 0, "doc": 9}, "opsml.settings.config.OpsmlConfig.model_config": {"qualname": 3, "fullname": 6, "annotation": 5, "default_value": 119, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.model_fields": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 180, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 1, "signature": 0, "bases": 0, "doc": 3}, "opsml.settings.config.config": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 67, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 5}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 9, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 15, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 15, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 15, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 15, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.GENERATION_TYPES": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 14, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 5}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 10, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 10, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 10, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 10, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 10, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 10, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 11, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 12, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 13, "signature": 0, "bases": 0, "doc": 3}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"qualname": 7, "fullname": 10, "annotation": 0, "default_value": 14, "signature": 0, "bases": 0, "doc": 3}}, "length": 687, "save": true}, "index": {"qualname": {"root": {"docs": {"opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 12, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 38}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}}, "df": 17}}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}}, "df": 14}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.data.splitter.DataSplit.label": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}}, "df": 17}}}}, "s": {"docs": {"opsml.cards.run.RunCard.load_artifacts": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}}, "df": 7}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 3}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}}, "df": 13}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}}, "df": 6}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}}, "df": 21}}}}}, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 6}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {"opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.approved": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 5}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.active": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.ActiveRun": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 22}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.registry.registry.CardRegistries.model": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 142, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}}, "df": 25}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 24}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 4}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 11}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}}, "df": 11, "s": {"docs": {"opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.MetricName": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.MetricValue": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 24}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.contact": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 9}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 23}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.comments": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}}, "df": 20}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 19, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 10}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistries": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.data": {"tf": 1}, "opsml.registry.registry.CardRegistries.model": {"tf": 1}, "opsml.registry.registry.CardRegistries.run": {"tf": 1}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1}, "opsml.registry.registry.CardRegistries.project": {"tf": 1}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1}}, "df": 8}}}}}}}}}}, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}}, "df": 16}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}}, "df": 3}}}}}}}}}, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}}, "df": 20}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 14}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1, "r": {"docs": {"opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}}, "df": 13}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}}, "df": 10, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 13}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}}, "df": 31, "s": {"docs": {"opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.NumpyIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.NumpyRowSplitter": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.NoParser": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.repository": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.RunInfo.registries": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question.response": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.registry.registry.CardRegistries.run": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}}, "df": 9, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}}, "df": 33}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.projects.active_run.RunInfo": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {"opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 19, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}}, "df": 8}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.semver.CardVersion.valid_version": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}}, "df": 18}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 5, "s": {"docs": {"opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 6, "s": {"docs": {"opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 11}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.data.splitter.DataSplit.inequality": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {"opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}}, "df": 6}, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 5}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}}, "df": 6}}}, "g": {"2": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 2}}}}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}}, "df": 5, "s": {"docs": {"opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}}, "df": 7}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}}, "df": 13, "s": {"docs": {"opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}}, "df": 17}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"2": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}}, "df": 1}}}}}, "docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}}, "df": 4}}}, "o": {"docs": {"opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 15, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}}, "df": 22}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 46}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2}, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 5}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.data.splitter.Data": {"tf": 1}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.Data.y": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.registry.registry.CardRegistries.data": {"tf": 1}}, "df": 33, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}}, "df": 19}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}}, "df": 13, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.DataSplitter": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplitterBase": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}}, "df": 12}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.profile.profile_data.DataProfiler": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}}, "df": 5}, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}}, "df": 4, "s": {"docs": {"opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}}, "df": 5}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}}, "df": 5}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PandasIndexSplitter": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PandasRowSplitter": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PandasColumnSplitter": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question.purpose": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}}, "df": 34}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}}, "df": 7}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.profile.profile_data.ProfileReport": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.registry.registry.CardRegistries.project": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}}, "df": 7}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.base.get_processor_name": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 8, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 13, "s": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}}, "df": 9}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {"opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 10, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.project.OpsmlProject": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 16}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 21}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {"opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 22}}}, "r": {"docs": {"opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}}, "df": 1, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 29}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 2}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 2}}}}}}}}}}, "q": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 4}}}}, "docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 13, "s": {"docs": {"opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}}, "df": 18, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}}, "df": 26}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}}, "df": 1, "t": {"docs": {"opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}}, "df": 3}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {"opsml.registry.semver.VersionType.from_str": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}}, "df": 17}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}}, "df": 14}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 4}}}}, "y": {"docs": {"opsml.data.splitter.Data.y": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 14}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}}, "df": 4}}}}}}}}}}, "x": {"docs": {"opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}}, "df": 2, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}}, "df": 21}}}}}}}}}}}, "x": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 2}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}}, "df": 28}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 30}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 30}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 4}}}}}}, "fullname": {"root": {"docs": {"opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.catboost_": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 12, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.base": {"tf": 1}, "opsml.cards.base.logger": {"tf": 1}, "opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter": {"tf": 1}, "opsml.data.splitter.Data": {"tf": 1}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.Data.y": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplitterBase": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.interfaces.base": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.MetricName": {"tf": 1}, "opsml.model.challenger.MetricValue": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ModelChallenger": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.profile.profile_data": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}, "opsml.profile.profile_data.ProfileReport": {"tf": 1}, "opsml.profile.profile_data.DataProfiler": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.active_run.RunInfo": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.projects.project.OpsmlProject": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.registry.CardRegistry": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.registry.CardRegistries": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.data": {"tf": 1}, "opsml.registry.registry.CardRegistries.model": {"tf": 1}, "opsml.registry.registry.CardRegistries.run": {"tf": 1}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1}, "opsml.registry.registry.CardRegistries.project": {"tf": 1}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1}, "opsml.registry.semver": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}, "opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}, "opsml.types.huggingface": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 687, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.project.OpsmlProject": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 16}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 21}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {"opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 22}}}, "r": {"docs": {"opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}}, "df": 1, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 29}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 19, "s": {"docs": {"opsml.cards.base": {"tf": 1}, "opsml.cards.base.logger": {"tf": 1}, "opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 150}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 10}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistries": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.data": {"tf": 1}, "opsml.registry.registry.CardRegistries.model": {"tf": 1}, "opsml.registry.registry.CardRegistries.run": {"tf": 1}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1}, "opsml.registry.registry.CardRegistries.project": {"tf": 1}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1}}, "df": 8}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}}, "df": 16}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}}, "df": 3}}}}}}}}}, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}}, "df": 22, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}}, "df": 20}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.settings.config": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 45}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.contact": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 9}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 23}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.comments": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}}, "df": 20}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 14}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1, "r": {"docs": {"opsml.model.challenger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.MetricName": {"tf": 1}, "opsml.model.challenger.MetricValue": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ModelChallenger": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 30}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}}, "df": 13}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}}, "df": 10, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 13}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base": {"tf": 1}, "opsml.cards.base.logger": {"tf": 1}, "opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}}, "df": 51}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}}, "df": 9}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 12, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}}, "df": 13}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 38, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.loader": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 12}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 4}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}}, "df": 17}}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.pytorch_lightning": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}}, "df": 15, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}}, "df": 14}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.data.splitter.DataSplit.label": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {"opsml.model.interfaces.lgbm": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}}, "df": 18}}}, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}}, "df": 17}}}}, "s": {"docs": {"opsml.cards.run.RunCard.load_artifacts": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}}, "df": 7}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 3}}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}}, "df": 12}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1}}, "df": 52, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}}, "df": 13}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}}, "df": 6}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}}, "df": 21}}}}}, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 6}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {"opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.approved": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 5}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.active_run.RunInfo": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 35, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.ActiveRun": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 22}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.MetricName": {"tf": 1}, "opsml.model.challenger.MetricValue": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.model": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 306, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}}, "df": 25}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 24}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 4}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 11}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}}, "df": 11, "s": {"docs": {"opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}}, "df": 6}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.MetricName": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.MetricValue": {"tf": 1}}, "df": 1}}}}}}}}}}, "a": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}}, "df": 31, "s": {"docs": {"opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.NumpyIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.NumpyRowSplitter": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.NoParser": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.repository": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.registry.registry": {"tf": 1.4142135623730951}, "opsml.registry.registry.logger": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.data": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.model": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.run": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.project": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1.4142135623730951}, "opsml.registry.semver": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}, "opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}}, "df": 88}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.RunInfo.registries": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 3}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question.response": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.run": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.projects.active_run": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.active_run.RunInfo": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1.4142135623730951}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.registry.registry.CardRegistries.run": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}}, "df": 70, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}}, "df": 33}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.projects.active_run.RunInfo": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {"opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 19, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}}, "df": 8}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.semver.CardVersion.valid_version": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}}, "df": 18}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 5, "s": {"docs": {"opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.vowpal": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}}, "df": 15, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 6, "s": {"docs": {"opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.model.loader.ModelLoader.interface": {"tf": 1}}, "df": 3, "s": {"docs": {"opsml.model.interfaces.base": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}}, "df": 211}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 11}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.data.splitter.DataSplit.inequality": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {"opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}}, "df": 6}, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 5}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}}, "df": 6}}}, "g": {"2": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 2}}}}, "docs": {}, "df": 0}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}}, "df": 5, "s": {"docs": {"opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}}, "df": 7}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable.table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}}, "df": 5}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}}, "df": 13, "s": {"docs": {"opsml.types.huggingface": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 62}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}}, "df": 17}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "t": {"2": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}}, "df": 1}}}}}, "docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}}, "df": 4}}}, "o": {"docs": {"opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 15, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}}, "df": 22}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"opsml.model.interfaces.tf": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}}, "df": 18}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}}, "df": 46}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2}, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}}, "df": 4}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}}, "df": 2}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 5}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.data": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.split_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data_splits": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.data.splitter": {"tf": 1}, "opsml.data.splitter.Data": {"tf": 1.4142135623730951}, "opsml.data.splitter.Data.__init__": {"tf": 1.4142135623730951}, "opsml.data.splitter.Data.X": {"tf": 1.4142135623730951}, "opsml.data.splitter.Data.y": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplitterBase": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.profile.profile_data": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}, "opsml.profile.profile_data.ProfileReport": {"tf": 1}, "opsml.profile.profile_data.DataProfiler": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.registry.registry.CardRegistries.data": {"tf": 1}}, "df": 106, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}}, "df": 19}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}}, "df": 13, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.DataSplitter": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplitterBase": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}}, "df": 12}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.profile.profile_data.DataProfiler": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 4}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}}, "df": 2}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.model.loader.ModelLoader.path": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}}, "df": 5}, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}}, "df": 4, "s": {"docs": {"opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}}, "df": 5}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}}, "df": 5}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PandasIndexSplitter": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PandasRowSplitter": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PandasColumnSplitter": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question.purpose": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}}, "df": 34}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}}, "df": 7}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.profile.profile_data": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.ProfileReport": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1.4142135623730951}}, "df": 10, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.profile.profile_data.ProfileReport": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.project": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.projects.project": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.projects.project.OpsmlProject": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry.CardRegistries.project": {"tf": 1}}, "df": 28, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {"opsml.projects.active_run": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.active_run.RunInfo": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.projects.project.OpsmlProject": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 53}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.base.get_processor_name": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}}, "df": 1}, "x": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 8, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch_lightning": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}}, "df": 38}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 13, "s": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}}, "df": 2}}}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "v": {"docs": {"opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}, "opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 61, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 10}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}}, "df": 3}}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 23}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 2}}}}}}}}}}, "q": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 4}}}}, "docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 13, "s": {"docs": {"opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter": {"tf": 1}, "opsml.data.splitter.Data": {"tf": 1}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.Data.y": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplitterBase": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 59}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}}, "df": 18, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}}, "df": 26}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}}, "df": 1, "t": {"docs": {"opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}}, "df": 3}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {"opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.RunInfo.storage_client": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 5}}}}}, "r": {"docs": {"opsml.registry.semver.VersionType.from_str": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}}, "df": 17}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.sklearn": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}}, "df": 15, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}}, "df": 14}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 4}}}}, "y": {"docs": {"opsml.data.splitter.Data.y": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 14}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}}, "df": 4}}}}}}}}}}, "x": {"docs": {"opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}}, "df": 2, "g": {"docs": {}, "df": 0, "b": {"docs": {"opsml.model.interfaces.xgb": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}}, "df": 23, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}}, "df": 21}}}}}}}}}}}, "x": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 2}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.types.huggingface": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 92, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}}, "df": 28}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 30}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 30}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 4}}}}}}, "annotation": {"root": {"docs": {"opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.misc": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.Data.y": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}, "opsml.data.splitter.DataSplit.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 208, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.name": {"tf": 1}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1}, "opsml.cards.base.ArtifactCard.version": {"tf": 1}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1}, "opsml.cards.audit.Question.question": {"tf": 1}, "opsml.cards.audit.Question.purpose": {"tf": 1}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1}, "opsml.cards.data.DataCard.card_type": {"tf": 1}, "opsml.cards.model.ModelCard.card_type": {"tf": 1}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.card_type": {"tf": 1}, "opsml.data.splitter.DataSplit.label": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}, "opsml.registry.semver.CardVersion.version": {"tf": 1}, "opsml.registry.semver.CardVersion.major": {"tf": 1}, "opsml.registry.semver.CardVersion.minor": {"tf": 1}, "opsml.registry.semver.CardVersion.patch": {"tf": 1}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 77}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}}, "df": 10}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.data.DataCard.data_splits": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.uid": {"tf": 1}, "opsml.cards.audit.Question.response": {"tf": 1}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1}, "opsml.cards.run.RunCard.project": {"tf": 1}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1}}, "df": 13}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.data.splitter.Data.y": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1}}, "df": 9}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.start": {"tf": 1}, "opsml.data.splitter.DataSplit.stop": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.indices": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "s": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}}, "df": 1, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.cards.data.DataCard.interface": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 21}}}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}}, "df": 3}}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 26}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 3}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1.7320508075688772}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 2}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}}, "df": 2, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.info": {"tf": 1}, "opsml.cards.audit.AuditCard.comments": {"tf": 1}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}}, "df": 15, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.base.ArtifactCard.info": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1}}, "df": 16}}}, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.comments": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1.4142135623730951}}, "df": 5}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.tags": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}}, "df": 14}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}}, "df": 14}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.metadata": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.data_splits": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.data.DataCard.metadata": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 3}}}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 5}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}}, "df": 3}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}}, "df": 1, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 1}}}}}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "w": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.model.ModelCard.interface": {"tf": 1}}, "df": 8}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "y": {"docs": {"opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.data.splitter.Data.X": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1}, "opsml.model.loader.ModelLoader.model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1}}, "df": 11}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.audit": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}}, "df": 15, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.audit": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditCard.metadata": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.artifact_uris": {"tf": 1}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1}}, "df": 2}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.business_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1}, "opsml.cards.audit.AuditSections.misc": {"tf": 1}, "opsml.cards.audit.AuditCard.business": {"tf": 1}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1}, "opsml.cards.audit.AuditCard.misc": {"tf": 1}}, "df": 14}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.approved": {"tf": 1}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 9}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.comments": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.cards.run.RunCard.parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1}}, "df": 7}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.datacard_uids": {"tf": 1}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1}}, "df": 7}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplitterBase.indices": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}}, "df": 2}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1}}, "df": 2}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.project.ProjectCard.project_id": {"tf": 1}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1}}, "df": 8, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.data.DataCard.interface": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.interface": {"tf": 1}}, "df": 2}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.model.ModelCard.interface": {"tf": 1}, "opsml.cards.model.ModelCard.metadata": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.interface": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1.4142135623730951}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard.metadata": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard.model_metadata": {"tf": 1}}, "df": 1}}}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.run.RunCard.metrics": {"tf": 1}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1}}, "df": 6}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.tags": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1}}, "df": 3}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 3}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "x": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.column_value": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1}}, "df": 14}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1.4142135623730951}}, "df": 5}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 2}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 5}}}}}}}}}}, "n": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1}}, "df": 1}}}}}}}}}, "x": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1}}, "df": 2}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.project.OpsmlProject.runcard": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.projects.project.OpsmlProject.runcard": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "default_value": {"root": {"0": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2}, "opsml.cards.run.RunCard.model_fields": {"tf": 1.7320508075688772}}, "df": 6}, "1": {"0": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}, "1": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "2": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "4": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "5": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "6": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "7": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "8": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "9": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}, "2": {"0": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "1": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "2": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}, "3": {"1": {"4": {"5": {"7": {"2": {"8": {"0": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}, "4": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}, "5": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}, "6": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}, "7": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}, "8": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}, "9": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}, "docs": {"opsml.cards.base.logger": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 2}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 3.1622776601683795}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1.4142135623730951}, "opsml.cards.audit.DIR_PATH": {"tf": 1.4142135623730951}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.model_config": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.model_fields": {"tf": 2.23606797749979}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 3}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 2}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 5.291502622129181}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_config": {"tf": 2}, "opsml.cards.data.DataCard.model_fields": {"tf": 3.872983346207417}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_config": {"tf": 2.449489742783178}, "opsml.cards.model.ModelCard.model_fields": {"tf": 3.872983346207417}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 2}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.model_config": {"tf": 2}, "opsml.cards.run.RunCard.model_fields": {"tf": 4.69041575982343}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 3}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 3}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 4}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 3.605551275463989}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 3.605551275463989}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 3.1622776601683795}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 2.6457513110645907}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 2.6457513110645907}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 2.23606797749979}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1.4142135623730951}, "opsml.projects.active_run.logger": {"tf": 1.4142135623730951}, "opsml.projects.project.logger": {"tf": 1.4142135623730951}, "opsml.registry.registry.logger": {"tf": 1.4142135623730951}, "opsml.registry.semver.logger": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PRE": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 2.449489742783178}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 4.358898943540674}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.872983346207417}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1.4142135623730951}}, "df": 154, "l": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 80}, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}}, "df": 13}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.MetricName": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.challenger.MetricValue": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "z": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}}, "df": 13}}}}, "d": {"docs": {"opsml.registry.semver.VersionType.BUILD": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1.4142135623730951}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.898979485566356}}, "df": 1, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 6.855654600401044}}, "df": 1, "?": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "o": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}}, "df": 6}}, "d": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.4142135623730951}}, "df": 15, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.3166247903554}, "opsml.settings.config.config": {"tf": 3.3166247903554}}, "df": 2, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.config": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.69041575982343}}, "df": 1, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}}}}}, "\u2019": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 8.774964387392123}}, "df": 1, "f": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 6.164414002968976}}, "df": 1, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}}, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 29, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "q": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}}, "df": 1}}}}}}, "docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"2": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "docs": {}, "df": 0}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "x": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"2": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "docs": {}, "df": 0}}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 6}}, "df": 1, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "/": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "x": {"docs": {"opsml.cards.model.ModelCard.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 11}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1, "t": {"docs": {"opsml.cards.base.logger": {"tf": 1}, "opsml.cards.audit.logger": {"tf": 1}, "opsml.cards.data.logger": {"tf": 1}, "opsml.cards.model.logger": {"tf": 1}, "opsml.cards.run.logger": {"tf": 1}, "opsml.model.interfaces.catboost_.logger": {"tf": 1}, "opsml.model.interfaces.huggingface.logger": {"tf": 1}, "opsml.model.interfaces.xgb.logger": {"tf": 1}, "opsml.model.challenger.logger": {"tf": 1}, "opsml.projects.active_run.logger": {"tf": 1}, "opsml.projects.project.logger": {"tf": 1}, "opsml.registry.registry.logger": {"tf": 1}, "opsml.registry.semver.logger": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 80}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1.7320508075688772}}, "df": 5}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.config": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"2": {"7": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 2.449489742783178}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 4.69041575982343}, "opsml.cards.audit.DIR_PATH": {"tf": 1.4142135623730951}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.model_config": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.model_fields": {"tf": 2.449489742783178}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 3.7416573867739413}, "opsml.cards.audit.AuditCard.model_config": {"tf": 2.449489742783178}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 18.49324200890693}, "opsml.cards.data.DataCard.model_config": {"tf": 2.449489742783178}, "opsml.cards.data.DataCard.model_fields": {"tf": 5.477225575051661}, "opsml.cards.model.ModelCard.model_config": {"tf": 3.1622776601683795}, "opsml.cards.model.ModelCard.model_fields": {"tf": 5.656854249492381}, "opsml.cards.project.ProjectCard.model_config": {"tf": 2.449489742783178}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 4.898979485566356}, "opsml.cards.run.RunCard.model_config": {"tf": 2.449489742783178}, "opsml.cards.run.RunCard.model_fields": {"tf": 6}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 3.7416573867739413}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 4.69041575982343}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 5.291502622129181}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 6.48074069840786}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 5.291502622129181}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 5.656854249492381}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 5.656854249492381}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 5.291502622129181}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 5.291502622129181}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 5.0990195135927845}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 3.7416573867739413}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 5.291502622129181}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 3.1622776601683795}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 2.449489742783178}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PRE": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 2.449489742783178}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 6.48074069840786}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 6.324555320336759}, "opsml.settings.config.config": {"tf": 3.7416573867739413}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 2.449489742783178}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1.4142135623730951}}, "df": 115}, "docs": {}, "df": 0}, "docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.4142135623730951}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 2}}, "a": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.58257569495584}}, "df": 1, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 19}}}}}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.916079783099616}}, "df": 1}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.4142135623730951}}, "df": 3}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 3}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 19}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 3, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}}, "df": 16}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.Question.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.data.DataCard.model_fields": {"tf": 3}, "opsml.cards.model.ModelCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2.8284271247461903}, "opsml.cards.run.RunCard.model_fields": {"tf": 3.7416573867739413}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 3.7416573867739413}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 2.8284271247461903}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 3}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 2.23606797749979}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.605551275463989}}, "df": 23}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}}}}}}}}}, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 10.488088481701515}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.69041575982343}, "opsml.profile.profile_data.ProfileReport": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 5}}}}}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}}, "df": 6}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}}, "i": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}, "p": {"docs": {}, "df": 0, "p": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 9.433981132056603}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "\u2019": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.291502622129181}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1.7320508075688772}}, "df": 13, "s": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 2}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 20}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.challenger.MetricName": {"tf": 1.4142135623730951}, "opsml.model.challenger.MetricValue": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.ProfileReport": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.model_config": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.4142135623730951}}, "df": 27}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 10, "s": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 16.673332000533065}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}, "m": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}, "n": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 8.306623862918075}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.4142135623730951}}, "df": 6, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 3}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 2}}, "df": 3}}}}, "x": {"docs": {}, "df": 0, "t": {"2": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}}, "df": 2}}}}}, "docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1.4142135623730951}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}}, "df": 5}}}, "f": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 17}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.242640687119285}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 3, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.4142135623730951}}, "df": 8, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.VersionType.MAJOR": {"tf": 1}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1}, "opsml.registry.semver.VersionType.PRE": {"tf": 1}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1}}, "df": 6}}}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}}, "df": 1}}}}, "docs": {}, "df": 0}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.Question.model_config": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 3.4641016151377544}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 2.8284271247461903}, "opsml.cards.model.ModelCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2.8284271247461903}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 3.7416573867739413}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 2.449489742783178}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 3.872983346207417}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 3.4641016151377544}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 3.4641016151377544}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 2.8284271247461903}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 3}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.7416573867739413}, "opsml.settings.config.config": {"tf": 1}}, "df": 40}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.Question.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.data.DataCard.model_fields": {"tf": 3}, "opsml.cards.model.ModelCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2.8284271247461903}, "opsml.cards.run.RunCard.model_fields": {"tf": 3.7416573867739413}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 3.7416573867739413}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 2.8284271247461903}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 3}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 2.23606797749979}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.605551275463989}}, "df": 23}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 2.6457513110645907}}, "df": 2}, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1.4142135623730951}}, "df": 1}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 6}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.DIR_PATH": {"tf": 1}}, "df": 1, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.profile.profile_data.DIR_PATH": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question.model_config": {"tf": 1}}, "df": 1}}}, "m": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}}, "df": 1, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.model_fields": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.model.challenger.MetricValue": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.4142135623730951}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 4, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 2}}, "df": 2}}}}}}}}, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.model_config": {"tf": 1}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 3}, "opsml.cards.data.DataCard.model_config": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 2.449489742783178}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2.449489742783178}, "opsml.cards.run.RunCard.model_config": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 3.1622776601683795}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 2}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 2.8284271247461903}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 2.449489742783178}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 2.449489742783178}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.1622776601683795}}, "df": 36}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 3}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 2, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 2}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}}, "df": 9}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}}}}}, "r": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 5}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 8.717797887081348}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1.4142135623730951}}, "df": 14, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "o": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.47213595499958}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 2}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 5}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 8.660254037844387}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 19, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 12}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 8.831760866327848}, "opsml.cards.data.DataCard.model_fields": {"tf": 2.449489742783178}, "opsml.cards.model.ModelCard.model_fields": {"tf": 3.605551275463989}, "opsml.data.splitter.Data.y": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 3.3166247903554}, "opsml.settings.config.config": {"tf": 1.7320508075688772}}, "df": 6, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.model_fields": {"tf": 2}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 2.449489742783178}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 2}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 2.449489742783178}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 2}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 2}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 2}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 2}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.7320508075688772}}, "df": 21}}}}}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "s": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 2}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 4}}}}}}}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.audit.Question.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.data.DataCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.model.ModelCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.model_fields": {"tf": 2.23606797749979}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 2}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 2.6457513110645907}}, "df": 22, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "r": {"docs": {"opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}}, "df": 1, "t": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 6}}}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.CardVersion.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1}}, "df": 3}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}}, "df": 2}}}}}}}}}}, "q": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}}, "df": 4}}}}, "docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "e": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 12}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "t": {"docs": {"opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.CardVersion.model_fields": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.605551275463989}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.Question.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 2.6457513110645907}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.data.DataCard.model_fields": {"tf": 3}, "opsml.cards.model.ModelCard.model_fields": {"tf": 3.3166247903554}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 2.8284271247461903}, "opsml.cards.run.RunCard.model_fields": {"tf": 3.7416573867739413}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 2.6457513110645907}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 3.7416573867739413}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 3.3166247903554}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 3}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 2.8284271247461903}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 3}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 2.23606797749979}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 3.605551275463989}}, "df": 23}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 2}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 6}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 8.94427190999916}}, "df": 2}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 3, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 2}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 2.23606797749979}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 2}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 2}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 2}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 2}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 2}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 2}}, "df": 16}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 6}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.challenger.MetricName": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.7320508075688772}}, "df": 12}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 3}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.MetricValue": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 10}}}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {"opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 2}, "opsml.cards.model.ModelCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 16, "s": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.605551275463989}}, "df": 1}, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.8284271247461903}}, "df": 1}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}, "p": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}}, "df": 1, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}}, "df": 1}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.1622776601683795}}, "df": 1}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.challenger.BattleReport.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "?": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}, "opsml.settings.config.config": {"tf": 1.4142135623730951}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}}, "df": 14}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}}, "df": 1}}}, "i": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.830951894845301}}, "df": 1, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.base.ArtifactCard.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 6, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.872983346207417}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.config": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.449489742783178}}, "df": 1}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, ":": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}}, "df": 2}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.data.splitter.DataSplit.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {"opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.605551275463989}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 7.0710678118654755}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1}}, "df": 4}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 2}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}}, "df": 6, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "g": {"2": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "g": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 2}}}}, "docs": {}, "df": 0}}, "f": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.196152422706632}}, "df": 1}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 2, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.DIR_PATH": {"tf": 1}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1}}, "df": 3}}}}}}}}}, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 8.602325267042627}}, "df": 1}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.5677643628300215}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 6.082762530298219}}, "df": 1}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1}}, "df": 29}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 29}}}}}}}}}}}}}}}}}}}, "y": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.4142135623730951}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.385164807134504}}, "df": 1, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}, "y": {"docs": {"opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.4142135623730951}}, "df": 1}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 12.489995996796797}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.5677643628300215}}, "df": 1}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 8.94427190999916}}, "df": 2, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.PRE": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1.4142135623730951}}, "df": 3, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 3.4641016151377544}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.0990195135927845}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.1622776601683795}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.4641016151377544}}, "df": 1}, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "/": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "p": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 3, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.model_config": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 12}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.registry.semver.VersionType.PATCH": {"tf": 1.4142135623730951}}, "df": 1}}, "h": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1}}, "df": 6, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1}, "opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 3}}}}}}}}}}, "x": {"2": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1}}, "df": 1}}}}}}}, "docs": {}, "df": 0}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 14, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1}}, "df": 11, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 5.196152422706632}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "\\": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.VersionType.MINOR": {"tf": 1.4142135623730951}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.7416573867739413}}, "df": 1}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.7416573867739413}}, "df": 1}}}}, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}, "p": {"docs": {"opsml.cards.data.DataCard.model_fields": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1.4142135623730951}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.model.challenger.BattleReport.model_fields": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"opsml.cards.run.RunCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.3166247903554}}, "df": 1, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditSections.model_fields": {"tf": 1}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.1622776601683795}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 11, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}, "v": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 2.449489742783178}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1}, "opsml.settings.config.config": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.6457513110645907}}, "df": 1}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 8.831760866327848}}, "df": 1}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 4.795831523312719}}, "df": 1}}}}, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1}}, "o": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2}}, "df": 1}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 3.1622776601683795}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}, "n": {"docs": {"opsml.model.challenger.BattleReport.model_fields": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 2.23606797749979}}, "df": 1}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.model_fields": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.4142135623730951}}, "df": 1}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "signature": {"root": {"1": {"0": {"0": {"docs": {"opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 2}, "3": {"9": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.449489742783178}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 2.449489742783178}}, "df": 4}, "docs": {}, "df": 0}, "docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 6.324555320336759}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 4.69041575982343}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 5.291502622129181}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 6.324555320336759}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 5.916079783099616}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 4.47213595499958}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 7.211102550927978}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 3.4641016151377544}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 3.4641016151377544}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 5.291502622129181}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 4.69041575982343}, "opsml.cards.audit.AuditCard.add_card": {"tf": 5.656854249492381}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 5.5677643628300215}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 6}, "opsml.cards.data.DataCard.load_data": {"tf": 5.656854249492381}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 3.4641016151377544}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 4.69041575982343}, "opsml.cards.data.DataCard.add_info": {"tf": 6.557438524302}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 6}, "opsml.cards.data.DataCard.split_data": {"tf": 5.830951894845301}, "opsml.cards.model.ModelCard.check_uid": {"tf": 6}, "opsml.cards.model.ModelCard.load_model": {"tf": 4.69041575982343}, "opsml.cards.model.ModelCard.download_model": {"tf": 5.830951894845301}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 4.69041575982343}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 4.69041575982343}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 4.69041575982343}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 4.69041575982343}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 6.324555320336759}, "opsml.cards.run.RunCard.add_tag": {"tf": 5.291502622129181}, "opsml.cards.run.RunCard.add_tags": {"tf": 5.477225575051661}, "opsml.cards.run.RunCard.log_graph": {"tf": 14.071247279470288}, "opsml.cards.run.RunCard.log_parameters": {"tf": 6.557438524302}, "opsml.cards.run.RunCard.log_parameter": {"tf": 6.557438524302}, "opsml.cards.run.RunCard.log_metric": {"tf": 9}, "opsml.cards.run.RunCard.log_metrics": {"tf": 7.745966692414834}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 8.888194417315589}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 4.69041575982343}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 5.291502622129181}, "opsml.cards.run.RunCard.get_metric": {"tf": 7.681145747868608}, "opsml.cards.run.RunCard.load_metrics": {"tf": 3.4641016151377544}, "opsml.cards.run.RunCard.get_parameter": {"tf": 7.681145747868608}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 5.5677643628300215}, "opsml.data.splitter.Data.__init__": {"tf": 5.5677643628300215}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 6}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 4.47213595499958}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 6.855654600401044}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 7.3484692283495345}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 6.48074069840786}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 6}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 7.483314773547883}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 6}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 7.483314773547883}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 6}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 7.483314773547883}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 6}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 7.483314773547883}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 6}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 7.483314773547883}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 6}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 7.483314773547883}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 6}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 7.0710678118654755}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 6}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 8.54400374531753}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 6}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 8.54400374531753}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 6}, "opsml.data.splitter.DataSplitter.split": {"tf": 12.206555615733702}, "opsml.model.interfaces.base.get_processor_name": {"tf": 5.291502622129181}, "opsml.model.interfaces.base.get_model_args": {"tf": 5.830951894845301}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 4.47213595499958}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 4.47213595499958}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 6}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 5.0990195135927845}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 4.898979485566356}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 4.898979485566356}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 5.291502622129181}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 3}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 5.291502622129181}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 5.0990195135927845}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 6}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 4.47213595499958}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 5.291502622129181}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 5.0990195135927845}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 4.898979485566356}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 4.898979485566356}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 6}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 4.898979485566356}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 4.898979485566356}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 3.4641016151377544}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 3}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 3}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 5.291502622129181}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 5.0990195135927845}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 3}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 5.291502622129181}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 6}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 5.0990195135927845}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 3}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 3}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 3}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 6}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 3}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 6.324555320336759}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 4.898979485566356}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 5.830951894845301}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 4.898979485566356}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 6}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 4.898979485566356}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 4.898979485566356}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 3}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 6.164414002968976}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 8.660254037844387}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 7.54983443527075}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 4.898979485566356}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 13}, "opsml.model.loader.ModelLoader.__init__": {"tf": 4}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.loader.ModelLoader.load_model": {"tf": 4.69041575982343}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 4.69041575982343}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 8.660254037844387}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 4}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 4.58257569495584}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 7.3484692283495345}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 10.14889156509222}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 8.426149773176359}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 7.0710678118654755}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 4.898979485566356}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 5.291502622129181}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 6.557438524302}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 9.327379053088816}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 7.416198487095663}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 8.888194417315589}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 8.426149773176359}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 7.745966692414834}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 5.291502622129181}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 6.557438524302}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 14.89966442575134}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 3.4641016151377544}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 4.898979485566356}, "opsml.projects.project.OpsmlProject.run": {"tf": 7.0710678118654755}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 7.416198487095663}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 6.244997998398398}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 7.681145747868608}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 7.681145747868608}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 5.830951894845301}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 14.866068747318506}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 15.7797338380595}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 11}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 5.656854249492381}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 6.557438524302}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 5.656854249492381}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 2}, "opsml.registry.semver.VersionType.from_str": {"tf": 5.291502622129181}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 4.47213595499958}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 5}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 4}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 6.082762530298219}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 5.0990195135927845}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 4}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 7.483314773547883}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 7.54983443527075}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 9.16515138991168}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 5}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 4}, "opsml.registry.semver.SemVerParser.validate": {"tf": 4}, "opsml.registry.semver.StarParser.parse_version": {"tf": 4}, "opsml.registry.semver.StarParser.validate": {"tf": 4}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 4}, "opsml.registry.semver.CaretParser.validate": {"tf": 4}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 4}, "opsml.registry.semver.TildeParser.validate": {"tf": 4}, "opsml.registry.semver.NoParser.parse_version": {"tf": 4}, "opsml.registry.semver.NoParser.validate": {"tf": 4}, "opsml.registry.semver.get_version_to_search": {"tf": 4}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 4.47213595499958}}, "df": 215, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 24}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.base.get_processor_name": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 21, "s": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 14}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}}, "df": 3}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 2}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}}, "df": 12}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 11}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 2.449489742783178}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.data.splitter.Data.__init__": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.449489742783178}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1.4142135623730951}}, "df": 52}}, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.project.OpsmlProject.run": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 35}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitter.split": {"tf": 2.23606797749979}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 26, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.check_uid": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 12}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1.7320508075688772}}, "df": 8}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 3}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_tag": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_tags": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.23606797749979}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 2.8284271247461903}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2.449489742783178}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 2}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 2}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.NoParser.validate": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1.4142135623730951}}, "df": 128}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 133}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 2, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 12, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.4142135623730951}}, "df": 23}}}, "s": {"docs": {"opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 2}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}}, "df": 7}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 21}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}}, "df": 11, "s": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 23, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.add_tag": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1.4142135623730951}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 2.8284271247461903}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2.6457513110645907}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 100, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 5}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 23}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 2.449489742783178}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.449489742783178}}, "df": 5}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 5}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 23, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 10}}}, "s": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}, "d": {"docs": {"opsml.projects.active_run.RunInfo.__init__": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.project.OpsmlProject.run": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 2}}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}}, "df": 3}}}, "y": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1.7320508075688772}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1.7320508075688772}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}}, "df": 12, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.RunInfo.__init__": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.run": {"tf": 1.4142135623730951}}, "df": 3, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.projects.active_run.RunInfo.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1.4142135623730951}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}}, "df": 2}}}, "g": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 4}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}}, "df": 2}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 22, "s": {"docs": {"opsml.cards.run.RunCard.get_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 18}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1.4142135623730951}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}}, "df": 12}}}}, "h": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1.7320508075688772}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1.7320508075688772}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.semver.VersionType.from_str": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 63}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 2.8284271247461903}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2.449489742783178}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 18}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 16}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"opsml.data.splitter.DataSplitterBase.validate": {"tf": 1}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1}, "opsml.registry.semver.StarParser.validate": {"tf": 1}, "opsml.registry.semver.CaretParser.validate": {"tf": 1}, "opsml.registry.semver.TildeParser.validate": {"tf": 1}, "opsml.registry.semver.NoParser.validate": {"tf": 1}}, "df": 21}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 4}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 2.449489742783178}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 2}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.449489742783178}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 30}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.check_uid": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 6}}, "r": {"docs": {}, "df": 0, "i": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 15}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1.4142135623730951}}, "df": 8}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}}}}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "e": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 4, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 2}}, "df": 55, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}}, "df": 55}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.run.RunCard.get_parameter": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}}, "df": 2}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 5}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 5}}}}}, "y": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1}}, "df": 2}}}}}}}}, "y": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 3, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}}}, "x": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.data.splitter.Data.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 3}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitter.split": {"tf": 1}, "opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 2.23606797749979}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 22}}, "b": {"docs": {"opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1}}, "df": 1}, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 3}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.run.RunCard.get_metric": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.base.get_model_args": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 25, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}}, "df": 6}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}}}, "bases": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 9}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 9}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 9, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 13, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 8}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}}, "df": 4}}}}}}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 14}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 5}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.data.splitter.PandasIndexSplitter": {"tf": 1}, "opsml.data.splitter.PandasRowSplitter": {"tf": 1}, "opsml.data.splitter.PandasColumnSplitter": {"tf": 1}, "opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyIndexSplitter": {"tf": 1}, "opsml.data.splitter.NumpyRowSplitter": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 9}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}}, "df": 4}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.NoParser": {"tf": 1}}, "df": 4}}}}}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"opsml.registry.semver.VersionType": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerSymbols": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1.4142135623730951}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1.4142135623730951}}, "df": 4}}}}}}, "doc": {"root": {"0": {"1": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}}, "df": 3}, "1": {"0": {"0": {"0": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 3}, "docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 2}, "docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}, "2": {"3": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"1": {"2": {"3": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "j": {"8": {"docs": {}, "df": 0, "u": {"8": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "h": {"8": {"1": {"3": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}}}}}}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}}}}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}}}, "docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}, "docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 2}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.23606797749979}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 4, "d": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}}, "df": 1}}, "2": {"0": {"2": {"3": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 1, "d": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}}, "df": 1}}, "3": {"4": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}, "docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}, "4": {"0": {"0": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}}, "df": 1}, "5": {"0": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}, "docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}}, "df": 3}, "6": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}, "docs": {"opsml.cards.base": {"tf": 1.7320508075688772}, "opsml.cards.base.logger": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.name": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.repository": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.contact": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.version": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.uid": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.info": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.tags": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 4.47213595499958}, "opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.add_tag": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.card_type": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit": {"tf": 1.7320508075688772}, "opsml.cards.audit.logger": {"tf": 1.7320508075688772}, "opsml.cards.audit.DIR_PATH": {"tf": 1.7320508075688772}, "opsml.cards.audit.AUDIT_TEMPLATE_PATH": {"tf": 1.7320508075688772}, "opsml.cards.audit.Question": {"tf": 11.874342087037917}, "opsml.cards.audit.Question.question": {"tf": 1.7320508075688772}, "opsml.cards.audit.Question.purpose": {"tf": 1.7320508075688772}, "opsml.cards.audit.Question.response": {"tf": 1.7320508075688772}, "opsml.cards.audit.Question.model_config": {"tf": 1.7320508075688772}, "opsml.cards.audit.Question.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.Question.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 11.874342087037917}, "opsml.cards.audit.AuditSections.business_understanding": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.data_understanding": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.data_preparation": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.modeling": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.evaluation": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.deployment_ops": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.misc": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_yaml_template": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.model_config": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditQuestionTable.table": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard": {"tf": 7.14142842854285}, "opsml.cards.audit.AuditCard.audit": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.approved": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.comments": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.metadata": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 4}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.add_card": {"tf": 3.4641016151377544}, "opsml.cards.audit.AuditCard.business": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.data_understanding": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.data_preparation": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.modeling": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.evaluation": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.deployment": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.misc": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 3.4641016151377544}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 4.47213595499958}, "opsml.cards.audit.AuditCard.card_type": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.data": {"tf": 1.7320508075688772}, "opsml.cards.data.logger": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard": {"tf": 8.06225774829855}, "opsml.cards.data.DataCard.interface": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.metadata": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.load_data": {"tf": 6.782329983125268}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.add_info": {"tf": 3.4641016151377544}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 3.605551275463989}, "opsml.cards.data.DataCard.split_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data_splits": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.card_type": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.model": {"tf": 1.7320508075688772}, "opsml.cards.model.logger": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard": {"tf": 8.48528137423857}, "opsml.cards.model.ModelCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.interface": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.datacard_uid": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.to_onnx": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.metadata": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.check_uid": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.load_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 4}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 2}, "opsml.cards.model.ModelCard.card_type": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.project": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.project_id": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.project.ProjectCard.card_type": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.cards.run": {"tf": 1.7320508075688772}, "opsml.cards.run.logger": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 9}, "opsml.cards.run.RunCard.datacard_uids": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.modelcard_uids": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.pipelinecard_uid": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.metrics": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.parameters": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.artifact_uris": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.tags": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.project": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.validate_defaults_args": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.add_tag": {"tf": 4}, "opsml.cards.run.RunCard.add_tags": {"tf": 3.4641016151377544}, "opsml.cards.run.RunCard.log_graph": {"tf": 7.0710678118654755}, "opsml.cards.run.RunCard.log_parameters": {"tf": 3.4641016151377544}, "opsml.cards.run.RunCard.log_parameter": {"tf": 4}, "opsml.cards.run.RunCard.log_metric": {"tf": 4.898979485566356}, "opsml.cards.run.RunCard.log_metrics": {"tf": 4}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 4.69041575982343}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 4}, "opsml.cards.run.RunCard.get_metric": {"tf": 4.47213595499958}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_parameter": {"tf": 4.47213595499958}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.uri": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.card_type": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.model_config": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.model_fields": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.data.splitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.Data": {"tf": 1.7320508075688772}, "opsml.data.splitter.Data.__init__": {"tf": 1.7320508075688772}, "opsml.data.splitter.Data.X": {"tf": 1.7320508075688772}, "opsml.data.splitter.Data.y": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 11.874342087037917}, "opsml.data.splitter.DataSplit.model_config": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.label": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.column_name": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.column_value": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.inequality": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.start": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.stop": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.indices": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.model_fields": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.__init__": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.split": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.dependent_vars": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.column_name": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.column_value": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.indices": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.start": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.stop": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.get_x_cols": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitterBase.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsColumnSplitter": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsColumnSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsColumnSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsIndexSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1.4142135623730951}, "opsml.data.splitter.PolarsRowsSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PolarsRowsSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasIndexSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasIndexSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasRowSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasRowSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasRowSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasColumnSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasColumnSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PandasColumnSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.PyArrowIndexSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.PyArrowIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.PyArrowIndexSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyIndexSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyIndexSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyIndexSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyRowSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyRowSplitter.create_split": {"tf": 1.7320508075688772}, "opsml.data.splitter.NumpyRowSplitter.validate": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitter": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplitter.split": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.get_processor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.get_model_args": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 4}, "opsml.model.interfaces.base.SamplePrediction.__init__": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.SamplePrediction.prediction_type": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.SamplePrediction.prediction": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 11.874342087037917}, "opsml.model.interfaces.base.ModelInterface.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.onnx_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.task_type": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_type": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.data_type": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.modelcard_uid": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.check_modelcard_uid": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 4}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 4.47213595499958}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 3.605551275463989}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 3.605551275463989}, "opsml.model.interfaces.base.ModelInterface.get_sample_prediction": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.logger": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 6.782329983125268}, "opsml.model.interfaces.catboost_.CatBoostModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.get_sample_prediction": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 4}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 4.47213595499958}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.logger": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 9}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.is_pipeline": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.backend": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.onnx_args": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.tokenizer_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.feature_extractor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 2.23606797749979}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_tokenizer": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_feature_extractor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 4.47213595499958}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_tokenizer": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_feature_extractor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 4}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 7.211102550927978}, "opsml.model.interfaces.lgbm.LightGBMModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 3.605551275463989}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 4}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 6.244997998398398}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.onnx_args": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.get_sample_prediction": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 7.280109889280518}, "opsml.model.interfaces.pytorch.TorchModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.onnx_args": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.save_args": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.get_sample_prediction": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 4}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 4.47213595499958}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 6.244997998398398}, "opsml.model.interfaces.sklearn.SklearnModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 6.6332495807108}, "opsml.model.interfaces.tf.TensorFlowModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 3.4641016151377544}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 4}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 5.477225575051661}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.arguments": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 3.605551275463989}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 5.196152422706632}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 4.58257569495584}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.logger": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 6.782329983125268}, "opsml.model.interfaces.xgb.XGBoostModel.model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.sample_data": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_class": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.check_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 3.605551275463989}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 4}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 3.4641016151377544}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 4.47213595499958}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 3.605551275463989}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 3.605551275463989}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.name": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_config": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_fields": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.challenger": {"tf": 1.7320508075688772}, "opsml.model.challenger.logger": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 11.874342087037917}, "opsml.model.challenger.BattleReport.model_config": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.champion_name": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.champion_version": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.champion_metric": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.challenger_metric": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.challenger_win": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.model_fields": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.challenger.MetricName": {"tf": 1.7320508075688772}, "opsml.model.challenger.MetricValue": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 11.874342087037917}, "opsml.model.challenger.ChallengeInputs.metric_name": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.metric_value": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.lower_is_better": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.metric_names": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.metric_values": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.thresholds": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.convert_name": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.convert_value": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.convert_threshold": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.model_config": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.model_fields": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 3.4641016151377544}, "opsml.model.challenger.ModelChallenger.challenger_metric": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 5.385164807134504}, "opsml.model.loader": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.__init__": {"tf": 4}, "opsml.model.loader.ModelLoader.path": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader.metadata": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader.interface": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader.model": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader.onnx_model": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.load_model": {"tf": 1.7320508075688772}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 4.358898943540674}, "opsml.profile.profile_data": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DIR_PATH": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.ProfileReport": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 5.656854249492381}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 5.0990195135927845}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 4.898979485566356}, "opsml.projects.active_run": {"tf": 1.7320508075688772}, "opsml.projects.active_run.logger": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo.__init__": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo.storage_client": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo.registries": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo.runcard": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo.run_id": {"tf": 1.7320508075688772}, "opsml.projects.active_run.RunInfo.run_name": {"tf": 1.7320508075688772}, "opsml.projects.active_run.CardHandler": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 3.4641016151377544}, "opsml.projects.active_run.ActiveRun.runcard": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.active": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 4}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 3.4641016151377544}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 4.242640687119285}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 5.196152422706632}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 4.69041575982343}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 4.898979485566356}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 4}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 4}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 3.4641016151377544}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 7.0710678118654755}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.run_data": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.metrics": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.parameters": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.tags": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.artifact_uris": {"tf": 1.7320508075688772}, "opsml.projects.project": {"tf": 1.7320508075688772}, "opsml.projects.project.logger": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 6.782329983125268}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.project_id": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.project_name": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.run": {"tf": 3.4641016151377544}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 5.0990195135927845}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 3.1622776601683795}, "opsml.projects.project.OpsmlProject.runcard": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.metrics": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 4.47213595499958}, "opsml.projects.project.OpsmlProject.parameters": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 4.47213595499958}, "opsml.projects.project.OpsmlProject.tags": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1.4142135623730951}, "opsml.registry.registry": {"tf": 1.7320508075688772}, "opsml.registry.registry.logger": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 6}, "opsml.registry.registry.CardRegistry.table_name": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 7.280109889280518}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 6.708203932499369}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 5.291502622129181}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 3.4641016151377544}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 4.898979485566356}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 3.4641016151377544}, "opsml.registry.registry.CardRegistries": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistries.data": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistries.model": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistries.run": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistries.pipeline": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistries.project": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistries.audit": {"tf": 1.7320508075688772}, "opsml.registry.semver": {"tf": 1.7320508075688772}, "opsml.registry.semver.logger": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.MAJOR": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.MINOR": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.PATCH": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.PRE": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.BUILD": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.PRE_BUILD": {"tf": 1.7320508075688772}, "opsml.registry.semver.VersionType.from_str": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion": {"tf": 11.874342087037917}, "opsml.registry.semver.CardVersion.version": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.version_splits": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.is_full_semver": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.major": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.minor": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.patch": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.valid_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 4.47213595499958}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 4.47213595499958}, "opsml.registry.semver.CardVersion.model_config": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.model_fields": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerUtils": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 4.47213595499958}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 6.557438524302}, "opsml.registry.semver.SemVerUtils.add_tags": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 6}, "opsml.registry.semver.SemVerRegistryValidator.version": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.final_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.version_type": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.name": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.pre_tag": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.build_tag": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 4.47213595499958}, "opsml.registry.semver.SemVerSymbols": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerSymbols.STAR": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerSymbols.CARET": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerSymbols.TILDE": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerParser": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerParser.parse_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerParser.validate": {"tf": 1.7320508075688772}, "opsml.registry.semver.StarParser": {"tf": 1.7320508075688772}, "opsml.registry.semver.StarParser.parse_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.StarParser.validate": {"tf": 1.7320508075688772}, "opsml.registry.semver.CaretParser": {"tf": 1.7320508075688772}, "opsml.registry.semver.CaretParser.parse_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.CaretParser.validate": {"tf": 1.7320508075688772}, "opsml.registry.semver.TildeParser": {"tf": 1.7320508075688772}, "opsml.registry.semver.TildeParser.parse_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.TildeParser.validate": {"tf": 1.7320508075688772}, "opsml.registry.semver.NoParser": {"tf": 1.4142135623730951}, "opsml.registry.semver.NoParser.parse_version": {"tf": 1.7320508075688772}, "opsml.registry.semver.NoParser.validate": {"tf": 1.7320508075688772}, "opsml.registry.semver.get_version_to_search": {"tf": 4.69041575982343}, "opsml.settings.config": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig": {"tf": 9.643650760992955}, "opsml.settings.config.OpsmlConfig.app_name": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.app_env": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_storage_uri": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_tracking_uri": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_prod_token": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_proxy_root": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_registry_path": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_testing": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.download_chunk_size": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.upload_chunk_size": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_username": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_password": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.opsml_run_id": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 2.449489742783178}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.model_config": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.model_computed_fields": {"tf": 1.7320508075688772}, "opsml.settings.config.config": {"tf": 1.7320508075688772}, "opsml.types.huggingface": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.AUDIO_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.AUTOMATIC_SPEECH_RECOGNITION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.CONVERSATIONAL": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.DEPTH_ESTIMATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.DOCUMENT_QUESTION_ANSWERING": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.FEATURE_EXTRACTION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.FILL_MASK": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_SEGMENTATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_IMAGE": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.IMAGE_TO_TEXT": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.MASK_GENERATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.OBJECT_DETECTION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.QUESTION_ANSWERING": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.SUMMARIZATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TABLE_QUESTION_ANSWERING": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TEXT2TEXT_GENERATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TEXT_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TEXT_GENERATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TEXT_TO_AUDIO": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TOKEN_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.TRANSLATION_XX_TO_YY": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.VIDEO_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.VISUAL_QUESTION_ANSWERING": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_IMAGE_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_AUDIO_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceTask.ZERO_SHOT_OBJECT_DETECTION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.GENERATION_TYPES": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_FRAME_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_AUDIO_XVECTOR": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CUSTOM_TASKS": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CTC": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_FEATURE_EXTRACTION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_IMAGE_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MASKED_LM": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_MULTIPLE_CHOICE": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUESTION_ANSWERING": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEMANTIC_SEGMENTATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQUENCE_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TOKEN_CLASSIFICATION": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_LM": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SPEECH_SEQ2SEQ": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_VISION2SEQ": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_PIX2STRUCT": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_CAUSAL_LM": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_OPTIMIZER": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_QUANTIZER": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINER": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINER": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_TRAINING_ARGUMENTS": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_SEQ2SEQ_TRAINING_ARGUMENTS": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_PIPELINE": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_IMG2IMG_PIPELINE": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_INPAINT_PIPELINE": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_PIPELINE": {"tf": 1.7320508075688772}, "opsml.types.huggingface.HuggingFaceORTModel.ORT_STABLE_DIFFUSION_XL_IMG2IMG_PIPELINE": {"tf": 1.7320508075688772}}, "df": 687, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 29, "d": {"docs": {"opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1.4142135623730951}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 2.23606797749979}}, "df": 1}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 2.449489742783178}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 40, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}}, "df": 3}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}}, "df": 10, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 16, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}}, "df": 6}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 4.358898943540674}, "opsml.cards.audit.AuditSections": {"tf": 4.358898943540674}, "opsml.data.splitter.DataSplit": {"tf": 4.358898943540674}, "opsml.model.interfaces.base.ModelInterface": {"tf": 4.358898943540674}, "opsml.model.challenger.BattleReport": {"tf": 4.358898943540674}, "opsml.model.challenger.ChallengeInputs": {"tf": 4.358898943540674}, "opsml.registry.semver.CardVersion": {"tf": 4.358898943540674}}, "df": 8}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.run.RunCard.log_parameter": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1.7320508075688772}}, "df": 3, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 11}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.NoParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 5}, "d": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 2}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 47, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2}}, "b": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}}, "df": 27}}}, "s": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1.4142135623730951}}, "df": 1}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}}, "df": 7}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 17}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 3}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 10, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1.7320508075688772}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {"opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}}, "df": 5, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}}, "df": 24}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.SamplePrediction": {"tf": 2.23606797749979}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 8}, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 1}}, "df": 1}}}, "c": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}, "y": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 23, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "i": {"docs": {"opsml.model.loader.ModelLoader": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1.7320508075688772}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 2}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 2}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 2}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2.23606797749979}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 2.449489742783178}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1.7320508075688772}}, "df": 24, "s": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 9}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "n": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 11, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "t": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.7320508075688772}}, "df": 1, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 6, "s": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 11}, "d": {"docs": {"opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 2}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}}, "df": 7}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 16}}}, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 9}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 2}, "opsml.cards.data.DataCard": {"tf": 2}, "opsml.cards.model.ModelCard": {"tf": 2}, "opsml.cards.run.RunCard": {"tf": 2}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 8}}}, "j": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 3, "s": {"docs": {"opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}}, "df": 3, "/": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 26, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.__init__": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 2}}, "df": 1, "s": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.get_version_to_search": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "b": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}}, "df": 1}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 2.449489742783178}, "opsml.cards.audit.AuditSections": {"tf": 2.449489742783178}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.load_data": {"tf": 2.23606797749979}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.7320508075688772}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_tag": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 2.449489742783178}, "opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2.449489742783178}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 2}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 3.1622776601683795}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 2.449489742783178}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 2.6457513110645907}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 2}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 2.449489742783178}, "opsml.model.challenger.ChallengeInputs": {"tf": 2.449489742783178}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 2.449489742783178}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 81, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}}, "df": 5}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1.7320508075688772}}, "df": 50}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}}, "df": 7}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 2.449489742783178}}, "df": 6, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}, "d": {"docs": {"opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.registry.semver.SemVerUtils": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2.23606797749979}}, "df": 2}}}}}, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 2}, "opsml.cards.run.RunCard.log_graph": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.23606797749979}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.6457513110645907}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 2}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 66, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 8, "s": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 9}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard.add_card_uid": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 9}}}}}}}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 2}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 13}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 2.449489742783178}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 111}}}}}}}, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 22}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 5, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}}, "df": 22, "d": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.active_run.CardHandler.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 45}, "y": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 6}, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}}, "df": 8, "s": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 9}}}}}}}}}, "s": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}}, "df": 13, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 7, "d": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 13}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 8}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}}, "df": 10}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 2}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 10, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}}, "df": 7, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 13}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 7}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}}, "df": 2}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}}, "df": 1}}}, "i": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}}, "df": 1}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.CardHandler": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}}, "df": 2}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}}, "v": {"1": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 8, "d": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}}, "df": 1}, "s": {"docs": {"opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metric": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.7320508075688772}}, "df": 19, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1.7320508075688772}}, "df": 17}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 2}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 2}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 2}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 2.8284271247461903}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 2}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.NoParser": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 2}}, "df": 24, "s": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 8}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 2}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}}, "df": 4, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}}, "df": 1, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 2}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 25, "s": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.model_metadata": {"tf": 1}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.projects.active_run.CardHandler.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 14}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}, "d": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 4}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 4, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "g": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 7, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1}}, "df": 1}}, "s": {"docs": {"opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 10}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 19, "s": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 2.449489742783178}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.449489742783178}}, "df": 2}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "m": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 2}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 3}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 3}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "b": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}}, "df": 2}}}, "n": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 2}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 2}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 2}, "opsml.cards.run.RunCard": {"tf": 2}, "opsml.cards.run.RunCard.log_graph": {"tf": 2}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}}, "df": 48, "d": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}}, "df": 1}, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 8, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}, "o": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 4, "t": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.NoParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 12, "e": {"docs": {"opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 3.4641016151377544}}, "df": 3}}, "w": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}, "b": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 3}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 5}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}}, "df": 2}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 2}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 4}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 2}, "opsml.cards.data.DataCard": {"tf": 2}, "opsml.cards.model.ModelCard": {"tf": 2}, "opsml.cards.run.RunCard": {"tf": 2}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 7}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 64}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}}, "df": 3, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 2.6457513110645907}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 18, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.create_registry_record": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}}, "df": 3}}, "s": {"docs": {"opsml.projects.active_run.CardHandler.register_card": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}, "opsml.cards.audit.AuditCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.project.ProjectCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 4}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.registry.semver.SemVerUtils": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard.load_metrics": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 6}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 7}}}}}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 2}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 9, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}, "w": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 2.23606797749979}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_name": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 4.358898943540674}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.run": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 20, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {"opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}}, "df": 2, "o": {"docs": {"opsml.cards.base.ArtifactCard.validate_args": {"tf": 1}, "opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.load_data": {"tf": 3.1622776601683795}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 2.23606797749979}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 2.23606797749979}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 2}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 2}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 2}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 2.23606797749979}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.449489742783178}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 2.6457513110645907}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 2}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1.4142135623730951}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 3.4641016151377544}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 120, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 3}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}}, "df": 3, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}}, "df": 1}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1.4142135623730951}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 4.898979485566356}, "opsml.cards.audit.AuditSections": {"tf": 4.898979485566356}, "opsml.cards.audit.AuditCard": {"tf": 2}, "opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 2.449489742783178}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 4.898979485566356}, "opsml.model.interfaces.base.ModelInterface": {"tf": 4.898979485566356}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 4.898979485566356}, "opsml.model.challenger.ChallengeInputs": {"tf": 4.898979485566356}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.6457513110645907}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 4.898979485566356}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig": {"tf": 2.8284271247461903}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1.4142135623730951}}, "df": 70, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 8}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 8}}, "y": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 4}, "n": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 2}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2.449489742783178}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 2}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 2}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 25}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}, "opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 15}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 4}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}, "e": {"docs": {"opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2.449489742783178}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 2.23606797749979}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.registry_type": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 2}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 20}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}}, "df": 3, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}, "f": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.add_row": {"tf": 1}, "opsml.cards.audit.AuditQuestionTable.print_table": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}}, "df": 5}}}, "g": {"docs": {"opsml.cards.run.RunCard.add_tag": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 2}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 2}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 2}}, "df": 6, "s": {"docs": {"opsml.cards.run.RunCard.add_tag": {"tf": 1}, "opsml.cards.run.RunCard.add_tags": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 6}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.add_card": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}}, "df": 2}}}}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.run.RunCard.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}}, "df": 3}}}}}}}}, "f": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}}, "df": 1}}, "s": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"opsml.cards.base.ArtifactCard.create_registry_record": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "d": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 11, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "s": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditQuestionTable.add_section": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"opsml.cards.audit.AuditSections.load_sections": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}}, "df": 3}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.SemVerUtils": {"tf": 1}, "opsml.registry.semver.SemVerParser": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1.4142135623730951}}, "df": 6, "s": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 2.23606797749979}}, "df": 11}}}}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 18, "d": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.4142135623730951}}, "df": 3}, "s": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}}, "df": 17}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 19}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}}, "s": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 2.23606797749979}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 21}}}}}, "r": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.semver.CardVersion.finalize_partial_version": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 10, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 4}}}}, "y": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 2}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.run.RunCard.log_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1.4142135623730951}}, "df": 4}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.project.OpsmlProject.run": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 6}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}}, "df": 2}}}}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"opsml.model.interfaces.base.ModelInterface.model_suffix": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.data_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.preprocessor_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.data_suffix": {"tf": 1}}, "df": 17}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}}, "df": 4, "s": {"docs": {"opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.delete_card": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 5}}}, "y": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}}, "df": 7, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}}, "df": 2}}}}}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 3}}}}}, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"opsml.registry.semver.StarParser": {"tf": 1}, "opsml.registry.semver.CaretParser": {"tf": 1}, "opsml.registry.semver.TildeParser": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 5, "s": {"docs": {"opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.load_artifacts": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1.4142135623730951}}, "df": 18, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 2.23606797749979}, "opsml.cards.audit.AuditSections": {"tf": 2.23606797749979}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 2.23606797749979}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2.23606797749979}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 2.23606797749979}, "opsml.model.challenger.ChallengeInputs": {"tf": 2.23606797749979}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 2.23606797749979}, "opsml.settings.config.OpsmlConfig": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.storage_system": {"tf": 1}}, "df": 27}, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}}, "r": {"docs": {"opsml.registry.semver.CardVersion.validate_inputs": {"tf": 1}}, "df": 1}, "s": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 14}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 5}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2, "d": {"docs": {"opsml.cards.audit.AuditCard.add_card": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 2}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}}, "df": 10, "s": {"docs": {"opsml.cards.run.RunCard": {"tf": 2.23606797749979}}, "df": 1}}}, "p": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.update_card": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.projects.active_run.CardHandler.update_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 1, "t": {"docs": {"opsml.cards.base.ArtifactCard.uri": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.uri": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 10}, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.23606797749979}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 22, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}, "e": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistries.__init__": {"tf": 1}}, "df": 3}, "d": {"docs": {"opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}}, "df": 8, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}}, "df": 7, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.loader.ModelLoader.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 11, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.project.ProjectCard": {"tf": 1}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}}, "df": 6}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 9}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}}, "df": 9}}}}}}, "t": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.split_data": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}}, "df": 25, "s": {"docs": {"opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 8, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1}}, "df": 4, "s": {"docs": {"opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 1}}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2.6457513110645907}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 2}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.6457513110645907}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1.4142135623730951}}, "df": 36}, "f": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections.load_sections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit.convert_to_list": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 2}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.check_full_semver": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1.4142135623730951}}, "df": 42}, "d": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.projects.active_run.ActiveRun.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.23606797749979}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 2}}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.create_registry_record": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}}, "df": 9}}}}}, "s": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.SemVerUtils.is_release_candidate": {"tf": 1}}, "df": 3}}}}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 5}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.DataSplit.trim_whitespace": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 12}}}}, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 11}, "r": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 11}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"opsml.cards.base.ArtifactCard.artifact_uri": {"tf": 1}, "opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard": {"tf": 2.8284271247461903}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.projects.project.OpsmlProject.run_id": {"tf": 1}, "opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}, "opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 29}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 18}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 2}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 2}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "o": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1}}, "df": 1, "s": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.loader.ModelLoader": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.registry.semver.NoParser": {"tf": 1}}, "df": 1, "n": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "/": {"2": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "docs": {}, "df": 0}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 2.6457513110645907}}, "df": 12}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.registry.CardRegistry.delete_card": {"tf": 1.4142135623730951}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard": {"tf": 2.23606797749979}, "opsml.cards.data.DataCard.load_data": {"tf": 2.23606797749979}, "opsml.cards.data.DataCard.load_data_profile": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.split_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.data_splits": {"tf": 1}, "opsml.cards.data.DataCard.data": {"tf": 1}, "opsml.cards.data.DataCard.data_profile": {"tf": 1}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.load_profile": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 2.449489742783178}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 41, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard": {"tf": 2}, "opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"opsml.projects.project.OpsmlProject.datacard_uids": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.base.SamplePrediction": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.data.DataCard.create_registry_record": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"opsml.data.splitter.PolarsColumnSplitter": {"tf": 1}, "opsml.data.splitter.PolarsIndexSplitter": {"tf": 1}, "opsml.data.splitter.PolarsRowsSplitter": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}}}}, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 4}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 4}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1}}, "df": 15}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.load_preprocessor": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.projects.active_run.CardHandler": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 11}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.audit.AuditQuestionTable": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.projects.active_run.CardHandler": {"tf": 1}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "u": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.base.SamplePrediction": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 3}, "opsml.model.interfaces.huggingface.HuggingFaceModel.check_task_type": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}}, "df": 5, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}}, "df": 1, "l": {"docs": {"opsml.cards.audit.Question": {"tf": 4}, "opsml.cards.audit.AuditSections": {"tf": 4}, "opsml.cards.model.ModelCard": {"tf": 2.6457513110645907}, "opsml.cards.model.ModelCard.load_model": {"tf": 1}, "opsml.cards.model.ModelCard.download_model": {"tf": 2}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 4}, "opsml.model.interfaces.base.ModelInterface": {"tf": 4}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 2.6457513110645907}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 4.123105625617661}, "opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.to_pipeline": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 2.8284271247461903}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 2.6457513110645907}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 2.8284271247461903}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 2.6457513110645907}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 2.6457513110645907}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.model_suffix": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 2.8284271247461903}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 4}, "opsml.model.challenger.ChallengeInputs": {"tf": 4}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.__init__": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 4}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 62, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}}, "df": 21}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"opsml.model.loader.ModelLoader.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.model.ModelCard.create_registry_record": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}}, "df": 5, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1}}, "df": 1}}}}}}}}, "s": {"docs": {"opsml.projects.project.OpsmlProject.modelcard_uids": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.model.ModelCard.model_metadata": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}}, "df": 6}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.loader.ModelLoader.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.Question": {"tf": 2}, "opsml.cards.audit.AuditSections": {"tf": 2}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.add_info": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 2}, "opsml.model.interfaces.base.ModelInterface": {"tf": 2}, "opsml.model.challenger.BattleReport": {"tf": 2}, "opsml.model.challenger.ChallengeInputs": {"tf": 2}, "opsml.registry.semver.CardVersion": {"tf": 2}}, "df": 14}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7, "s": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 2}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_metric": {"tf": 1.4142135623730951}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 2.23606797749979}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 2.23606797749979}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1.7320508075688772}}, "df": 7, "s": {"docs": {"opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.load_metrics": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 2}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}}, "df": 6}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}}, "df": 2}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.audit.AuditCard.add_comment": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 8}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 3}}}, "x": {"docs": {"opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.active_run.ActiveRun.register_card": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion.has_major_minor": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}}}}}, "y": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"opsml.cards.audit.Question": {"tf": 3.1622776601683795}, "opsml.cards.audit.AuditSections": {"tf": 3.1622776601683795}, "opsml.cards.audit.AuditQuestionTable.create_table": {"tf": 1}, "opsml.cards.audit.AuditCard.add_comment": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 2}, "opsml.cards.run.RunCard.add_tags": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 2.449489742783178}, "opsml.cards.run.RunCard.log_parameters": {"tf": 1}, "opsml.cards.run.RunCard.add_card_uid": {"tf": 1}, "opsml.cards.run.RunCard.get_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 3.1622776601683795}, "opsml.model.interfaces.base.SamplePrediction": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 3.1622776601683795}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 3.1622776601683795}, "opsml.model.challenger.ChallengeInputs": {"tf": 3.1622776601683795}, "opsml.model.challenger.ModelChallenger.__init__": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1.4142135623730951}, "opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}, "opsml.profile.profile_data.DataProfiler.compare_reports": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metrics": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_parameters": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2.6457513110645907}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.list_runs": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 2}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion": {"tf": 3.1622776601683795}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}, "opsml.registry.semver.SemVerUtils.sort_semvers": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.__init__": {"tf": 1.4142135623730951}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1}, "opsml.settings.config.OpsmlConfig.storage_root": {"tf": 1}}, "df": 51}, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.update_card": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}, "opsml.registry.semver.SemVerUtils.increment_version": {"tf": 1}, "opsml.registry.semver.get_version_to_search": {"tf": 1.4142135623730951}}, "df": 11, "e": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 3}, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 5}}, "n": {"docs": {}, "df": 0, "x": {"docs": {"opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.cards.model.ModelCard.load_onnx_model": {"tf": 1}, "opsml.cards.model.ModelCard.load_preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_onnx_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.convert_to_onnx": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.save_onnx": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_onnx": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.7320508075688772}}, "df": 24}}}, "r": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}, "opsml.projects.active_run.ActiveRun.create_or_update_runcard": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 36, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1.7320508075688772}, "opsml.cards.data.DataCard": {"tf": 1.4142135623730951}, "opsml.cards.data.DataCard.create_registry_record": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.load_onnx_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface.save_sample_data": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_sample_data": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.pytorch_lightning.LightningModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.tf.TensorFlowModel.save_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_preprocessor": {"tf": 1.4142135623730951}, "opsml.model.interfaces.xgb.XGBoostModel.save_sample_data": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_sample_data": {"tf": 1}, "opsml.projects.active_run.ActiveRun.__init__": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1.4142135623730951}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}}, "df": 38}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.registry.semver.SemVerRegistryValidator": {"tf": 1}}, "df": 1}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1}, "opsml.cards.run.RunCard": {"tf": 1}}, "df": 4}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.run.RunCard": {"tf": 2.23606797749979}, "opsml.cards.run.RunCard.log_metric": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 2}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 2.23606797749979}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1.7320508075688772}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.7320508075688772}, "opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}, "opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.run": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 2.449489742783178}}, "df": 20}}, "s": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 4}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.convert_to_onnx": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"opsml.cards.run.RunCard.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.model.loader.ModelLoader": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_artifact_from_file": {"tf": 1.4142135623730951}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.CardHandler": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.audit.Question": {"tf": 1.4142135623730951}, "opsml.cards.audit.AuditSections": {"tf": 1.4142135623730951}, "opsml.data.splitter.DataSplit": {"tf": 1.4142135623730951}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.4142135623730951}, "opsml.model.challenger.BattleReport": {"tf": 1.4142135623730951}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.4142135623730951}, "opsml.registry.semver.CardVersion": {"tf": 1.4142135623730951}}, "df": 7, "s": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel.get_sample_prediction": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"opsml.registry.semver.SemVerUtils": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {"opsml.projects.project.OpsmlProject.get_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.get_parameter": {"tf": 1}}, "df": 2, "s": {"docs": {"opsml.cards.run.RunCard.get_metric": {"tf": 1}, "opsml.cards.run.RunCard.get_parameter": {"tf": 1}, "opsml.registry.semver.CardVersion.get_version_to_search": {"tf": 1}}, "df": 3}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"1": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}, "docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 3.3166247903554}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 3.3166247903554}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.active_run.ActiveRun.__init__": {"tf": 1.4142135623730951}, "opsml.projects.active_run.ActiveRun.register_card": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"opsml.settings.config.OpsmlConfig.set_opsml_storage_uri": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 3, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.list_questions": {"tf": 1}, "opsml.cards.audit.AuditCard.answer_question": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"opsml.model.challenger.ModelChallenger.challenge_champion": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {"opsml.cards.audit.Question": {"tf": 1.7320508075688772}, "opsml.cards.audit.AuditSections": {"tf": 1.7320508075688772}, "opsml.data.splitter.DataSplit": {"tf": 1.7320508075688772}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1.7320508075688772}, "opsml.model.challenger.BattleReport": {"tf": 1.7320508075688772}, "opsml.model.challenger.ChallengeInputs": {"tf": 1.7320508075688772}, "opsml.registry.semver.CardVersion": {"tf": 1.7320508075688772}, "opsml.settings.config.OpsmlConfig.is_tracking_local": {"tf": 1}}, "df": 8, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1.4142135623730951}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.audit.Question": {"tf": 1}, "opsml.cards.audit.AuditSections": {"tf": 1}, "opsml.data.splitter.DataSplit": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface": {"tf": 1}, "opsml.model.challenger.BattleReport": {"tf": 1}, "opsml.model.challenger.ChallengeInputs": {"tf": 1}, "opsml.registry.semver.CardVersion": {"tf": 1}}, "df": 7}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 8}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.__init__": {"tf": 1}}, "df": 7}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel": {"tf": 1}, "opsml.model.interfaces.pytorch_lightning.LightningModel": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 8}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.cards.data.DataCard.add_info": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}, "opsml.registry.registry.CardRegistry.load_card": {"tf": 1}, "opsml.registry.semver.SemVerRegistryValidator.set_version": {"tf": 1}}, "df": 6}}}, "s": {"docs": {"opsml.projects.active_run.ActiveRun.load_card": {"tf": 1}, "opsml.projects.project.OpsmlProject.load_card": {"tf": 1}, "opsml.registry.registry.CardRegistry.register_card": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"opsml.cards.data.DataCard.create_data_profile": {"tf": 1}, "opsml.settings.config.OpsmlConfig": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}}, "df": 4}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.registry.semver.VersionType": {"tf": 1}, "opsml.registry.semver.SemVerSymbols": {"tf": 1}, "opsml.types.huggingface.HuggingFaceTask": {"tf": 1}, "opsml.types.huggingface.HuggingFaceORTModel": {"tf": 1}}, "df": 4}}}}}}}}}, "v": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 3.4641016151377544}}, "df": 1, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 2.23606797749979}}, "df": 1}}}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.projects.project.OpsmlProject.load_card": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"opsml.cards.audit.AuditCard.answer_question": {"tf": 2}}, "df": 1, "s": {"docs": {"opsml.cards.audit.AuditCard": {"tf": 1}, "opsml.cards.audit.AuditCard.list_questions": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "y": {"docs": {"opsml.registry.registry.CardRegistry.query_value_from_card": {"tf": 1.4142135623730951}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"opsml.cards.model.ModelCard.download_model": {"tf": 1.4142135623730951}}, "df": 1, "d": {"docs": {"opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"opsml.cards.model.ModelCard.model": {"tf": 1}, "opsml.cards.model.ModelCard.sample_data": {"tf": 1}, "opsml.cards.model.ModelCard.preprocessor": {"tf": 1}, "opsml.cards.model.ModelCard.onnx_model": {"tf": 1}, "opsml.model.loader.ModelLoader.preprocessor": {"tf": 1}}, "df": 5}}}}}, "y": {"1": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 2}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}}, "df": 2}, "2": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 2}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 2}}, "df": 2}, "3": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 1.7320508075688772}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 3.7416573867739413}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 3.7416573867739413}}, "df": 2, "o": {"docs": {}, "df": 0, "u": {"docs": {"opsml.model.interfaces.huggingface.HuggingFaceModel": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 2.449489742783178}, "opsml.settings.config.OpsmlConfig": {"tf": 1.4142135623730951}}, "df": 3, "r": {"docs": {"opsml.cards.data.DataCard": {"tf": 1}, "opsml.cards.model.ModelCard": {"tf": 1.4142135623730951}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"opsml.profile.profile_data.DataProfiler.create_profile_report": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {"opsml.projects.project.OpsmlProject.__init__": {"tf": 1.4142135623730951}}, "df": 1, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1.4142135623730951}, "opsml.cards.model.ModelCard.download_model": {"tf": 1}, "opsml.model.interfaces.base.ModelInterface.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.catboost_.CatBoostModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.huggingface.HuggingFaceModel.load_model": {"tf": 1.4142135623730951}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.load_model": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.load_model": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}, "opsml.model.loader.ModelLoader.load_onnx_model": {"tf": 1.7320508075688772}}, "df": 11}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {"opsml.cards.run.RunCard": {"tf": 1}, "opsml.cards.run.RunCard.add_tag": {"tf": 1.4142135623730951}, "opsml.cards.run.RunCard.log_graph": {"tf": 1}, "opsml.cards.run.RunCard.log_parameter": {"tf": 1}, "opsml.cards.run.RunCard.log_metric": {"tf": 1}, "opsml.cards.run.RunCard.log_metrics": {"tf": 1}, "opsml.model.interfaces.vowpal.VowpalWabbitModel.load_model": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tag": {"tf": 1}, "opsml.projects.active_run.ActiveRun.add_tags": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_metric": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_parameter": {"tf": 1}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 1}, "opsml.projects.project.OpsmlProject.__init__": {"tf": 1}, "opsml.registry.registry.CardRegistry.list_cards": {"tf": 1}}, "df": 14, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"opsml.cards.data.DataCard.load_data": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.load_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.load_model": {"tf": 1}}, "df": 3}}}}}}}, "x": {"docs": {"opsml.cards.run.RunCard.log_graph": {"tf": 4.242640687119285}, "opsml.projects.active_run.ActiveRun.log_graph": {"tf": 4.242640687119285}}, "df": 2, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1.7320508075688772}}, "df": 1, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 1}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"opsml.model.interfaces.xgb.XGBoostModel": {"tf": 1}}, "df": 1}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"opsml.model.interfaces.base.ModelInterface.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.catboost_.CatBoostModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.huggingface.HuggingFaceModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_model": {"tf": 1}, "opsml.model.interfaces.lgbm.LightGBMModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.pytorch.TorchModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.sklearn.SklearnModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.tf.TensorFlowModel.save_preprocessor": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_model": {"tf": 1}, "opsml.model.interfaces.xgb.XGBoostModel.save_preprocessor": {"tf": 1}}, "df": 11}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + + // mirrored in build-search-index.js (part 1) + // Also split on html tags. this is a cheap heuristic, but good enough. + elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/); + + let searchIndex; + if (docs._isPrebuiltIndex) { + console.info("using precompiled search index"); + searchIndex = elasticlunr.Index.load(docs); + } else { + console.time("building search index"); + // mirrored in build-search-index.js (part 2) + searchIndex = elasticlunr(function () { + this.pipeline.remove(elasticlunr.stemmer); + this.pipeline.remove(elasticlunr.stopWordFilter); + this.addField("qualname"); + this.addField("fullname"); + this.addField("annotation"); + this.addField("default_value"); + this.addField("signature"); + this.addField("bases"); + this.addField("doc"); + this.setRef("fullname"); + }); + for (let doc of docs) { + searchIndex.addDoc(doc); + } + console.timeEnd("building search index"); + } + + return (term) => searchIndex.search(term, { + fields: { + qualname: {boost: 4}, + fullname: {boost: 2}, + annotation: {boost: 2}, + default_value: {boost: 2}, + signature: {boost: 2}, + bases: {boost: 2}, + doc: {boost: 1}, + }, + expand: true + }); +})(); \ No newline at end of file diff --git a/assets/_mkdocstrings.css b/assets/_mkdocstrings.css new file mode 100644 index 000000000..4b7d98b83 --- /dev/null +++ b/assets/_mkdocstrings.css @@ -0,0 +1,109 @@ + +/* Avoid breaking parameter names, etc. in table cells. */ +.doc-contents td code { + word-break: normal !important; +} + +/* No line break before first paragraph of descriptions. */ +.doc-md-description, +.doc-md-description>p:first-child { + display: inline; +} + +/* Max width for docstring sections tables. */ +.doc .md-typeset__table, +.doc .md-typeset__table table { + display: table !important; + width: 100%; +} + +.doc .md-typeset__table tr { + display: table-row; +} + +/* Defaults in Spacy table style. */ +.doc-param-default { + float: right; +} + +/* Symbols in Navigation and ToC. */ +:root, +[data-md-color-scheme="default"] { + --doc-symbol-attribute-fg-color: #953800; + --doc-symbol-function-fg-color: #8250df; + --doc-symbol-method-fg-color: #8250df; + --doc-symbol-class-fg-color: #0550ae; + --doc-symbol-module-fg-color: #5cad0f; + + --doc-symbol-attribute-bg-color: #9538001a; + --doc-symbol-function-bg-color: #8250df1a; + --doc-symbol-method-bg-color: #8250df1a; + --doc-symbol-class-bg-color: #0550ae1a; + --doc-symbol-module-bg-color: #5cad0f1a; +} + +[data-md-color-scheme="slate"] { + --doc-symbol-attribute-fg-color: #ffa657; + --doc-symbol-function-fg-color: #d2a8ff; + --doc-symbol-method-fg-color: #d2a8ff; + --doc-symbol-class-fg-color: #79c0ff; + --doc-symbol-module-fg-color: #baff79; + + --doc-symbol-attribute-bg-color: #ffa6571a; + --doc-symbol-function-bg-color: #d2a8ff1a; + --doc-symbol-method-bg-color: #d2a8ff1a; + --doc-symbol-class-bg-color: #79c0ff1a; + --doc-symbol-module-bg-color: #baff791a; +} + +code.doc-symbol { + border-radius: .1rem; + font-size: .85em; + padding: 0 .3em; + font-weight: bold; +} + +code.doc-symbol-attribute { + color: var(--doc-symbol-attribute-fg-color); + background-color: var(--doc-symbol-attribute-bg-color); +} + +code.doc-symbol-attribute::after { + content: "attr"; +} + +code.doc-symbol-function { + color: var(--doc-symbol-function-fg-color); + background-color: var(--doc-symbol-function-bg-color); +} + +code.doc-symbol-function::after { + content: "func"; +} + +code.doc-symbol-method { + color: var(--doc-symbol-method-fg-color); + background-color: var(--doc-symbol-method-bg-color); +} + +code.doc-symbol-method::after { + content: "meth"; +} + +code.doc-symbol-class { + color: var(--doc-symbol-class-fg-color); + background-color: var(--doc-symbol-class-bg-color); +} + +code.doc-symbol-class::after { + content: "class"; +} + +code.doc-symbol-module { + color: var(--doc-symbol-module-fg-color); + background-color: var(--doc-symbol-module-bg-color); +} + +code.doc-symbol-module::after { + content: "mod"; +} \ No newline at end of file diff --git a/assets/images/favicon.png b/assets/images/favicon.png new file mode 100644 index 000000000..1cf13b9f9 Binary files /dev/null and b/assets/images/favicon.png differ diff --git a/assets/javascripts/bundle.fe8b6f2b.min.js b/assets/javascripts/bundle.fe8b6f2b.min.js new file mode 100644 index 000000000..cf778d428 --- /dev/null +++ b/assets/javascripts/bundle.fe8b6f2b.min.js @@ -0,0 +1,29 @@ +"use strict";(()=>{var Fi=Object.create;var gr=Object.defineProperty;var ji=Object.getOwnPropertyDescriptor;var Wi=Object.getOwnPropertyNames,Dt=Object.getOwnPropertySymbols,Ui=Object.getPrototypeOf,xr=Object.prototype.hasOwnProperty,no=Object.prototype.propertyIsEnumerable;var oo=(e,t,r)=>t in e?gr(e,t,{enumerable:!0,configurable:!0,writable:!0,value:r}):e[t]=r,R=(e,t)=>{for(var r in t||(t={}))xr.call(t,r)&&oo(e,r,t[r]);if(Dt)for(var r of Dt(t))no.call(t,r)&&oo(e,r,t[r]);return e};var io=(e,t)=>{var r={};for(var o in e)xr.call(e,o)&&t.indexOf(o)<0&&(r[o]=e[o]);if(e!=null&&Dt)for(var o of Dt(e))t.indexOf(o)<0&&no.call(e,o)&&(r[o]=e[o]);return r};var yr=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports);var Di=(e,t,r,o)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Wi(t))!xr.call(e,n)&&n!==r&&gr(e,n,{get:()=>t[n],enumerable:!(o=ji(t,n))||o.enumerable});return e};var Vt=(e,t,r)=>(r=e!=null?Fi(Ui(e)):{},Di(t||!e||!e.__esModule?gr(r,"default",{value:e,enumerable:!0}):r,e));var ao=(e,t,r)=>new Promise((o,n)=>{var i=p=>{try{s(r.next(p))}catch(c){n(c)}},a=p=>{try{s(r.throw(p))}catch(c){n(c)}},s=p=>p.done?o(p.value):Promise.resolve(p.value).then(i,a);s((r=r.apply(e,t)).next())});var co=yr((Er,so)=>{(function(e,t){typeof Er=="object"&&typeof so!="undefined"?t():typeof define=="function"&&define.amd?define(t):t()})(Er,function(){"use strict";function e(r){var o=!0,n=!1,i=null,a={text:!0,search:!0,url:!0,tel:!0,email:!0,password:!0,number:!0,date:!0,month:!0,week:!0,time:!0,datetime:!0,"datetime-local":!0};function s(H){return!!(H&&H!==document&&H.nodeName!=="HTML"&&H.nodeName!=="BODY"&&"classList"in H&&"contains"in H.classList)}function p(H){var mt=H.type,ze=H.tagName;return!!(ze==="INPUT"&&a[mt]&&!H.readOnly||ze==="TEXTAREA"&&!H.readOnly||H.isContentEditable)}function c(H){H.classList.contains("focus-visible")||(H.classList.add("focus-visible"),H.setAttribute("data-focus-visible-added",""))}function l(H){H.hasAttribute("data-focus-visible-added")&&(H.classList.remove("focus-visible"),H.removeAttribute("data-focus-visible-added"))}function f(H){H.metaKey||H.altKey||H.ctrlKey||(s(r.activeElement)&&c(r.activeElement),o=!0)}function u(H){o=!1}function h(H){s(H.target)&&(o||p(H.target))&&c(H.target)}function w(H){s(H.target)&&(H.target.classList.contains("focus-visible")||H.target.hasAttribute("data-focus-visible-added"))&&(n=!0,window.clearTimeout(i),i=window.setTimeout(function(){n=!1},100),l(H.target))}function A(H){document.visibilityState==="hidden"&&(n&&(o=!0),te())}function te(){document.addEventListener("mousemove",J),document.addEventListener("mousedown",J),document.addEventListener("mouseup",J),document.addEventListener("pointermove",J),document.addEventListener("pointerdown",J),document.addEventListener("pointerup",J),document.addEventListener("touchmove",J),document.addEventListener("touchstart",J),document.addEventListener("touchend",J)}function ie(){document.removeEventListener("mousemove",J),document.removeEventListener("mousedown",J),document.removeEventListener("mouseup",J),document.removeEventListener("pointermove",J),document.removeEventListener("pointerdown",J),document.removeEventListener("pointerup",J),document.removeEventListener("touchmove",J),document.removeEventListener("touchstart",J),document.removeEventListener("touchend",J)}function J(H){H.target.nodeName&&H.target.nodeName.toLowerCase()==="html"||(o=!1,ie())}document.addEventListener("keydown",f,!0),document.addEventListener("mousedown",u,!0),document.addEventListener("pointerdown",u,!0),document.addEventListener("touchstart",u,!0),document.addEventListener("visibilitychange",A,!0),te(),r.addEventListener("focus",h,!0),r.addEventListener("blur",w,!0),r.nodeType===Node.DOCUMENT_FRAGMENT_NODE&&r.host?r.host.setAttribute("data-js-focus-visible",""):r.nodeType===Node.DOCUMENT_NODE&&(document.documentElement.classList.add("js-focus-visible"),document.documentElement.setAttribute("data-js-focus-visible",""))}if(typeof window!="undefined"&&typeof document!="undefined"){window.applyFocusVisiblePolyfill=e;var t;try{t=new CustomEvent("focus-visible-polyfill-ready")}catch(r){t=document.createEvent("CustomEvent"),t.initCustomEvent("focus-visible-polyfill-ready",!1,!1,{})}window.dispatchEvent(t)}typeof document!="undefined"&&e(document)})});var Yr=yr((Rt,Kr)=>{/*! + * clipboard.js v2.0.11 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */(function(t,r){typeof Rt=="object"&&typeof Kr=="object"?Kr.exports=r():typeof define=="function"&&define.amd?define([],r):typeof Rt=="object"?Rt.ClipboardJS=r():t.ClipboardJS=r()})(Rt,function(){return function(){var e={686:function(o,n,i){"use strict";i.d(n,{default:function(){return Ii}});var a=i(279),s=i.n(a),p=i(370),c=i.n(p),l=i(817),f=i.n(l);function u(V){try{return document.execCommand(V)}catch(_){return!1}}var h=function(_){var M=f()(_);return u("cut"),M},w=h;function A(V){var _=document.documentElement.getAttribute("dir")==="rtl",M=document.createElement("textarea");M.style.fontSize="12pt",M.style.border="0",M.style.padding="0",M.style.margin="0",M.style.position="absolute",M.style[_?"right":"left"]="-9999px";var j=window.pageYOffset||document.documentElement.scrollTop;return M.style.top="".concat(j,"px"),M.setAttribute("readonly",""),M.value=V,M}var te=function(_,M){var j=A(_);M.container.appendChild(j);var D=f()(j);return u("copy"),j.remove(),D},ie=function(_){var M=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body},j="";return typeof _=="string"?j=te(_,M):_ instanceof HTMLInputElement&&!["text","search","url","tel","password"].includes(_==null?void 0:_.type)?j=te(_.value,M):(j=f()(_),u("copy")),j},J=ie;function H(V){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?H=function(M){return typeof M}:H=function(M){return M&&typeof Symbol=="function"&&M.constructor===Symbol&&M!==Symbol.prototype?"symbol":typeof M},H(V)}var mt=function(){var _=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{},M=_.action,j=M===void 0?"copy":M,D=_.container,Y=_.target,ke=_.text;if(j!=="copy"&&j!=="cut")throw new Error('Invalid "action" value, use either "copy" or "cut"');if(Y!==void 0)if(Y&&H(Y)==="object"&&Y.nodeType===1){if(j==="copy"&&Y.hasAttribute("disabled"))throw new Error('Invalid "target" attribute. Please use "readonly" instead of "disabled" attribute');if(j==="cut"&&(Y.hasAttribute("readonly")||Y.hasAttribute("disabled")))throw new Error(`Invalid "target" attribute. You can't cut text from elements with "readonly" or "disabled" attributes`)}else throw new Error('Invalid "target" value, use a valid Element');if(ke)return J(ke,{container:D});if(Y)return j==="cut"?w(Y):J(Y,{container:D})},ze=mt;function Ie(V){"@babel/helpers - typeof";return typeof Symbol=="function"&&typeof Symbol.iterator=="symbol"?Ie=function(M){return typeof M}:Ie=function(M){return M&&typeof Symbol=="function"&&M.constructor===Symbol&&M!==Symbol.prototype?"symbol":typeof M},Ie(V)}function _i(V,_){if(!(V instanceof _))throw new TypeError("Cannot call a class as a function")}function ro(V,_){for(var M=0;M<_.length;M++){var j=_[M];j.enumerable=j.enumerable||!1,j.configurable=!0,"value"in j&&(j.writable=!0),Object.defineProperty(V,j.key,j)}}function Ai(V,_,M){return _&&ro(V.prototype,_),M&&ro(V,M),V}function Ci(V,_){if(typeof _!="function"&&_!==null)throw new TypeError("Super expression must either be null or a function");V.prototype=Object.create(_&&_.prototype,{constructor:{value:V,writable:!0,configurable:!0}}),_&&br(V,_)}function br(V,_){return br=Object.setPrototypeOf||function(j,D){return j.__proto__=D,j},br(V,_)}function Hi(V){var _=Pi();return function(){var j=Wt(V),D;if(_){var Y=Wt(this).constructor;D=Reflect.construct(j,arguments,Y)}else D=j.apply(this,arguments);return ki(this,D)}}function ki(V,_){return _&&(Ie(_)==="object"||typeof _=="function")?_:$i(V)}function $i(V){if(V===void 0)throw new ReferenceError("this hasn't been initialised - super() hasn't been called");return V}function Pi(){if(typeof Reflect=="undefined"||!Reflect.construct||Reflect.construct.sham)return!1;if(typeof Proxy=="function")return!0;try{return Date.prototype.toString.call(Reflect.construct(Date,[],function(){})),!0}catch(V){return!1}}function Wt(V){return Wt=Object.setPrototypeOf?Object.getPrototypeOf:function(M){return M.__proto__||Object.getPrototypeOf(M)},Wt(V)}function vr(V,_){var M="data-clipboard-".concat(V);if(_.hasAttribute(M))return _.getAttribute(M)}var Ri=function(V){Ci(M,V);var _=Hi(M);function M(j,D){var Y;return _i(this,M),Y=_.call(this),Y.resolveOptions(D),Y.listenClick(j),Y}return Ai(M,[{key:"resolveOptions",value:function(){var D=arguments.length>0&&arguments[0]!==void 0?arguments[0]:{};this.action=typeof D.action=="function"?D.action:this.defaultAction,this.target=typeof D.target=="function"?D.target:this.defaultTarget,this.text=typeof D.text=="function"?D.text:this.defaultText,this.container=Ie(D.container)==="object"?D.container:document.body}},{key:"listenClick",value:function(D){var Y=this;this.listener=c()(D,"click",function(ke){return Y.onClick(ke)})}},{key:"onClick",value:function(D){var Y=D.delegateTarget||D.currentTarget,ke=this.action(Y)||"copy",Ut=ze({action:ke,container:this.container,target:this.target(Y),text:this.text(Y)});this.emit(Ut?"success":"error",{action:ke,text:Ut,trigger:Y,clearSelection:function(){Y&&Y.focus(),window.getSelection().removeAllRanges()}})}},{key:"defaultAction",value:function(D){return vr("action",D)}},{key:"defaultTarget",value:function(D){var Y=vr("target",D);if(Y)return document.querySelector(Y)}},{key:"defaultText",value:function(D){return vr("text",D)}},{key:"destroy",value:function(){this.listener.destroy()}}],[{key:"copy",value:function(D){var Y=arguments.length>1&&arguments[1]!==void 0?arguments[1]:{container:document.body};return J(D,Y)}},{key:"cut",value:function(D){return w(D)}},{key:"isSupported",value:function(){var D=arguments.length>0&&arguments[0]!==void 0?arguments[0]:["copy","cut"],Y=typeof D=="string"?[D]:D,ke=!!document.queryCommandSupported;return Y.forEach(function(Ut){ke=ke&&!!document.queryCommandSupported(Ut)}),ke}}]),M}(s()),Ii=Ri},828:function(o){var n=9;if(typeof Element!="undefined"&&!Element.prototype.matches){var i=Element.prototype;i.matches=i.matchesSelector||i.mozMatchesSelector||i.msMatchesSelector||i.oMatchesSelector||i.webkitMatchesSelector}function a(s,p){for(;s&&s.nodeType!==n;){if(typeof s.matches=="function"&&s.matches(p))return s;s=s.parentNode}}o.exports=a},438:function(o,n,i){var a=i(828);function s(l,f,u,h,w){var A=c.apply(this,arguments);return l.addEventListener(u,A,w),{destroy:function(){l.removeEventListener(u,A,w)}}}function p(l,f,u,h,w){return typeof l.addEventListener=="function"?s.apply(null,arguments):typeof u=="function"?s.bind(null,document).apply(null,arguments):(typeof l=="string"&&(l=document.querySelectorAll(l)),Array.prototype.map.call(l,function(A){return s(A,f,u,h,w)}))}function c(l,f,u,h){return function(w){w.delegateTarget=a(w.target,f),w.delegateTarget&&h.call(l,w)}}o.exports=p},879:function(o,n){n.node=function(i){return i!==void 0&&i instanceof HTMLElement&&i.nodeType===1},n.nodeList=function(i){var a=Object.prototype.toString.call(i);return i!==void 0&&(a==="[object NodeList]"||a==="[object HTMLCollection]")&&"length"in i&&(i.length===0||n.node(i[0]))},n.string=function(i){return typeof i=="string"||i instanceof String},n.fn=function(i){var a=Object.prototype.toString.call(i);return a==="[object Function]"}},370:function(o,n,i){var a=i(879),s=i(438);function p(u,h,w){if(!u&&!h&&!w)throw new Error("Missing required arguments");if(!a.string(h))throw new TypeError("Second argument must be a String");if(!a.fn(w))throw new TypeError("Third argument must be a Function");if(a.node(u))return c(u,h,w);if(a.nodeList(u))return l(u,h,w);if(a.string(u))return f(u,h,w);throw new TypeError("First argument must be a String, HTMLElement, HTMLCollection, or NodeList")}function c(u,h,w){return u.addEventListener(h,w),{destroy:function(){u.removeEventListener(h,w)}}}function l(u,h,w){return Array.prototype.forEach.call(u,function(A){A.addEventListener(h,w)}),{destroy:function(){Array.prototype.forEach.call(u,function(A){A.removeEventListener(h,w)})}}}function f(u,h,w){return s(document.body,u,h,w)}o.exports=p},817:function(o){function n(i){var a;if(i.nodeName==="SELECT")i.focus(),a=i.value;else if(i.nodeName==="INPUT"||i.nodeName==="TEXTAREA"){var s=i.hasAttribute("readonly");s||i.setAttribute("readonly",""),i.select(),i.setSelectionRange(0,i.value.length),s||i.removeAttribute("readonly"),a=i.value}else{i.hasAttribute("contenteditable")&&i.focus();var p=window.getSelection(),c=document.createRange();c.selectNodeContents(i),p.removeAllRanges(),p.addRange(c),a=p.toString()}return a}o.exports=n},279:function(o){function n(){}n.prototype={on:function(i,a,s){var p=this.e||(this.e={});return(p[i]||(p[i]=[])).push({fn:a,ctx:s}),this},once:function(i,a,s){var p=this;function c(){p.off(i,c),a.apply(s,arguments)}return c._=a,this.on(i,c,s)},emit:function(i){var a=[].slice.call(arguments,1),s=((this.e||(this.e={}))[i]||[]).slice(),p=0,c=s.length;for(p;p{"use strict";/*! + * escape-html + * Copyright(c) 2012-2013 TJ Holowaychuk + * Copyright(c) 2015 Andreas Lubbe + * Copyright(c) 2015 Tiancheng "Timothy" Gu + * MIT Licensed + */var ts=/["'&<>]/;ei.exports=rs;function rs(e){var t=""+e,r=ts.exec(t);if(!r)return t;var o,n="",i=0,a=0;for(i=r.index;i0&&i[i.length-1])&&(c[0]===6||c[0]===2)){r=0;continue}if(c[0]===3&&(!i||c[1]>i[0]&&c[1]=e.length&&(e=void 0),{value:e&&e[o++],done:!e}}};throw new TypeError(t?"Object is not iterable.":"Symbol.iterator is not defined.")}function N(e,t){var r=typeof Symbol=="function"&&e[Symbol.iterator];if(!r)return e;var o=r.call(e),n,i=[],a;try{for(;(t===void 0||t-- >0)&&!(n=o.next()).done;)i.push(n.value)}catch(s){a={error:s}}finally{try{n&&!n.done&&(r=o.return)&&r.call(o)}finally{if(a)throw a.error}}return i}function q(e,t,r){if(r||arguments.length===2)for(var o=0,n=t.length,i;o1||s(u,h)})})}function s(u,h){try{p(o[u](h))}catch(w){f(i[0][3],w)}}function p(u){u.value instanceof nt?Promise.resolve(u.value.v).then(c,l):f(i[0][2],u)}function c(u){s("next",u)}function l(u){s("throw",u)}function f(u,h){u(h),i.shift(),i.length&&s(i[0][0],i[0][1])}}function mo(e){if(!Symbol.asyncIterator)throw new TypeError("Symbol.asyncIterator is not defined.");var t=e[Symbol.asyncIterator],r;return t?t.call(e):(e=typeof de=="function"?de(e):e[Symbol.iterator](),r={},o("next"),o("throw"),o("return"),r[Symbol.asyncIterator]=function(){return this},r);function o(i){r[i]=e[i]&&function(a){return new Promise(function(s,p){a=e[i](a),n(s,p,a.done,a.value)})}}function n(i,a,s,p){Promise.resolve(p).then(function(c){i({value:c,done:s})},a)}}function k(e){return typeof e=="function"}function ft(e){var t=function(o){Error.call(o),o.stack=new Error().stack},r=e(t);return r.prototype=Object.create(Error.prototype),r.prototype.constructor=r,r}var zt=ft(function(e){return function(r){e(this),this.message=r?r.length+` errors occurred during unsubscription: +`+r.map(function(o,n){return n+1+") "+o.toString()}).join(` + `):"",this.name="UnsubscriptionError",this.errors=r}});function qe(e,t){if(e){var r=e.indexOf(t);0<=r&&e.splice(r,1)}}var Fe=function(){function e(t){this.initialTeardown=t,this.closed=!1,this._parentage=null,this._finalizers=null}return e.prototype.unsubscribe=function(){var t,r,o,n,i;if(!this.closed){this.closed=!0;var a=this._parentage;if(a)if(this._parentage=null,Array.isArray(a))try{for(var s=de(a),p=s.next();!p.done;p=s.next()){var c=p.value;c.remove(this)}}catch(A){t={error:A}}finally{try{p&&!p.done&&(r=s.return)&&r.call(s)}finally{if(t)throw t.error}}else a.remove(this);var l=this.initialTeardown;if(k(l))try{l()}catch(A){i=A instanceof zt?A.errors:[A]}var f=this._finalizers;if(f){this._finalizers=null;try{for(var u=de(f),h=u.next();!h.done;h=u.next()){var w=h.value;try{fo(w)}catch(A){i=i!=null?i:[],A instanceof zt?i=q(q([],N(i)),N(A.errors)):i.push(A)}}}catch(A){o={error:A}}finally{try{h&&!h.done&&(n=u.return)&&n.call(u)}finally{if(o)throw o.error}}}if(i)throw new zt(i)}},e.prototype.add=function(t){var r;if(t&&t!==this)if(this.closed)fo(t);else{if(t instanceof e){if(t.closed||t._hasParent(this))return;t._addParent(this)}(this._finalizers=(r=this._finalizers)!==null&&r!==void 0?r:[]).push(t)}},e.prototype._hasParent=function(t){var r=this._parentage;return r===t||Array.isArray(r)&&r.includes(t)},e.prototype._addParent=function(t){var r=this._parentage;this._parentage=Array.isArray(r)?(r.push(t),r):r?[r,t]:t},e.prototype._removeParent=function(t){var r=this._parentage;r===t?this._parentage=null:Array.isArray(r)&&qe(r,t)},e.prototype.remove=function(t){var r=this._finalizers;r&&qe(r,t),t instanceof e&&t._removeParent(this)},e.EMPTY=function(){var t=new e;return t.closed=!0,t}(),e}();var Tr=Fe.EMPTY;function qt(e){return e instanceof Fe||e&&"closed"in e&&k(e.remove)&&k(e.add)&&k(e.unsubscribe)}function fo(e){k(e)?e():e.unsubscribe()}var $e={onUnhandledError:null,onStoppedNotification:null,Promise:void 0,useDeprecatedSynchronousErrorHandling:!1,useDeprecatedNextContext:!1};var ut={setTimeout:function(e,t){for(var r=[],o=2;o0},enumerable:!1,configurable:!0}),t.prototype._trySubscribe=function(r){return this._throwIfClosed(),e.prototype._trySubscribe.call(this,r)},t.prototype._subscribe=function(r){return this._throwIfClosed(),this._checkFinalizedStatuses(r),this._innerSubscribe(r)},t.prototype._innerSubscribe=function(r){var o=this,n=this,i=n.hasError,a=n.isStopped,s=n.observers;return i||a?Tr:(this.currentObservers=null,s.push(r),new Fe(function(){o.currentObservers=null,qe(s,r)}))},t.prototype._checkFinalizedStatuses=function(r){var o=this,n=o.hasError,i=o.thrownError,a=o.isStopped;n?r.error(i):a&&r.complete()},t.prototype.asObservable=function(){var r=new F;return r.source=this,r},t.create=function(r,o){return new Eo(r,o)},t}(F);var Eo=function(e){re(t,e);function t(r,o){var n=e.call(this)||this;return n.destination=r,n.source=o,n}return t.prototype.next=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.next)===null||n===void 0||n.call(o,r)},t.prototype.error=function(r){var o,n;(n=(o=this.destination)===null||o===void 0?void 0:o.error)===null||n===void 0||n.call(o,r)},t.prototype.complete=function(){var r,o;(o=(r=this.destination)===null||r===void 0?void 0:r.complete)===null||o===void 0||o.call(r)},t.prototype._subscribe=function(r){var o,n;return(n=(o=this.source)===null||o===void 0?void 0:o.subscribe(r))!==null&&n!==void 0?n:Tr},t}(g);var _r=function(e){re(t,e);function t(r){var o=e.call(this)||this;return o._value=r,o}return Object.defineProperty(t.prototype,"value",{get:function(){return this.getValue()},enumerable:!1,configurable:!0}),t.prototype._subscribe=function(r){var o=e.prototype._subscribe.call(this,r);return!o.closed&&r.next(this._value),o},t.prototype.getValue=function(){var r=this,o=r.hasError,n=r.thrownError,i=r._value;if(o)throw n;return this._throwIfClosed(),i},t.prototype.next=function(r){e.prototype.next.call(this,this._value=r)},t}(g);var Lt={now:function(){return(Lt.delegate||Date).now()},delegate:void 0};var _t=function(e){re(t,e);function t(r,o,n){r===void 0&&(r=1/0),o===void 0&&(o=1/0),n===void 0&&(n=Lt);var i=e.call(this)||this;return i._bufferSize=r,i._windowTime=o,i._timestampProvider=n,i._buffer=[],i._infiniteTimeWindow=!0,i._infiniteTimeWindow=o===1/0,i._bufferSize=Math.max(1,r),i._windowTime=Math.max(1,o),i}return t.prototype.next=function(r){var o=this,n=o.isStopped,i=o._buffer,a=o._infiniteTimeWindow,s=o._timestampProvider,p=o._windowTime;n||(i.push(r),!a&&i.push(s.now()+p)),this._trimBuffer(),e.prototype.next.call(this,r)},t.prototype._subscribe=function(r){this._throwIfClosed(),this._trimBuffer();for(var o=this._innerSubscribe(r),n=this,i=n._infiniteTimeWindow,a=n._buffer,s=a.slice(),p=0;p0?e.prototype.schedule.call(this,r,o):(this.delay=o,this.state=r,this.scheduler.flush(this),this)},t.prototype.execute=function(r,o){return o>0||this.closed?e.prototype.execute.call(this,r,o):this._execute(r,o)},t.prototype.requestAsyncId=function(r,o,n){return n===void 0&&(n=0),n!=null&&n>0||n==null&&this.delay>0?e.prototype.requestAsyncId.call(this,r,o,n):(r.flush(this),0)},t}(vt);var So=function(e){re(t,e);function t(){return e!==null&&e.apply(this,arguments)||this}return t}(gt);var Hr=new So(To);var Oo=function(e){re(t,e);function t(r,o){var n=e.call(this,r,o)||this;return n.scheduler=r,n.work=o,n}return t.prototype.requestAsyncId=function(r,o,n){return n===void 0&&(n=0),n!==null&&n>0?e.prototype.requestAsyncId.call(this,r,o,n):(r.actions.push(this),r._scheduled||(r._scheduled=bt.requestAnimationFrame(function(){return r.flush(void 0)})))},t.prototype.recycleAsyncId=function(r,o,n){var i;if(n===void 0&&(n=0),n!=null?n>0:this.delay>0)return e.prototype.recycleAsyncId.call(this,r,o,n);var a=r.actions;o!=null&&((i=a[a.length-1])===null||i===void 0?void 0:i.id)!==o&&(bt.cancelAnimationFrame(o),r._scheduled=void 0)},t}(vt);var Mo=function(e){re(t,e);function t(){return e!==null&&e.apply(this,arguments)||this}return t.prototype.flush=function(r){this._active=!0;var o=this._scheduled;this._scheduled=void 0;var n=this.actions,i;r=r||n.shift();do if(i=r.execute(r.state,r.delay))break;while((r=n[0])&&r.id===o&&n.shift());if(this._active=!1,i){for(;(r=n[0])&&r.id===o&&n.shift();)r.unsubscribe();throw i}},t}(gt);var me=new Mo(Oo);var O=new F(function(e){return e.complete()});function Yt(e){return e&&k(e.schedule)}function kr(e){return e[e.length-1]}function Xe(e){return k(kr(e))?e.pop():void 0}function He(e){return Yt(kr(e))?e.pop():void 0}function Bt(e,t){return typeof kr(e)=="number"?e.pop():t}var xt=function(e){return e&&typeof e.length=="number"&&typeof e!="function"};function Gt(e){return k(e==null?void 0:e.then)}function Jt(e){return k(e[ht])}function Xt(e){return Symbol.asyncIterator&&k(e==null?void 0:e[Symbol.asyncIterator])}function Zt(e){return new TypeError("You provided "+(e!==null&&typeof e=="object"?"an invalid object":"'"+e+"'")+" where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.")}function Gi(){return typeof Symbol!="function"||!Symbol.iterator?"@@iterator":Symbol.iterator}var er=Gi();function tr(e){return k(e==null?void 0:e[er])}function rr(e){return lo(this,arguments,function(){var r,o,n,i;return Nt(this,function(a){switch(a.label){case 0:r=e.getReader(),a.label=1;case 1:a.trys.push([1,,9,10]),a.label=2;case 2:return[4,nt(r.read())];case 3:return o=a.sent(),n=o.value,i=o.done,i?[4,nt(void 0)]:[3,5];case 4:return[2,a.sent()];case 5:return[4,nt(n)];case 6:return[4,a.sent()];case 7:return a.sent(),[3,2];case 8:return[3,10];case 9:return r.releaseLock(),[7];case 10:return[2]}})})}function or(e){return k(e==null?void 0:e.getReader)}function W(e){if(e instanceof F)return e;if(e!=null){if(Jt(e))return Ji(e);if(xt(e))return Xi(e);if(Gt(e))return Zi(e);if(Xt(e))return Lo(e);if(tr(e))return ea(e);if(or(e))return ta(e)}throw Zt(e)}function Ji(e){return new F(function(t){var r=e[ht]();if(k(r.subscribe))return r.subscribe(t);throw new TypeError("Provided object does not correctly implement Symbol.observable")})}function Xi(e){return new F(function(t){for(var r=0;r=2;return function(o){return o.pipe(e?b(function(n,i){return e(n,i,o)}):le,Te(1),r?Be(t):zo(function(){return new ir}))}}function Fr(e){return e<=0?function(){return O}:y(function(t,r){var o=[];t.subscribe(T(r,function(n){o.push(n),e=2,!0))}function pe(e){e===void 0&&(e={});var t=e.connector,r=t===void 0?function(){return new g}:t,o=e.resetOnError,n=o===void 0?!0:o,i=e.resetOnComplete,a=i===void 0?!0:i,s=e.resetOnRefCountZero,p=s===void 0?!0:s;return function(c){var l,f,u,h=0,w=!1,A=!1,te=function(){f==null||f.unsubscribe(),f=void 0},ie=function(){te(),l=u=void 0,w=A=!1},J=function(){var H=l;ie(),H==null||H.unsubscribe()};return y(function(H,mt){h++,!A&&!w&&te();var ze=u=u!=null?u:r();mt.add(function(){h--,h===0&&!A&&!w&&(f=Wr(J,p))}),ze.subscribe(mt),!l&&h>0&&(l=new at({next:function(Ie){return ze.next(Ie)},error:function(Ie){A=!0,te(),f=Wr(ie,n,Ie),ze.error(Ie)},complete:function(){w=!0,te(),f=Wr(ie,a),ze.complete()}}),W(H).subscribe(l))})(c)}}function Wr(e,t){for(var r=[],o=2;oe.next(document)),e}function $(e,t=document){return Array.from(t.querySelectorAll(e))}function P(e,t=document){let r=fe(e,t);if(typeof r=="undefined")throw new ReferenceError(`Missing element: expected "${e}" to be present`);return r}function fe(e,t=document){return t.querySelector(e)||void 0}function Re(){var e,t,r,o;return(o=(r=(t=(e=document.activeElement)==null?void 0:e.shadowRoot)==null?void 0:t.activeElement)!=null?r:document.activeElement)!=null?o:void 0}var xa=S(d(document.body,"focusin"),d(document.body,"focusout")).pipe(_e(1),Q(void 0),m(()=>Re()||document.body),G(1));function et(e){return xa.pipe(m(t=>e.contains(t)),K())}function kt(e,t){return C(()=>S(d(e,"mouseenter").pipe(m(()=>!0)),d(e,"mouseleave").pipe(m(()=>!1))).pipe(t?Ht(r=>Me(+!r*t)):le,Q(e.matches(":hover"))))}function Bo(e,t){if(typeof t=="string"||typeof t=="number")e.innerHTML+=t.toString();else if(t instanceof Node)e.appendChild(t);else if(Array.isArray(t))for(let r of t)Bo(e,r)}function x(e,t,...r){let o=document.createElement(e);if(t)for(let n of Object.keys(t))typeof t[n]!="undefined"&&(typeof t[n]!="boolean"?o.setAttribute(n,t[n]):o.setAttribute(n,""));for(let n of r)Bo(o,n);return o}function sr(e){if(e>999){let t=+((e-950)%1e3>99);return`${((e+1e-6)/1e3).toFixed(t)}k`}else return e.toString()}function wt(e){let t=x("script",{src:e});return C(()=>(document.head.appendChild(t),S(d(t,"load"),d(t,"error").pipe(v(()=>$r(()=>new ReferenceError(`Invalid script: ${e}`))))).pipe(m(()=>{}),L(()=>document.head.removeChild(t)),Te(1))))}var Go=new g,ya=C(()=>typeof ResizeObserver=="undefined"?wt("https://unpkg.com/resize-observer-polyfill"):I(void 0)).pipe(m(()=>new ResizeObserver(e=>e.forEach(t=>Go.next(t)))),v(e=>S(Ke,I(e)).pipe(L(()=>e.disconnect()))),G(1));function ce(e){return{width:e.offsetWidth,height:e.offsetHeight}}function ge(e){let t=e;for(;t.clientWidth===0&&t.parentElement;)t=t.parentElement;return ya.pipe(E(r=>r.observe(t)),v(r=>Go.pipe(b(o=>o.target===t),L(()=>r.unobserve(t)))),m(()=>ce(e)),Q(ce(e)))}function Tt(e){return{width:e.scrollWidth,height:e.scrollHeight}}function cr(e){let t=e.parentElement;for(;t&&(e.scrollWidth<=t.scrollWidth&&e.scrollHeight<=t.scrollHeight);)t=(e=t).parentElement;return t?e:void 0}function Jo(e){let t=[],r=e.parentElement;for(;r;)(e.clientWidth>r.clientWidth||e.clientHeight>r.clientHeight)&&t.push(r),r=(e=r).parentElement;return t.length===0&&t.push(document.documentElement),t}function Ue(e){return{x:e.offsetLeft,y:e.offsetTop}}function Xo(e){let t=e.getBoundingClientRect();return{x:t.x+window.scrollX,y:t.y+window.scrollY}}function Zo(e){return S(d(window,"load"),d(window,"resize")).pipe(Le(0,me),m(()=>Ue(e)),Q(Ue(e)))}function pr(e){return{x:e.scrollLeft,y:e.scrollTop}}function De(e){return S(d(e,"scroll"),d(window,"scroll"),d(window,"resize")).pipe(Le(0,me),m(()=>pr(e)),Q(pr(e)))}var en=new g,Ea=C(()=>I(new IntersectionObserver(e=>{for(let t of e)en.next(t)},{threshold:0}))).pipe(v(e=>S(Ke,I(e)).pipe(L(()=>e.disconnect()))),G(1));function tt(e){return Ea.pipe(E(t=>t.observe(e)),v(t=>en.pipe(b(({target:r})=>r===e),L(()=>t.unobserve(e)),m(({isIntersecting:r})=>r))))}function tn(e,t=16){return De(e).pipe(m(({y:r})=>{let o=ce(e),n=Tt(e);return r>=n.height-o.height-t}),K())}var lr={drawer:P("[data-md-toggle=drawer]"),search:P("[data-md-toggle=search]")};function rn(e){return lr[e].checked}function Je(e,t){lr[e].checked!==t&&lr[e].click()}function Ve(e){let t=lr[e];return d(t,"change").pipe(m(()=>t.checked),Q(t.checked))}function wa(e,t){switch(e.constructor){case HTMLInputElement:return e.type==="radio"?/^Arrow/.test(t):!0;case HTMLSelectElement:case HTMLTextAreaElement:return!0;default:return e.isContentEditable}}function Ta(){return S(d(window,"compositionstart").pipe(m(()=>!0)),d(window,"compositionend").pipe(m(()=>!1))).pipe(Q(!1))}function on(){let e=d(window,"keydown").pipe(b(t=>!(t.metaKey||t.ctrlKey)),m(t=>({mode:rn("search")?"search":"global",type:t.key,claim(){t.preventDefault(),t.stopPropagation()}})),b(({mode:t,type:r})=>{if(t==="global"){let o=Re();if(typeof o!="undefined")return!wa(o,r)}return!0}),pe());return Ta().pipe(v(t=>t?O:e))}function xe(){return new URL(location.href)}function pt(e,t=!1){if(B("navigation.instant")&&!t){let r=x("a",{href:e.href});document.body.appendChild(r),r.click(),r.remove()}else location.href=e.href}function nn(){return new g}function an(){return location.hash.slice(1)}function sn(e){let t=x("a",{href:e});t.addEventListener("click",r=>r.stopPropagation()),t.click()}function Sa(e){return S(d(window,"hashchange"),e).pipe(m(an),Q(an()),b(t=>t.length>0),G(1))}function cn(e){return Sa(e).pipe(m(t=>fe(`[id="${t}"]`)),b(t=>typeof t!="undefined"))}function $t(e){let t=matchMedia(e);return ar(r=>t.addListener(()=>r(t.matches))).pipe(Q(t.matches))}function pn(){let e=matchMedia("print");return S(d(window,"beforeprint").pipe(m(()=>!0)),d(window,"afterprint").pipe(m(()=>!1))).pipe(Q(e.matches))}function Nr(e,t){return e.pipe(v(r=>r?t():O))}function zr(e,t){return new F(r=>{let o=new XMLHttpRequest;return o.open("GET",`${e}`),o.responseType="blob",o.addEventListener("load",()=>{o.status>=200&&o.status<300?(r.next(o.response),r.complete()):r.error(new Error(o.statusText))}),o.addEventListener("error",()=>{r.error(new Error("Network error"))}),o.addEventListener("abort",()=>{r.complete()}),typeof(t==null?void 0:t.progress$)!="undefined"&&(o.addEventListener("progress",n=>{var i;if(n.lengthComputable)t.progress$.next(n.loaded/n.total*100);else{let a=(i=o.getResponseHeader("Content-Length"))!=null?i:0;t.progress$.next(n.loaded/+a*100)}}),t.progress$.next(5)),o.send(),()=>o.abort()})}function Ne(e,t){return zr(e,t).pipe(v(r=>r.text()),m(r=>JSON.parse(r)),G(1))}function ln(e,t){let r=new DOMParser;return zr(e,t).pipe(v(o=>o.text()),m(o=>r.parseFromString(o,"text/html")),G(1))}function mn(e,t){let r=new DOMParser;return zr(e,t).pipe(v(o=>o.text()),m(o=>r.parseFromString(o,"text/xml")),G(1))}function fn(){return{x:Math.max(0,scrollX),y:Math.max(0,scrollY)}}function un(){return S(d(window,"scroll",{passive:!0}),d(window,"resize",{passive:!0})).pipe(m(fn),Q(fn()))}function dn(){return{width:innerWidth,height:innerHeight}}function hn(){return d(window,"resize",{passive:!0}).pipe(m(dn),Q(dn()))}function bn(){return z([un(),hn()]).pipe(m(([e,t])=>({offset:e,size:t})),G(1))}function mr(e,{viewport$:t,header$:r}){let o=t.pipe(Z("size")),n=z([o,r]).pipe(m(()=>Ue(e)));return z([r,t,n]).pipe(m(([{height:i},{offset:a,size:s},{x:p,y:c}])=>({offset:{x:a.x-p,y:a.y-c+i},size:s})))}function Oa(e){return d(e,"message",t=>t.data)}function Ma(e){let t=new g;return t.subscribe(r=>e.postMessage(r)),t}function vn(e,t=new Worker(e)){let r=Oa(t),o=Ma(t),n=new g;n.subscribe(o);let i=o.pipe(X(),ne(!0));return n.pipe(X(),Pe(r.pipe(U(i))),pe())}var La=P("#__config"),St=JSON.parse(La.textContent);St.base=`${new URL(St.base,xe())}`;function ye(){return St}function B(e){return St.features.includes(e)}function Ee(e,t){return typeof t!="undefined"?St.translations[e].replace("#",t.toString()):St.translations[e]}function Se(e,t=document){return P(`[data-md-component=${e}]`,t)}function ae(e,t=document){return $(`[data-md-component=${e}]`,t)}function _a(e){let t=P(".md-typeset > :first-child",e);return d(t,"click",{once:!0}).pipe(m(()=>P(".md-typeset",e)),m(r=>({hash:__md_hash(r.innerHTML)})))}function gn(e){if(!B("announce.dismiss")||!e.childElementCount)return O;if(!e.hidden){let t=P(".md-typeset",e);__md_hash(t.innerHTML)===__md_get("__announce")&&(e.hidden=!0)}return C(()=>{let t=new g;return t.subscribe(({hash:r})=>{e.hidden=!0,__md_set("__announce",r)}),_a(e).pipe(E(r=>t.next(r)),L(()=>t.complete()),m(r=>R({ref:e},r)))})}function Aa(e,{target$:t}){return t.pipe(m(r=>({hidden:r!==e})))}function xn(e,t){let r=new g;return r.subscribe(({hidden:o})=>{e.hidden=o}),Aa(e,t).pipe(E(o=>r.next(o)),L(()=>r.complete()),m(o=>R({ref:e},o)))}function Pt(e,t){return t==="inline"?x("div",{class:"md-tooltip md-tooltip--inline",id:e,role:"tooltip"},x("div",{class:"md-tooltip__inner md-typeset"})):x("div",{class:"md-tooltip",id:e,role:"tooltip"},x("div",{class:"md-tooltip__inner md-typeset"}))}function yn(...e){return x("div",{class:"md-tooltip2",role:"tooltip"},x("div",{class:"md-tooltip2__inner md-typeset"},e))}function En(e,t){if(t=t?`${t}_annotation_${e}`:void 0,t){let r=t?`#${t}`:void 0;return x("aside",{class:"md-annotation",tabIndex:0},Pt(t),x("a",{href:r,class:"md-annotation__index",tabIndex:-1},x("span",{"data-md-annotation-id":e})))}else return x("aside",{class:"md-annotation",tabIndex:0},Pt(t),x("span",{class:"md-annotation__index",tabIndex:-1},x("span",{"data-md-annotation-id":e})))}function wn(e){return x("button",{class:"md-clipboard md-icon",title:Ee("clipboard.copy"),"data-clipboard-target":`#${e} > code`})}function qr(e,t){let r=t&2,o=t&1,n=Object.keys(e.terms).filter(p=>!e.terms[p]).reduce((p,c)=>[...p,x("del",null,c)," "],[]).slice(0,-1),i=ye(),a=new URL(e.location,i.base);B("search.highlight")&&a.searchParams.set("h",Object.entries(e.terms).filter(([,p])=>p).reduce((p,[c])=>`${p} ${c}`.trim(),""));let{tags:s}=ye();return x("a",{href:`${a}`,class:"md-search-result__link",tabIndex:-1},x("article",{class:"md-search-result__article md-typeset","data-md-score":e.score.toFixed(2)},r>0&&x("div",{class:"md-search-result__icon md-icon"}),r>0&&x("h1",null,e.title),r<=0&&x("h2",null,e.title),o>0&&e.text.length>0&&e.text,e.tags&&e.tags.map(p=>{let c=s?p in s?`md-tag-icon md-tag--${s[p]}`:"md-tag-icon":"";return x("span",{class:`md-tag ${c}`},p)}),o>0&&n.length>0&&x("p",{class:"md-search-result__terms"},Ee("search.result.term.missing"),": ",...n)))}function Tn(e){let t=e[0].score,r=[...e],o=ye(),n=r.findIndex(l=>!`${new URL(l.location,o.base)}`.includes("#")),[i]=r.splice(n,1),a=r.findIndex(l=>l.scoreqr(l,1)),...p.length?[x("details",{class:"md-search-result__more"},x("summary",{tabIndex:-1},x("div",null,p.length>0&&p.length===1?Ee("search.result.more.one"):Ee("search.result.more.other",p.length))),...p.map(l=>qr(l,1)))]:[]];return x("li",{class:"md-search-result__item"},c)}function Sn(e){return x("ul",{class:"md-source__facts"},Object.entries(e).map(([t,r])=>x("li",{class:`md-source__fact md-source__fact--${t}`},typeof r=="number"?sr(r):r)))}function Qr(e){let t=`tabbed-control tabbed-control--${e}`;return x("div",{class:t,hidden:!0},x("button",{class:"tabbed-button",tabIndex:-1,"aria-hidden":"true"}))}function On(e){return x("div",{class:"md-typeset__scrollwrap"},x("div",{class:"md-typeset__table"},e))}function Ca(e){var o;let t=ye(),r=new URL(`../${e.version}/`,t.base);return x("li",{class:"md-version__item"},x("a",{href:`${r}`,class:"md-version__link"},e.title,((o=t.version)==null?void 0:o.alias)&&e.aliases.length>0&&x("span",{class:"md-version__alias"},e.aliases[0])))}function Mn(e,t){var o;let r=ye();return e=e.filter(n=>{var i;return!((i=n.properties)!=null&&i.hidden)}),x("div",{class:"md-version"},x("button",{class:"md-version__current","aria-label":Ee("select.version")},t.title,((o=r.version)==null?void 0:o.alias)&&t.aliases.length>0&&x("span",{class:"md-version__alias"},t.aliases[0])),x("ul",{class:"md-version__list"},e.map(Ca)))}var Ha=0;function ka(e){let t=z([et(e),kt(e)]).pipe(m(([o,n])=>o||n),K()),r=C(()=>Jo(e)).pipe(oe(De),ct(1),m(()=>Xo(e)));return t.pipe(Ae(o=>o),v(()=>z([t,r])),m(([o,n])=>({active:o,offset:n})),pe())}function $a(e,t){let{content$:r,viewport$:o}=t,n=`__tooltip2_${Ha++}`;return C(()=>{let i=new g,a=new _r(!1);i.pipe(X(),ne(!1)).subscribe(a);let s=a.pipe(Ht(c=>Me(+!c*250,Hr)),K(),v(c=>c?r:O),E(c=>c.id=n),pe());z([i.pipe(m(({active:c})=>c)),s.pipe(v(c=>kt(c,250)),Q(!1))]).pipe(m(c=>c.some(l=>l))).subscribe(a);let p=a.pipe(b(c=>c),ee(s,o),m(([c,l,{size:f}])=>{let u=e.getBoundingClientRect(),h=u.width/2;if(l.role==="tooltip")return{x:h,y:8+u.height};if(u.y>=f.height/2){let{height:w}=ce(l);return{x:h,y:-16-w}}else return{x:h,y:16+u.height}}));return z([s,i,p]).subscribe(([c,{offset:l},f])=>{c.style.setProperty("--md-tooltip-host-x",`${l.x}px`),c.style.setProperty("--md-tooltip-host-y",`${l.y}px`),c.style.setProperty("--md-tooltip-x",`${f.x}px`),c.style.setProperty("--md-tooltip-y",`${f.y}px`),c.classList.toggle("md-tooltip2--top",f.y<0),c.classList.toggle("md-tooltip2--bottom",f.y>=0)}),a.pipe(b(c=>c),ee(s,(c,l)=>l),b(c=>c.role==="tooltip")).subscribe(c=>{let l=ce(P(":scope > *",c));c.style.setProperty("--md-tooltip-width",`${l.width}px`),c.style.setProperty("--md-tooltip-tail","0px")}),a.pipe(K(),be(me),ee(s)).subscribe(([c,l])=>{l.classList.toggle("md-tooltip2--active",c)}),z([a.pipe(b(c=>c)),s]).subscribe(([c,l])=>{l.role==="dialog"?(e.setAttribute("aria-controls",n),e.setAttribute("aria-haspopup","dialog")):e.setAttribute("aria-describedby",n)}),a.pipe(b(c=>!c)).subscribe(()=>{e.removeAttribute("aria-controls"),e.removeAttribute("aria-describedby"),e.removeAttribute("aria-haspopup")}),ka(e).pipe(E(c=>i.next(c)),L(()=>i.complete()),m(c=>R({ref:e},c)))})}function lt(e,{viewport$:t},r=document.body){return $a(e,{content$:new F(o=>{let n=e.title,i=yn(n);return o.next(i),e.removeAttribute("title"),r.append(i),()=>{i.remove(),e.setAttribute("title",n)}}),viewport$:t})}function Pa(e,t){let r=C(()=>z([Zo(e),De(t)])).pipe(m(([{x:o,y:n},i])=>{let{width:a,height:s}=ce(e);return{x:o-i.x+a/2,y:n-i.y+s/2}}));return et(e).pipe(v(o=>r.pipe(m(n=>({active:o,offset:n})),Te(+!o||1/0))))}function Ln(e,t,{target$:r}){let[o,n]=Array.from(e.children);return C(()=>{let i=new g,a=i.pipe(X(),ne(!0));return i.subscribe({next({offset:s}){e.style.setProperty("--md-tooltip-x",`${s.x}px`),e.style.setProperty("--md-tooltip-y",`${s.y}px`)},complete(){e.style.removeProperty("--md-tooltip-x"),e.style.removeProperty("--md-tooltip-y")}}),tt(e).pipe(U(a)).subscribe(s=>{e.toggleAttribute("data-md-visible",s)}),S(i.pipe(b(({active:s})=>s)),i.pipe(_e(250),b(({active:s})=>!s))).subscribe({next({active:s}){s?e.prepend(o):o.remove()},complete(){e.prepend(o)}}),i.pipe(Le(16,me)).subscribe(({active:s})=>{o.classList.toggle("md-tooltip--active",s)}),i.pipe(ct(125,me),b(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:s})=>s)).subscribe({next(s){s?e.style.setProperty("--md-tooltip-0",`${-s}px`):e.style.removeProperty("--md-tooltip-0")},complete(){e.style.removeProperty("--md-tooltip-0")}}),d(n,"click").pipe(U(a),b(s=>!(s.metaKey||s.ctrlKey))).subscribe(s=>{s.stopPropagation(),s.preventDefault()}),d(n,"mousedown").pipe(U(a),ee(i)).subscribe(([s,{active:p}])=>{var c;if(s.button!==0||s.metaKey||s.ctrlKey)s.preventDefault();else if(p){s.preventDefault();let l=e.parentElement.closest(".md-annotation");l instanceof HTMLElement?l.focus():(c=Re())==null||c.blur()}}),r.pipe(U(a),b(s=>s===o),Ge(125)).subscribe(()=>e.focus()),Pa(e,t).pipe(E(s=>i.next(s)),L(()=>i.complete()),m(s=>R({ref:e},s)))})}function Ra(e){return e.tagName==="CODE"?$(".c, .c1, .cm",e):[e]}function Ia(e){let t=[];for(let r of Ra(e)){let o=[],n=document.createNodeIterator(r,NodeFilter.SHOW_TEXT);for(let i=n.nextNode();i;i=n.nextNode())o.push(i);for(let i of o){let a;for(;a=/(\(\d+\))(!)?/.exec(i.textContent);){let[,s,p]=a;if(typeof p=="undefined"){let c=i.splitText(a.index);i=c.splitText(s.length),t.push(c)}else{i.textContent=s,t.push(i);break}}}}return t}function _n(e,t){t.append(...Array.from(e.childNodes))}function fr(e,t,{target$:r,print$:o}){let n=t.closest("[id]"),i=n==null?void 0:n.id,a=new Map;for(let s of Ia(t)){let[,p]=s.textContent.match(/\((\d+)\)/);fe(`:scope > li:nth-child(${p})`,e)&&(a.set(p,En(p,i)),s.replaceWith(a.get(p)))}return a.size===0?O:C(()=>{let s=new g,p=s.pipe(X(),ne(!0)),c=[];for(let[l,f]of a)c.push([P(".md-typeset",f),P(`:scope > li:nth-child(${l})`,e)]);return o.pipe(U(p)).subscribe(l=>{e.hidden=!l,e.classList.toggle("md-annotation-list",l);for(let[f,u]of c)l?_n(f,u):_n(u,f)}),S(...[...a].map(([,l])=>Ln(l,t,{target$:r}))).pipe(L(()=>s.complete()),pe())})}function An(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return An(t)}}function Cn(e,t){return C(()=>{let r=An(e);return typeof r!="undefined"?fr(r,e,t):O})}var Hn=Vt(Yr());var Fa=0;function kn(e){if(e.nextElementSibling){let t=e.nextElementSibling;if(t.tagName==="OL")return t;if(t.tagName==="P"&&!t.children.length)return kn(t)}}function ja(e){return ge(e).pipe(m(({width:t})=>({scrollable:Tt(e).width>t})),Z("scrollable"))}function $n(e,t){let{matches:r}=matchMedia("(hover)"),o=C(()=>{let n=new g,i=n.pipe(Fr(1));n.subscribe(({scrollable:c})=>{c&&r?e.setAttribute("tabindex","0"):e.removeAttribute("tabindex")});let a=[];if(Hn.default.isSupported()&&(e.closest(".copy")||B("content.code.copy")&&!e.closest(".no-copy"))){let c=e.closest("pre");c.id=`__code_${Fa++}`;let l=wn(c.id);c.insertBefore(l,e),B("content.tooltips")&&a.push(lt(l,{viewport$}))}let s=e.closest(".highlight");if(s instanceof HTMLElement){let c=kn(s);if(typeof c!="undefined"&&(s.classList.contains("annotate")||B("content.code.annotate"))){let l=fr(c,e,t);a.push(ge(s).pipe(U(i),m(({width:f,height:u})=>f&&u),K(),v(f=>f?l:O)))}}return $(":scope > span[id]",e).length&&e.classList.add("md-code__content"),ja(e).pipe(E(c=>n.next(c)),L(()=>n.complete()),m(c=>R({ref:e},c)),Pe(...a))});return B("content.lazy")?tt(e).pipe(b(n=>n),Te(1),v(()=>o)):o}function Wa(e,{target$:t,print$:r}){let o=!0;return S(t.pipe(m(n=>n.closest("details:not([open])")),b(n=>e===n),m(()=>({action:"open",reveal:!0}))),r.pipe(b(n=>n||!o),E(()=>o=e.open),m(n=>({action:n?"open":"close"}))))}function Pn(e,t){return C(()=>{let r=new g;return r.subscribe(({action:o,reveal:n})=>{e.toggleAttribute("open",o==="open"),n&&e.scrollIntoView()}),Wa(e,t).pipe(E(o=>r.next(o)),L(()=>r.complete()),m(o=>R({ref:e},o)))})}var Rn=".node circle,.node ellipse,.node path,.node polygon,.node rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}marker{fill:var(--md-mermaid-edge-color)!important}.edgeLabel .label rect{fill:#0000}.label{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.label foreignObject{line-height:normal;overflow:visible}.label div .edgeLabel{color:var(--md-mermaid-label-fg-color)}.edgeLabel,.edgeLabel rect,.label div .edgeLabel{background-color:var(--md-mermaid-label-bg-color)}.edgeLabel,.edgeLabel rect{fill:var(--md-mermaid-label-bg-color);color:var(--md-mermaid-edge-color)}.edgePath .path,.flowchart-link{stroke:var(--md-mermaid-edge-color);stroke-width:.05rem}.edgePath .arrowheadPath{fill:var(--md-mermaid-edge-color);stroke:none}.cluster rect{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}.cluster span{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}g #flowchart-circleEnd,g #flowchart-circleStart,g #flowchart-crossEnd,g #flowchart-crossStart,g #flowchart-pointEnd,g #flowchart-pointStart{stroke:none}g.classGroup line,g.classGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.classGroup text{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.classLabel .box{fill:var(--md-mermaid-label-bg-color);background-color:var(--md-mermaid-label-bg-color);opacity:1}.classLabel .label{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.node .divider{stroke:var(--md-mermaid-node-fg-color)}.relation{stroke:var(--md-mermaid-edge-color)}.cardinality{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.cardinality text{fill:inherit!important}defs #classDiagram-compositionEnd,defs #classDiagram-compositionStart,defs #classDiagram-dependencyEnd,defs #classDiagram-dependencyStart,defs #classDiagram-extensionEnd,defs #classDiagram-extensionStart{fill:var(--md-mermaid-edge-color)!important;stroke:var(--md-mermaid-edge-color)!important}defs #classDiagram-aggregationEnd,defs #classDiagram-aggregationStart{fill:var(--md-mermaid-label-bg-color)!important;stroke:var(--md-mermaid-edge-color)!important}g.stateGroup rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}g.stateGroup .state-title{fill:var(--md-mermaid-label-fg-color)!important;font-family:var(--md-mermaid-font-family)}g.stateGroup .composit{fill:var(--md-mermaid-label-bg-color)}.nodeLabel,.nodeLabel p{color:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}a .nodeLabel{text-decoration:underline}.node circle.state-end,.node circle.state-start,.start-state{fill:var(--md-mermaid-edge-color);stroke:none}.end-state-inner,.end-state-outer{fill:var(--md-mermaid-edge-color)}.end-state-inner,.node circle.state-end{stroke:var(--md-mermaid-label-bg-color)}.transition{stroke:var(--md-mermaid-edge-color)}[id^=state-fork] rect,[id^=state-join] rect{fill:var(--md-mermaid-edge-color)!important;stroke:none!important}.statediagram-cluster.statediagram-cluster .inner{fill:var(--md-default-bg-color)}.statediagram-cluster rect{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.statediagram-state rect.divider{fill:var(--md-default-fg-color--lightest);stroke:var(--md-default-fg-color--lighter)}defs #statediagram-barbEnd{stroke:var(--md-mermaid-edge-color)}.attributeBoxEven,.attributeBoxOdd{fill:var(--md-mermaid-node-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityBox{fill:var(--md-mermaid-label-bg-color);stroke:var(--md-mermaid-node-fg-color)}.entityLabel{fill:var(--md-mermaid-label-fg-color);font-family:var(--md-mermaid-font-family)}.relationshipLabelBox{fill:var(--md-mermaid-label-bg-color);fill-opacity:1;background-color:var(--md-mermaid-label-bg-color);opacity:1}.relationshipLabel{fill:var(--md-mermaid-label-fg-color)}.relationshipLine{stroke:var(--md-mermaid-edge-color)}defs #ONE_OR_MORE_END *,defs #ONE_OR_MORE_START *,defs #ONLY_ONE_END *,defs #ONLY_ONE_START *,defs #ZERO_OR_MORE_END *,defs #ZERO_OR_MORE_START *,defs #ZERO_OR_ONE_END *,defs #ZERO_OR_ONE_START *{stroke:var(--md-mermaid-edge-color)!important}defs #ZERO_OR_MORE_END circle,defs #ZERO_OR_MORE_START circle{fill:var(--md-mermaid-label-bg-color)}.actor{fill:var(--md-mermaid-sequence-actor-bg-color);stroke:var(--md-mermaid-sequence-actor-border-color)}text.actor>tspan{fill:var(--md-mermaid-sequence-actor-fg-color);font-family:var(--md-mermaid-font-family)}line{stroke:var(--md-mermaid-sequence-actor-line-color)}.actor-man circle,.actor-man line{fill:var(--md-mermaid-sequence-actorman-bg-color);stroke:var(--md-mermaid-sequence-actorman-line-color)}.messageLine0,.messageLine1{stroke:var(--md-mermaid-sequence-message-line-color)}.note{fill:var(--md-mermaid-sequence-note-bg-color);stroke:var(--md-mermaid-sequence-note-border-color)}.loopText,.loopText>tspan,.messageText,.noteText>tspan{stroke:none;font-family:var(--md-mermaid-font-family)!important}.messageText{fill:var(--md-mermaid-sequence-message-fg-color)}.loopText,.loopText>tspan{fill:var(--md-mermaid-sequence-loop-fg-color)}.noteText>tspan{fill:var(--md-mermaid-sequence-note-fg-color)}#arrowhead path{fill:var(--md-mermaid-sequence-message-line-color);stroke:none}.loopLine{fill:var(--md-mermaid-sequence-loop-bg-color);stroke:var(--md-mermaid-sequence-loop-border-color)}.labelBox{fill:var(--md-mermaid-sequence-label-bg-color);stroke:none}.labelText,.labelText>span{fill:var(--md-mermaid-sequence-label-fg-color);font-family:var(--md-mermaid-font-family)}.sequenceNumber{fill:var(--md-mermaid-sequence-number-fg-color)}rect.rect{fill:var(--md-mermaid-sequence-box-bg-color);stroke:none}rect.rect+text.text{fill:var(--md-mermaid-sequence-box-fg-color)}defs #sequencenumber{fill:var(--md-mermaid-sequence-number-bg-color)!important}";var Br,Da=0;function Va(){return typeof mermaid=="undefined"||mermaid instanceof Element?wt("https://unpkg.com/mermaid@10/dist/mermaid.min.js"):I(void 0)}function In(e){return e.classList.remove("mermaid"),Br||(Br=Va().pipe(E(()=>mermaid.initialize({startOnLoad:!1,themeCSS:Rn,sequence:{actorFontSize:"16px",messageFontSize:"16px",noteFontSize:"16px"}})),m(()=>{}),G(1))),Br.subscribe(()=>ao(this,null,function*(){e.classList.add("mermaid");let t=`__mermaid_${Da++}`,r=x("div",{class:"mermaid"}),o=e.textContent,{svg:n,fn:i}=yield mermaid.render(t,o),a=r.attachShadow({mode:"closed"});a.innerHTML=n,e.replaceWith(r),i==null||i(a)})),Br.pipe(m(()=>({ref:e})))}var Fn=x("table");function jn(e){return e.replaceWith(Fn),Fn.replaceWith(On(e)),I({ref:e})}function Na(e){let t=e.find(r=>r.checked)||e[0];return S(...e.map(r=>d(r,"change").pipe(m(()=>P(`label[for="${r.id}"]`))))).pipe(Q(P(`label[for="${t.id}"]`)),m(r=>({active:r})))}function Wn(e,{viewport$:t,target$:r}){let o=P(".tabbed-labels",e),n=$(":scope > input",e),i=Qr("prev");e.append(i);let a=Qr("next");return e.append(a),C(()=>{let s=new g,p=s.pipe(X(),ne(!0));z([s,ge(e),tt(e)]).pipe(U(p),Le(1,me)).subscribe({next([{active:c},l]){let f=Ue(c),{width:u}=ce(c);e.style.setProperty("--md-indicator-x",`${f.x}px`),e.style.setProperty("--md-indicator-width",`${u}px`);let h=pr(o);(f.xh.x+l.width)&&o.scrollTo({left:Math.max(0,f.x-16),behavior:"smooth"})},complete(){e.style.removeProperty("--md-indicator-x"),e.style.removeProperty("--md-indicator-width")}}),z([De(o),ge(o)]).pipe(U(p)).subscribe(([c,l])=>{let f=Tt(o);i.hidden=c.x<16,a.hidden=c.x>f.width-l.width-16}),S(d(i,"click").pipe(m(()=>-1)),d(a,"click").pipe(m(()=>1))).pipe(U(p)).subscribe(c=>{let{width:l}=ce(o);o.scrollBy({left:l*c,behavior:"smooth"})}),r.pipe(U(p),b(c=>n.includes(c))).subscribe(c=>c.click()),o.classList.add("tabbed-labels--linked");for(let c of n){let l=P(`label[for="${c.id}"]`);l.replaceChildren(x("a",{href:`#${l.htmlFor}`,tabIndex:-1},...Array.from(l.childNodes))),d(l.firstElementChild,"click").pipe(U(p),b(f=>!(f.metaKey||f.ctrlKey)),E(f=>{f.preventDefault(),f.stopPropagation()})).subscribe(()=>{history.replaceState({},"",`#${l.htmlFor}`),l.click()})}return B("content.tabs.link")&&s.pipe(Ce(1),ee(t)).subscribe(([{active:c},{offset:l}])=>{let f=c.innerText.trim();if(c.hasAttribute("data-md-switching"))c.removeAttribute("data-md-switching");else{let u=e.offsetTop-l.y;for(let w of $("[data-tabs]"))for(let A of $(":scope > input",w)){let te=P(`label[for="${A.id}"]`);if(te!==c&&te.innerText.trim()===f){te.setAttribute("data-md-switching",""),A.click();break}}window.scrollTo({top:e.offsetTop-u});let h=__md_get("__tabs")||[];__md_set("__tabs",[...new Set([f,...h])])}}),s.pipe(U(p)).subscribe(()=>{for(let c of $("audio, video",e))c.pause()}),Na(n).pipe(E(c=>s.next(c)),L(()=>s.complete()),m(c=>R({ref:e},c)))}).pipe(Qe(se))}function Un(e,{viewport$:t,target$:r,print$:o}){return S(...$(".annotate:not(.highlight)",e).map(n=>Cn(n,{target$:r,print$:o})),...$("pre:not(.mermaid) > code",e).map(n=>$n(n,{target$:r,print$:o})),...$("pre.mermaid",e).map(n=>In(n)),...$("table:not([class])",e).map(n=>jn(n)),...$("details",e).map(n=>Pn(n,{target$:r,print$:o})),...$("[data-tabs]",e).map(n=>Wn(n,{viewport$:t,target$:r})),...$("[title]",e).filter(()=>B("content.tooltips")).map(n=>lt(n,{viewport$:t})))}function za(e,{alert$:t}){return t.pipe(v(r=>S(I(!0),I(!1).pipe(Ge(2e3))).pipe(m(o=>({message:r,active:o})))))}function Dn(e,t){let r=P(".md-typeset",e);return C(()=>{let o=new g;return o.subscribe(({message:n,active:i})=>{e.classList.toggle("md-dialog--active",i),r.textContent=n}),za(e,t).pipe(E(n=>o.next(n)),L(()=>o.complete()),m(n=>R({ref:e},n)))})}var qa=0;function Qa(e,t){document.body.append(e);let{width:r}=ce(e);e.style.setProperty("--md-tooltip-width",`${r}px`),e.remove();let o=cr(t),n=typeof o!="undefined"?De(o):I({x:0,y:0}),i=S(et(t),kt(t)).pipe(K());return z([i,n]).pipe(m(([a,s])=>{let{x:p,y:c}=Ue(t),l=ce(t),f=t.closest("table");return f&&t.parentElement&&(p+=f.offsetLeft+t.parentElement.offsetLeft,c+=f.offsetTop+t.parentElement.offsetTop),{active:a,offset:{x:p-s.x+l.width/2-r/2,y:c-s.y+l.height+8}}}))}function Vn(e){let t=e.title;if(!t.length)return O;let r=`__tooltip_${qa++}`,o=Pt(r,"inline"),n=P(".md-typeset",o);return n.innerHTML=t,C(()=>{let i=new g;return i.subscribe({next({offset:a}){o.style.setProperty("--md-tooltip-x",`${a.x}px`),o.style.setProperty("--md-tooltip-y",`${a.y}px`)},complete(){o.style.removeProperty("--md-tooltip-x"),o.style.removeProperty("--md-tooltip-y")}}),S(i.pipe(b(({active:a})=>a)),i.pipe(_e(250),b(({active:a})=>!a))).subscribe({next({active:a}){a?(e.insertAdjacentElement("afterend",o),e.setAttribute("aria-describedby",r),e.removeAttribute("title")):(o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t))},complete(){o.remove(),e.removeAttribute("aria-describedby"),e.setAttribute("title",t)}}),i.pipe(Le(16,me)).subscribe(({active:a})=>{o.classList.toggle("md-tooltip--active",a)}),i.pipe(ct(125,me),b(()=>!!e.offsetParent),m(()=>e.offsetParent.getBoundingClientRect()),m(({x:a})=>a)).subscribe({next(a){a?o.style.setProperty("--md-tooltip-0",`${-a}px`):o.style.removeProperty("--md-tooltip-0")},complete(){o.style.removeProperty("--md-tooltip-0")}}),Qa(o,e).pipe(E(a=>i.next(a)),L(()=>i.complete()),m(a=>R({ref:e},a)))}).pipe(Qe(se))}function Ka({viewport$:e}){if(!B("header.autohide"))return I(!1);let t=e.pipe(m(({offset:{y:n}})=>n),Ye(2,1),m(([n,i])=>[nMath.abs(i-n.y)>100),m(([,[n]])=>n),K()),o=Ve("search");return z([e,o]).pipe(m(([{offset:n},i])=>n.y>400&&!i),K(),v(n=>n?r:I(!1)),Q(!1))}function Nn(e,t){return C(()=>z([ge(e),Ka(t)])).pipe(m(([{height:r},o])=>({height:r,hidden:o})),K((r,o)=>r.height===o.height&&r.hidden===o.hidden),G(1))}function zn(e,{header$:t,main$:r}){return C(()=>{let o=new g,n=o.pipe(X(),ne(!0));o.pipe(Z("active"),We(t)).subscribe(([{active:a},{hidden:s}])=>{e.classList.toggle("md-header--shadow",a&&!s),e.hidden=s});let i=ue($("[title]",e)).pipe(b(()=>B("content.tooltips")),oe(a=>Vn(a)));return r.subscribe(o),t.pipe(U(n),m(a=>R({ref:e},a)),Pe(i.pipe(U(n))))})}function Ya(e,{viewport$:t,header$:r}){return mr(e,{viewport$:t,header$:r}).pipe(m(({offset:{y:o}})=>{let{height:n}=ce(e);return{active:o>=n}}),Z("active"))}function qn(e,t){return C(()=>{let r=new g;r.subscribe({next({active:n}){e.classList.toggle("md-header__title--active",n)},complete(){e.classList.remove("md-header__title--active")}});let o=fe(".md-content h1");return typeof o=="undefined"?O:Ya(o,t).pipe(E(n=>r.next(n)),L(()=>r.complete()),m(n=>R({ref:e},n)))})}function Qn(e,{viewport$:t,header$:r}){let o=r.pipe(m(({height:i})=>i),K()),n=o.pipe(v(()=>ge(e).pipe(m(({height:i})=>({top:e.offsetTop,bottom:e.offsetTop+i})),Z("bottom"))));return z([o,n,t]).pipe(m(([i,{top:a,bottom:s},{offset:{y:p},size:{height:c}}])=>(c=Math.max(0,c-Math.max(0,a-p,i)-Math.max(0,c+p-s)),{offset:a-i,height:c,active:a-i<=p})),K((i,a)=>i.offset===a.offset&&i.height===a.height&&i.active===a.active))}function Ba(e){let t=__md_get("__palette")||{index:e.findIndex(o=>matchMedia(o.getAttribute("data-md-color-media")).matches)},r=Math.max(0,Math.min(t.index,e.length-1));return I(...e).pipe(oe(o=>d(o,"change").pipe(m(()=>o))),Q(e[r]),m(o=>({index:e.indexOf(o),color:{media:o.getAttribute("data-md-color-media"),scheme:o.getAttribute("data-md-color-scheme"),primary:o.getAttribute("data-md-color-primary"),accent:o.getAttribute("data-md-color-accent")}})),G(1))}function Kn(e){let t=$("input",e),r=x("meta",{name:"theme-color"});document.head.appendChild(r);let o=x("meta",{name:"color-scheme"});document.head.appendChild(o);let n=$t("(prefers-color-scheme: light)");return C(()=>{let i=new g;return i.subscribe(a=>{if(document.body.setAttribute("data-md-color-switching",""),a.color.media==="(prefers-color-scheme)"){let s=matchMedia("(prefers-color-scheme: light)"),p=document.querySelector(s.matches?"[data-md-color-media='(prefers-color-scheme: light)']":"[data-md-color-media='(prefers-color-scheme: dark)']");a.color.scheme=p.getAttribute("data-md-color-scheme"),a.color.primary=p.getAttribute("data-md-color-primary"),a.color.accent=p.getAttribute("data-md-color-accent")}for(let[s,p]of Object.entries(a.color))document.body.setAttribute(`data-md-color-${s}`,p);for(let s=0;sa.key==="Enter"),ee(i,(a,s)=>s)).subscribe(({index:a})=>{a=(a+1)%t.length,t[a].click(),t[a].focus()}),i.pipe(m(()=>{let a=Se("header"),s=window.getComputedStyle(a);return o.content=s.colorScheme,s.backgroundColor.match(/\d+/g).map(p=>(+p).toString(16).padStart(2,"0")).join("")})).subscribe(a=>r.content=`#${a}`),i.pipe(be(se)).subscribe(()=>{document.body.removeAttribute("data-md-color-switching")}),Ba(t).pipe(U(n.pipe(Ce(1))),st(),E(a=>i.next(a)),L(()=>i.complete()),m(a=>R({ref:e},a)))})}function Yn(e,{progress$:t}){return C(()=>{let r=new g;return r.subscribe(({value:o})=>{e.style.setProperty("--md-progress-value",`${o}`)}),t.pipe(E(o=>r.next({value:o})),L(()=>r.complete()),m(o=>({ref:e,value:o})))})}var Gr=Vt(Yr());function Ga(e){e.setAttribute("data-md-copying","");let t=e.closest("[data-copy]"),r=t?t.getAttribute("data-copy"):e.innerText;return e.removeAttribute("data-md-copying"),r.trimEnd()}function Bn({alert$:e}){Gr.default.isSupported()&&new F(t=>{new Gr.default("[data-clipboard-target], [data-clipboard-text]",{text:r=>r.getAttribute("data-clipboard-text")||Ga(P(r.getAttribute("data-clipboard-target")))}).on("success",r=>t.next(r))}).pipe(E(t=>{t.trigger.focus()}),m(()=>Ee("clipboard.copied"))).subscribe(e)}function Gn(e,t){return e.protocol=t.protocol,e.hostname=t.hostname,e}function Ja(e,t){let r=new Map;for(let o of $("url",e)){let n=P("loc",o),i=[Gn(new URL(n.textContent),t)];r.set(`${i[0]}`,i);for(let a of $("[rel=alternate]",o)){let s=a.getAttribute("href");s!=null&&i.push(Gn(new URL(s),t))}}return r}function ur(e){return mn(new URL("sitemap.xml",e)).pipe(m(t=>Ja(t,new URL(e))),ve(()=>I(new Map)))}function Xa(e,t){if(!(e.target instanceof Element))return O;let r=e.target.closest("a");if(r===null)return O;if(r.target||e.metaKey||e.ctrlKey)return O;let o=new URL(r.href);return o.search=o.hash="",t.has(`${o}`)?(e.preventDefault(),I(new URL(r.href))):O}function Jn(e){let t=new Map;for(let r of $(":scope > *",e.head))t.set(r.outerHTML,r);return t}function Xn(e){for(let t of $("[href], [src]",e))for(let r of["href","src"]){let o=t.getAttribute(r);if(o&&!/^(?:[a-z]+:)?\/\//i.test(o)){t[r]=t[r];break}}return I(e)}function Za(e){for(let o of["[data-md-component=announce]","[data-md-component=container]","[data-md-component=header-topic]","[data-md-component=outdated]","[data-md-component=logo]","[data-md-component=skip]",...B("navigation.tabs.sticky")?["[data-md-component=tabs]"]:[]]){let n=fe(o),i=fe(o,e);typeof n!="undefined"&&typeof i!="undefined"&&n.replaceWith(i)}let t=Jn(document);for(let[o,n]of Jn(e))t.has(o)?t.delete(o):document.head.appendChild(n);for(let o of t.values()){let n=o.getAttribute("name");n!=="theme-color"&&n!=="color-scheme"&&o.remove()}let r=Se("container");return je($("script",r)).pipe(v(o=>{let n=e.createElement("script");if(o.src){for(let i of o.getAttributeNames())n.setAttribute(i,o.getAttribute(i));return o.replaceWith(n),new F(i=>{n.onload=()=>i.complete()})}else return n.textContent=o.textContent,o.replaceWith(n),O}),X(),ne(document))}function Zn({location$:e,viewport$:t,progress$:r}){let o=ye();if(location.protocol==="file:")return O;let n=ur(o.base);I(document).subscribe(Xn);let i=d(document.body,"click").pipe(We(n),v(([p,c])=>Xa(p,c)),pe()),a=d(window,"popstate").pipe(m(xe),pe());i.pipe(ee(t)).subscribe(([p,{offset:c}])=>{history.replaceState(c,""),history.pushState(null,"",p)}),S(i,a).subscribe(e);let s=e.pipe(Z("pathname"),v(p=>ln(p,{progress$:r}).pipe(ve(()=>(pt(p,!0),O)))),v(Xn),v(Za),pe());return S(s.pipe(ee(e,(p,c)=>c)),s.pipe(v(()=>e),Z("pathname"),v(()=>e),Z("hash")),e.pipe(K((p,c)=>p.pathname===c.pathname&&p.hash===c.hash),v(()=>i),E(()=>history.back()))).subscribe(p=>{var c,l;history.state!==null||!p.hash?window.scrollTo(0,(l=(c=history.state)==null?void 0:c.y)!=null?l:0):(history.scrollRestoration="auto",sn(p.hash),history.scrollRestoration="manual")}),e.subscribe(()=>{history.scrollRestoration="manual"}),d(window,"beforeunload").subscribe(()=>{history.scrollRestoration="auto"}),t.pipe(Z("offset"),_e(100)).subscribe(({offset:p})=>{history.replaceState(p,"")}),s}var ri=Vt(ti());function oi(e){let t=e.separator.split("|").map(n=>n.replace(/(\(\?[!=<][^)]+\))/g,"").length===0?"\uFFFD":n).join("|"),r=new RegExp(t,"img"),o=(n,i,a)=>`${i}${a}`;return n=>{n=n.replace(/[\s*+\-:~^]+/g," ").trim();let i=new RegExp(`(^|${e.separator}|)(${n.replace(/[|\\{}()[\]^$+*?.-]/g,"\\$&").replace(r,"|")})`,"img");return a=>(0,ri.default)(a).replace(i,o).replace(/<\/mark>(\s+)]*>/img,"$1")}}function It(e){return e.type===1}function dr(e){return e.type===3}function ni(e,t){let r=vn(e);return S(I(location.protocol!=="file:"),Ve("search")).pipe(Ae(o=>o),v(()=>t)).subscribe(({config:o,docs:n})=>r.next({type:0,data:{config:o,docs:n,options:{suggest:B("search.suggest")}}})),r}function ii({document$:e}){let t=ye(),r=Ne(new URL("../versions.json",t.base)).pipe(ve(()=>O)),o=r.pipe(m(n=>{let[,i]=t.base.match(/([^/]+)\/?$/);return n.find(({version:a,aliases:s})=>a===i||s.includes(i))||n[0]}));r.pipe(m(n=>new Map(n.map(i=>[`${new URL(`../${i.version}/`,t.base)}`,i]))),v(n=>d(document.body,"click").pipe(b(i=>!i.metaKey&&!i.ctrlKey),ee(o),v(([i,a])=>{if(i.target instanceof Element){let s=i.target.closest("a");if(s&&!s.target&&n.has(s.href)){let p=s.href;return!i.target.closest(".md-version")&&n.get(p)===a?O:(i.preventDefault(),I(p))}}return O}),v(i=>ur(new URL(i)).pipe(m(a=>{let p=xe().href.replace(t.base,i);return a.has(p.split("#")[0])?new URL(p):new URL(i)})))))).subscribe(n=>pt(n,!0)),z([r,o]).subscribe(([n,i])=>{P(".md-header__topic").appendChild(Mn(n,i))}),e.pipe(v(()=>o)).subscribe(n=>{var a;let i=__md_get("__outdated",sessionStorage);if(i===null){i=!0;let s=((a=t.version)==null?void 0:a.default)||"latest";Array.isArray(s)||(s=[s]);e:for(let p of s)for(let c of n.aliases.concat(n.version))if(new RegExp(p,"i").test(c)){i=!1;break e}__md_set("__outdated",i,sessionStorage)}if(i)for(let s of ae("outdated"))s.hidden=!1})}function ns(e,{worker$:t}){let{searchParams:r}=xe();r.has("q")&&(Je("search",!0),e.value=r.get("q"),e.focus(),Ve("search").pipe(Ae(i=>!i)).subscribe(()=>{let i=xe();i.searchParams.delete("q"),history.replaceState({},"",`${i}`)}));let o=et(e),n=S(t.pipe(Ae(It)),d(e,"keyup"),o).pipe(m(()=>e.value),K());return z([n,o]).pipe(m(([i,a])=>({value:i,focus:a})),G(1))}function ai(e,{worker$:t}){let r=new g,o=r.pipe(X(),ne(!0));z([t.pipe(Ae(It)),r],(i,a)=>a).pipe(Z("value")).subscribe(({value:i})=>t.next({type:2,data:i})),r.pipe(Z("focus")).subscribe(({focus:i})=>{i&&Je("search",i)}),d(e.form,"reset").pipe(U(o)).subscribe(()=>e.focus());let n=P("header [for=__search]");return d(n,"click").subscribe(()=>e.focus()),ns(e,{worker$:t}).pipe(E(i=>r.next(i)),L(()=>r.complete()),m(i=>R({ref:e},i)),G(1))}function si(e,{worker$:t,query$:r}){let o=new g,n=tn(e.parentElement).pipe(b(Boolean)),i=e.parentElement,a=P(":scope > :first-child",e),s=P(":scope > :last-child",e);Ve("search").subscribe(l=>s.setAttribute("role",l?"list":"presentation")),o.pipe(ee(r),Ur(t.pipe(Ae(It)))).subscribe(([{items:l},{value:f}])=>{switch(l.length){case 0:a.textContent=f.length?Ee("search.result.none"):Ee("search.result.placeholder");break;case 1:a.textContent=Ee("search.result.one");break;default:let u=sr(l.length);a.textContent=Ee("search.result.other",u)}});let p=o.pipe(E(()=>s.innerHTML=""),v(({items:l})=>S(I(...l.slice(0,10)),I(...l.slice(10)).pipe(Ye(4),Vr(n),v(([f])=>f)))),m(Tn),pe());return p.subscribe(l=>s.appendChild(l)),p.pipe(oe(l=>{let f=fe("details",l);return typeof f=="undefined"?O:d(f,"toggle").pipe(U(o),m(()=>f))})).subscribe(l=>{l.open===!1&&l.offsetTop<=i.scrollTop&&i.scrollTo({top:l.offsetTop})}),t.pipe(b(dr),m(({data:l})=>l)).pipe(E(l=>o.next(l)),L(()=>o.complete()),m(l=>R({ref:e},l)))}function is(e,{query$:t}){return t.pipe(m(({value:r})=>{let o=xe();return o.hash="",r=r.replace(/\s+/g,"+").replace(/&/g,"%26").replace(/=/g,"%3D"),o.search=`q=${r}`,{url:o}}))}function ci(e,t){let r=new g,o=r.pipe(X(),ne(!0));return r.subscribe(({url:n})=>{e.setAttribute("data-clipboard-text",e.href),e.href=`${n}`}),d(e,"click").pipe(U(o)).subscribe(n=>n.preventDefault()),is(e,t).pipe(E(n=>r.next(n)),L(()=>r.complete()),m(n=>R({ref:e},n)))}function pi(e,{worker$:t,keyboard$:r}){let o=new g,n=Se("search-query"),i=S(d(n,"keydown"),d(n,"focus")).pipe(be(se),m(()=>n.value),K());return o.pipe(We(i),m(([{suggest:s},p])=>{let c=p.split(/([\s-]+)/);if(s!=null&&s.length&&c[c.length-1]){let l=s[s.length-1];l.startsWith(c[c.length-1])&&(c[c.length-1]=l)}else c.length=0;return c})).subscribe(s=>e.innerHTML=s.join("").replace(/\s/g," ")),r.pipe(b(({mode:s})=>s==="search")).subscribe(s=>{switch(s.type){case"ArrowRight":e.innerText.length&&n.selectionStart===n.value.length&&(n.value=e.innerText);break}}),t.pipe(b(dr),m(({data:s})=>s)).pipe(E(s=>o.next(s)),L(()=>o.complete()),m(()=>({ref:e})))}function li(e,{index$:t,keyboard$:r}){let o=ye();try{let n=ni(o.search,t),i=Se("search-query",e),a=Se("search-result",e);d(e,"click").pipe(b(({target:p})=>p instanceof Element&&!!p.closest("a"))).subscribe(()=>Je("search",!1)),r.pipe(b(({mode:p})=>p==="search")).subscribe(p=>{let c=Re();switch(p.type){case"Enter":if(c===i){let l=new Map;for(let f of $(":first-child [href]",a)){let u=f.firstElementChild;l.set(f,parseFloat(u.getAttribute("data-md-score")))}if(l.size){let[[f]]=[...l].sort(([,u],[,h])=>h-u);f.click()}p.claim()}break;case"Escape":case"Tab":Je("search",!1),i.blur();break;case"ArrowUp":case"ArrowDown":if(typeof c=="undefined")i.focus();else{let l=[i,...$(":not(details) > [href], summary, details[open] [href]",a)],f=Math.max(0,(Math.max(0,l.indexOf(c))+l.length+(p.type==="ArrowUp"?-1:1))%l.length);l[f].focus()}p.claim();break;default:i!==Re()&&i.focus()}}),r.pipe(b(({mode:p})=>p==="global")).subscribe(p=>{switch(p.type){case"f":case"s":case"/":i.focus(),i.select(),p.claim();break}});let s=ai(i,{worker$:n});return S(s,si(a,{worker$:n,query$:s})).pipe(Pe(...ae("search-share",e).map(p=>ci(p,{query$:s})),...ae("search-suggest",e).map(p=>pi(p,{worker$:n,keyboard$:r}))))}catch(n){return e.hidden=!0,Ke}}function mi(e,{index$:t,location$:r}){return z([t,r.pipe(Q(xe()),b(o=>!!o.searchParams.get("h")))]).pipe(m(([o,n])=>oi(o.config)(n.searchParams.get("h"))),m(o=>{var a;let n=new Map,i=document.createNodeIterator(e,NodeFilter.SHOW_TEXT);for(let s=i.nextNode();s;s=i.nextNode())if((a=s.parentElement)!=null&&a.offsetHeight){let p=s.textContent,c=o(p);c.length>p.length&&n.set(s,c)}for(let[s,p]of n){let{childNodes:c}=x("span",null,p);s.replaceWith(...Array.from(c))}return{ref:e,nodes:n}}))}function as(e,{viewport$:t,main$:r}){let o=e.closest(".md-grid"),n=o.offsetTop-o.parentElement.offsetTop;return z([r,t]).pipe(m(([{offset:i,height:a},{offset:{y:s}}])=>(a=a+Math.min(n,Math.max(0,s-i))-n,{height:a,locked:s>=i+n})),K((i,a)=>i.height===a.height&&i.locked===a.locked))}function Jr(e,o){var n=o,{header$:t}=n,r=io(n,["header$"]);let i=P(".md-sidebar__scrollwrap",e),{y:a}=Ue(i);return C(()=>{let s=new g,p=s.pipe(X(),ne(!0)),c=s.pipe(Le(0,me));return c.pipe(ee(t)).subscribe({next([{height:l},{height:f}]){i.style.height=`${l-2*a}px`,e.style.top=`${f}px`},complete(){i.style.height="",e.style.top=""}}),c.pipe(Ae()).subscribe(()=>{for(let l of $(".md-nav__link--active[href]",e)){if(!l.clientHeight)continue;let f=l.closest(".md-sidebar__scrollwrap");if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:h}=ce(f);f.scrollTo({top:u-h/2})}}}),ue($("label[tabindex]",e)).pipe(oe(l=>d(l,"click").pipe(be(se),m(()=>l),U(p)))).subscribe(l=>{let f=P(`[id="${l.htmlFor}"]`);P(`[aria-labelledby="${l.id}"]`).setAttribute("aria-expanded",`${f.checked}`)}),as(e,r).pipe(E(l=>s.next(l)),L(()=>s.complete()),m(l=>R({ref:e},l)))})}function fi(e,t){if(typeof t!="undefined"){let r=`https://api.github.com/repos/${e}/${t}`;return Ct(Ne(`${r}/releases/latest`).pipe(ve(()=>O),m(o=>({version:o.tag_name})),Be({})),Ne(r).pipe(ve(()=>O),m(o=>({stars:o.stargazers_count,forks:o.forks_count})),Be({}))).pipe(m(([o,n])=>R(R({},o),n)))}else{let r=`https://api.github.com/users/${e}`;return Ne(r).pipe(m(o=>({repositories:o.public_repos})),Be({}))}}function ui(e,t){let r=`https://${e}/api/v4/projects/${encodeURIComponent(t)}`;return Ne(r).pipe(ve(()=>O),m(({star_count:o,forks_count:n})=>({stars:o,forks:n})),Be({}))}function di(e){let t=e.match(/^.+github\.com\/([^/]+)\/?([^/]+)?/i);if(t){let[,r,o]=t;return fi(r,o)}if(t=e.match(/^.+?([^/]*gitlab[^/]+)\/(.+?)\/?$/i),t){let[,r,o]=t;return ui(r,o)}return O}var ss;function cs(e){return ss||(ss=C(()=>{let t=__md_get("__source",sessionStorage);if(t)return I(t);if(ae("consent").length){let o=__md_get("__consent");if(!(o&&o.github))return O}return di(e.href).pipe(E(o=>__md_set("__source",o,sessionStorage)))}).pipe(ve(()=>O),b(t=>Object.keys(t).length>0),m(t=>({facts:t})),G(1)))}function hi(e){let t=P(":scope > :last-child",e);return C(()=>{let r=new g;return r.subscribe(({facts:o})=>{t.appendChild(Sn(o)),t.classList.add("md-source__repository--active")}),cs(e).pipe(E(o=>r.next(o)),L(()=>r.complete()),m(o=>R({ref:e},o)))})}function ps(e,{viewport$:t,header$:r}){return ge(document.body).pipe(v(()=>mr(e,{header$:r,viewport$:t})),m(({offset:{y:o}})=>({hidden:o>=10})),Z("hidden"))}function bi(e,t){return C(()=>{let r=new g;return r.subscribe({next({hidden:o}){e.hidden=o},complete(){e.hidden=!1}}),(B("navigation.tabs.sticky")?I({hidden:!1}):ps(e,t)).pipe(E(o=>r.next(o)),L(()=>r.complete()),m(o=>R({ref:e},o)))})}function ls(e,{viewport$:t,header$:r}){let o=new Map,n=$(".md-nav__link",e);for(let s of n){let p=decodeURIComponent(s.hash.substring(1)),c=fe(`[id="${p}"]`);typeof c!="undefined"&&o.set(s,c)}let i=r.pipe(Z("height"),m(({height:s})=>{let p=Se("main"),c=P(":scope > :first-child",p);return s+.8*(c.offsetTop-p.offsetTop)}),pe());return ge(document.body).pipe(Z("height"),v(s=>C(()=>{let p=[];return I([...o].reduce((c,[l,f])=>{for(;p.length&&o.get(p[p.length-1]).tagName>=f.tagName;)p.pop();let u=f.offsetTop;for(;!u&&f.parentElement;)f=f.parentElement,u=f.offsetTop;let h=f.offsetParent;for(;h;h=h.offsetParent)u+=h.offsetTop;return c.set([...p=[...p,l]].reverse(),u)},new Map))}).pipe(m(p=>new Map([...p].sort(([,c],[,l])=>c-l))),We(i),v(([p,c])=>t.pipe(jr(([l,f],{offset:{y:u},size:h})=>{let w=u+h.height>=Math.floor(s.height);for(;f.length;){let[,A]=f[0];if(A-c=u&&!w)f=[l.pop(),...f];else break}return[l,f]},[[],[...p]]),K((l,f)=>l[0]===f[0]&&l[1]===f[1])))))).pipe(m(([s,p])=>({prev:s.map(([c])=>c),next:p.map(([c])=>c)})),Q({prev:[],next:[]}),Ye(2,1),m(([s,p])=>s.prev.length{let i=new g,a=i.pipe(X(),ne(!0));if(i.subscribe(({prev:s,next:p})=>{for(let[c]of p)c.classList.remove("md-nav__link--passed"),c.classList.remove("md-nav__link--active");for(let[c,[l]]of s.entries())l.classList.add("md-nav__link--passed"),l.classList.toggle("md-nav__link--active",c===s.length-1)}),B("toc.follow")){let s=S(t.pipe(_e(1),m(()=>{})),t.pipe(_e(250),m(()=>"smooth")));i.pipe(b(({prev:p})=>p.length>0),We(o.pipe(be(se))),ee(s)).subscribe(([[{prev:p}],c])=>{let[l]=p[p.length-1];if(l.offsetHeight){let f=cr(l);if(typeof f!="undefined"){let u=l.offsetTop-f.offsetTop,{height:h}=ce(f);f.scrollTo({top:u-h/2,behavior:c})}}})}return B("navigation.tracking")&&t.pipe(U(a),Z("offset"),_e(250),Ce(1),U(n.pipe(Ce(1))),st({delay:250}),ee(i)).subscribe(([,{prev:s}])=>{let p=xe(),c=s[s.length-1];if(c&&c.length){let[l]=c,{hash:f}=new URL(l.href);p.hash!==f&&(p.hash=f,history.replaceState({},"",`${p}`))}else p.hash="",history.replaceState({},"",`${p}`)}),ls(e,{viewport$:t,header$:r}).pipe(E(s=>i.next(s)),L(()=>i.complete()),m(s=>R({ref:e},s)))})}function ms(e,{viewport$:t,main$:r,target$:o}){let n=t.pipe(m(({offset:{y:a}})=>a),Ye(2,1),m(([a,s])=>a>s&&s>0),K()),i=r.pipe(m(({active:a})=>a));return z([i,n]).pipe(m(([a,s])=>!(a&&s)),K(),U(o.pipe(Ce(1))),ne(!0),st({delay:250}),m(a=>({hidden:a})))}function gi(e,{viewport$:t,header$:r,main$:o,target$:n}){let i=new g,a=i.pipe(X(),ne(!0));return i.subscribe({next({hidden:s}){e.hidden=s,s?(e.setAttribute("tabindex","-1"),e.blur()):e.removeAttribute("tabindex")},complete(){e.style.top="",e.hidden=!0,e.removeAttribute("tabindex")}}),r.pipe(U(a),Z("height")).subscribe(({height:s})=>{e.style.top=`${s+16}px`}),d(e,"click").subscribe(s=>{s.preventDefault(),window.scrollTo({top:0})}),ms(e,{viewport$:t,main$:o,target$:n}).pipe(E(s=>i.next(s)),L(()=>i.complete()),m(s=>R({ref:e},s)))}function xi({document$:e,viewport$:t}){e.pipe(v(()=>$(".md-ellipsis")),oe(r=>tt(r).pipe(U(e.pipe(Ce(1))),b(o=>o),m(()=>r),Te(1))),b(r=>r.offsetWidth{let o=r.innerText,n=r.closest("a")||r;return n.title=o,B("content.tooltips")?lt(n,{viewport$:t}).pipe(U(e.pipe(Ce(1))),L(()=>n.removeAttribute("title"))):O})).subscribe(),B("content.tooltips")&&e.pipe(v(()=>$(".md-status")),oe(r=>lt(r,{viewport$:t}))).subscribe()}function yi({document$:e,tablet$:t}){e.pipe(v(()=>$(".md-toggle--indeterminate")),E(r=>{r.indeterminate=!0,r.checked=!1}),oe(r=>d(r,"change").pipe(Dr(()=>r.classList.contains("md-toggle--indeterminate")),m(()=>r))),ee(t)).subscribe(([r,o])=>{r.classList.remove("md-toggle--indeterminate"),o&&(r.checked=!1)})}function fs(){return/(iPad|iPhone|iPod)/.test(navigator.userAgent)}function Ei({document$:e}){e.pipe(v(()=>$("[data-md-scrollfix]")),E(t=>t.removeAttribute("data-md-scrollfix")),b(fs),oe(t=>d(t,"touchstart").pipe(m(()=>t)))).subscribe(t=>{let r=t.scrollTop;r===0?t.scrollTop=1:r+t.offsetHeight===t.scrollHeight&&(t.scrollTop=r-1)})}function wi({viewport$:e,tablet$:t}){z([Ve("search"),t]).pipe(m(([r,o])=>r&&!o),v(r=>I(r).pipe(Ge(r?400:100))),ee(e)).subscribe(([r,{offset:{y:o}}])=>{if(r)document.body.setAttribute("data-md-scrolllock",""),document.body.style.top=`-${o}px`;else{let n=-1*parseInt(document.body.style.top,10);document.body.removeAttribute("data-md-scrolllock"),document.body.style.top="",n&&window.scrollTo(0,n)}})}Object.entries||(Object.entries=function(e){let t=[];for(let r of Object.keys(e))t.push([r,e[r]]);return t});Object.values||(Object.values=function(e){let t=[];for(let r of Object.keys(e))t.push(e[r]);return t});typeof Element!="undefined"&&(Element.prototype.scrollTo||(Element.prototype.scrollTo=function(e,t){typeof e=="object"?(this.scrollLeft=e.left,this.scrollTop=e.top):(this.scrollLeft=e,this.scrollTop=t)}),Element.prototype.replaceWith||(Element.prototype.replaceWith=function(...e){let t=this.parentNode;if(t){e.length===0&&t.removeChild(this);for(let r=e.length-1;r>=0;r--){let o=e[r];typeof o=="string"?o=document.createTextNode(o):o.parentNode&&o.parentNode.removeChild(o),r?t.insertBefore(this.previousSibling,o):t.replaceChild(o,this)}}}));function us(){return location.protocol==="file:"?wt(`${new URL("search/search_index.js",Xr.base)}`).pipe(m(()=>__index),G(1)):Ne(new URL("search/search_index.json",Xr.base))}document.documentElement.classList.remove("no-js");document.documentElement.classList.add("js");var ot=Yo(),jt=nn(),Ot=cn(jt),Zr=on(),Oe=bn(),hr=$t("(min-width: 960px)"),Si=$t("(min-width: 1220px)"),Oi=pn(),Xr=ye(),Mi=document.forms.namedItem("search")?us():Ke,eo=new g;Bn({alert$:eo});var to=new g;B("navigation.instant")&&Zn({location$:jt,viewport$:Oe,progress$:to}).subscribe(ot);var Ti;((Ti=Xr.version)==null?void 0:Ti.provider)==="mike"&&ii({document$:ot});S(jt,Ot).pipe(Ge(125)).subscribe(()=>{Je("drawer",!1),Je("search",!1)});Zr.pipe(b(({mode:e})=>e==="global")).subscribe(e=>{switch(e.type){case"p":case",":let t=fe("link[rel=prev]");typeof t!="undefined"&&pt(t);break;case"n":case".":let r=fe("link[rel=next]");typeof r!="undefined"&&pt(r);break;case"Enter":let o=Re();o instanceof HTMLLabelElement&&o.click()}});xi({viewport$:Oe,document$:ot});yi({document$:ot,tablet$:hr});Ei({document$:ot});wi({viewport$:Oe,tablet$:hr});var rt=Nn(Se("header"),{viewport$:Oe}),Ft=ot.pipe(m(()=>Se("main")),v(e=>Qn(e,{viewport$:Oe,header$:rt})),G(1)),ds=S(...ae("consent").map(e=>xn(e,{target$:Ot})),...ae("dialog").map(e=>Dn(e,{alert$:eo})),...ae("header").map(e=>zn(e,{viewport$:Oe,header$:rt,main$:Ft})),...ae("palette").map(e=>Kn(e)),...ae("progress").map(e=>Yn(e,{progress$:to})),...ae("search").map(e=>li(e,{index$:Mi,keyboard$:Zr})),...ae("source").map(e=>hi(e))),hs=C(()=>S(...ae("announce").map(e=>gn(e)),...ae("content").map(e=>Un(e,{viewport$:Oe,target$:Ot,print$:Oi})),...ae("content").map(e=>B("search.highlight")?mi(e,{index$:Mi,location$:jt}):O),...ae("header-title").map(e=>qn(e,{viewport$:Oe,header$:rt})),...ae("sidebar").map(e=>e.getAttribute("data-md-type")==="navigation"?Nr(Si,()=>Jr(e,{viewport$:Oe,header$:rt,main$:Ft})):Nr(hr,()=>Jr(e,{viewport$:Oe,header$:rt,main$:Ft}))),...ae("tabs").map(e=>bi(e,{viewport$:Oe,header$:rt})),...ae("toc").map(e=>vi(e,{viewport$:Oe,header$:rt,main$:Ft,target$:Ot})),...ae("top").map(e=>gi(e,{viewport$:Oe,header$:rt,main$:Ft,target$:Ot})))),Li=ot.pipe(v(()=>hs),Pe(ds),G(1));Li.subscribe();window.document$=ot;window.location$=jt;window.target$=Ot;window.keyboard$=Zr;window.viewport$=Oe;window.tablet$=hr;window.screen$=Si;window.print$=Oi;window.alert$=eo;window.progress$=to;window.component$=Li;})(); +//# sourceMappingURL=bundle.fe8b6f2b.min.js.map + diff --git a/assets/javascripts/bundle.fe8b6f2b.min.js.map b/assets/javascripts/bundle.fe8b6f2b.min.js.map new file mode 100644 index 000000000..82635852a --- /dev/null +++ b/assets/javascripts/bundle.fe8b6f2b.min.js.map @@ -0,0 +1,7 @@ +{ + "version": 3, + "sources": ["node_modules/focus-visible/dist/focus-visible.js", "node_modules/clipboard/dist/clipboard.js", "node_modules/escape-html/index.js", "src/templates/assets/javascripts/bundle.ts", "node_modules/rxjs/node_modules/tslib/tslib.es6.js", "node_modules/rxjs/src/internal/util/isFunction.ts", "node_modules/rxjs/src/internal/util/createErrorClass.ts", "node_modules/rxjs/src/internal/util/UnsubscriptionError.ts", "node_modules/rxjs/src/internal/util/arrRemove.ts", "node_modules/rxjs/src/internal/Subscription.ts", "node_modules/rxjs/src/internal/config.ts", "node_modules/rxjs/src/internal/scheduler/timeoutProvider.ts", "node_modules/rxjs/src/internal/util/reportUnhandledError.ts", "node_modules/rxjs/src/internal/util/noop.ts", "node_modules/rxjs/src/internal/NotificationFactories.ts", "node_modules/rxjs/src/internal/util/errorContext.ts", "node_modules/rxjs/src/internal/Subscriber.ts", "node_modules/rxjs/src/internal/symbol/observable.ts", "node_modules/rxjs/src/internal/util/identity.ts", "node_modules/rxjs/src/internal/util/pipe.ts", "node_modules/rxjs/src/internal/Observable.ts", "node_modules/rxjs/src/internal/util/lift.ts", "node_modules/rxjs/src/internal/operators/OperatorSubscriber.ts", "node_modules/rxjs/src/internal/scheduler/animationFrameProvider.ts", "node_modules/rxjs/src/internal/util/ObjectUnsubscribedError.ts", "node_modules/rxjs/src/internal/Subject.ts", "node_modules/rxjs/src/internal/BehaviorSubject.ts", "node_modules/rxjs/src/internal/scheduler/dateTimestampProvider.ts", "node_modules/rxjs/src/internal/ReplaySubject.ts", "node_modules/rxjs/src/internal/scheduler/Action.ts", "node_modules/rxjs/src/internal/scheduler/intervalProvider.ts", "node_modules/rxjs/src/internal/scheduler/AsyncAction.ts", "node_modules/rxjs/src/internal/Scheduler.ts", "node_modules/rxjs/src/internal/scheduler/AsyncScheduler.ts", "node_modules/rxjs/src/internal/scheduler/async.ts", "node_modules/rxjs/src/internal/scheduler/QueueAction.ts", "node_modules/rxjs/src/internal/scheduler/QueueScheduler.ts", "node_modules/rxjs/src/internal/scheduler/queue.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameAction.ts", "node_modules/rxjs/src/internal/scheduler/AnimationFrameScheduler.ts", "node_modules/rxjs/src/internal/scheduler/animationFrame.ts", "node_modules/rxjs/src/internal/observable/empty.ts", "node_modules/rxjs/src/internal/util/isScheduler.ts", "node_modules/rxjs/src/internal/util/args.ts", "node_modules/rxjs/src/internal/util/isArrayLike.ts", "node_modules/rxjs/src/internal/util/isPromise.ts", "node_modules/rxjs/src/internal/util/isInteropObservable.ts", "node_modules/rxjs/src/internal/util/isAsyncIterable.ts", "node_modules/rxjs/src/internal/util/throwUnobservableError.ts", "node_modules/rxjs/src/internal/symbol/iterator.ts", "node_modules/rxjs/src/internal/util/isIterable.ts", "node_modules/rxjs/src/internal/util/isReadableStreamLike.ts", "node_modules/rxjs/src/internal/observable/innerFrom.ts", "node_modules/rxjs/src/internal/util/executeSchedule.ts", "node_modules/rxjs/src/internal/operators/observeOn.ts", "node_modules/rxjs/src/internal/operators/subscribeOn.ts", "node_modules/rxjs/src/internal/scheduled/scheduleObservable.ts", "node_modules/rxjs/src/internal/scheduled/schedulePromise.ts", "node_modules/rxjs/src/internal/scheduled/scheduleArray.ts", "node_modules/rxjs/src/internal/scheduled/scheduleIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleAsyncIterable.ts", "node_modules/rxjs/src/internal/scheduled/scheduleReadableStreamLike.ts", "node_modules/rxjs/src/internal/scheduled/scheduled.ts", "node_modules/rxjs/src/internal/observable/from.ts", "node_modules/rxjs/src/internal/observable/of.ts", "node_modules/rxjs/src/internal/observable/throwError.ts", "node_modules/rxjs/src/internal/util/EmptyError.ts", "node_modules/rxjs/src/internal/util/isDate.ts", "node_modules/rxjs/src/internal/operators/map.ts", "node_modules/rxjs/src/internal/util/mapOneOrManyArgs.ts", "node_modules/rxjs/src/internal/util/argsArgArrayOrObject.ts", "node_modules/rxjs/src/internal/util/createObject.ts", "node_modules/rxjs/src/internal/observable/combineLatest.ts", "node_modules/rxjs/src/internal/operators/mergeInternals.ts", "node_modules/rxjs/src/internal/operators/mergeMap.ts", "node_modules/rxjs/src/internal/operators/mergeAll.ts", "node_modules/rxjs/src/internal/operators/concatAll.ts", "node_modules/rxjs/src/internal/observable/concat.ts", "node_modules/rxjs/src/internal/observable/defer.ts", "node_modules/rxjs/src/internal/observable/fromEvent.ts", "node_modules/rxjs/src/internal/observable/fromEventPattern.ts", "node_modules/rxjs/src/internal/observable/timer.ts", "node_modules/rxjs/src/internal/observable/merge.ts", "node_modules/rxjs/src/internal/observable/never.ts", "node_modules/rxjs/src/internal/util/argsOrArgArray.ts", "node_modules/rxjs/src/internal/operators/filter.ts", "node_modules/rxjs/src/internal/observable/zip.ts", "node_modules/rxjs/src/internal/operators/audit.ts", "node_modules/rxjs/src/internal/operators/auditTime.ts", "node_modules/rxjs/src/internal/operators/bufferCount.ts", "node_modules/rxjs/src/internal/operators/catchError.ts", "node_modules/rxjs/src/internal/operators/scanInternals.ts", "node_modules/rxjs/src/internal/operators/combineLatest.ts", "node_modules/rxjs/src/internal/operators/combineLatestWith.ts", "node_modules/rxjs/src/internal/operators/debounce.ts", "node_modules/rxjs/src/internal/operators/debounceTime.ts", "node_modules/rxjs/src/internal/operators/defaultIfEmpty.ts", "node_modules/rxjs/src/internal/operators/take.ts", "node_modules/rxjs/src/internal/operators/ignoreElements.ts", "node_modules/rxjs/src/internal/operators/mapTo.ts", "node_modules/rxjs/src/internal/operators/delayWhen.ts", "node_modules/rxjs/src/internal/operators/delay.ts", "node_modules/rxjs/src/internal/operators/distinctUntilChanged.ts", "node_modules/rxjs/src/internal/operators/distinctUntilKeyChanged.ts", "node_modules/rxjs/src/internal/operators/throwIfEmpty.ts", "node_modules/rxjs/src/internal/operators/endWith.ts", "node_modules/rxjs/src/internal/operators/finalize.ts", "node_modules/rxjs/src/internal/operators/first.ts", "node_modules/rxjs/src/internal/operators/takeLast.ts", "node_modules/rxjs/src/internal/operators/merge.ts", "node_modules/rxjs/src/internal/operators/mergeWith.ts", "node_modules/rxjs/src/internal/operators/repeat.ts", "node_modules/rxjs/src/internal/operators/scan.ts", "node_modules/rxjs/src/internal/operators/share.ts", "node_modules/rxjs/src/internal/operators/shareReplay.ts", "node_modules/rxjs/src/internal/operators/skip.ts", "node_modules/rxjs/src/internal/operators/skipUntil.ts", "node_modules/rxjs/src/internal/operators/startWith.ts", "node_modules/rxjs/src/internal/operators/switchMap.ts", "node_modules/rxjs/src/internal/operators/takeUntil.ts", "node_modules/rxjs/src/internal/operators/takeWhile.ts", "node_modules/rxjs/src/internal/operators/tap.ts", "node_modules/rxjs/src/internal/operators/throttle.ts", "node_modules/rxjs/src/internal/operators/throttleTime.ts", "node_modules/rxjs/src/internal/operators/withLatestFrom.ts", "node_modules/rxjs/src/internal/operators/zip.ts", "node_modules/rxjs/src/internal/operators/zipWith.ts", "src/templates/assets/javascripts/browser/document/index.ts", "src/templates/assets/javascripts/browser/element/_/index.ts", "src/templates/assets/javascripts/browser/element/focus/index.ts", "src/templates/assets/javascripts/browser/element/hover/index.ts", "src/templates/assets/javascripts/utilities/h/index.ts", "src/templates/assets/javascripts/utilities/round/index.ts", "src/templates/assets/javascripts/browser/script/index.ts", "src/templates/assets/javascripts/browser/element/size/_/index.ts", "src/templates/assets/javascripts/browser/element/size/content/index.ts", "src/templates/assets/javascripts/browser/element/offset/_/index.ts", "src/templates/assets/javascripts/browser/element/offset/content/index.ts", "src/templates/assets/javascripts/browser/element/visibility/index.ts", "src/templates/assets/javascripts/browser/toggle/index.ts", "src/templates/assets/javascripts/browser/keyboard/index.ts", "src/templates/assets/javascripts/browser/location/_/index.ts", "src/templates/assets/javascripts/browser/location/hash/index.ts", "src/templates/assets/javascripts/browser/media/index.ts", "src/templates/assets/javascripts/browser/request/index.ts", "src/templates/assets/javascripts/browser/viewport/offset/index.ts", "src/templates/assets/javascripts/browser/viewport/size/index.ts", "src/templates/assets/javascripts/browser/viewport/_/index.ts", "src/templates/assets/javascripts/browser/viewport/at/index.ts", "src/templates/assets/javascripts/browser/worker/index.ts", "src/templates/assets/javascripts/_/index.ts", "src/templates/assets/javascripts/components/_/index.ts", "src/templates/assets/javascripts/components/announce/index.ts", "src/templates/assets/javascripts/components/consent/index.ts", "src/templates/assets/javascripts/templates/tooltip/index.tsx", "src/templates/assets/javascripts/templates/annotation/index.tsx", "src/templates/assets/javascripts/templates/clipboard/index.tsx", "src/templates/assets/javascripts/templates/search/index.tsx", "src/templates/assets/javascripts/templates/source/index.tsx", "src/templates/assets/javascripts/templates/tabbed/index.tsx", "src/templates/assets/javascripts/templates/table/index.tsx", "src/templates/assets/javascripts/templates/version/index.tsx", "src/templates/assets/javascripts/components/tooltip2/index.ts", "src/templates/assets/javascripts/components/content/annotation/_/index.ts", "src/templates/assets/javascripts/components/content/annotation/list/index.ts", "src/templates/assets/javascripts/components/content/annotation/block/index.ts", "src/templates/assets/javascripts/components/content/code/_/index.ts", "src/templates/assets/javascripts/components/content/details/index.ts", "src/templates/assets/javascripts/components/content/mermaid/index.css", "src/templates/assets/javascripts/components/content/mermaid/index.ts", "src/templates/assets/javascripts/components/content/table/index.ts", "src/templates/assets/javascripts/components/content/tabs/index.ts", "src/templates/assets/javascripts/components/content/_/index.ts", "src/templates/assets/javascripts/components/dialog/index.ts", "src/templates/assets/javascripts/components/tooltip/index.ts", "src/templates/assets/javascripts/components/header/_/index.ts", "src/templates/assets/javascripts/components/header/title/index.ts", "src/templates/assets/javascripts/components/main/index.ts", "src/templates/assets/javascripts/components/palette/index.ts", "src/templates/assets/javascripts/components/progress/index.ts", "src/templates/assets/javascripts/integrations/clipboard/index.ts", "src/templates/assets/javascripts/integrations/sitemap/index.ts", "src/templates/assets/javascripts/integrations/instant/index.ts", "src/templates/assets/javascripts/integrations/search/highlighter/index.ts", "src/templates/assets/javascripts/integrations/search/worker/message/index.ts", "src/templates/assets/javascripts/integrations/search/worker/_/index.ts", "src/templates/assets/javascripts/integrations/version/index.ts", "src/templates/assets/javascripts/components/search/query/index.ts", "src/templates/assets/javascripts/components/search/result/index.ts", "src/templates/assets/javascripts/components/search/share/index.ts", "src/templates/assets/javascripts/components/search/suggest/index.ts", "src/templates/assets/javascripts/components/search/_/index.ts", "src/templates/assets/javascripts/components/search/highlight/index.ts", "src/templates/assets/javascripts/components/sidebar/index.ts", "src/templates/assets/javascripts/components/source/facts/github/index.ts", "src/templates/assets/javascripts/components/source/facts/gitlab/index.ts", "src/templates/assets/javascripts/components/source/facts/_/index.ts", "src/templates/assets/javascripts/components/source/_/index.ts", "src/templates/assets/javascripts/components/tabs/index.ts", "src/templates/assets/javascripts/components/toc/index.ts", "src/templates/assets/javascripts/components/top/index.ts", "src/templates/assets/javascripts/patches/ellipsis/index.ts", "src/templates/assets/javascripts/patches/indeterminate/index.ts", "src/templates/assets/javascripts/patches/scrollfix/index.ts", "src/templates/assets/javascripts/patches/scrolllock/index.ts", "src/templates/assets/javascripts/polyfills/index.ts"], + "sourcesContent": ["(function (global, factory) {\n typeof exports === 'object' && typeof module !== 'undefined' ? factory() :\n typeof define === 'function' && define.amd ? define(factory) :\n (factory());\n}(this, (function () { 'use strict';\n\n /**\n * Applies the :focus-visible polyfill at the given scope.\n * A scope in this case is either the top-level Document or a Shadow Root.\n *\n * @param {(Document|ShadowRoot)} scope\n * @see https://github.com/WICG/focus-visible\n */\n function applyFocusVisiblePolyfill(scope) {\n var hadKeyboardEvent = true;\n var hadFocusVisibleRecently = false;\n var hadFocusVisibleRecentlyTimeout = null;\n\n var inputTypesAllowlist = {\n text: true,\n search: true,\n url: true,\n tel: true,\n email: true,\n password: true,\n number: true,\n date: true,\n month: true,\n week: true,\n time: true,\n datetime: true,\n 'datetime-local': true\n };\n\n /**\n * Helper function for legacy browsers and iframes which sometimes focus\n * elements like document, body, and non-interactive SVG.\n * @param {Element} el\n */\n function isValidFocusTarget(el) {\n if (\n el &&\n el !== document &&\n el.nodeName !== 'HTML' &&\n el.nodeName !== 'BODY' &&\n 'classList' in el &&\n 'contains' in el.classList\n ) {\n return true;\n }\n return false;\n }\n\n /**\n * Computes whether the given element should automatically trigger the\n * `focus-visible` class being added, i.e. whether it should always match\n * `:focus-visible` when focused.\n * @param {Element} el\n * @return {boolean}\n */\n function focusTriggersKeyboardModality(el) {\n var type = el.type;\n var tagName = el.tagName;\n\n if (tagName === 'INPUT' && inputTypesAllowlist[type] && !el.readOnly) {\n return true;\n }\n\n if (tagName === 'TEXTAREA' && !el.readOnly) {\n return true;\n }\n\n if (el.isContentEditable) {\n return true;\n }\n\n return false;\n }\n\n /**\n * Add the `focus-visible` class to the given element if it was not added by\n * the author.\n * @param {Element} el\n */\n function addFocusVisibleClass(el) {\n if (el.classList.contains('focus-visible')) {\n return;\n }\n el.classList.add('focus-visible');\n el.setAttribute('data-focus-visible-added', '');\n }\n\n /**\n * Remove the `focus-visible` class from the given element if it was not\n * originally added by the author.\n * @param {Element} el\n */\n function removeFocusVisibleClass(el) {\n if (!el.hasAttribute('data-focus-visible-added')) {\n return;\n }\n el.classList.remove('focus-visible');\n el.removeAttribute('data-focus-visible-added');\n }\n\n /**\n * If the most recent user interaction was via the keyboard;\n * and the key press did not include a meta, alt/option, or control key;\n * then the modality is keyboard. Otherwise, the modality is not keyboard.\n * Apply `focus-visible` to any current active element and keep track\n * of our keyboard modality state with `hadKeyboardEvent`.\n * @param {KeyboardEvent} e\n */\n function onKeyDown(e) {\n if (e.metaKey || e.altKey || e.ctrlKey) {\n return;\n }\n\n if (isValidFocusTarget(scope.activeElement)) {\n addFocusVisibleClass(scope.activeElement);\n }\n\n hadKeyboardEvent = true;\n }\n\n /**\n * If at any point a user clicks with a pointing device, ensure that we change\n * the modality away from keyboard.\n * This avoids the situation where a user presses a key on an already focused\n * element, and then clicks on a different element, focusing it with a\n * pointing device, while we still think we're in keyboard modality.\n * @param {Event} e\n */\n function onPointerDown(e) {\n hadKeyboardEvent = false;\n }\n\n /**\n * On `focus`, add the `focus-visible` class to the target if:\n * - the target received focus as a result of keyboard navigation, or\n * - the event target is an element that will likely require interaction\n * via the keyboard (e.g. a text box)\n * @param {Event} e\n */\n function onFocus(e) {\n // Prevent IE from focusing the document or HTML element.\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (hadKeyboardEvent || focusTriggersKeyboardModality(e.target)) {\n addFocusVisibleClass(e.target);\n }\n }\n\n /**\n * On `blur`, remove the `focus-visible` class from the target.\n * @param {Event} e\n */\n function onBlur(e) {\n if (!isValidFocusTarget(e.target)) {\n return;\n }\n\n if (\n e.target.classList.contains('focus-visible') ||\n e.target.hasAttribute('data-focus-visible-added')\n ) {\n // To detect a tab/window switch, we look for a blur event followed\n // rapidly by a visibility change.\n // If we don't see a visibility change within 100ms, it's probably a\n // regular focus change.\n hadFocusVisibleRecently = true;\n window.clearTimeout(hadFocusVisibleRecentlyTimeout);\n hadFocusVisibleRecentlyTimeout = window.setTimeout(function() {\n hadFocusVisibleRecently = false;\n }, 100);\n removeFocusVisibleClass(e.target);\n }\n }\n\n /**\n * If the user changes tabs, keep track of whether or not the previously\n * focused element had .focus-visible.\n * @param {Event} e\n */\n function onVisibilityChange(e) {\n if (document.visibilityState === 'hidden') {\n // If the tab becomes active again, the browser will handle calling focus\n // on the element (Safari actually calls it twice).\n // If this tab change caused a blur on an element with focus-visible,\n // re-apply the class when the user switches back to the tab.\n if (hadFocusVisibleRecently) {\n hadKeyboardEvent = true;\n }\n addInitialPointerMoveListeners();\n }\n }\n\n /**\n * Add a group of listeners to detect usage of any pointing devices.\n * These listeners will be added when the polyfill first loads, and anytime\n * the window is blurred, so that they are active when the window regains\n * focus.\n */\n function addInitialPointerMoveListeners() {\n document.addEventListener('mousemove', onInitialPointerMove);\n document.addEventListener('mousedown', onInitialPointerMove);\n document.addEventListener('mouseup', onInitialPointerMove);\n document.addEventListener('pointermove', onInitialPointerMove);\n document.addEventListener('pointerdown', onInitialPointerMove);\n document.addEventListener('pointerup', onInitialPointerMove);\n document.addEventListener('touchmove', onInitialPointerMove);\n document.addEventListener('touchstart', onInitialPointerMove);\n document.addEventListener('touchend', onInitialPointerMove);\n }\n\n function removeInitialPointerMoveListeners() {\n document.removeEventListener('mousemove', onInitialPointerMove);\n document.removeEventListener('mousedown', onInitialPointerMove);\n document.removeEventListener('mouseup', onInitialPointerMove);\n document.removeEventListener('pointermove', onInitialPointerMove);\n document.removeEventListener('pointerdown', onInitialPointerMove);\n document.removeEventListener('pointerup', onInitialPointerMove);\n document.removeEventListener('touchmove', onInitialPointerMove);\n document.removeEventListener('touchstart', onInitialPointerMove);\n document.removeEventListener('touchend', onInitialPointerMove);\n }\n\n /**\n * When the polfyill first loads, assume the user is in keyboard modality.\n * If any event is received from a pointing device (e.g. mouse, pointer,\n * touch), turn off keyboard modality.\n * This accounts for situations where focus enters the page from the URL bar.\n * @param {Event} e\n */\n function onInitialPointerMove(e) {\n // Work around a Safari quirk that fires a mousemove on whenever the\n // window blurs, even if you're tabbing out of the page. \u00AF\\_(\u30C4)_/\u00AF\n if (e.target.nodeName && e.target.nodeName.toLowerCase() === 'html') {\n return;\n }\n\n hadKeyboardEvent = false;\n removeInitialPointerMoveListeners();\n }\n\n // For some kinds of state, we are interested in changes at the global scope\n // only. For example, global pointer input, global key presses and global\n // visibility change should affect the state at every scope:\n document.addEventListener('keydown', onKeyDown, true);\n document.addEventListener('mousedown', onPointerDown, true);\n document.addEventListener('pointerdown', onPointerDown, true);\n document.addEventListener('touchstart', onPointerDown, true);\n document.addEventListener('visibilitychange', onVisibilityChange, true);\n\n addInitialPointerMoveListeners();\n\n // For focus and blur, we specifically care about state changes in the local\n // scope. This is because focus / blur events that originate from within a\n // shadow root are not re-dispatched from the host element if it was already\n // the active element in its own scope:\n scope.addEventListener('focus', onFocus, true);\n scope.addEventListener('blur', onBlur, true);\n\n // We detect that a node is a ShadowRoot by ensuring that it is a\n // DocumentFragment and also has a host property. This check covers native\n // implementation and polyfill implementation transparently. If we only cared\n // about the native implementation, we could just check if the scope was\n // an instance of a ShadowRoot.\n if (scope.nodeType === Node.DOCUMENT_FRAGMENT_NODE && scope.host) {\n // Since a ShadowRoot is a special kind of DocumentFragment, it does not\n // have a root element to add a class to. So, we add this attribute to the\n // host element instead:\n scope.host.setAttribute('data-js-focus-visible', '');\n } else if (scope.nodeType === Node.DOCUMENT_NODE) {\n document.documentElement.classList.add('js-focus-visible');\n document.documentElement.setAttribute('data-js-focus-visible', '');\n }\n }\n\n // It is important to wrap all references to global window and document in\n // these checks to support server-side rendering use cases\n // @see https://github.com/WICG/focus-visible/issues/199\n if (typeof window !== 'undefined' && typeof document !== 'undefined') {\n // Make the polyfill helper globally available. This can be used as a signal\n // to interested libraries that wish to coordinate with the polyfill for e.g.,\n // applying the polyfill to a shadow root:\n window.applyFocusVisiblePolyfill = applyFocusVisiblePolyfill;\n\n // Notify interested libraries of the polyfill's presence, in case the\n // polyfill was loaded lazily:\n var event;\n\n try {\n event = new CustomEvent('focus-visible-polyfill-ready');\n } catch (error) {\n // IE11 does not support using CustomEvent as a constructor directly:\n event = document.createEvent('CustomEvent');\n event.initCustomEvent('focus-visible-polyfill-ready', false, false, {});\n }\n\n window.dispatchEvent(event);\n }\n\n if (typeof document !== 'undefined') {\n // Apply the polyfill to the global document, so that no JavaScript\n // coordination is required to use the polyfill in the top-level document:\n applyFocusVisiblePolyfill(document);\n }\n\n})));\n", "/*!\n * clipboard.js v2.0.11\n * https://clipboardjs.com/\n *\n * Licensed MIT \u00A9 Zeno Rocha\n */\n(function webpackUniversalModuleDefinition(root, factory) {\n\tif(typeof exports === 'object' && typeof module === 'object')\n\t\tmodule.exports = factory();\n\telse if(typeof define === 'function' && define.amd)\n\t\tdefine([], factory);\n\telse if(typeof exports === 'object')\n\t\texports[\"ClipboardJS\"] = factory();\n\telse\n\t\troot[\"ClipboardJS\"] = factory();\n})(this, function() {\nreturn /******/ (function() { // webpackBootstrap\n/******/ \tvar __webpack_modules__ = ({\n\n/***/ 686:\n/***/ (function(__unused_webpack_module, __webpack_exports__, __webpack_require__) {\n\n\"use strict\";\n\n// EXPORTS\n__webpack_require__.d(__webpack_exports__, {\n \"default\": function() { return /* binding */ clipboard; }\n});\n\n// EXTERNAL MODULE: ./node_modules/tiny-emitter/index.js\nvar tiny_emitter = __webpack_require__(279);\nvar tiny_emitter_default = /*#__PURE__*/__webpack_require__.n(tiny_emitter);\n// EXTERNAL MODULE: ./node_modules/good-listener/src/listen.js\nvar listen = __webpack_require__(370);\nvar listen_default = /*#__PURE__*/__webpack_require__.n(listen);\n// EXTERNAL MODULE: ./node_modules/select/src/select.js\nvar src_select = __webpack_require__(817);\nvar select_default = /*#__PURE__*/__webpack_require__.n(src_select);\n;// CONCATENATED MODULE: ./src/common/command.js\n/**\n * Executes a given operation type.\n * @param {String} type\n * @return {Boolean}\n */\nfunction command(type) {\n try {\n return document.execCommand(type);\n } catch (err) {\n return false;\n }\n}\n;// CONCATENATED MODULE: ./src/actions/cut.js\n\n\n/**\n * Cut action wrapper.\n * @param {String|HTMLElement} target\n * @return {String}\n */\n\nvar ClipboardActionCut = function ClipboardActionCut(target) {\n var selectedText = select_default()(target);\n command('cut');\n return selectedText;\n};\n\n/* harmony default export */ var actions_cut = (ClipboardActionCut);\n;// CONCATENATED MODULE: ./src/common/create-fake-element.js\n/**\n * Creates a fake textarea element with a value.\n * @param {String} value\n * @return {HTMLElement}\n */\nfunction createFakeElement(value) {\n var isRTL = document.documentElement.getAttribute('dir') === 'rtl';\n var fakeElement = document.createElement('textarea'); // Prevent zooming on iOS\n\n fakeElement.style.fontSize = '12pt'; // Reset box model\n\n fakeElement.style.border = '0';\n fakeElement.style.padding = '0';\n fakeElement.style.margin = '0'; // Move element out of screen horizontally\n\n fakeElement.style.position = 'absolute';\n fakeElement.style[isRTL ? 'right' : 'left'] = '-9999px'; // Move element to the same position vertically\n\n var yPosition = window.pageYOffset || document.documentElement.scrollTop;\n fakeElement.style.top = \"\".concat(yPosition, \"px\");\n fakeElement.setAttribute('readonly', '');\n fakeElement.value = value;\n return fakeElement;\n}\n;// CONCATENATED MODULE: ./src/actions/copy.js\n\n\n\n/**\n * Create fake copy action wrapper using a fake element.\n * @param {String} target\n * @param {Object} options\n * @return {String}\n */\n\nvar fakeCopyAction = function fakeCopyAction(value, options) {\n var fakeElement = createFakeElement(value);\n options.container.appendChild(fakeElement);\n var selectedText = select_default()(fakeElement);\n command('copy');\n fakeElement.remove();\n return selectedText;\n};\n/**\n * Copy action wrapper.\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @return {String}\n */\n\n\nvar ClipboardActionCopy = function ClipboardActionCopy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n var selectedText = '';\n\n if (typeof target === 'string') {\n selectedText = fakeCopyAction(target, options);\n } else if (target instanceof HTMLInputElement && !['text', 'search', 'url', 'tel', 'password'].includes(target === null || target === void 0 ? void 0 : target.type)) {\n // If input type doesn't support `setSelectionRange`. Simulate it. https://developer.mozilla.org/en-US/docs/Web/API/HTMLInputElement/setSelectionRange\n selectedText = fakeCopyAction(target.value, options);\n } else {\n selectedText = select_default()(target);\n command('copy');\n }\n\n return selectedText;\n};\n\n/* harmony default export */ var actions_copy = (ClipboardActionCopy);\n;// CONCATENATED MODULE: ./src/actions/default.js\nfunction _typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { _typeof = function _typeof(obj) { return typeof obj; }; } else { _typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return _typeof(obj); }\n\n\n\n/**\n * Inner function which performs selection from either `text` or `target`\n * properties and then executes copy or cut operations.\n * @param {Object} options\n */\n\nvar ClipboardActionDefault = function ClipboardActionDefault() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n // Defines base properties passed from constructor.\n var _options$action = options.action,\n action = _options$action === void 0 ? 'copy' : _options$action,\n container = options.container,\n target = options.target,\n text = options.text; // Sets the `action` to be performed which can be either 'copy' or 'cut'.\n\n if (action !== 'copy' && action !== 'cut') {\n throw new Error('Invalid \"action\" value, use either \"copy\" or \"cut\"');\n } // Sets the `target` property using an element that will be have its content copied.\n\n\n if (target !== undefined) {\n if (target && _typeof(target) === 'object' && target.nodeType === 1) {\n if (action === 'copy' && target.hasAttribute('disabled')) {\n throw new Error('Invalid \"target\" attribute. Please use \"readonly\" instead of \"disabled\" attribute');\n }\n\n if (action === 'cut' && (target.hasAttribute('readonly') || target.hasAttribute('disabled'))) {\n throw new Error('Invalid \"target\" attribute. You can\\'t cut text from elements with \"readonly\" or \"disabled\" attributes');\n }\n } else {\n throw new Error('Invalid \"target\" value, use a valid Element');\n }\n } // Define selection strategy based on `text` property.\n\n\n if (text) {\n return actions_copy(text, {\n container: container\n });\n } // Defines which selection strategy based on `target` property.\n\n\n if (target) {\n return action === 'cut' ? actions_cut(target) : actions_copy(target, {\n container: container\n });\n }\n};\n\n/* harmony default export */ var actions_default = (ClipboardActionDefault);\n;// CONCATENATED MODULE: ./src/clipboard.js\nfunction clipboard_typeof(obj) { \"@babel/helpers - typeof\"; if (typeof Symbol === \"function\" && typeof Symbol.iterator === \"symbol\") { clipboard_typeof = function _typeof(obj) { return typeof obj; }; } else { clipboard_typeof = function _typeof(obj) { return obj && typeof Symbol === \"function\" && obj.constructor === Symbol && obj !== Symbol.prototype ? \"symbol\" : typeof obj; }; } return clipboard_typeof(obj); }\n\nfunction _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError(\"Cannot call a class as a function\"); } }\n\nfunction _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if (\"value\" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } }\n\nfunction _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); return Constructor; }\n\nfunction _inherits(subClass, superClass) { if (typeof superClass !== \"function\" && superClass !== null) { throw new TypeError(\"Super expression must either be null or a function\"); } subClass.prototype = Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }); if (superClass) _setPrototypeOf(subClass, superClass); }\n\nfunction _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); }\n\nfunction _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; }\n\nfunction _possibleConstructorReturn(self, call) { if (call && (clipboard_typeof(call) === \"object\" || typeof call === \"function\")) { return call; } return _assertThisInitialized(self); }\n\nfunction _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError(\"this hasn't been initialised - super() hasn't been called\"); } return self; }\n\nfunction _isNativeReflectConstruct() { if (typeof Reflect === \"undefined\" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === \"function\") return true; try { Date.prototype.toString.call(Reflect.construct(Date, [], function () {})); return true; } catch (e) { return false; } }\n\nfunction _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); }\n\n\n\n\n\n\n/**\n * Helper function to retrieve attribute value.\n * @param {String} suffix\n * @param {Element} element\n */\n\nfunction getAttributeValue(suffix, element) {\n var attribute = \"data-clipboard-\".concat(suffix);\n\n if (!element.hasAttribute(attribute)) {\n return;\n }\n\n return element.getAttribute(attribute);\n}\n/**\n * Base class which takes one or more elements, adds event listeners to them,\n * and instantiates a new `ClipboardAction` on each click.\n */\n\n\nvar Clipboard = /*#__PURE__*/function (_Emitter) {\n _inherits(Clipboard, _Emitter);\n\n var _super = _createSuper(Clipboard);\n\n /**\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n * @param {Object} options\n */\n function Clipboard(trigger, options) {\n var _this;\n\n _classCallCheck(this, Clipboard);\n\n _this = _super.call(this);\n\n _this.resolveOptions(options);\n\n _this.listenClick(trigger);\n\n return _this;\n }\n /**\n * Defines if attributes would be resolved using internal setter functions\n * or custom functions that were passed in the constructor.\n * @param {Object} options\n */\n\n\n _createClass(Clipboard, [{\n key: \"resolveOptions\",\n value: function resolveOptions() {\n var options = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : {};\n this.action = typeof options.action === 'function' ? options.action : this.defaultAction;\n this.target = typeof options.target === 'function' ? options.target : this.defaultTarget;\n this.text = typeof options.text === 'function' ? options.text : this.defaultText;\n this.container = clipboard_typeof(options.container) === 'object' ? options.container : document.body;\n }\n /**\n * Adds a click event listener to the passed trigger.\n * @param {String|HTMLElement|HTMLCollection|NodeList} trigger\n */\n\n }, {\n key: \"listenClick\",\n value: function listenClick(trigger) {\n var _this2 = this;\n\n this.listener = listen_default()(trigger, 'click', function (e) {\n return _this2.onClick(e);\n });\n }\n /**\n * Defines a new `ClipboardAction` on each click event.\n * @param {Event} e\n */\n\n }, {\n key: \"onClick\",\n value: function onClick(e) {\n var trigger = e.delegateTarget || e.currentTarget;\n var action = this.action(trigger) || 'copy';\n var text = actions_default({\n action: action,\n container: this.container,\n target: this.target(trigger),\n text: this.text(trigger)\n }); // Fires an event based on the copy operation result.\n\n this.emit(text ? 'success' : 'error', {\n action: action,\n text: text,\n trigger: trigger,\n clearSelection: function clearSelection() {\n if (trigger) {\n trigger.focus();\n }\n\n window.getSelection().removeAllRanges();\n }\n });\n }\n /**\n * Default `action` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultAction\",\n value: function defaultAction(trigger) {\n return getAttributeValue('action', trigger);\n }\n /**\n * Default `target` lookup function.\n * @param {Element} trigger\n */\n\n }, {\n key: \"defaultTarget\",\n value: function defaultTarget(trigger) {\n var selector = getAttributeValue('target', trigger);\n\n if (selector) {\n return document.querySelector(selector);\n }\n }\n /**\n * Allow fire programmatically a copy action\n * @param {String|HTMLElement} target\n * @param {Object} options\n * @returns Text copied.\n */\n\n }, {\n key: \"defaultText\",\n\n /**\n * Default `text` lookup function.\n * @param {Element} trigger\n */\n value: function defaultText(trigger) {\n return getAttributeValue('text', trigger);\n }\n /**\n * Destroy lifecycle.\n */\n\n }, {\n key: \"destroy\",\n value: function destroy() {\n this.listener.destroy();\n }\n }], [{\n key: \"copy\",\n value: function copy(target) {\n var options = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : {\n container: document.body\n };\n return actions_copy(target, options);\n }\n /**\n * Allow fire programmatically a cut action\n * @param {String|HTMLElement} target\n * @returns Text cutted.\n */\n\n }, {\n key: \"cut\",\n value: function cut(target) {\n return actions_cut(target);\n }\n /**\n * Returns the support of the given action, or all actions if no action is\n * given.\n * @param {String} [action]\n */\n\n }, {\n key: \"isSupported\",\n value: function isSupported() {\n var action = arguments.length > 0 && arguments[0] !== undefined ? arguments[0] : ['copy', 'cut'];\n var actions = typeof action === 'string' ? [action] : action;\n var support = !!document.queryCommandSupported;\n actions.forEach(function (action) {\n support = support && !!document.queryCommandSupported(action);\n });\n return support;\n }\n }]);\n\n return Clipboard;\n}((tiny_emitter_default()));\n\n/* harmony default export */ var clipboard = (Clipboard);\n\n/***/ }),\n\n/***/ 828:\n/***/ (function(module) {\n\nvar DOCUMENT_NODE_TYPE = 9;\n\n/**\n * A polyfill for Element.matches()\n */\nif (typeof Element !== 'undefined' && !Element.prototype.matches) {\n var proto = Element.prototype;\n\n proto.matches = proto.matchesSelector ||\n proto.mozMatchesSelector ||\n proto.msMatchesSelector ||\n proto.oMatchesSelector ||\n proto.webkitMatchesSelector;\n}\n\n/**\n * Finds the closest parent that matches a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @return {Function}\n */\nfunction closest (element, selector) {\n while (element && element.nodeType !== DOCUMENT_NODE_TYPE) {\n if (typeof element.matches === 'function' &&\n element.matches(selector)) {\n return element;\n }\n element = element.parentNode;\n }\n}\n\nmodule.exports = closest;\n\n\n/***/ }),\n\n/***/ 438:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar closest = __webpack_require__(828);\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction _delegate(element, selector, type, callback, useCapture) {\n var listenerFn = listener.apply(this, arguments);\n\n element.addEventListener(type, listenerFn, useCapture);\n\n return {\n destroy: function() {\n element.removeEventListener(type, listenerFn, useCapture);\n }\n }\n}\n\n/**\n * Delegates event to a selector.\n *\n * @param {Element|String|Array} [elements]\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @param {Boolean} useCapture\n * @return {Object}\n */\nfunction delegate(elements, selector, type, callback, useCapture) {\n // Handle the regular Element usage\n if (typeof elements.addEventListener === 'function') {\n return _delegate.apply(null, arguments);\n }\n\n // Handle Element-less usage, it defaults to global delegation\n if (typeof type === 'function') {\n // Use `document` as the first parameter, then apply arguments\n // This is a short way to .unshift `arguments` without running into deoptimizations\n return _delegate.bind(null, document).apply(null, arguments);\n }\n\n // Handle Selector-based usage\n if (typeof elements === 'string') {\n elements = document.querySelectorAll(elements);\n }\n\n // Handle Array-like based usage\n return Array.prototype.map.call(elements, function (element) {\n return _delegate(element, selector, type, callback, useCapture);\n });\n}\n\n/**\n * Finds closest match and invokes callback.\n *\n * @param {Element} element\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Function}\n */\nfunction listener(element, selector, type, callback) {\n return function(e) {\n e.delegateTarget = closest(e.target, selector);\n\n if (e.delegateTarget) {\n callback.call(element, e);\n }\n }\n}\n\nmodule.exports = delegate;\n\n\n/***/ }),\n\n/***/ 879:\n/***/ (function(__unused_webpack_module, exports) {\n\n/**\n * Check if argument is a HTML element.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.node = function(value) {\n return value !== undefined\n && value instanceof HTMLElement\n && value.nodeType === 1;\n};\n\n/**\n * Check if argument is a list of HTML elements.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.nodeList = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return value !== undefined\n && (type === '[object NodeList]' || type === '[object HTMLCollection]')\n && ('length' in value)\n && (value.length === 0 || exports.node(value[0]));\n};\n\n/**\n * Check if argument is a string.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.string = function(value) {\n return typeof value === 'string'\n || value instanceof String;\n};\n\n/**\n * Check if argument is a function.\n *\n * @param {Object} value\n * @return {Boolean}\n */\nexports.fn = function(value) {\n var type = Object.prototype.toString.call(value);\n\n return type === '[object Function]';\n};\n\n\n/***/ }),\n\n/***/ 370:\n/***/ (function(module, __unused_webpack_exports, __webpack_require__) {\n\nvar is = __webpack_require__(879);\nvar delegate = __webpack_require__(438);\n\n/**\n * Validates all params and calls the right\n * listener function based on its target type.\n *\n * @param {String|HTMLElement|HTMLCollection|NodeList} target\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listen(target, type, callback) {\n if (!target && !type && !callback) {\n throw new Error('Missing required arguments');\n }\n\n if (!is.string(type)) {\n throw new TypeError('Second argument must be a String');\n }\n\n if (!is.fn(callback)) {\n throw new TypeError('Third argument must be a Function');\n }\n\n if (is.node(target)) {\n return listenNode(target, type, callback);\n }\n else if (is.nodeList(target)) {\n return listenNodeList(target, type, callback);\n }\n else if (is.string(target)) {\n return listenSelector(target, type, callback);\n }\n else {\n throw new TypeError('First argument must be a String, HTMLElement, HTMLCollection, or NodeList');\n }\n}\n\n/**\n * Adds an event listener to a HTML element\n * and returns a remove listener function.\n *\n * @param {HTMLElement} node\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNode(node, type, callback) {\n node.addEventListener(type, callback);\n\n return {\n destroy: function() {\n node.removeEventListener(type, callback);\n }\n }\n}\n\n/**\n * Add an event listener to a list of HTML elements\n * and returns a remove listener function.\n *\n * @param {NodeList|HTMLCollection} nodeList\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenNodeList(nodeList, type, callback) {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.addEventListener(type, callback);\n });\n\n return {\n destroy: function() {\n Array.prototype.forEach.call(nodeList, function(node) {\n node.removeEventListener(type, callback);\n });\n }\n }\n}\n\n/**\n * Add an event listener to a selector\n * and returns a remove listener function.\n *\n * @param {String} selector\n * @param {String} type\n * @param {Function} callback\n * @return {Object}\n */\nfunction listenSelector(selector, type, callback) {\n return delegate(document.body, selector, type, callback);\n}\n\nmodule.exports = listen;\n\n\n/***/ }),\n\n/***/ 817:\n/***/ (function(module) {\n\nfunction select(element) {\n var selectedText;\n\n if (element.nodeName === 'SELECT') {\n element.focus();\n\n selectedText = element.value;\n }\n else if (element.nodeName === 'INPUT' || element.nodeName === 'TEXTAREA') {\n var isReadOnly = element.hasAttribute('readonly');\n\n if (!isReadOnly) {\n element.setAttribute('readonly', '');\n }\n\n element.select();\n element.setSelectionRange(0, element.value.length);\n\n if (!isReadOnly) {\n element.removeAttribute('readonly');\n }\n\n selectedText = element.value;\n }\n else {\n if (element.hasAttribute('contenteditable')) {\n element.focus();\n }\n\n var selection = window.getSelection();\n var range = document.createRange();\n\n range.selectNodeContents(element);\n selection.removeAllRanges();\n selection.addRange(range);\n\n selectedText = selection.toString();\n }\n\n return selectedText;\n}\n\nmodule.exports = select;\n\n\n/***/ }),\n\n/***/ 279:\n/***/ (function(module) {\n\nfunction E () {\n // Keep this empty so it's easier to inherit from\n // (via https://github.com/lipsmack from https://github.com/scottcorgan/tiny-emitter/issues/3)\n}\n\nE.prototype = {\n on: function (name, callback, ctx) {\n var e = this.e || (this.e = {});\n\n (e[name] || (e[name] = [])).push({\n fn: callback,\n ctx: ctx\n });\n\n return this;\n },\n\n once: function (name, callback, ctx) {\n var self = this;\n function listener () {\n self.off(name, listener);\n callback.apply(ctx, arguments);\n };\n\n listener._ = callback\n return this.on(name, listener, ctx);\n },\n\n emit: function (name) {\n var data = [].slice.call(arguments, 1);\n var evtArr = ((this.e || (this.e = {}))[name] || []).slice();\n var i = 0;\n var len = evtArr.length;\n\n for (i; i < len; i++) {\n evtArr[i].fn.apply(evtArr[i].ctx, data);\n }\n\n return this;\n },\n\n off: function (name, callback) {\n var e = this.e || (this.e = {});\n var evts = e[name];\n var liveEvents = [];\n\n if (evts && callback) {\n for (var i = 0, len = evts.length; i < len; i++) {\n if (evts[i].fn !== callback && evts[i].fn._ !== callback)\n liveEvents.push(evts[i]);\n }\n }\n\n // Remove event from queue to prevent memory leak\n // Suggested by https://github.com/lazd\n // Ref: https://github.com/scottcorgan/tiny-emitter/commit/c6ebfaa9bc973b33d110a84a307742b7cf94c953#commitcomment-5024910\n\n (liveEvents.length)\n ? e[name] = liveEvents\n : delete e[name];\n\n return this;\n }\n};\n\nmodule.exports = E;\nmodule.exports.TinyEmitter = E;\n\n\n/***/ })\n\n/******/ \t});\n/************************************************************************/\n/******/ \t// The module cache\n/******/ \tvar __webpack_module_cache__ = {};\n/******/ \t\n/******/ \t// The require function\n/******/ \tfunction __webpack_require__(moduleId) {\n/******/ \t\t// Check if module is in cache\n/******/ \t\tif(__webpack_module_cache__[moduleId]) {\n/******/ \t\t\treturn __webpack_module_cache__[moduleId].exports;\n/******/ \t\t}\n/******/ \t\t// Create a new module (and put it into the cache)\n/******/ \t\tvar module = __webpack_module_cache__[moduleId] = {\n/******/ \t\t\t// no module.id needed\n/******/ \t\t\t// no module.loaded needed\n/******/ \t\t\texports: {}\n/******/ \t\t};\n/******/ \t\n/******/ \t\t// Execute the module function\n/******/ \t\t__webpack_modules__[moduleId](module, module.exports, __webpack_require__);\n/******/ \t\n/******/ \t\t// Return the exports of the module\n/******/ \t\treturn module.exports;\n/******/ \t}\n/******/ \t\n/************************************************************************/\n/******/ \t/* webpack/runtime/compat get default export */\n/******/ \t!function() {\n/******/ \t\t// getDefaultExport function for compatibility with non-harmony modules\n/******/ \t\t__webpack_require__.n = function(module) {\n/******/ \t\t\tvar getter = module && module.__esModule ?\n/******/ \t\t\t\tfunction() { return module['default']; } :\n/******/ \t\t\t\tfunction() { return module; };\n/******/ \t\t\t__webpack_require__.d(getter, { a: getter });\n/******/ \t\t\treturn getter;\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/define property getters */\n/******/ \t!function() {\n/******/ \t\t// define getter functions for harmony exports\n/******/ \t\t__webpack_require__.d = function(exports, definition) {\n/******/ \t\t\tfor(var key in definition) {\n/******/ \t\t\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n/******/ \t\t\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n/******/ \t\t\t\t}\n/******/ \t\t\t}\n/******/ \t\t};\n/******/ \t}();\n/******/ \t\n/******/ \t/* webpack/runtime/hasOwnProperty shorthand */\n/******/ \t!function() {\n/******/ \t\t__webpack_require__.o = function(obj, prop) { return Object.prototype.hasOwnProperty.call(obj, prop); }\n/******/ \t}();\n/******/ \t\n/************************************************************************/\n/******/ \t// module exports must be returned from runtime so entry inlining is disabled\n/******/ \t// startup\n/******/ \t// Load entry module and return exports\n/******/ \treturn __webpack_require__(686);\n/******/ })()\n.default;\n});", "/*!\n * escape-html\n * Copyright(c) 2012-2013 TJ Holowaychuk\n * Copyright(c) 2015 Andreas Lubbe\n * Copyright(c) 2015 Tiancheng \"Timothy\" Gu\n * MIT Licensed\n */\n\n'use strict';\n\n/**\n * Module variables.\n * @private\n */\n\nvar matchHtmlRegExp = /[\"'&<>]/;\n\n/**\n * Module exports.\n * @public\n */\n\nmodule.exports = escapeHtml;\n\n/**\n * Escape special characters in the given string of html.\n *\n * @param {string} string The string to escape for inserting into HTML\n * @return {string}\n * @public\n */\n\nfunction escapeHtml(string) {\n var str = '' + string;\n var match = matchHtmlRegExp.exec(str);\n\n if (!match) {\n return str;\n }\n\n var escape;\n var html = '';\n var index = 0;\n var lastIndex = 0;\n\n for (index = match.index; index < str.length; index++) {\n switch (str.charCodeAt(index)) {\n case 34: // \"\n escape = '"';\n break;\n case 38: // &\n escape = '&';\n break;\n case 39: // '\n escape = ''';\n break;\n case 60: // <\n escape = '<';\n break;\n case 62: // >\n escape = '>';\n break;\n default:\n continue;\n }\n\n if (lastIndex !== index) {\n html += str.substring(lastIndex, index);\n }\n\n lastIndex = index + 1;\n html += escape;\n }\n\n return lastIndex !== index\n ? html + str.substring(lastIndex, index)\n : html;\n}\n", "/*\n * Copyright (c) 2016-2024 Martin Donath \n *\n * Permission is hereby granted, free of charge, to any person obtaining a copy\n * of this software and associated documentation files (the \"Software\"), to\n * deal in the Software without restriction, including without limitation the\n * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or\n * sell copies of the Software, and to permit persons to whom the Software is\n * furnished to do so, subject to the following conditions:\n *\n * The above copyright notice and this permission notice shall be included in\n * all copies or substantial portions of the Software.\n *\n * THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE\n * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS\n * IN THE SOFTWARE.\n */\n\nimport \"focus-visible\"\n\nimport {\n EMPTY,\n NEVER,\n Observable,\n Subject,\n defer,\n delay,\n filter,\n map,\n merge,\n mergeWith,\n shareReplay,\n switchMap\n} from \"rxjs\"\n\nimport { configuration, feature } from \"./_\"\nimport {\n at,\n getActiveElement,\n getOptionalElement,\n requestJSON,\n setLocation,\n setToggle,\n watchDocument,\n watchKeyboard,\n watchLocation,\n watchLocationTarget,\n watchMedia,\n watchPrint,\n watchScript,\n watchViewport\n} from \"./browser\"\nimport {\n getComponentElement,\n getComponentElements,\n mountAnnounce,\n mountBackToTop,\n mountConsent,\n mountContent,\n mountDialog,\n mountHeader,\n mountHeaderTitle,\n mountPalette,\n mountProgress,\n mountSearch,\n mountSearchHiglight,\n mountSidebar,\n mountSource,\n mountTableOfContents,\n mountTabs,\n watchHeader,\n watchMain\n} from \"./components\"\nimport {\n SearchIndex,\n setupClipboardJS,\n setupInstantNavigation,\n setupVersionSelector\n} from \"./integrations\"\nimport {\n patchEllipsis,\n patchIndeterminate,\n patchScrollfix,\n patchScrolllock\n} from \"./patches\"\nimport \"./polyfills\"\n\n/* ----------------------------------------------------------------------------\n * Functions - @todo refactor\n * ------------------------------------------------------------------------- */\n\n/**\n * Fetch search index\n *\n * @returns Search index observable\n */\nfunction fetchSearchIndex(): Observable {\n if (location.protocol === \"file:\") {\n return watchScript(\n `${new URL(\"search/search_index.js\", config.base)}`\n )\n .pipe(\n // @ts-ignore - @todo fix typings\n map(() => __index),\n shareReplay(1)\n )\n } else {\n return requestJSON(\n new URL(\"search/search_index.json\", config.base)\n )\n }\n}\n\n/* ----------------------------------------------------------------------------\n * Application\n * ------------------------------------------------------------------------- */\n\n/* Yay, JavaScript is available */\ndocument.documentElement.classList.remove(\"no-js\")\ndocument.documentElement.classList.add(\"js\")\n\n/* Set up navigation observables and subjects */\nconst document$ = watchDocument()\nconst location$ = watchLocation()\nconst target$ = watchLocationTarget(location$)\nconst keyboard$ = watchKeyboard()\n\n/* Set up media observables */\nconst viewport$ = watchViewport()\nconst tablet$ = watchMedia(\"(min-width: 960px)\")\nconst screen$ = watchMedia(\"(min-width: 1220px)\")\nconst print$ = watchPrint()\n\n/* Retrieve search index, if search is enabled */\nconst config = configuration()\nconst index$ = document.forms.namedItem(\"search\")\n ? fetchSearchIndex()\n : NEVER\n\n/* Set up Clipboard.js integration */\nconst alert$ = new Subject()\nsetupClipboardJS({ alert$ })\n\n/* Set up progress indicator */\nconst progress$ = new Subject()\n\n/* Set up instant navigation, if enabled */\nif (feature(\"navigation.instant\"))\n setupInstantNavigation({ location$, viewport$, progress$ })\n .subscribe(document$)\n\n/* Set up version selector */\nif (config.version?.provider === \"mike\")\n setupVersionSelector({ document$ })\n\n/* Always close drawer and search on navigation */\nmerge(location$, target$)\n .pipe(\n delay(125)\n )\n .subscribe(() => {\n setToggle(\"drawer\", false)\n setToggle(\"search\", false)\n })\n\n/* Set up global keyboard handlers */\nkeyboard$\n .pipe(\n filter(({ mode }) => mode === \"global\")\n )\n .subscribe(key => {\n switch (key.type) {\n\n /* Go to previous page */\n case \"p\":\n case \",\":\n const prev = getOptionalElement(\"link[rel=prev]\")\n if (typeof prev !== \"undefined\")\n setLocation(prev)\n break\n\n /* Go to next page */\n case \"n\":\n case \".\":\n const next = getOptionalElement(\"link[rel=next]\")\n if (typeof next !== \"undefined\")\n setLocation(next)\n break\n\n /* Expand navigation, see https://bit.ly/3ZjG5io */\n case \"Enter\":\n const active = getActiveElement()\n if (active instanceof HTMLLabelElement)\n active.click()\n }\n })\n\n/* Set up patches */\npatchEllipsis({ viewport$, document$ })\npatchIndeterminate({ document$, tablet$ })\npatchScrollfix({ document$ })\npatchScrolllock({ viewport$, tablet$ })\n\n/* Set up header and main area observable */\nconst header$ = watchHeader(getComponentElement(\"header\"), { viewport$ })\nconst main$ = document$\n .pipe(\n map(() => getComponentElement(\"main\")),\n switchMap(el => watchMain(el, { viewport$, header$ })),\n shareReplay(1)\n )\n\n/* Set up control component observables */\nconst control$ = merge(\n\n /* Consent */\n ...getComponentElements(\"consent\")\n .map(el => mountConsent(el, { target$ })),\n\n /* Dialog */\n ...getComponentElements(\"dialog\")\n .map(el => mountDialog(el, { alert$ })),\n\n /* Header */\n ...getComponentElements(\"header\")\n .map(el => mountHeader(el, { viewport$, header$, main$ })),\n\n /* Color palette */\n ...getComponentElements(\"palette\")\n .map(el => mountPalette(el)),\n\n /* Progress bar */\n ...getComponentElements(\"progress\")\n .map(el => mountProgress(el, { progress$ })),\n\n /* Search */\n ...getComponentElements(\"search\")\n .map(el => mountSearch(el, { index$, keyboard$ })),\n\n /* Repository information */\n ...getComponentElements(\"source\")\n .map(el => mountSource(el))\n)\n\n/* Set up content component observables */\nconst content$ = defer(() => merge(\n\n /* Announcement bar */\n ...getComponentElements(\"announce\")\n .map(el => mountAnnounce(el)),\n\n /* Content */\n ...getComponentElements(\"content\")\n .map(el => mountContent(el, { viewport$, target$, print$ })),\n\n /* Search highlighting */\n ...getComponentElements(\"content\")\n .map(el => feature(\"search.highlight\")\n ? mountSearchHiglight(el, { index$, location$ })\n : EMPTY\n ),\n\n /* Header title */\n ...getComponentElements(\"header-title\")\n .map(el => mountHeaderTitle(el, { viewport$, header$ })),\n\n /* Sidebar */\n ...getComponentElements(\"sidebar\")\n .map(el => el.getAttribute(\"data-md-type\") === \"navigation\"\n ? at(screen$, () => mountSidebar(el, { viewport$, header$, main$ }))\n : at(tablet$, () => mountSidebar(el, { viewport$, header$, main$ }))\n ),\n\n /* Navigation tabs */\n ...getComponentElements(\"tabs\")\n .map(el => mountTabs(el, { viewport$, header$ })),\n\n /* Table of contents */\n ...getComponentElements(\"toc\")\n .map(el => mountTableOfContents(el, {\n viewport$, header$, main$, target$\n })),\n\n /* Back-to-top button */\n ...getComponentElements(\"top\")\n .map(el => mountBackToTop(el, { viewport$, header$, main$, target$ }))\n))\n\n/* Set up component observables */\nconst component$ = document$\n .pipe(\n switchMap(() => content$),\n mergeWith(control$),\n shareReplay(1)\n )\n\n/* Subscribe to all components */\ncomponent$.subscribe()\n\n/* ----------------------------------------------------------------------------\n * Exports\n * ------------------------------------------------------------------------- */\n\nwindow.document$ = document$ /* Document observable */\nwindow.location$ = location$ /* Location subject */\nwindow.target$ = target$ /* Location target observable */\nwindow.keyboard$ = keyboard$ /* Keyboard observable */\nwindow.viewport$ = viewport$ /* Viewport observable */\nwindow.tablet$ = tablet$ /* Media tablet observable */\nwindow.screen$ = screen$ /* Media screen observable */\nwindow.print$ = print$ /* Media print observable */\nwindow.alert$ = alert$ /* Alert subject */\nwindow.progress$ = progress$ /* Progress indicator subject */\nwindow.component$ = component$ /* Component observable */\n", "/*! *****************************************************************************\r\nCopyright (c) Microsoft Corporation.\r\n\r\nPermission to use, copy, modify, and/or distribute this software for any\r\npurpose with or without fee is hereby granted.\r\n\r\nTHE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\r\nREGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\r\nAND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\r\nINDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\r\nLOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\r\nOTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\r\nPERFORMANCE OF THIS SOFTWARE.\r\n***************************************************************************** */\r\n/* global Reflect, Promise */\r\n\r\nvar extendStatics = function(d, b) {\r\n extendStatics = Object.setPrototypeOf ||\r\n ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||\r\n function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };\r\n return extendStatics(d, b);\r\n};\r\n\r\nexport function __extends(d, b) {\r\n if (typeof b !== \"function\" && b !== null)\r\n throw new TypeError(\"Class extends value \" + String(b) + \" is not a constructor or null\");\r\n extendStatics(d, b);\r\n function __() { this.constructor = d; }\r\n d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());\r\n}\r\n\r\nexport var __assign = function() {\r\n __assign = Object.assign || function __assign(t) {\r\n for (var s, i = 1, n = arguments.length; i < n; i++) {\r\n s = arguments[i];\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p)) t[p] = s[p];\r\n }\r\n return t;\r\n }\r\n return __assign.apply(this, arguments);\r\n}\r\n\r\nexport function __rest(s, e) {\r\n var t = {};\r\n for (var p in s) if (Object.prototype.hasOwnProperty.call(s, p) && e.indexOf(p) < 0)\r\n t[p] = s[p];\r\n if (s != null && typeof Object.getOwnPropertySymbols === \"function\")\r\n for (var i = 0, p = Object.getOwnPropertySymbols(s); i < p.length; i++) {\r\n if (e.indexOf(p[i]) < 0 && Object.prototype.propertyIsEnumerable.call(s, p[i]))\r\n t[p[i]] = s[p[i]];\r\n }\r\n return t;\r\n}\r\n\r\nexport function __decorate(decorators, target, key, desc) {\r\n var c = arguments.length, r = c < 3 ? target : desc === null ? desc = Object.getOwnPropertyDescriptor(target, key) : desc, d;\r\n if (typeof Reflect === \"object\" && typeof Reflect.decorate === \"function\") r = Reflect.decorate(decorators, target, key, desc);\r\n else for (var i = decorators.length - 1; i >= 0; i--) if (d = decorators[i]) r = (c < 3 ? d(r) : c > 3 ? d(target, key, r) : d(target, key)) || r;\r\n return c > 3 && r && Object.defineProperty(target, key, r), r;\r\n}\r\n\r\nexport function __param(paramIndex, decorator) {\r\n return function (target, key) { decorator(target, key, paramIndex); }\r\n}\r\n\r\nexport function __metadata(metadataKey, metadataValue) {\r\n if (typeof Reflect === \"object\" && typeof Reflect.metadata === \"function\") return Reflect.metadata(metadataKey, metadataValue);\r\n}\r\n\r\nexport function __awaiter(thisArg, _arguments, P, generator) {\r\n function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); }\r\n return new (P || (P = Promise))(function (resolve, reject) {\r\n function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }\r\n function rejected(value) { try { step(generator[\"throw\"](value)); } catch (e) { reject(e); } }\r\n function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); }\r\n step((generator = generator.apply(thisArg, _arguments || [])).next());\r\n });\r\n}\r\n\r\nexport function __generator(thisArg, body) {\r\n var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;\r\n return g = { next: verb(0), \"throw\": verb(1), \"return\": verb(2) }, typeof Symbol === \"function\" && (g[Symbol.iterator] = function() { return this; }), g;\r\n function verb(n) { return function (v) { return step([n, v]); }; }\r\n function step(op) {\r\n if (f) throw new TypeError(\"Generator is already executing.\");\r\n while (_) try {\r\n if (f = 1, y && (t = op[0] & 2 ? y[\"return\"] : op[0] ? y[\"throw\"] || ((t = y[\"return\"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;\r\n if (y = 0, t) op = [op[0] & 2, t.value];\r\n switch (op[0]) {\r\n case 0: case 1: t = op; break;\r\n case 4: _.label++; return { value: op[1], done: false };\r\n case 5: _.label++; y = op[1]; op = [0]; continue;\r\n case 7: op = _.ops.pop(); _.trys.pop(); continue;\r\n default:\r\n if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }\r\n if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }\r\n if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }\r\n if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }\r\n if (t[2]) _.ops.pop();\r\n _.trys.pop(); continue;\r\n }\r\n op = body.call(thisArg, _);\r\n } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }\r\n if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };\r\n }\r\n}\r\n\r\nexport var __createBinding = Object.create ? (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n Object.defineProperty(o, k2, { enumerable: true, get: function() { return m[k]; } });\r\n}) : (function(o, m, k, k2) {\r\n if (k2 === undefined) k2 = k;\r\n o[k2] = m[k];\r\n});\r\n\r\nexport function __exportStar(m, o) {\r\n for (var p in m) if (p !== \"default\" && !Object.prototype.hasOwnProperty.call(o, p)) __createBinding(o, m, p);\r\n}\r\n\r\nexport function __values(o) {\r\n var s = typeof Symbol === \"function\" && Symbol.iterator, m = s && o[s], i = 0;\r\n if (m) return m.call(o);\r\n if (o && typeof o.length === \"number\") return {\r\n next: function () {\r\n if (o && i >= o.length) o = void 0;\r\n return { value: o && o[i++], done: !o };\r\n }\r\n };\r\n throw new TypeError(s ? \"Object is not iterable.\" : \"Symbol.iterator is not defined.\");\r\n}\r\n\r\nexport function __read(o, n) {\r\n var m = typeof Symbol === \"function\" && o[Symbol.iterator];\r\n if (!m) return o;\r\n var i = m.call(o), r, ar = [], e;\r\n try {\r\n while ((n === void 0 || n-- > 0) && !(r = i.next()).done) ar.push(r.value);\r\n }\r\n catch (error) { e = { error: error }; }\r\n finally {\r\n try {\r\n if (r && !r.done && (m = i[\"return\"])) m.call(i);\r\n }\r\n finally { if (e) throw e.error; }\r\n }\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spread() {\r\n for (var ar = [], i = 0; i < arguments.length; i++)\r\n ar = ar.concat(__read(arguments[i]));\r\n return ar;\r\n}\r\n\r\n/** @deprecated */\r\nexport function __spreadArrays() {\r\n for (var s = 0, i = 0, il = arguments.length; i < il; i++) s += arguments[i].length;\r\n for (var r = Array(s), k = 0, i = 0; i < il; i++)\r\n for (var a = arguments[i], j = 0, jl = a.length; j < jl; j++, k++)\r\n r[k] = a[j];\r\n return r;\r\n}\r\n\r\nexport function __spreadArray(to, from, pack) {\r\n if (pack || arguments.length === 2) for (var i = 0, l = from.length, ar; i < l; i++) {\r\n if (ar || !(i in from)) {\r\n if (!ar) ar = Array.prototype.slice.call(from, 0, i);\r\n ar[i] = from[i];\r\n }\r\n }\r\n return to.concat(ar || Array.prototype.slice.call(from));\r\n}\r\n\r\nexport function __await(v) {\r\n return this instanceof __await ? (this.v = v, this) : new __await(v);\r\n}\r\n\r\nexport function __asyncGenerator(thisArg, _arguments, generator) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var g = generator.apply(thisArg, _arguments || []), i, q = [];\r\n return i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i;\r\n function verb(n) { if (g[n]) i[n] = function (v) { return new Promise(function (a, b) { q.push([n, v, a, b]) > 1 || resume(n, v); }); }; }\r\n function resume(n, v) { try { step(g[n](v)); } catch (e) { settle(q[0][3], e); } }\r\n function step(r) { r.value instanceof __await ? Promise.resolve(r.value.v).then(fulfill, reject) : settle(q[0][2], r); }\r\n function fulfill(value) { resume(\"next\", value); }\r\n function reject(value) { resume(\"throw\", value); }\r\n function settle(f, v) { if (f(v), q.shift(), q.length) resume(q[0][0], q[0][1]); }\r\n}\r\n\r\nexport function __asyncDelegator(o) {\r\n var i, p;\r\n return i = {}, verb(\"next\"), verb(\"throw\", function (e) { throw e; }), verb(\"return\"), i[Symbol.iterator] = function () { return this; }, i;\r\n function verb(n, f) { i[n] = o[n] ? function (v) { return (p = !p) ? { value: __await(o[n](v)), done: n === \"return\" } : f ? f(v) : v; } : f; }\r\n}\r\n\r\nexport function __asyncValues(o) {\r\n if (!Symbol.asyncIterator) throw new TypeError(\"Symbol.asyncIterator is not defined.\");\r\n var m = o[Symbol.asyncIterator], i;\r\n return m ? m.call(o) : (o = typeof __values === \"function\" ? __values(o) : o[Symbol.iterator](), i = {}, verb(\"next\"), verb(\"throw\"), verb(\"return\"), i[Symbol.asyncIterator] = function () { return this; }, i);\r\n function verb(n) { i[n] = o[n] && function (v) { return new Promise(function (resolve, reject) { v = o[n](v), settle(resolve, reject, v.done, v.value); }); }; }\r\n function settle(resolve, reject, d, v) { Promise.resolve(v).then(function(v) { resolve({ value: v, done: d }); }, reject); }\r\n}\r\n\r\nexport function __makeTemplateObject(cooked, raw) {\r\n if (Object.defineProperty) { Object.defineProperty(cooked, \"raw\", { value: raw }); } else { cooked.raw = raw; }\r\n return cooked;\r\n};\r\n\r\nvar __setModuleDefault = Object.create ? (function(o, v) {\r\n Object.defineProperty(o, \"default\", { enumerable: true, value: v });\r\n}) : function(o, v) {\r\n o[\"default\"] = v;\r\n};\r\n\r\nexport function __importStar(mod) {\r\n if (mod && mod.__esModule) return mod;\r\n var result = {};\r\n if (mod != null) for (var k in mod) if (k !== \"default\" && Object.prototype.hasOwnProperty.call(mod, k)) __createBinding(result, mod, k);\r\n __setModuleDefault(result, mod);\r\n return result;\r\n}\r\n\r\nexport function __importDefault(mod) {\r\n return (mod && mod.__esModule) ? mod : { default: mod };\r\n}\r\n\r\nexport function __classPrivateFieldGet(receiver, state, kind, f) {\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a getter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot read private member from an object whose class did not declare it\");\r\n return kind === \"m\" ? f : kind === \"a\" ? f.call(receiver) : f ? f.value : state.get(receiver);\r\n}\r\n\r\nexport function __classPrivateFieldSet(receiver, state, value, kind, f) {\r\n if (kind === \"m\") throw new TypeError(\"Private method is not writable\");\r\n if (kind === \"a\" && !f) throw new TypeError(\"Private accessor was defined without a setter\");\r\n if (typeof state === \"function\" ? receiver !== state || !f : !state.has(receiver)) throw new TypeError(\"Cannot write private member to an object whose class did not declare it\");\r\n return (kind === \"a\" ? f.call(receiver, value) : f ? f.value = value : state.set(receiver, value)), value;\r\n}\r\n", "/**\n * Returns true if the object is a function.\n * @param value The value to check\n */\nexport function isFunction(value: any): value is (...args: any[]) => any {\n return typeof value === 'function';\n}\n", "/**\n * Used to create Error subclasses until the community moves away from ES5.\n *\n * This is because compiling from TypeScript down to ES5 has issues with subclassing Errors\n * as well as other built-in types: https://github.com/Microsoft/TypeScript/issues/12123\n *\n * @param createImpl A factory function to create the actual constructor implementation. The returned\n * function should be a named function that calls `_super` internally.\n */\nexport function createErrorClass(createImpl: (_super: any) => any): T {\n const _super = (instance: any) => {\n Error.call(instance);\n instance.stack = new Error().stack;\n };\n\n const ctorFunc = createImpl(_super);\n ctorFunc.prototype = Object.create(Error.prototype);\n ctorFunc.prototype.constructor = ctorFunc;\n return ctorFunc;\n}\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface UnsubscriptionError extends Error {\n readonly errors: any[];\n}\n\nexport interface UnsubscriptionErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (errors: any[]): UnsubscriptionError;\n}\n\n/**\n * An error thrown when one or more errors have occurred during the\n * `unsubscribe` of a {@link Subscription}.\n */\nexport const UnsubscriptionError: UnsubscriptionErrorCtor = createErrorClass(\n (_super) =>\n function UnsubscriptionErrorImpl(this: any, errors: (Error | string)[]) {\n _super(this);\n this.message = errors\n ? `${errors.length} errors occurred during unsubscription:\n${errors.map((err, i) => `${i + 1}) ${err.toString()}`).join('\\n ')}`\n : '';\n this.name = 'UnsubscriptionError';\n this.errors = errors;\n }\n);\n", "/**\n * Removes an item from an array, mutating it.\n * @param arr The array to remove the item from\n * @param item The item to remove\n */\nexport function arrRemove(arr: T[] | undefined | null, item: T) {\n if (arr) {\n const index = arr.indexOf(item);\n 0 <= index && arr.splice(index, 1);\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { UnsubscriptionError } from './util/UnsubscriptionError';\nimport { SubscriptionLike, TeardownLogic, Unsubscribable } from './types';\nimport { arrRemove } from './util/arrRemove';\n\n/**\n * Represents a disposable resource, such as the execution of an Observable. A\n * Subscription has one important method, `unsubscribe`, that takes no argument\n * and just disposes the resource held by the subscription.\n *\n * Additionally, subscriptions may be grouped together through the `add()`\n * method, which will attach a child Subscription to the current Subscription.\n * When a Subscription is unsubscribed, all its children (and its grandchildren)\n * will be unsubscribed as well.\n *\n * @class Subscription\n */\nexport class Subscription implements SubscriptionLike {\n /** @nocollapse */\n public static EMPTY = (() => {\n const empty = new Subscription();\n empty.closed = true;\n return empty;\n })();\n\n /**\n * A flag to indicate whether this Subscription has already been unsubscribed.\n */\n public closed = false;\n\n private _parentage: Subscription[] | Subscription | null = null;\n\n /**\n * The list of registered finalizers to execute upon unsubscription. Adding and removing from this\n * list occurs in the {@link #add} and {@link #remove} methods.\n */\n private _finalizers: Exclude[] | null = null;\n\n /**\n * @param initialTeardown A function executed first as part of the finalization\n * process that is kicked off when {@link #unsubscribe} is called.\n */\n constructor(private initialTeardown?: () => void) {}\n\n /**\n * Disposes the resources held by the subscription. May, for instance, cancel\n * an ongoing Observable execution or cancel any other type of work that\n * started when the Subscription was created.\n * @return {void}\n */\n unsubscribe(): void {\n let errors: any[] | undefined;\n\n if (!this.closed) {\n this.closed = true;\n\n // Remove this from it's parents.\n const { _parentage } = this;\n if (_parentage) {\n this._parentage = null;\n if (Array.isArray(_parentage)) {\n for (const parent of _parentage) {\n parent.remove(this);\n }\n } else {\n _parentage.remove(this);\n }\n }\n\n const { initialTeardown: initialFinalizer } = this;\n if (isFunction(initialFinalizer)) {\n try {\n initialFinalizer();\n } catch (e) {\n errors = e instanceof UnsubscriptionError ? e.errors : [e];\n }\n }\n\n const { _finalizers } = this;\n if (_finalizers) {\n this._finalizers = null;\n for (const finalizer of _finalizers) {\n try {\n execFinalizer(finalizer);\n } catch (err) {\n errors = errors ?? [];\n if (err instanceof UnsubscriptionError) {\n errors = [...errors, ...err.errors];\n } else {\n errors.push(err);\n }\n }\n }\n }\n\n if (errors) {\n throw new UnsubscriptionError(errors);\n }\n }\n }\n\n /**\n * Adds a finalizer to this subscription, so that finalization will be unsubscribed/called\n * when this subscription is unsubscribed. If this subscription is already {@link #closed},\n * because it has already been unsubscribed, then whatever finalizer is passed to it\n * will automatically be executed (unless the finalizer itself is also a closed subscription).\n *\n * Closed Subscriptions cannot be added as finalizers to any subscription. Adding a closed\n * subscription to a any subscription will result in no operation. (A noop).\n *\n * Adding a subscription to itself, or adding `null` or `undefined` will not perform any\n * operation at all. (A noop).\n *\n * `Subscription` instances that are added to this instance will automatically remove themselves\n * if they are unsubscribed. Functions and {@link Unsubscribable} objects that you wish to remove\n * will need to be removed manually with {@link #remove}\n *\n * @param teardown The finalization logic to add to this subscription.\n */\n add(teardown: TeardownLogic): void {\n // Only add the finalizer if it's not undefined\n // and don't add a subscription to itself.\n if (teardown && teardown !== this) {\n if (this.closed) {\n // If this subscription is already closed,\n // execute whatever finalizer is handed to it automatically.\n execFinalizer(teardown);\n } else {\n if (teardown instanceof Subscription) {\n // We don't add closed subscriptions, and we don't add the same subscription\n // twice. Subscription unsubscribe is idempotent.\n if (teardown.closed || teardown._hasParent(this)) {\n return;\n }\n teardown._addParent(this);\n }\n (this._finalizers = this._finalizers ?? []).push(teardown);\n }\n }\n }\n\n /**\n * Checks to see if a this subscription already has a particular parent.\n * This will signal that this subscription has already been added to the parent in question.\n * @param parent the parent to check for\n */\n private _hasParent(parent: Subscription) {\n const { _parentage } = this;\n return _parentage === parent || (Array.isArray(_parentage) && _parentage.includes(parent));\n }\n\n /**\n * Adds a parent to this subscription so it can be removed from the parent if it\n * unsubscribes on it's own.\n *\n * NOTE: THIS ASSUMES THAT {@link _hasParent} HAS ALREADY BEEN CHECKED.\n * @param parent The parent subscription to add\n */\n private _addParent(parent: Subscription) {\n const { _parentage } = this;\n this._parentage = Array.isArray(_parentage) ? (_parentage.push(parent), _parentage) : _parentage ? [_parentage, parent] : parent;\n }\n\n /**\n * Called on a child when it is removed via {@link #remove}.\n * @param parent The parent to remove\n */\n private _removeParent(parent: Subscription) {\n const { _parentage } = this;\n if (_parentage === parent) {\n this._parentage = null;\n } else if (Array.isArray(_parentage)) {\n arrRemove(_parentage, parent);\n }\n }\n\n /**\n * Removes a finalizer from this subscription that was previously added with the {@link #add} method.\n *\n * Note that `Subscription` instances, when unsubscribed, will automatically remove themselves\n * from every other `Subscription` they have been added to. This means that using the `remove` method\n * is not a common thing and should be used thoughtfully.\n *\n * If you add the same finalizer instance of a function or an unsubscribable object to a `Subscription` instance\n * more than once, you will need to call `remove` the same number of times to remove all instances.\n *\n * All finalizer instances are removed to free up memory upon unsubscription.\n *\n * @param teardown The finalizer to remove from this subscription\n */\n remove(teardown: Exclude): void {\n const { _finalizers } = this;\n _finalizers && arrRemove(_finalizers, teardown);\n\n if (teardown instanceof Subscription) {\n teardown._removeParent(this);\n }\n }\n}\n\nexport const EMPTY_SUBSCRIPTION = Subscription.EMPTY;\n\nexport function isSubscription(value: any): value is Subscription {\n return (\n value instanceof Subscription ||\n (value && 'closed' in value && isFunction(value.remove) && isFunction(value.add) && isFunction(value.unsubscribe))\n );\n}\n\nfunction execFinalizer(finalizer: Unsubscribable | (() => void)) {\n if (isFunction(finalizer)) {\n finalizer();\n } else {\n finalizer.unsubscribe();\n }\n}\n", "import { Subscriber } from './Subscriber';\nimport { ObservableNotification } from './types';\n\n/**\n * The {@link GlobalConfig} object for RxJS. It is used to configure things\n * like how to react on unhandled errors.\n */\nexport const config: GlobalConfig = {\n onUnhandledError: null,\n onStoppedNotification: null,\n Promise: undefined,\n useDeprecatedSynchronousErrorHandling: false,\n useDeprecatedNextContext: false,\n};\n\n/**\n * The global configuration object for RxJS, used to configure things\n * like how to react on unhandled errors. Accessible via {@link config}\n * object.\n */\nexport interface GlobalConfig {\n /**\n * A registration point for unhandled errors from RxJS. These are errors that\n * cannot were not handled by consuming code in the usual subscription path. For\n * example, if you have this configured, and you subscribe to an observable without\n * providing an error handler, errors from that subscription will end up here. This\n * will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onUnhandledError: ((err: any) => void) | null;\n\n /**\n * A registration point for notifications that cannot be sent to subscribers because they\n * have completed, errored or have been explicitly unsubscribed. By default, next, complete\n * and error notifications sent to stopped subscribers are noops. However, sometimes callers\n * might want a different behavior. For example, with sources that attempt to report errors\n * to stopped subscribers, a caller can configure RxJS to throw an unhandled error instead.\n * This will _always_ be called asynchronously on another job in the runtime. This is because\n * we do not want errors thrown in this user-configured handler to interfere with the\n * behavior of the library.\n */\n onStoppedNotification: ((notification: ObservableNotification, subscriber: Subscriber) => void) | null;\n\n /**\n * The promise constructor used by default for {@link Observable#toPromise toPromise} and {@link Observable#forEach forEach}\n * methods.\n *\n * @deprecated As of version 8, RxJS will no longer support this sort of injection of a\n * Promise constructor. If you need a Promise implementation other than native promises,\n * please polyfill/patch Promise as you see appropriate. Will be removed in v8.\n */\n Promise?: PromiseConstructorLike;\n\n /**\n * If true, turns on synchronous error rethrowing, which is a deprecated behavior\n * in v6 and higher. This behavior enables bad patterns like wrapping a subscribe\n * call in a try/catch block. It also enables producer interference, a nasty bug\n * where a multicast can be broken for all observers by a downstream consumer with\n * an unhandled error. DO NOT USE THIS FLAG UNLESS IT'S NEEDED TO BUY TIME\n * FOR MIGRATION REASONS.\n *\n * @deprecated As of version 8, RxJS will no longer support synchronous throwing\n * of unhandled errors. All errors will be thrown on a separate call stack to prevent bad\n * behaviors described above. Will be removed in v8.\n */\n useDeprecatedSynchronousErrorHandling: boolean;\n\n /**\n * If true, enables an as-of-yet undocumented feature from v5: The ability to access\n * `unsubscribe()` via `this` context in `next` functions created in observers passed\n * to `subscribe`.\n *\n * This is being removed because the performance was severely problematic, and it could also cause\n * issues when types other than POJOs are passed to subscribe as subscribers, as they will likely have\n * their `this` context overwritten.\n *\n * @deprecated As of version 8, RxJS will no longer support altering the\n * context of next functions provided as part of an observer to Subscribe. Instead,\n * you will have access to a subscription or a signal or token that will allow you to do things like\n * unsubscribe and test closed status. Will be removed in v8.\n */\n useDeprecatedNextContext: boolean;\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetTimeoutFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearTimeoutFunction = (handle: TimerHandle) => void;\n\ninterface TimeoutProvider {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n delegate:\n | {\n setTimeout: SetTimeoutFunction;\n clearTimeout: ClearTimeoutFunction;\n }\n | undefined;\n}\n\nexport const timeoutProvider: TimeoutProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setTimeout(handler: () => void, timeout?: number, ...args) {\n const { delegate } = timeoutProvider;\n if (delegate?.setTimeout) {\n return delegate.setTimeout(handler, timeout, ...args);\n }\n return setTimeout(handler, timeout, ...args);\n },\n clearTimeout(handle) {\n const { delegate } = timeoutProvider;\n return (delegate?.clearTimeout || clearTimeout)(handle as any);\n },\n delegate: undefined,\n};\n", "import { config } from '../config';\nimport { timeoutProvider } from '../scheduler/timeoutProvider';\n\n/**\n * Handles an error on another job either with the user-configured {@link onUnhandledError},\n * or by throwing it on that new job so it can be picked up by `window.onerror`, `process.on('error')`, etc.\n *\n * This should be called whenever there is an error that is out-of-band with the subscription\n * or when an error hits a terminal boundary of the subscription and no error handler was provided.\n *\n * @param err the error to report\n */\nexport function reportUnhandledError(err: any) {\n timeoutProvider.setTimeout(() => {\n const { onUnhandledError } = config;\n if (onUnhandledError) {\n // Execute the user-configured error handler.\n onUnhandledError(err);\n } else {\n // Throw so it is picked up by the runtime's uncaught error mechanism.\n throw err;\n }\n });\n}\n", "/* tslint:disable:no-empty */\nexport function noop() { }\n", "import { CompleteNotification, NextNotification, ErrorNotification } from './types';\n\n/**\n * A completion object optimized for memory use and created to be the\n * same \"shape\" as other notifications in v8.\n * @internal\n */\nexport const COMPLETE_NOTIFICATION = (() => createNotification('C', undefined, undefined) as CompleteNotification)();\n\n/**\n * Internal use only. Creates an optimized error notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function errorNotification(error: any): ErrorNotification {\n return createNotification('E', undefined, error) as any;\n}\n\n/**\n * Internal use only. Creates an optimized next notification that is the same \"shape\"\n * as other notifications.\n * @internal\n */\nexport function nextNotification(value: T) {\n return createNotification('N', value, undefined) as NextNotification;\n}\n\n/**\n * Ensures that all notifications created internally have the same \"shape\" in v8.\n *\n * TODO: This is only exported to support a crazy legacy test in `groupBy`.\n * @internal\n */\nexport function createNotification(kind: 'N' | 'E' | 'C', value: any, error: any) {\n return {\n kind,\n value,\n error,\n };\n}\n", "import { config } from '../config';\n\nlet context: { errorThrown: boolean; error: any } | null = null;\n\n/**\n * Handles dealing with errors for super-gross mode. Creates a context, in which\n * any synchronously thrown errors will be passed to {@link captureError}. Which\n * will record the error such that it will be rethrown after the call back is complete.\n * TODO: Remove in v8\n * @param cb An immediately executed function.\n */\nexport function errorContext(cb: () => void) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n const isRoot = !context;\n if (isRoot) {\n context = { errorThrown: false, error: null };\n }\n cb();\n if (isRoot) {\n const { errorThrown, error } = context!;\n context = null;\n if (errorThrown) {\n throw error;\n }\n }\n } else {\n // This is the general non-deprecated path for everyone that\n // isn't crazy enough to use super-gross mode (useDeprecatedSynchronousErrorHandling)\n cb();\n }\n}\n\n/**\n * Captures errors only in super-gross mode.\n * @param err the error to capture\n */\nexport function captureError(err: any) {\n if (config.useDeprecatedSynchronousErrorHandling && context) {\n context.errorThrown = true;\n context.error = err;\n }\n}\n", "import { isFunction } from './util/isFunction';\nimport { Observer, ObservableNotification } from './types';\nimport { isSubscription, Subscription } from './Subscription';\nimport { config } from './config';\nimport { reportUnhandledError } from './util/reportUnhandledError';\nimport { noop } from './util/noop';\nimport { nextNotification, errorNotification, COMPLETE_NOTIFICATION } from './NotificationFactories';\nimport { timeoutProvider } from './scheduler/timeoutProvider';\nimport { captureError } from './util/errorContext';\n\n/**\n * Implements the {@link Observer} interface and extends the\n * {@link Subscription} class. While the {@link Observer} is the public API for\n * consuming the values of an {@link Observable}, all Observers get converted to\n * a Subscriber, in order to provide Subscription-like capabilities such as\n * `unsubscribe`. Subscriber is a common type in RxJS, and crucial for\n * implementing operators, but it is rarely used as a public API.\n *\n * @class Subscriber\n */\nexport class Subscriber extends Subscription implements Observer {\n /**\n * A static factory for a Subscriber, given a (potentially partial) definition\n * of an Observer.\n * @param next The `next` callback of an Observer.\n * @param error The `error` callback of an\n * Observer.\n * @param complete The `complete` callback of an\n * Observer.\n * @return A Subscriber wrapping the (partially defined)\n * Observer represented by the given arguments.\n * @nocollapse\n * @deprecated Do not use. Will be removed in v8. There is no replacement for this\n * method, and there is no reason to be creating instances of `Subscriber` directly.\n * If you have a specific use case, please file an issue.\n */\n static create(next?: (x?: T) => void, error?: (e?: any) => void, complete?: () => void): Subscriber {\n return new SafeSubscriber(next, error, complete);\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected isStopped: boolean = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n protected destination: Subscriber | Observer; // this `any` is the escape hatch to erase extra type param (e.g. R)\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * There is no reason to directly create an instance of Subscriber. This type is exported for typings reasons.\n */\n constructor(destination?: Subscriber | Observer) {\n super();\n if (destination) {\n this.destination = destination;\n // Automatically chain subscriptions together here.\n // if destination is a Subscription, then it is a Subscriber.\n if (isSubscription(destination)) {\n destination.add(this);\n }\n } else {\n this.destination = EMPTY_OBSERVER;\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `next` from\n * the Observable, with a value. The Observable may call this method 0 or more\n * times.\n * @param {T} [value] The `next` value.\n * @return {void}\n */\n next(value?: T): void {\n if (this.isStopped) {\n handleStoppedNotification(nextNotification(value), this);\n } else {\n this._next(value!);\n }\n }\n\n /**\n * The {@link Observer} callback to receive notifications of type `error` from\n * the Observable, with an attached `Error`. Notifies the Observer that\n * the Observable has experienced an error condition.\n * @param {any} [err] The `error` exception.\n * @return {void}\n */\n error(err?: any): void {\n if (this.isStopped) {\n handleStoppedNotification(errorNotification(err), this);\n } else {\n this.isStopped = true;\n this._error(err);\n }\n }\n\n /**\n * The {@link Observer} callback to receive a valueless notification of type\n * `complete` from the Observable. Notifies the Observer that the Observable\n * has finished sending push-based notifications.\n * @return {void}\n */\n complete(): void {\n if (this.isStopped) {\n handleStoppedNotification(COMPLETE_NOTIFICATION, this);\n } else {\n this.isStopped = true;\n this._complete();\n }\n }\n\n unsubscribe(): void {\n if (!this.closed) {\n this.isStopped = true;\n super.unsubscribe();\n this.destination = null!;\n }\n }\n\n protected _next(value: T): void {\n this.destination.next(value);\n }\n\n protected _error(err: any): void {\n try {\n this.destination.error(err);\n } finally {\n this.unsubscribe();\n }\n }\n\n protected _complete(): void {\n try {\n this.destination.complete();\n } finally {\n this.unsubscribe();\n }\n }\n}\n\n/**\n * This bind is captured here because we want to be able to have\n * compatibility with monoid libraries that tend to use a method named\n * `bind`. In particular, a library called Monio requires this.\n */\nconst _bind = Function.prototype.bind;\n\nfunction bind any>(fn: Fn, thisArg: any): Fn {\n return _bind.call(fn, thisArg);\n}\n\n/**\n * Internal optimization only, DO NOT EXPOSE.\n * @internal\n */\nclass ConsumerObserver implements Observer {\n constructor(private partialObserver: Partial>) {}\n\n next(value: T): void {\n const { partialObserver } = this;\n if (partialObserver.next) {\n try {\n partialObserver.next(value);\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n\n error(err: any): void {\n const { partialObserver } = this;\n if (partialObserver.error) {\n try {\n partialObserver.error(err);\n } catch (error) {\n handleUnhandledError(error);\n }\n } else {\n handleUnhandledError(err);\n }\n }\n\n complete(): void {\n const { partialObserver } = this;\n if (partialObserver.complete) {\n try {\n partialObserver.complete();\n } catch (error) {\n handleUnhandledError(error);\n }\n }\n }\n}\n\nexport class SafeSubscriber extends Subscriber {\n constructor(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((e?: any) => void) | null,\n complete?: (() => void) | null\n ) {\n super();\n\n let partialObserver: Partial>;\n if (isFunction(observerOrNext) || !observerOrNext) {\n // The first argument is a function, not an observer. The next\n // two arguments *could* be observers, or they could be empty.\n partialObserver = {\n next: (observerOrNext ?? undefined) as (((value: T) => void) | undefined),\n error: error ?? undefined,\n complete: complete ?? undefined,\n };\n } else {\n // The first argument is a partial observer.\n let context: any;\n if (this && config.useDeprecatedNextContext) {\n // This is a deprecated path that made `this.unsubscribe()` available in\n // next handler functions passed to subscribe. This only exists behind a flag\n // now, as it is *very* slow.\n context = Object.create(observerOrNext);\n context.unsubscribe = () => this.unsubscribe();\n partialObserver = {\n next: observerOrNext.next && bind(observerOrNext.next, context),\n error: observerOrNext.error && bind(observerOrNext.error, context),\n complete: observerOrNext.complete && bind(observerOrNext.complete, context),\n };\n } else {\n // The \"normal\" path. Just use the partial observer directly.\n partialObserver = observerOrNext;\n }\n }\n\n // Wrap the partial observer to ensure it's a full observer, and\n // make sure proper error handling is accounted for.\n this.destination = new ConsumerObserver(partialObserver);\n }\n}\n\nfunction handleUnhandledError(error: any) {\n if (config.useDeprecatedSynchronousErrorHandling) {\n captureError(error);\n } else {\n // Ideal path, we report this as an unhandled error,\n // which is thrown on a new call stack.\n reportUnhandledError(error);\n }\n}\n\n/**\n * An error handler used when no error handler was supplied\n * to the SafeSubscriber -- meaning no error handler was supplied\n * do the `subscribe` call on our observable.\n * @param err The error to handle\n */\nfunction defaultErrorHandler(err: any) {\n throw err;\n}\n\n/**\n * A handler for notifications that cannot be sent to a stopped subscriber.\n * @param notification The notification being sent\n * @param subscriber The stopped subscriber\n */\nfunction handleStoppedNotification(notification: ObservableNotification, subscriber: Subscriber) {\n const { onStoppedNotification } = config;\n onStoppedNotification && timeoutProvider.setTimeout(() => onStoppedNotification(notification, subscriber));\n}\n\n/**\n * The observer used as a stub for subscriptions where the user did not\n * pass any arguments to `subscribe`. Comes with the default error handling\n * behavior.\n */\nexport const EMPTY_OBSERVER: Readonly> & { closed: true } = {\n closed: true,\n next: noop,\n error: defaultErrorHandler,\n complete: noop,\n};\n", "/**\n * Symbol.observable or a string \"@@observable\". Used for interop\n *\n * @deprecated We will no longer be exporting this symbol in upcoming versions of RxJS.\n * Instead polyfill and use Symbol.observable directly *or* use https://www.npmjs.com/package/symbol-observable\n */\nexport const observable: string | symbol = (() => (typeof Symbol === 'function' && Symbol.observable) || '@@observable')();\n", "/**\n * This function takes one parameter and just returns it. Simply put,\n * this is like `(x: T): T => x`.\n *\n * ## Examples\n *\n * This is useful in some cases when using things like `mergeMap`\n *\n * ```ts\n * import { interval, take, map, range, mergeMap, identity } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(5));\n *\n * const result$ = source$.pipe(\n * map(i => range(i)),\n * mergeMap(identity) // same as mergeMap(x => x)\n * );\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * Or when you want to selectively apply an operator\n *\n * ```ts\n * import { interval, take, identity } from 'rxjs';\n *\n * const shouldLimit = () => Math.random() < 0.5;\n *\n * const source$ = interval(1000);\n *\n * const result$ = source$.pipe(shouldLimit() ? take(5) : identity);\n *\n * result$.subscribe({\n * next: console.log\n * });\n * ```\n *\n * @param x Any value that is returned by this function\n * @returns The value passed as the first parameter to this function\n */\nexport function identity(x: T): T {\n return x;\n}\n", "import { identity } from './identity';\nimport { UnaryFunction } from '../types';\n\nexport function pipe(): typeof identity;\nexport function pipe(fn1: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction): UnaryFunction;\nexport function pipe(fn1: UnaryFunction, fn2: UnaryFunction, fn3: UnaryFunction): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction\n): UnaryFunction;\nexport function pipe(\n fn1: UnaryFunction,\n fn2: UnaryFunction,\n fn3: UnaryFunction,\n fn4: UnaryFunction,\n fn5: UnaryFunction,\n fn6: UnaryFunction,\n fn7: UnaryFunction,\n fn8: UnaryFunction,\n fn9: UnaryFunction,\n ...fns: UnaryFunction[]\n): UnaryFunction;\n\n/**\n * pipe() can be called on one or more functions, each of which can take one argument (\"UnaryFunction\")\n * and uses it to return a value.\n * It returns a function that takes one argument, passes it to the first UnaryFunction, and then\n * passes the result to the next one, passes that result to the next one, and so on. \n */\nexport function pipe(...fns: Array>): UnaryFunction {\n return pipeFromArray(fns);\n}\n\n/** @internal */\nexport function pipeFromArray(fns: Array>): UnaryFunction {\n if (fns.length === 0) {\n return identity as UnaryFunction;\n }\n\n if (fns.length === 1) {\n return fns[0];\n }\n\n return function piped(input: T): R {\n return fns.reduce((prev: any, fn: UnaryFunction) => fn(prev), input as any);\n };\n}\n", "import { Operator } from './Operator';\nimport { SafeSubscriber, Subscriber } from './Subscriber';\nimport { isSubscription, Subscription } from './Subscription';\nimport { TeardownLogic, OperatorFunction, Subscribable, Observer } from './types';\nimport { observable as Symbol_observable } from './symbol/observable';\nimport { pipeFromArray } from './util/pipe';\nimport { config } from './config';\nimport { isFunction } from './util/isFunction';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A representation of any set of values over any amount of time. This is the most basic building block\n * of RxJS.\n *\n * @class Observable\n */\nexport class Observable implements Subscribable {\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n source: Observable | undefined;\n\n /**\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n */\n operator: Operator | undefined;\n\n /**\n * @constructor\n * @param {Function} subscribe the function that is called when the Observable is\n * initially subscribed to. This function is given a Subscriber, to which new values\n * can be `next`ed, or an `error` method can be called to raise an error, or\n * `complete` can be called to notify of a successful completion.\n */\n constructor(subscribe?: (this: Observable, subscriber: Subscriber) => TeardownLogic) {\n if (subscribe) {\n this._subscribe = subscribe;\n }\n }\n\n // HACK: Since TypeScript inherits static properties too, we have to\n // fight against TypeScript here so Subject can have a different static create signature\n /**\n * Creates a new Observable by calling the Observable constructor\n * @owner Observable\n * @method create\n * @param {Function} subscribe? the subscriber function to be passed to the Observable constructor\n * @return {Observable} a new observable\n * @nocollapse\n * @deprecated Use `new Observable()` instead. Will be removed in v8.\n */\n static create: (...args: any[]) => any = (subscribe?: (subscriber: Subscriber) => TeardownLogic) => {\n return new Observable(subscribe);\n };\n\n /**\n * Creates a new Observable, with this Observable instance as the source, and the passed\n * operator defined as the new observable's operator.\n * @method lift\n * @param operator the operator defining the operation to take on the observable\n * @return a new observable with the Operator applied\n * @deprecated Internal implementation detail, do not use directly. Will be made internal in v8.\n * If you have implemented an operator using `lift`, it is recommended that you create an\n * operator by simply returning `new Observable()` directly. See \"Creating new operators from\n * scratch\" section here: https://rxjs.dev/guide/operators\n */\n lift(operator?: Operator): Observable {\n const observable = new Observable();\n observable.source = this;\n observable.operator = operator;\n return observable;\n }\n\n subscribe(observerOrNext?: Partial> | ((value: T) => void)): Subscription;\n /** @deprecated Instead of passing separate callback arguments, use an observer argument. Signatures taking separate callback arguments will be removed in v8. Details: https://rxjs.dev/deprecations/subscribe-arguments */\n subscribe(next?: ((value: T) => void) | null, error?: ((error: any) => void) | null, complete?: (() => void) | null): Subscription;\n /**\n * Invokes an execution of an Observable and registers Observer handlers for notifications it will emit.\n *\n * Use it when you have all these Observables, but still nothing is happening.\n *\n * `subscribe` is not a regular operator, but a method that calls Observable's internal `subscribe` function. It\n * might be for example a function that you passed to Observable's constructor, but most of the time it is\n * a library implementation, which defines what will be emitted by an Observable, and when it be will emitted. This means\n * that calling `subscribe` is actually the moment when Observable starts its work, not when it is created, as it is often\n * the thought.\n *\n * Apart from starting the execution of an Observable, this method allows you to listen for values\n * that an Observable emits, as well as for when it completes or errors. You can achieve this in two\n * of the following ways.\n *\n * The first way is creating an object that implements {@link Observer} interface. It should have methods\n * defined by that interface, but note that it should be just a regular JavaScript object, which you can create\n * yourself in any way you want (ES6 class, classic function constructor, object literal etc.). In particular, do\n * not attempt to use any RxJS implementation details to create Observers - you don't need them. Remember also\n * that your object does not have to implement all methods. If you find yourself creating a method that doesn't\n * do anything, you can simply omit it. Note however, if the `error` method is not provided and an error happens,\n * it will be thrown asynchronously. Errors thrown asynchronously cannot be caught using `try`/`catch`. Instead,\n * use the {@link onUnhandledError} configuration option or use a runtime handler (like `window.onerror` or\n * `process.on('error)`) to be notified of unhandled errors. Because of this, it's recommended that you provide\n * an `error` method to avoid missing thrown errors.\n *\n * The second way is to give up on Observer object altogether and simply provide callback functions in place of its methods.\n * This means you can provide three functions as arguments to `subscribe`, where the first function is equivalent\n * of a `next` method, the second of an `error` method and the third of a `complete` method. Just as in case of an Observer,\n * if you do not need to listen for something, you can omit a function by passing `undefined` or `null`,\n * since `subscribe` recognizes these functions by where they were placed in function call. When it comes\n * to the `error` function, as with an Observer, if not provided, errors emitted by an Observable will be thrown asynchronously.\n *\n * You can, however, subscribe with no parameters at all. This may be the case where you're not interested in terminal events\n * and you also handled emissions internally by using operators (e.g. using `tap`).\n *\n * Whichever style of calling `subscribe` you use, in both cases it returns a Subscription object.\n * This object allows you to call `unsubscribe` on it, which in turn will stop the work that an Observable does and will clean\n * up all resources that an Observable used. Note that cancelling a subscription will not call `complete` callback\n * provided to `subscribe` function, which is reserved for a regular completion signal that comes from an Observable.\n *\n * Remember that callbacks provided to `subscribe` are not guaranteed to be called asynchronously.\n * It is an Observable itself that decides when these functions will be called. For example {@link of}\n * by default emits all its values synchronously. Always check documentation for how given Observable\n * will behave when subscribed and if its default behavior can be modified with a `scheduler`.\n *\n * #### Examples\n *\n * Subscribe with an {@link guide/observer Observer}\n *\n * ```ts\n * import { of } from 'rxjs';\n *\n * const sumObserver = {\n * sum: 0,\n * next(value) {\n * console.log('Adding: ' + value);\n * this.sum = this.sum + value;\n * },\n * error() {\n * // We actually could just remove this method,\n * // since we do not really care about errors right now.\n * },\n * complete() {\n * console.log('Sum equals: ' + this.sum);\n * }\n * };\n *\n * of(1, 2, 3) // Synchronously emits 1, 2, 3 and then completes.\n * .subscribe(sumObserver);\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Subscribe with functions ({@link deprecations/subscribe-arguments deprecated})\n *\n * ```ts\n * import { of } from 'rxjs'\n *\n * let sum = 0;\n *\n * of(1, 2, 3).subscribe(\n * value => {\n * console.log('Adding: ' + value);\n * sum = sum + value;\n * },\n * undefined,\n * () => console.log('Sum equals: ' + sum)\n * );\n *\n * // Logs:\n * // 'Adding: 1'\n * // 'Adding: 2'\n * // 'Adding: 3'\n * // 'Sum equals: 6'\n * ```\n *\n * Cancel a subscription\n *\n * ```ts\n * import { interval } from 'rxjs';\n *\n * const subscription = interval(1000).subscribe({\n * next(num) {\n * console.log(num)\n * },\n * complete() {\n * // Will not be called, even when cancelling subscription.\n * console.log('completed!');\n * }\n * });\n *\n * setTimeout(() => {\n * subscription.unsubscribe();\n * console.log('unsubscribed!');\n * }, 2500);\n *\n * // Logs:\n * // 0 after 1s\n * // 1 after 2s\n * // 'unsubscribed!' after 2.5s\n * ```\n *\n * @param {Observer|Function} observerOrNext (optional) Either an observer with methods to be called,\n * or the first of three possible handlers, which is the handler for each value emitted from the subscribed\n * Observable.\n * @param {Function} error (optional) A handler for a terminal event resulting from an error. If no error handler is provided,\n * the error will be thrown asynchronously as unhandled.\n * @param {Function} complete (optional) A handler for a terminal event resulting from successful completion.\n * @return {Subscription} a subscription reference to the registered handlers\n * @method subscribe\n */\n subscribe(\n observerOrNext?: Partial> | ((value: T) => void) | null,\n error?: ((error: any) => void) | null,\n complete?: (() => void) | null\n ): Subscription {\n const subscriber = isSubscriber(observerOrNext) ? observerOrNext : new SafeSubscriber(observerOrNext, error, complete);\n\n errorContext(() => {\n const { operator, source } = this;\n subscriber.add(\n operator\n ? // We're dealing with a subscription in the\n // operator chain to one of our lifted operators.\n operator.call(subscriber, source)\n : source\n ? // If `source` has a value, but `operator` does not, something that\n // had intimate knowledge of our API, like our `Subject`, must have\n // set it. We're going to just call `_subscribe` directly.\n this._subscribe(subscriber)\n : // In all other cases, we're likely wrapping a user-provided initializer\n // function, so we need to catch errors and handle them appropriately.\n this._trySubscribe(subscriber)\n );\n });\n\n return subscriber;\n }\n\n /** @internal */\n protected _trySubscribe(sink: Subscriber): TeardownLogic {\n try {\n return this._subscribe(sink);\n } catch (err) {\n // We don't need to return anything in this case,\n // because it's just going to try to `add()` to a subscription\n // above.\n sink.error(err);\n }\n }\n\n /**\n * Used as a NON-CANCELLABLE means of subscribing to an observable, for use with\n * APIs that expect promises, like `async/await`. You cannot unsubscribe from this.\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * #### Example\n *\n * ```ts\n * import { interval, take } from 'rxjs';\n *\n * const source$ = interval(1000).pipe(take(4));\n *\n * async function getTotal() {\n * let total = 0;\n *\n * await source$.forEach(value => {\n * total += value;\n * console.log('observable -> ' + value);\n * });\n *\n * return total;\n * }\n *\n * getTotal().then(\n * total => console.log('Total: ' + total)\n * );\n *\n * // Expected:\n * // 'observable -> 0'\n * // 'observable -> 1'\n * // 'observable -> 2'\n * // 'observable -> 3'\n * // 'Total: 6'\n * ```\n *\n * @param next a handler for each value emitted by the observable\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n */\n forEach(next: (value: T) => void): Promise;\n\n /**\n * @param next a handler for each value emitted by the observable\n * @param promiseCtor a constructor function used to instantiate the Promise\n * @return a promise that either resolves on observable completion or\n * rejects with the handled error\n * @deprecated Passing a Promise constructor will no longer be available\n * in upcoming versions of RxJS. This is because it adds weight to the library, for very\n * little benefit. If you need this functionality, it is recommended that you either\n * polyfill Promise, or you create an adapter to convert the returned native promise\n * to whatever promise implementation you wanted. Will be removed in v8.\n */\n forEach(next: (value: T) => void, promiseCtor: PromiseConstructorLike): Promise;\n\n forEach(next: (value: T) => void, promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n const subscriber = new SafeSubscriber({\n next: (value) => {\n try {\n next(value);\n } catch (err) {\n reject(err);\n subscriber.unsubscribe();\n }\n },\n error: reject,\n complete: resolve,\n });\n this.subscribe(subscriber);\n }) as Promise;\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): TeardownLogic {\n return this.source?.subscribe(subscriber);\n }\n\n /**\n * An interop point defined by the es7-observable spec https://github.com/zenparsing/es-observable\n * @method Symbol.observable\n * @return {Observable} this instance of the observable\n */\n [Symbol_observable]() {\n return this;\n }\n\n /* tslint:disable:max-line-length */\n pipe(): Observable;\n pipe(op1: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction): Observable;\n pipe(op1: OperatorFunction, op2: OperatorFunction, op3: OperatorFunction): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction\n ): Observable;\n pipe(\n op1: OperatorFunction,\n op2: OperatorFunction,\n op3: OperatorFunction,\n op4: OperatorFunction,\n op5: OperatorFunction,\n op6: OperatorFunction,\n op7: OperatorFunction,\n op8: OperatorFunction,\n op9: OperatorFunction,\n ...operations: OperatorFunction[]\n ): Observable;\n /* tslint:enable:max-line-length */\n\n /**\n * Used to stitch together functional operators into a chain.\n * @method pipe\n * @return {Observable} the Observable result of all of the operators having\n * been called in the order they were passed in.\n *\n * ## Example\n *\n * ```ts\n * import { interval, filter, map, scan } from 'rxjs';\n *\n * interval(1000)\n * .pipe(\n * filter(x => x % 2 === 0),\n * map(x => x + x),\n * scan((acc, x) => acc + x)\n * )\n * .subscribe(x => console.log(x));\n * ```\n */\n pipe(...operations: OperatorFunction[]): Observable {\n return pipeFromArray(operations)(this);\n }\n\n /* tslint:disable:max-line-length */\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: typeof Promise): Promise;\n /** @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise */\n toPromise(PromiseCtor: PromiseConstructorLike): Promise;\n /* tslint:enable:max-line-length */\n\n /**\n * Subscribe to this Observable and get a Promise resolving on\n * `complete` with the last emission (if any).\n *\n * **WARNING**: Only use this with observables you *know* will complete. If the source\n * observable does not complete, you will end up with a promise that is hung up, and\n * potentially all of the state of an async function hanging out in memory. To avoid\n * this situation, look into adding something like {@link timeout}, {@link take},\n * {@link takeWhile}, or {@link takeUntil} amongst others.\n *\n * @method toPromise\n * @param [promiseCtor] a constructor function used to instantiate\n * the Promise\n * @return A Promise that resolves with the last value emit, or\n * rejects on an error. If there were no emissions, Promise\n * resolves with undefined.\n * @deprecated Replaced with {@link firstValueFrom} and {@link lastValueFrom}. Will be removed in v8. Details: https://rxjs.dev/deprecations/to-promise\n */\n toPromise(promiseCtor?: PromiseConstructorLike): Promise {\n promiseCtor = getPromiseCtor(promiseCtor);\n\n return new promiseCtor((resolve, reject) => {\n let value: T | undefined;\n this.subscribe(\n (x: T) => (value = x),\n (err: any) => reject(err),\n () => resolve(value)\n );\n }) as Promise;\n }\n}\n\n/**\n * Decides between a passed promise constructor from consuming code,\n * A default configured promise constructor, and the native promise\n * constructor and returns it. If nothing can be found, it will throw\n * an error.\n * @param promiseCtor The optional promise constructor to passed by consuming code\n */\nfunction getPromiseCtor(promiseCtor: PromiseConstructorLike | undefined) {\n return promiseCtor ?? config.Promise ?? Promise;\n}\n\nfunction isObserver(value: any): value is Observer {\n return value && isFunction(value.next) && isFunction(value.error) && isFunction(value.complete);\n}\n\nfunction isSubscriber(value: any): value is Subscriber {\n return (value && value instanceof Subscriber) || (isObserver(value) && isSubscription(value));\n}\n", "import { Observable } from '../Observable';\nimport { Subscriber } from '../Subscriber';\nimport { OperatorFunction } from '../types';\nimport { isFunction } from './isFunction';\n\n/**\n * Used to determine if an object is an Observable with a lift function.\n */\nexport function hasLift(source: any): source is { lift: InstanceType['lift'] } {\n return isFunction(source?.lift);\n}\n\n/**\n * Creates an `OperatorFunction`. Used to define operators throughout the library in a concise way.\n * @param init The logic to connect the liftedSource to the subscriber at the moment of subscription.\n */\nexport function operate(\n init: (liftedSource: Observable, subscriber: Subscriber) => (() => void) | void\n): OperatorFunction {\n return (source: Observable) => {\n if (hasLift(source)) {\n return source.lift(function (this: Subscriber, liftedSource: Observable) {\n try {\n return init(liftedSource, this);\n } catch (err) {\n this.error(err);\n }\n });\n }\n throw new TypeError('Unable to lift unknown Observable type');\n };\n}\n", "import { Subscriber } from '../Subscriber';\n\n/**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional teardown logic here. This will only be called on teardown if the\n * subscriber itself is not already closed. This is called after all other teardown logic is executed.\n */\nexport function createOperatorSubscriber(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n onFinalize?: () => void\n): Subscriber {\n return new OperatorSubscriber(destination, onNext, onComplete, onError, onFinalize);\n}\n\n/**\n * A generic helper for allowing operators to be created with a Subscriber and\n * use closures to capture necessary state from the operator function itself.\n */\nexport class OperatorSubscriber extends Subscriber {\n /**\n * Creates an instance of an `OperatorSubscriber`.\n * @param destination The downstream subscriber.\n * @param onNext Handles next values, only called if this subscriber is not stopped or closed. Any\n * error that occurs in this function is caught and sent to the `error` method of this subscriber.\n * @param onError Handles errors from the subscription, any errors that occur in this handler are caught\n * and send to the `destination` error handler.\n * @param onComplete Handles completion notification from the subscription. Any errors that occur in\n * this handler are sent to the `destination` error handler.\n * @param onFinalize Additional finalization logic here. This will only be called on finalization if the\n * subscriber itself is not already closed. This is called after all other finalization logic is executed.\n * @param shouldUnsubscribe An optional check to see if an unsubscribe call should truly unsubscribe.\n * NOTE: This currently **ONLY** exists to support the strange behavior of {@link groupBy}, where unsubscription\n * to the resulting observable does not actually disconnect from the source if there are active subscriptions\n * to any grouped observable. (DO NOT EXPOSE OR USE EXTERNALLY!!!)\n */\n constructor(\n destination: Subscriber,\n onNext?: (value: T) => void,\n onComplete?: () => void,\n onError?: (err: any) => void,\n private onFinalize?: () => void,\n private shouldUnsubscribe?: () => boolean\n ) {\n // It's important - for performance reasons - that all of this class's\n // members are initialized and that they are always initialized in the same\n // order. This will ensure that all OperatorSubscriber instances have the\n // same hidden class in V8. This, in turn, will help keep the number of\n // hidden classes involved in property accesses within the base class as\n // low as possible. If the number of hidden classes involved exceeds four,\n // the property accesses will become megamorphic and performance penalties\n // will be incurred - i.e. inline caches won't be used.\n //\n // The reasons for ensuring all instances have the same hidden class are\n // further discussed in this blog post from Benedikt Meurer:\n // https://benediktmeurer.de/2018/03/23/impact-of-polymorphism-on-component-based-frameworks-like-react/\n super(destination);\n this._next = onNext\n ? function (this: OperatorSubscriber, value: T) {\n try {\n onNext(value);\n } catch (err) {\n destination.error(err);\n }\n }\n : super._next;\n this._error = onError\n ? function (this: OperatorSubscriber, err: any) {\n try {\n onError(err);\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._error;\n this._complete = onComplete\n ? function (this: OperatorSubscriber) {\n try {\n onComplete();\n } catch (err) {\n // Send any errors that occur down stream.\n destination.error(err);\n } finally {\n // Ensure finalization.\n this.unsubscribe();\n }\n }\n : super._complete;\n }\n\n unsubscribe() {\n if (!this.shouldUnsubscribe || this.shouldUnsubscribe()) {\n const { closed } = this;\n super.unsubscribe();\n // Execute additional teardown if we have any and we didn't already do so.\n !closed && this.onFinalize?.();\n }\n }\n}\n", "import { Subscription } from '../Subscription';\n\ninterface AnimationFrameProvider {\n schedule(callback: FrameRequestCallback): Subscription;\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n delegate:\n | {\n requestAnimationFrame: typeof requestAnimationFrame;\n cancelAnimationFrame: typeof cancelAnimationFrame;\n }\n | undefined;\n}\n\nexport const animationFrameProvider: AnimationFrameProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n schedule(callback) {\n let request = requestAnimationFrame;\n let cancel: typeof cancelAnimationFrame | undefined = cancelAnimationFrame;\n const { delegate } = animationFrameProvider;\n if (delegate) {\n request = delegate.requestAnimationFrame;\n cancel = delegate.cancelAnimationFrame;\n }\n const handle = request((timestamp) => {\n // Clear the cancel function. The request has been fulfilled, so\n // attempting to cancel the request upon unsubscription would be\n // pointless.\n cancel = undefined;\n callback(timestamp);\n });\n return new Subscription(() => cancel?.(handle));\n },\n requestAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.requestAnimationFrame || requestAnimationFrame)(...args);\n },\n cancelAnimationFrame(...args) {\n const { delegate } = animationFrameProvider;\n return (delegate?.cancelAnimationFrame || cancelAnimationFrame)(...args);\n },\n delegate: undefined,\n};\n", "import { createErrorClass } from './createErrorClass';\n\nexport interface ObjectUnsubscribedError extends Error {}\n\nexport interface ObjectUnsubscribedErrorCtor {\n /**\n * @deprecated Internal implementation detail. Do not construct error instances.\n * Cannot be tagged as internal: https://github.com/ReactiveX/rxjs/issues/6269\n */\n new (): ObjectUnsubscribedError;\n}\n\n/**\n * An error thrown when an action is invalid because the object has been\n * unsubscribed.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n *\n * @class ObjectUnsubscribedError\n */\nexport const ObjectUnsubscribedError: ObjectUnsubscribedErrorCtor = createErrorClass(\n (_super) =>\n function ObjectUnsubscribedErrorImpl(this: any) {\n _super(this);\n this.name = 'ObjectUnsubscribedError';\n this.message = 'object unsubscribed';\n }\n);\n", "import { Operator } from './Operator';\nimport { Observable } from './Observable';\nimport { Subscriber } from './Subscriber';\nimport { Subscription, EMPTY_SUBSCRIPTION } from './Subscription';\nimport { Observer, SubscriptionLike, TeardownLogic } from './types';\nimport { ObjectUnsubscribedError } from './util/ObjectUnsubscribedError';\nimport { arrRemove } from './util/arrRemove';\nimport { errorContext } from './util/errorContext';\n\n/**\n * A Subject is a special type of Observable that allows values to be\n * multicasted to many Observers. Subjects are like EventEmitters.\n *\n * Every Subject is an Observable and an Observer. You can subscribe to a\n * Subject, and you can call next to feed values as well as error and complete.\n */\nexport class Subject extends Observable implements SubscriptionLike {\n closed = false;\n\n private currentObservers: Observer[] | null = null;\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n observers: Observer[] = [];\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n isStopped = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n hasError = false;\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n thrownError: any = null;\n\n /**\n * Creates a \"subject\" by basically gluing an observer to an observable.\n *\n * @nocollapse\n * @deprecated Recommended you do not use. Will be removed at some point in the future. Plans for replacement still under discussion.\n */\n static create: (...args: any[]) => any = (destination: Observer, source: Observable): AnonymousSubject => {\n return new AnonymousSubject(destination, source);\n };\n\n constructor() {\n // NOTE: This must be here to obscure Observable's constructor.\n super();\n }\n\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n lift(operator: Operator): Observable {\n const subject = new AnonymousSubject(this, this);\n subject.operator = operator as any;\n return subject as any;\n }\n\n /** @internal */\n protected _throwIfClosed() {\n if (this.closed) {\n throw new ObjectUnsubscribedError();\n }\n }\n\n next(value: T) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n if (!this.currentObservers) {\n this.currentObservers = Array.from(this.observers);\n }\n for (const observer of this.currentObservers) {\n observer.next(value);\n }\n }\n });\n }\n\n error(err: any) {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.hasError = this.isStopped = true;\n this.thrownError = err;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.error(err);\n }\n }\n });\n }\n\n complete() {\n errorContext(() => {\n this._throwIfClosed();\n if (!this.isStopped) {\n this.isStopped = true;\n const { observers } = this;\n while (observers.length) {\n observers.shift()!.complete();\n }\n }\n });\n }\n\n unsubscribe() {\n this.isStopped = this.closed = true;\n this.observers = this.currentObservers = null!;\n }\n\n get observed() {\n return this.observers?.length > 0;\n }\n\n /** @internal */\n protected _trySubscribe(subscriber: Subscriber): TeardownLogic {\n this._throwIfClosed();\n return super._trySubscribe(subscriber);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._checkFinalizedStatuses(subscriber);\n return this._innerSubscribe(subscriber);\n }\n\n /** @internal */\n protected _innerSubscribe(subscriber: Subscriber) {\n const { hasError, isStopped, observers } = this;\n if (hasError || isStopped) {\n return EMPTY_SUBSCRIPTION;\n }\n this.currentObservers = null;\n observers.push(subscriber);\n return new Subscription(() => {\n this.currentObservers = null;\n arrRemove(observers, subscriber);\n });\n }\n\n /** @internal */\n protected _checkFinalizedStatuses(subscriber: Subscriber) {\n const { hasError, thrownError, isStopped } = this;\n if (hasError) {\n subscriber.error(thrownError);\n } else if (isStopped) {\n subscriber.complete();\n }\n }\n\n /**\n * Creates a new Observable with this Subject as the source. You can do this\n * to create custom Observer-side logic of the Subject and conceal it from\n * code that uses the Observable.\n * @return {Observable} Observable that the Subject casts to\n */\n asObservable(): Observable {\n const observable: any = new Observable();\n observable.source = this;\n return observable;\n }\n}\n\n/**\n * @class AnonymousSubject\n */\nexport class AnonymousSubject extends Subject {\n constructor(\n /** @deprecated Internal implementation detail, do not use directly. Will be made internal in v8. */\n public destination?: Observer,\n source?: Observable\n ) {\n super();\n this.source = source;\n }\n\n next(value: T) {\n this.destination?.next?.(value);\n }\n\n error(err: any) {\n this.destination?.error?.(err);\n }\n\n complete() {\n this.destination?.complete?.();\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n return this.source?.subscribe(subscriber) ?? EMPTY_SUBSCRIPTION;\n }\n}\n", "import { Subject } from './Subject';\nimport { Subscriber } from './Subscriber';\nimport { Subscription } from './Subscription';\n\n/**\n * A variant of Subject that requires an initial value and emits its current\n * value whenever it is subscribed to.\n *\n * @class BehaviorSubject\n */\nexport class BehaviorSubject extends Subject {\n constructor(private _value: T) {\n super();\n }\n\n get value(): T {\n return this.getValue();\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n const subscription = super._subscribe(subscriber);\n !subscription.closed && subscriber.next(this._value);\n return subscription;\n }\n\n getValue(): T {\n const { hasError, thrownError, _value } = this;\n if (hasError) {\n throw thrownError;\n }\n this._throwIfClosed();\n return _value;\n }\n\n next(value: T): void {\n super.next((this._value = value));\n }\n}\n", "import { TimestampProvider } from '../types';\n\ninterface DateTimestampProvider extends TimestampProvider {\n delegate: TimestampProvider | undefined;\n}\n\nexport const dateTimestampProvider: DateTimestampProvider = {\n now() {\n // Use the variable rather than `this` so that the function can be called\n // without being bound to the provider.\n return (dateTimestampProvider.delegate || Date).now();\n },\n delegate: undefined,\n};\n", "import { Subject } from './Subject';\nimport { TimestampProvider } from './types';\nimport { Subscriber } from './Subscriber';\nimport { Subscription } from './Subscription';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * A variant of {@link Subject} that \"replays\" old values to new subscribers by emitting them when they first subscribe.\n *\n * `ReplaySubject` has an internal buffer that will store a specified number of values that it has observed. Like `Subject`,\n * `ReplaySubject` \"observes\" values by having them passed to its `next` method. When it observes a value, it will store that\n * value for a time determined by the configuration of the `ReplaySubject`, as passed to its constructor.\n *\n * When a new subscriber subscribes to the `ReplaySubject` instance, it will synchronously emit all values in its buffer in\n * a First-In-First-Out (FIFO) manner. The `ReplaySubject` will also complete, if it has observed completion; and it will\n * error if it has observed an error.\n *\n * There are two main configuration items to be concerned with:\n *\n * 1. `bufferSize` - This will determine how many items are stored in the buffer, defaults to infinite.\n * 2. `windowTime` - The amount of time to hold a value in the buffer before removing it from the buffer.\n *\n * Both configurations may exist simultaneously. So if you would like to buffer a maximum of 3 values, as long as the values\n * are less than 2 seconds old, you could do so with a `new ReplaySubject(3, 2000)`.\n *\n * ### Differences with BehaviorSubject\n *\n * `BehaviorSubject` is similar to `new ReplaySubject(1)`, with a couple of exceptions:\n *\n * 1. `BehaviorSubject` comes \"primed\" with a single value upon construction.\n * 2. `ReplaySubject` will replay values, even after observing an error, where `BehaviorSubject` will not.\n *\n * @see {@link Subject}\n * @see {@link BehaviorSubject}\n * @see {@link shareReplay}\n */\nexport class ReplaySubject extends Subject {\n private _buffer: (T | number)[] = [];\n private _infiniteTimeWindow = true;\n\n /**\n * @param bufferSize The size of the buffer to replay on subscription\n * @param windowTime The amount of time the buffered items will stay buffered\n * @param timestampProvider An object with a `now()` method that provides the current timestamp. This is used to\n * calculate the amount of time something has been buffered.\n */\n constructor(\n private _bufferSize = Infinity,\n private _windowTime = Infinity,\n private _timestampProvider: TimestampProvider = dateTimestampProvider\n ) {\n super();\n this._infiniteTimeWindow = _windowTime === Infinity;\n this._bufferSize = Math.max(1, _bufferSize);\n this._windowTime = Math.max(1, _windowTime);\n }\n\n next(value: T): void {\n const { isStopped, _buffer, _infiniteTimeWindow, _timestampProvider, _windowTime } = this;\n if (!isStopped) {\n _buffer.push(value);\n !_infiniteTimeWindow && _buffer.push(_timestampProvider.now() + _windowTime);\n }\n this._trimBuffer();\n super.next(value);\n }\n\n /** @internal */\n protected _subscribe(subscriber: Subscriber): Subscription {\n this._throwIfClosed();\n this._trimBuffer();\n\n const subscription = this._innerSubscribe(subscriber);\n\n const { _infiniteTimeWindow, _buffer } = this;\n // We use a copy here, so reentrant code does not mutate our array while we're\n // emitting it to a new subscriber.\n const copy = _buffer.slice();\n for (let i = 0; i < copy.length && !subscriber.closed; i += _infiniteTimeWindow ? 1 : 2) {\n subscriber.next(copy[i] as T);\n }\n\n this._checkFinalizedStatuses(subscriber);\n\n return subscription;\n }\n\n private _trimBuffer() {\n const { _bufferSize, _timestampProvider, _buffer, _infiniteTimeWindow } = this;\n // If we don't have an infinite buffer size, and we're over the length,\n // use splice to truncate the old buffer values off. Note that we have to\n // double the size for instances where we're not using an infinite time window\n // because we're storing the values and the timestamps in the same array.\n const adjustedBufferSize = (_infiniteTimeWindow ? 1 : 2) * _bufferSize;\n _bufferSize < Infinity && adjustedBufferSize < _buffer.length && _buffer.splice(0, _buffer.length - adjustedBufferSize);\n\n // Now, if we're not in an infinite time window, remove all values where the time is\n // older than what is allowed.\n if (!_infiniteTimeWindow) {\n const now = _timestampProvider.now();\n let last = 0;\n // Search the array for the first timestamp that isn't expired and\n // truncate the buffer up to that point.\n for (let i = 1; i < _buffer.length && (_buffer[i] as number) <= now; i += 2) {\n last = i;\n }\n last && _buffer.splice(0, last + 1);\n }\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Subscription } from '../Subscription';\nimport { SchedulerAction } from '../types';\n\n/**\n * A unit of work to be executed in a `scheduler`. An action is typically\n * created from within a {@link SchedulerLike} and an RxJS user does not need to concern\n * themselves about creating and manipulating an Action.\n *\n * ```ts\n * class Action extends Subscription {\n * new (scheduler: Scheduler, work: (state?: T) => void);\n * schedule(state?: T, delay: number = 0): Subscription;\n * }\n * ```\n *\n * @class Action\n */\nexport class Action extends Subscription {\n constructor(scheduler: Scheduler, work: (this: SchedulerAction, state?: T) => void) {\n super();\n }\n /**\n * Schedules this action on its parent {@link SchedulerLike} for execution. May be passed\n * some context object, `state`. May happen at some point in the future,\n * according to the `delay` parameter, if specified.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler.\n * @return {void}\n */\n public schedule(state?: T, delay: number = 0): Subscription {\n return this;\n }\n}\n", "import type { TimerHandle } from './timerHandle';\ntype SetIntervalFunction = (handler: () => void, timeout?: number, ...args: any[]) => TimerHandle;\ntype ClearIntervalFunction = (handle: TimerHandle) => void;\n\ninterface IntervalProvider {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n delegate:\n | {\n setInterval: SetIntervalFunction;\n clearInterval: ClearIntervalFunction;\n }\n | undefined;\n}\n\nexport const intervalProvider: IntervalProvider = {\n // When accessing the delegate, use the variable rather than `this` so that\n // the functions can be called without being bound to the provider.\n setInterval(handler: () => void, timeout?: number, ...args) {\n const { delegate } = intervalProvider;\n if (delegate?.setInterval) {\n return delegate.setInterval(handler, timeout, ...args);\n }\n return setInterval(handler, timeout, ...args);\n },\n clearInterval(handle) {\n const { delegate } = intervalProvider;\n return (delegate?.clearInterval || clearInterval)(handle as any);\n },\n delegate: undefined,\n};\n", "import { Action } from './Action';\nimport { SchedulerAction } from '../types';\nimport { Subscription } from '../Subscription';\nimport { AsyncScheduler } from './AsyncScheduler';\nimport { intervalProvider } from './intervalProvider';\nimport { arrRemove } from '../util/arrRemove';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncAction extends Action {\n public id: TimerHandle | undefined;\n public state?: T;\n // @ts-ignore: Property has no initializer and is not definitely assigned\n public delay: number;\n protected pending: boolean = false;\n\n constructor(protected scheduler: AsyncScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n public schedule(state?: T, delay: number = 0): Subscription {\n if (this.closed) {\n return this;\n }\n\n // Always replace the current state with the new state.\n this.state = state;\n\n const id = this.id;\n const scheduler = this.scheduler;\n\n //\n // Important implementation note:\n //\n // Actions only execute once by default, unless rescheduled from within the\n // scheduled callback. This allows us to implement single and repeat\n // actions via the same code path, without adding API surface area, as well\n // as mimic traditional recursion but across asynchronous boundaries.\n //\n // However, JS runtimes and timers distinguish between intervals achieved by\n // serial `setTimeout` calls vs. a single `setInterval` call. An interval of\n // serial `setTimeout` calls can be individually delayed, which delays\n // scheduling the next `setTimeout`, and so on. `setInterval` attempts to\n // guarantee the interval callback will be invoked more precisely to the\n // interval period, regardless of load.\n //\n // Therefore, we use `setInterval` to schedule single and repeat actions.\n // If the action reschedules itself with the same delay, the interval is not\n // canceled. If the action doesn't reschedule, or reschedules with a\n // different delay, the interval will be canceled after scheduled callback\n // execution.\n //\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, delay);\n }\n\n // Set the pending flag indicating that this action has been scheduled, or\n // has recursively rescheduled itself.\n this.pending = true;\n\n this.delay = delay;\n // If this action has already an async Id, don't request a new one.\n this.id = this.id ?? this.requestAsyncId(scheduler, this.id, delay);\n\n return this;\n }\n\n protected requestAsyncId(scheduler: AsyncScheduler, _id?: TimerHandle, delay: number = 0): TimerHandle {\n return intervalProvider.setInterval(scheduler.flush.bind(scheduler, this), delay);\n }\n\n protected recycleAsyncId(_scheduler: AsyncScheduler, id?: TimerHandle, delay: number | null = 0): TimerHandle | undefined {\n // If this action is rescheduled with the same delay time, don't clear the interval id.\n if (delay != null && this.delay === delay && this.pending === false) {\n return id;\n }\n // Otherwise, if the action's delay time is different from the current delay,\n // or the action has been rescheduled before it's executed, clear the interval id\n if (id != null) {\n intervalProvider.clearInterval(id);\n }\n\n return undefined;\n }\n\n /**\n * Immediately executes this action and the `work` it contains.\n * @return {any}\n */\n public execute(state: T, delay: number): any {\n if (this.closed) {\n return new Error('executing a cancelled action');\n }\n\n this.pending = false;\n const error = this._execute(state, delay);\n if (error) {\n return error;\n } else if (this.pending === false && this.id != null) {\n // Dequeue if the action didn't reschedule itself. Don't call\n // unsubscribe(), because the action could reschedule later.\n // For example:\n // ```\n // scheduler.schedule(function doWork(counter) {\n // /* ... I'm a busy worker bee ... */\n // var originalAction = this;\n // /* wait 100ms before rescheduling the action */\n // setTimeout(function () {\n // originalAction.schedule(counter + 1);\n // }, 100);\n // }, 1000);\n // ```\n this.id = this.recycleAsyncId(this.scheduler, this.id, null);\n }\n }\n\n protected _execute(state: T, _delay: number): any {\n let errored: boolean = false;\n let errorValue: any;\n try {\n this.work(state);\n } catch (e) {\n errored = true;\n // HACK: Since code elsewhere is relying on the \"truthiness\" of the\n // return here, we can't have it return \"\" or 0 or false.\n // TODO: Clean this up when we refactor schedulers mid-version-8 or so.\n errorValue = e ? e : new Error('Scheduled action threw falsy error');\n }\n if (errored) {\n this.unsubscribe();\n return errorValue;\n }\n }\n\n unsubscribe() {\n if (!this.closed) {\n const { id, scheduler } = this;\n const { actions } = scheduler;\n\n this.work = this.state = this.scheduler = null!;\n this.pending = false;\n\n arrRemove(actions, this);\n if (id != null) {\n this.id = this.recycleAsyncId(scheduler, id, null);\n }\n\n this.delay = null!;\n super.unsubscribe();\n }\n }\n}\n", "import { Action } from './scheduler/Action';\nimport { Subscription } from './Subscription';\nimport { SchedulerLike, SchedulerAction } from './types';\nimport { dateTimestampProvider } from './scheduler/dateTimestampProvider';\n\n/**\n * An execution context and a data structure to order tasks and schedule their\n * execution. Provides a notion of (potentially virtual) time, through the\n * `now()` getter method.\n *\n * Each unit of work in a Scheduler is called an `Action`.\n *\n * ```ts\n * class Scheduler {\n * now(): number;\n * schedule(work, delay?, state?): Subscription;\n * }\n * ```\n *\n * @class Scheduler\n * @deprecated Scheduler is an internal implementation detail of RxJS, and\n * should not be used directly. Rather, create your own class and implement\n * {@link SchedulerLike}. Will be made internal in v8.\n */\nexport class Scheduler implements SchedulerLike {\n public static now: () => number = dateTimestampProvider.now;\n\n constructor(private schedulerActionCtor: typeof Action, now: () => number = Scheduler.now) {\n this.now = now;\n }\n\n /**\n * A getter method that returns a number representing the current time\n * (at the time this function was called) according to the scheduler's own\n * internal clock.\n * @return {number} A number that represents the current time. May or may not\n * have a relation to wall-clock time. May or may not refer to a time unit\n * (e.g. milliseconds).\n */\n public now: () => number;\n\n /**\n * Schedules a function, `work`, for execution. May happen at some point in\n * the future, according to the `delay` parameter, if specified. May be passed\n * some context object, `state`, which will be passed to the `work` function.\n *\n * The given arguments will be processed an stored as an Action object in a\n * queue of actions.\n *\n * @param {function(state: ?T): ?Subscription} work A function representing a\n * task, or some unit of work to be executed by the Scheduler.\n * @param {number} [delay] Time to wait before executing the work, where the\n * time unit is implicit and defined by the Scheduler itself.\n * @param {T} [state] Some contextual data that the `work` function uses when\n * called by the Scheduler.\n * @return {Subscription} A subscription in order to be able to unsubscribe\n * the scheduled work.\n */\n public schedule(work: (this: SchedulerAction, state?: T) => void, delay: number = 0, state?: T): Subscription {\n return new this.schedulerActionCtor(this, work).schedule(state, delay);\n }\n}\n", "import { Scheduler } from '../Scheduler';\nimport { Action } from './Action';\nimport { AsyncAction } from './AsyncAction';\nimport { TimerHandle } from './timerHandle';\n\nexport class AsyncScheduler extends Scheduler {\n public actions: Array> = [];\n /**\n * A flag to indicate whether the Scheduler is currently executing a batch of\n * queued actions.\n * @type {boolean}\n * @internal\n */\n public _active: boolean = false;\n /**\n * An internal ID used to track the latest asynchronous task such as those\n * coming from `setTimeout`, `setInterval`, `requestAnimationFrame`, and\n * others.\n * @type {any}\n * @internal\n */\n public _scheduled: TimerHandle | undefined;\n\n constructor(SchedulerAction: typeof Action, now: () => number = Scheduler.now) {\n super(SchedulerAction, now);\n }\n\n public flush(action: AsyncAction): void {\n const { actions } = this;\n\n if (this._active) {\n actions.push(action);\n return;\n }\n\n let error: any;\n this._active = true;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions.shift()!)); // exhaust the scheduler queue\n\n this._active = false;\n\n if (error) {\n while ((action = actions.shift()!)) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\n/**\n *\n * Async Scheduler\n *\n * Schedule task as if you used setTimeout(task, duration)\n *\n * `async` scheduler schedules tasks asynchronously, by putting them on the JavaScript\n * event loop queue. It is best used to delay tasks in time or to schedule tasks repeating\n * in intervals.\n *\n * If you just want to \"defer\" task, that is to perform it right after currently\n * executing synchronous code ends (commonly achieved by `setTimeout(deferredTask, 0)`),\n * better choice will be the {@link asapScheduler} scheduler.\n *\n * ## Examples\n * Use async scheduler to delay task\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * const task = () => console.log('it works!');\n *\n * asyncScheduler.schedule(task, 2000);\n *\n * // After 2 seconds logs:\n * // \"it works!\"\n * ```\n *\n * Use async scheduler to repeat task in intervals\n * ```ts\n * import { asyncScheduler } from 'rxjs';\n *\n * function task(state) {\n * console.log(state);\n * this.schedule(state + 1, 1000); // `this` references currently executing Action,\n * // which we reschedule with new state and delay\n * }\n *\n * asyncScheduler.schedule(task, 3000, 0);\n *\n * // Logs:\n * // 0 after 3s\n * // 1 after 4s\n * // 2 after 5s\n * // 3 after 6s\n * ```\n */\n\nexport const asyncScheduler = new AsyncScheduler(AsyncAction);\n\n/**\n * @deprecated Renamed to {@link asyncScheduler}. Will be removed in v8.\n */\nexport const async = asyncScheduler;\n", "import { AsyncAction } from './AsyncAction';\nimport { Subscription } from '../Subscription';\nimport { QueueScheduler } from './QueueScheduler';\nimport { SchedulerAction } from '../types';\nimport { TimerHandle } from './timerHandle';\n\nexport class QueueAction extends AsyncAction {\n constructor(protected scheduler: QueueScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n public schedule(state?: T, delay: number = 0): Subscription {\n if (delay > 0) {\n return super.schedule(state, delay);\n }\n this.delay = delay;\n this.state = state;\n this.scheduler.flush(this);\n return this;\n }\n\n public execute(state: T, delay: number): any {\n return delay > 0 || this.closed ? super.execute(state, delay) : this._execute(state, delay);\n }\n\n protected requestAsyncId(scheduler: QueueScheduler, id?: TimerHandle, delay: number = 0): TimerHandle {\n // If delay exists and is greater than 0, or if the delay is null (the\n // action wasn't rescheduled) but was originally scheduled as an async\n // action, then recycle as an async action.\n\n if ((delay != null && delay > 0) || (delay == null && this.delay > 0)) {\n return super.requestAsyncId(scheduler, id, delay);\n }\n\n // Otherwise flush the scheduler starting with this action.\n scheduler.flush(this);\n\n // HACK: In the past, this was returning `void`. However, `void` isn't a valid\n // `TimerHandle`, and generally the return value here isn't really used. So the\n // compromise is to return `0` which is both \"falsy\" and a valid `TimerHandle`,\n // as opposed to refactoring every other instanceo of `requestAsyncId`.\n return 0;\n }\n}\n", "import { AsyncScheduler } from './AsyncScheduler';\n\nexport class QueueScheduler extends AsyncScheduler {\n}\n", "import { QueueAction } from './QueueAction';\nimport { QueueScheduler } from './QueueScheduler';\n\n/**\n *\n * Queue Scheduler\n *\n * Put every next task on a queue, instead of executing it immediately\n *\n * `queue` scheduler, when used with delay, behaves the same as {@link asyncScheduler} scheduler.\n *\n * When used without delay, it schedules given task synchronously - executes it right when\n * it is scheduled. However when called recursively, that is when inside the scheduled task,\n * another task is scheduled with queue scheduler, instead of executing immediately as well,\n * that task will be put on a queue and wait for current one to finish.\n *\n * This means that when you execute task with `queue` scheduler, you are sure it will end\n * before any other task scheduled with that scheduler will start.\n *\n * ## Examples\n * Schedule recursively first, then do something\n * ```ts\n * import { queueScheduler } from 'rxjs';\n *\n * queueScheduler.schedule(() => {\n * queueScheduler.schedule(() => console.log('second')); // will not happen now, but will be put on a queue\n *\n * console.log('first');\n * });\n *\n * // Logs:\n * // \"first\"\n * // \"second\"\n * ```\n *\n * Reschedule itself recursively\n * ```ts\n * import { queueScheduler } from 'rxjs';\n *\n * queueScheduler.schedule(function(state) {\n * if (state !== 0) {\n * console.log('before', state);\n * this.schedule(state - 1); // `this` references currently executing Action,\n * // which we reschedule with new state\n * console.log('after', state);\n * }\n * }, 0, 3);\n *\n * // In scheduler that runs recursively, you would expect:\n * // \"before\", 3\n * // \"before\", 2\n * // \"before\", 1\n * // \"after\", 1\n * // \"after\", 2\n * // \"after\", 3\n *\n * // But with queue it logs:\n * // \"before\", 3\n * // \"after\", 3\n * // \"before\", 2\n * // \"after\", 2\n * // \"before\", 1\n * // \"after\", 1\n * ```\n */\n\nexport const queueScheduler = new QueueScheduler(QueueAction);\n\n/**\n * @deprecated Renamed to {@link queueScheduler}. Will be removed in v8.\n */\nexport const queue = queueScheduler;\n", "import { AsyncAction } from './AsyncAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\nimport { SchedulerAction } from '../types';\nimport { animationFrameProvider } from './animationFrameProvider';\nimport { TimerHandle } from './timerHandle';\n\nexport class AnimationFrameAction extends AsyncAction {\n constructor(protected scheduler: AnimationFrameScheduler, protected work: (this: SchedulerAction, state?: T) => void) {\n super(scheduler, work);\n }\n\n protected requestAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle {\n // If delay is greater than 0, request as an async action.\n if (delay !== null && delay > 0) {\n return super.requestAsyncId(scheduler, id, delay);\n }\n // Push the action to the end of the scheduler queue.\n scheduler.actions.push(this);\n // If an animation frame has already been requested, don't request another\n // one. If an animation frame hasn't been requested yet, request one. Return\n // the current animation frame request id.\n return scheduler._scheduled || (scheduler._scheduled = animationFrameProvider.requestAnimationFrame(() => scheduler.flush(undefined)));\n }\n\n protected recycleAsyncId(scheduler: AnimationFrameScheduler, id?: TimerHandle, delay: number = 0): TimerHandle | undefined {\n // If delay exists and is greater than 0, or if the delay is null (the\n // action wasn't rescheduled) but was originally scheduled as an async\n // action, then recycle as an async action.\n if (delay != null ? delay > 0 : this.delay > 0) {\n return super.recycleAsyncId(scheduler, id, delay);\n }\n // If the scheduler queue has no remaining actions with the same async id,\n // cancel the requested animation frame and set the scheduled flag to\n // undefined so the next AnimationFrameAction will request its own.\n const { actions } = scheduler;\n if (id != null && actions[actions.length - 1]?.id !== id) {\n animationFrameProvider.cancelAnimationFrame(id as number);\n scheduler._scheduled = undefined;\n }\n // Return undefined so the action knows to request a new async id if it's rescheduled.\n return undefined;\n }\n}\n", "import { AsyncAction } from './AsyncAction';\nimport { AsyncScheduler } from './AsyncScheduler';\n\nexport class AnimationFrameScheduler extends AsyncScheduler {\n public flush(action?: AsyncAction): void {\n this._active = true;\n // The async id that effects a call to flush is stored in _scheduled.\n // Before executing an action, it's necessary to check the action's async\n // id to determine whether it's supposed to be executed in the current\n // flush.\n // Previous implementations of this method used a count to determine this,\n // but that was unsound, as actions that are unsubscribed - i.e. cancelled -\n // are removed from the actions array and that can shift actions that are\n // scheduled to be executed in a subsequent flush into positions at which\n // they are executed within the current flush.\n const flushId = this._scheduled;\n this._scheduled = undefined;\n\n const { actions } = this;\n let error: any;\n action = action || actions.shift()!;\n\n do {\n if ((error = action.execute(action.state, action.delay))) {\n break;\n }\n } while ((action = actions[0]) && action.id === flushId && actions.shift());\n\n this._active = false;\n\n if (error) {\n while ((action = actions[0]) && action.id === flushId && actions.shift()) {\n action.unsubscribe();\n }\n throw error;\n }\n }\n}\n", "import { AnimationFrameAction } from './AnimationFrameAction';\nimport { AnimationFrameScheduler } from './AnimationFrameScheduler';\n\n/**\n *\n * Animation Frame Scheduler\n *\n * Perform task when `window.requestAnimationFrame` would fire\n *\n * When `animationFrame` scheduler is used with delay, it will fall back to {@link asyncScheduler} scheduler\n * behaviour.\n *\n * Without delay, `animationFrame` scheduler can be used to create smooth browser animations.\n * It makes sure scheduled task will happen just before next browser content repaint,\n * thus performing animations as efficiently as possible.\n *\n * ## Example\n * Schedule div height animation\n * ```ts\n * // html:
\n * import { animationFrameScheduler } from 'rxjs';\n *\n * const div = document.querySelector('div');\n *\n * animationFrameScheduler.schedule(function(height) {\n * div.style.height = height + \"px\";\n *\n * this.schedule(height + 1); // `this` references currently executing Action,\n * // which we reschedule with new state\n * }, 0, 0);\n *\n * // You will see a div element growing in height\n * ```\n */\n\nexport const animationFrameScheduler = new AnimationFrameScheduler(AnimationFrameAction);\n\n/**\n * @deprecated Renamed to {@link animationFrameScheduler}. Will be removed in v8.\n */\nexport const animationFrame = animationFrameScheduler;\n", "import { Observable } from '../Observable';\nimport { SchedulerLike } from '../types';\n\n/**\n * A simple Observable that emits no items to the Observer and immediately\n * emits a complete notification.\n *\n * Just emits 'complete', and nothing else.\n *\n * ![](empty.png)\n *\n * A simple Observable that only emits the complete notification. It can be used\n * for composing with other Observables, such as in a {@link mergeMap}.\n *\n * ## Examples\n *\n * Log complete notification\n *\n * ```ts\n * import { EMPTY } from 'rxjs';\n *\n * EMPTY.subscribe({\n * next: () => console.log('Next'),\n * complete: () => console.log('Complete!')\n * });\n *\n * // Outputs\n * // Complete!\n * ```\n *\n * Emit the number 7, then complete\n *\n * ```ts\n * import { EMPTY, startWith } from 'rxjs';\n *\n * const result = EMPTY.pipe(startWith(7));\n * result.subscribe(x => console.log(x));\n *\n * // Outputs\n * // 7\n * ```\n *\n * Map and flatten only odd numbers to the sequence `'a'`, `'b'`, `'c'`\n *\n * ```ts\n * import { interval, mergeMap, of, EMPTY } from 'rxjs';\n *\n * const interval$ = interval(1000);\n * const result = interval$.pipe(\n * mergeMap(x => x % 2 === 1 ? of('a', 'b', 'c') : EMPTY),\n * );\n * result.subscribe(x => console.log(x));\n *\n * // Results in the following to the console:\n * // x is equal to the count on the interval, e.g. (0, 1, 2, 3, ...)\n * // x will occur every 1000ms\n * // if x % 2 is equal to 1, print a, b, c (each on its own)\n * // if x % 2 is not equal to 1, nothing will be output\n * ```\n *\n * @see {@link Observable}\n * @see {@link NEVER}\n * @see {@link of}\n * @see {@link throwError}\n */\nexport const EMPTY = new Observable((subscriber) => subscriber.complete());\n\n/**\n * @param scheduler A {@link SchedulerLike} to use for scheduling\n * the emission of the complete notification.\n * @deprecated Replaced with the {@link EMPTY} constant or {@link scheduled} (e.g. `scheduled([], scheduler)`). Will be removed in v8.\n */\nexport function empty(scheduler?: SchedulerLike) {\n return scheduler ? emptyScheduled(scheduler) : EMPTY;\n}\n\nfunction emptyScheduled(scheduler: SchedulerLike) {\n return new Observable((subscriber) => scheduler.schedule(() => subscriber.complete()));\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport function isScheduler(value: any): value is SchedulerLike {\n return value && isFunction(value.schedule);\n}\n", "import { SchedulerLike } from '../types';\nimport { isFunction } from './isFunction';\nimport { isScheduler } from './isScheduler';\n\nfunction last(arr: T[]): T | undefined {\n return arr[arr.length - 1];\n}\n\nexport function popResultSelector(args: any[]): ((...args: unknown[]) => unknown) | undefined {\n return isFunction(last(args)) ? args.pop() : undefined;\n}\n\nexport function popScheduler(args: any[]): SchedulerLike | undefined {\n return isScheduler(last(args)) ? args.pop() : undefined;\n}\n\nexport function popNumber(args: any[], defaultValue: number): number {\n return typeof last(args) === 'number' ? args.pop()! : defaultValue;\n}\n", "export const isArrayLike = ((x: any): x is ArrayLike => x && typeof x.length === 'number' && typeof x !== 'function');", "import { isFunction } from \"./isFunction\";\n\n/**\n * Tests to see if the object is \"thennable\".\n * @param value the object to test\n */\nexport function isPromise(value: any): value is PromiseLike {\n return isFunction(value?.then);\n}\n", "import { InteropObservable } from '../types';\nimport { observable as Symbol_observable } from '../symbol/observable';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being Observable (but not necessary an Rx Observable) */\nexport function isInteropObservable(input: any): input is InteropObservable {\n return isFunction(input[Symbol_observable]);\n}\n", "import { isFunction } from './isFunction';\n\nexport function isAsyncIterable(obj: any): obj is AsyncIterable {\n return Symbol.asyncIterator && isFunction(obj?.[Symbol.asyncIterator]);\n}\n", "/**\n * Creates the TypeError to throw if an invalid object is passed to `from` or `scheduled`.\n * @param input The object that was passed.\n */\nexport function createInvalidObservableTypeError(input: any) {\n // TODO: We should create error codes that can be looked up, so this can be less verbose.\n return new TypeError(\n `You provided ${\n input !== null && typeof input === 'object' ? 'an invalid object' : `'${input}'`\n } where a stream was expected. You can provide an Observable, Promise, ReadableStream, Array, AsyncIterable, or Iterable.`\n );\n}\n", "export function getSymbolIterator(): symbol {\n if (typeof Symbol !== 'function' || !Symbol.iterator) {\n return '@@iterator' as any;\n }\n\n return Symbol.iterator;\n}\n\nexport const iterator = getSymbolIterator();\n", "import { iterator as Symbol_iterator } from '../symbol/iterator';\nimport { isFunction } from './isFunction';\n\n/** Identifies an input as being an Iterable */\nexport function isIterable(input: any): input is Iterable {\n return isFunction(input?.[Symbol_iterator]);\n}\n", "import { ReadableStreamLike } from '../types';\nimport { isFunction } from './isFunction';\n\nexport async function* readableStreamLikeToAsyncGenerator(readableStream: ReadableStreamLike): AsyncGenerator {\n const reader = readableStream.getReader();\n try {\n while (true) {\n const { value, done } = await reader.read();\n if (done) {\n return;\n }\n yield value!;\n }\n } finally {\n reader.releaseLock();\n }\n}\n\nexport function isReadableStreamLike(obj: any): obj is ReadableStreamLike {\n // We don't want to use instanceof checks because they would return\n // false for instances from another Realm, like an