-
Notifications
You must be signed in to change notification settings - Fork 96
/
index.toml
480 lines (438 loc) · 14.2 KB
/
index.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
[config]
layout = "tutorial"
toc = true
colab = "https://colab.research.google.com/github/deepset-ai/haystack-tutorials/blob/main/tutorials/"
[[tutorial]]
title = "Build Your First Question Answering System"
description = "Get Started by creating a Retriever Reader pipeline."
level = "beginner"
weight = 10
notebook = "01_Basic_QA_Pipeline.ipynb"
aliases = [
"first-qa-system",
"without-elasticsearch",
"03_basic_qa_pipeline_without_elasticsearch",
]
completion_time = "15 min"
created_at = 2023-01-11
[[tutorial]]
title = "Fine-Tuning a Model on Your Own Data"
description = "Improve the performance of your Reader by performing fine-tuning."
level = "intermediate"
weight = 50
notebook = "02_Finetune_a_model_on_your_data.ipynb"
aliases = ["fine-tuning-a-model"]
created_at = 2021-08-12
completion_time = "15 min"
needs_gpu = true
[[tutorial]]
title = "Build a Scalable Question Answering System"
description = "Create a scalable Retriever Reader pipeline that uses an ElasticsearchDocumentStore."
level = "beginner"
weight = 15
notebook = "03_Scalable_QA_System.ipynb"
aliases = []
completion_time = "20 min"
created_at = 2023-01-11
[[tutorial]]
title = "Utilizing Existing FAQs for Question Answering"
description = "Create a smarter way to answer new questions using your existing FAQ documents."
level = "beginner"
weight = 20
notebook = "04_FAQ_style_QA.ipynb"
aliases = ["existing-faqs"]
created_at = 2021-08-12
[[tutorial]]
title = "Evaluation of a QA System"
description = "Learn how to evaluate the performance of individual nodes as well as entire pipelines."
level = "advanced"
weight = 105
notebook = "05_Evaluation.ipynb"
aliases = ["evaluation"]
created_at = 2021-08-12
[[tutorial]]
title = "Better Retrieval with Embedding Retrieval"
description = "Use Transformer based dense Retrievers to improve your system’s performance."
level = "intermediate"
weight = 55
notebook = "06_Better_Retrieval_via_Embedding_Retrieval.ipynb"
aliases = ["embedding-retrieval"]
created_at = 2022-03-08
[[tutorial]]
title = "Generative QA with RAGenerator"
description = "Try out a generative model in place of the extractive Reader."
level = "intermediate"
weight = 60
notebook = "07_RAG_Generator.ipynb"
aliases = []
created_at = 2021-08-12
haystack_version = "1.17.2"
hidden = true
sitemap_exclude = true
[[tutorial]]
title = "Preprocessing Your Documents"
description = "Start converting, cleaning, and splitting Documents using Haystack’s preprocessing capabilities."
level = "beginner"
weight = 25
notebook = "08_Preprocessing.ipynb"
aliases = ["preprocessing"]
created_at = 2021-08-12
[[tutorial]]
title = "Training Your Own Dense Passage Retrieval Model"
description = "Learn about training a Dense Passage Retrieval model and the data needed to do so."
level = "advanced"
weight = 110
notebook = "09_DPR_training.ipynb"
aliases = ["train-dpr"]
created_at = 2021-08-12
needs_gpu = true
[[tutorial]]
title = "Question Answering on a Knowledge Graph"
description = "Experiment with a question answering system that draws upon knowledge graph.h"
level = "advanced"
weight = 120
notebook = "10_Knowledge_Graph.ipynb"
aliases = ["knowledge-graph"]
created_at = 2021-08-12
haystack_version = "1.16.1"
hidden = true
sitemap_exclude = true
[[tutorial]]
title = "How to Use Pipelines"
description = "Learn about the many ways which you can route queries through the nodes in a pipeline."
level = "beginner"
weight = 40
notebook = "11_Pipelines.ipynb"
aliases = ["pipelines"]
created_at = 2021-08-12
[[tutorial]]
title = "Generative QA with Seq2SeqGenerator"
description = "Try out a generative model in place of the extractive Reader."
level = "intermediate"
weight = 70
notebook = "12_LFQA.ipynb"
aliases = ["lfqa"]
created_at = 2021-08-12
haystack_version = "1.17.2"
hidden = true
sitemap_exclude = true
[[tutorial]]
title = "Question Generation"
description = "Generate a set of questions that can be answered by a given Document."
level = "intermediate"
weight = 75
notebook = "13_Question_generation.ipynb"
aliases = ["question-generation"]
created_at = 2021-08-12
needs_gpu = true
[[tutorial]]
title = "Query Classifier"
description = "Classify incoming queries so that they can be routed to the nodes that are best at handling them."
level = "intermediate"
weight = 80
notebook = "14_Query_Classifier.ipynb"
aliases = ["query-classifier"]
created_at = 2021-08-12
[[tutorial]]
title = "Open-Domain QA on Tables"
description = "Perform question answering on tabular data."
level = "advanced"
weight = 130
notebook = "15_TableQA.ipynb"
aliases = ["table-qa"]
created_at = 2021-08-12
[[tutorial]]
title = "Document Classification at Index Time"
description = "Generate and attach classification labels to your Documents when indexing."
level = "intermediate"
weight = 85
notebook = "16_Document_Classifier_at_Index_Time.ipynb"
aliases = ["doc-class-index"]
created_at = 2021-08-12
[[tutorial]]
title = "Make Your QA Pipelines Talk!"
description = "Convert text Answers into speech."
level = "intermediate"
weight = 90
notebook = "17_Audio.ipynb"
aliases = ["audio"]
created_at = 2022-06-07
hidden = true
sitemap_exclude = true
[[tutorial]]
title = "Generative Pseudo Labeling for Domain Adaptation"
description = "Use a Retriever and a query generator to perform unsupervised domain adaptation."
level = "advanced"
weight = 140
notebook = "18_GPL.ipynb"
aliases = ["gpl"]
created_at = 2022-06-07
needs_gpu = true
[[tutorial]]
title = "Text-To-Image Search Pipeline with Multimodal Retriever"
description = "Use a MultiModalRetriever to build a cross-modal search pipeline."
level = "intermediate"
weight = 95
notebook = "19_Text_to_Image_search_pipeline_with_MultiModal_Retriever.ipynb"
aliases = ["multimodal"]
completion_time = "20 min"
created_at = 2022-07-11
[[tutorial]]
title = "Using Haystack with REST API"
description = "Create a production-ready pipeline and interact with Haystack REST API."
level = "advanced"
weight = 115
notebook = "20_Using_Haystack_with_REST_API.ipynb"
aliases = ["using-haystack-with-rest-api"]
colab = false
completion_time = "30 min"
created_at = 2023-01-11
[[tutorial]]
title = "Customizing PromptNode for NLP Tasks"
description = "Use PromptNode and PromptTemplate for your custom NLP tasks"
level = "intermediate"
weight = 57
notebook = "21_Customizing_PromptNode.ipynb"
aliases = ["customizing-promptnode"]
completion_time = "20 min"
created_at = 2023-02-16
[[tutorial]]
title = "Answering Multihop Questions with Agents"
description = "Use Agent to answer multihop questions with extractive models"
level = "intermediate"
weight = 63
notebook = "23_Answering_Multihop_Questions_with_Agents.ipynb"
aliases = ["multihop-qa-with-agents"]
completion_time = "10 min"
created_at = 2023-03-27
[[tutorial]]
title = "Creating a Generative QA Pipeline with Retrieval-Augmentation"
description = "Use a large language model in your search system through PromptNode"
level = "intermediate"
weight = 61
notebook = "22_Pipeline_with_PromptNode.ipynb"
aliases = ["pipeline-with-promptnode", "retrieval-augmented-generation"]
completion_time = "15 min"
created_at = 2023-03-13
featured = true
[[tutorial]]
title = "Building a Conversational Chat App"
description = "Use ConversationalAgent to build a human-like chat application"
level = "intermediate"
weight = 64
notebook = "24_Building_Chat_App.ipynb"
aliases = ["building-chat-app"]
completion_time = "10 min"
created_at = 2023-05-30
[[tutorial]]
title = "Customizing Agent to Chat with Your Documents"
description = "Advanced Customizations for Agents with Memory"
level = "advanced"
weight = 117
notebook = "25_Customizing_Agent.ipynb"
aliases = ["customizing-agent"]
completion_time = "15 min"
created_at = 2023-07-19
featured = true
[[tutorial]]
title = "Creating a Hybrid Retrieval Pipeline"
description = "Learn how to combine Retrievers to enhance retrieval"
level = "intermediate"
weight = 63
notebook = "26_Hybrid_Retrieval.ipynb"
aliases = ["hybrid-retrieval"]
completion_time = "15 min"
created_at = 2023-10-10
featured = true
[[tutorial]]
title = "Creating Your First QA Pipeline with Retrieval-Augmentation"
description = "Build your first generative QA pipeline with OpenAI GPT models"
level = "beginner"
weight = 5
notebook = "27_First_RAG_Pipeline.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2023-12-05
haystack_2 = true
dependencies = ["datasets>=2.6.1", "sentence-transformers>=3.0.0"]
featured = true
[[tutorial]]
title = "Generating Structured Output with Loop-Based Auto-Correction"
description = "Learn how to extract structured data using an LLM, and to validate the generated output against a predefined schema."
level = "intermediate"
weight = 71
notebook = "28_Structured_Output_With_Loop.ipynb"
aliases = []
completion_time = "15 min"
created_at = 2023-11-30
haystack_2 = true
dependencies = ["colorama"]
featured = true
[[tutorial]]
title = "Serializing LLM Pipelines"
description = "Learn how to serialize and deserialize your pipelines between YAML and Python"
level = "beginner"
weight = 9
notebook = "29_Serializing_Pipelines.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2024-01-29
haystack_2 = true
dependencies = ["transformers[torch]"]
[[tutorial]]
title = "Preprocessing Different File Types"
description = "Learn how to build an indexing pipeline that will preprocess files based on their file type"
level = "beginner"
weight = 7
notebook = "30_File_Type_Preprocessing_Index_Pipeline.ipynb"
aliases = []
completion_time = "15 min"
created_at = 2024-01-30
haystack_2 = true
dependencies = [
"sentence-transformers>=3.0.0",
"huggingface_hub>=0.23.0",
"transformers",
"markdown-it-py",
"mdit_plain",
"pypdf",
"gdown"
]
[[tutorial]]
title = "Filtering Documents with Metadata"
description = "Learn how to filter down to specific documents at retrieval time using metadata"
level = "beginner"
weight = 6
notebook = "31_Metadata_Filtering.ipynb"
aliases = []
completion_time = "5 min"
created_at = 2024-01-30
haystack_2 = true
dependencies = []
[[tutorial]]
title = "Classifying Documents & Queries by Language"
description = "Learn how to classify documents and route queries by language, for both indexing and RAG pipelines"
level = "intermediate"
weight = 75
notebook = "32_Classifying_Documents_and_Queries_by_Language.ipynb"
aliases = []
completion_time = "15 min"
created_at = 2024-02-06
haystack_2 = true
dependencies = ["langdetect"]
[[tutorial]]
title = "Creating a Hybrid Retrieval Pipeline"
description = "Learn how to combine keyword-based retrieval and dense retrieval to enhance retrieval"
level = "intermediate"
weight = 56
notebook = "33_Hybrid_Retrieval.ipynb"
aliases = []
completion_time = "15 min"
created_at = 2024-02-13
haystack_2 = true
dependencies = ["datasets>=2.6.1", "sentence-transformers>=3.0.0", "accelerate"]
needs_gpu = true
[[tutorial]]
title = "Build an Extractive QA Pipeline"
description = "Learn how to build a Haystack pipeline that uses an extractive model to display where the answer to your query is."
level = "beginner"
weight = 15
notebook = "34_Extractive_QA_Pipeline.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2024-02-09
haystack_2 = true
dependencies = ["accelerate", "sentence-transformers", "datasets"]
[[tutorial]]
title = "Evaluating RAG Pipelines"
description = "Learn how to evaluate your RAG pipelines using statistical and model-based evaluation metrics"
level = "intermediate"
weight = 77
notebook = "35_Evaluating_RAG_Pipelines.ipynb"
aliases = ["35_Model_Based_Evaluation_of_RAG_Pipelines"]
completion_time = "15 min"
created_at = 2024-02-12
haystack_2 = true
dependencies = ["pydantic<1.10.10", "datasets>=2.6.1", "deepeval-haystack", "ragas-haystack", "uptrain-haystack"]
[[tutorial]]
title = "Building Fallbacks to Websearch with Conditional Routing"
description = "Learn how to direct the query to a web-based RAG route when necessary"
level = "intermediate"
weight = 81
notebook = "36_Building_Fallbacks_with_Conditional_Routing.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2024-02-16
haystack_2 = true
dependencies = []
featured = true
[[tutorial]]
title = "Simplifying Pipeline Inputs with Multiplexer"
description = "Learn how to declutter the inputs of complex pipelines"
level = "intermediate"
weight = 84
notebook = "37_Simplifying_Pipeline_Inputs_with_Multiplexer.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2024-02-19
haystack_2 = true
haystack_version = "2.3.1"
dependencies = ["transformers", "huggingface_hub>=0.23.0"]
[[tutorial]]
title = "Embedding Metadata for Improved Retrieval"
description = "Learn how to embed metadata while indexing, to improve the quality of retrieval results"
level = "beginner"
weight = 8
notebook = "39_Embedding_Metadata_for_Improved_Retrieval.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2024-02-20
haystack_2 = true
dependencies = ["wikipedia", "sentence-transformers"]
[[tutorial]]
title = "Building a Chat Application with Function Calling"
description = "Learn how to build chat applications that have agent-like behavior with OpenAI function calling"
level = "advanced"
weight = 100
notebook = "40_Building_Chat_Application_with_Function_Calling.ipynb"
aliases = []
completion_time = "20 min"
created_at = 2024-03-05
haystack_2 = true
dependencies = ["sentence-transformers>=3.0.0", "gradio"]
featured = true
[[tutorial]]
title = "Query Classification with TransformersTextRouter and TransformersZeroShotTextRouter"
description = "Learn how to route user questions and other text inputs with classification models"
level = "intermediate"
weight = 105
notebook = "41_Query_Classification_with_TransformersTextRouter_and_TransformersZeroShotTextRouter.ipynb"
aliases = []
completion_time = "25 min"
created_at = 2024-10-15
haystack_2 = true
dependencies = ["sentence-transformers>=3.0.0", "gradio", "torch", "sentencepiece", "datasets", "accelerate"]
featured = true
[[tutorial]]
title = "Retrieving a Context Window Around a Sentence"
description = "Learn how to use the SentenceWindowRetriever to retrieve a context window"
level = "beginner"
weight = 105
notebook = "42_Sentence_Window_Retriever.ipynb"
aliases = []
completion_time = "10 min"
created_at = 2024-10-16
haystack_2 = true
dependencies = []
featured = true
[[tutorial]]
title = "Evaluation"
description = "A guided walkthrough to learn everything about evaluation"
weight = 110
notebook = "guide_evaluation.ipynb"
aliases = []
haystack_2 = true
guide = true
colab = false
download = false
created_at = 2024-07-17