forked from aqeelanwar/MaskTheFace
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mask_the_face.py
222 lines (194 loc) · 6.68 KB
/
mask_the_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Author: aqeelanwar
# Created: 27 April,2020, 10:22 PM
# Email: [email protected]
import os
import sys
import numpy as np
import random
import argparse
import dlib
from utils.aux_functions import *
# Command-line input setup
parser = argparse.ArgumentParser(
description="MaskTheFace - Python code to mask faces dataset"
)
parser.add_argument(
"--path",
type=str,
default="",
help="Path to either the folder containing images or the image itself",
)
parser.add_argument(
"--mask_type",
type=str,
default="surgical",
choices=["surgical", "N95", "KN95", "cloth", "gas", "inpaint", "random", "all"],
help="Type of the mask to be applied. Available options: all, surgical_blue, surgical_green, N95, cloth",
)
parser.add_argument(
"--pattern",
type=str,
default="",
help="Type of the pattern. Available options in masks/textures",
)
parser.add_argument(
"--pattern_weight",
type=float,
default=0.5,
help="Weight of the pattern. Must be between 0 and 1",
)
parser.add_argument(
"--color",
type=str,
default="#0473e2",
help="Hex color value that need to be overlayed to the mask",
)
parser.add_argument(
"--color_weight",
type=float,
default=0.5,
help="Weight of the color intensity. Must be between 0 and 1",
)
parser.add_argument(
"--code",
type=str,
# default="cloth-masks/textures/check/check_4.jpg, cloth-#e54294, cloth-#ff0000, cloth, cloth-masks/textures/others/heart_1.png, cloth-masks/textures/fruits/pineapple.png, N95, surgical_blue, surgical_green",
default="",
help="Generate specific formats",
)
parser.add_argument(
"--verbose", dest="verbose", action="store_true", help="Turn verbosity on"
)
parser.add_argument(
"--write_original_image",
dest="write_original_image",
action="store_true",
help="If true, original image is also stored in the masked folder",
)
parser.set_defaults(feature=False)
args = parser.parse_args()
args.write_path = args.path#+ "_masked"
# Set up dlib face detector and predictor
args.detector = dlib.get_frontal_face_detector()
path_to_dlib_model = "dlib_models/shape_predictor_68_face_landmarks.dat"
if not os.path.exists(path_to_dlib_model):
download_dlib_model()
args.predictor = dlib.shape_predictor(path_to_dlib_model)
# Extract data from code
mask_code = "".join(args.code.split()).split(",")
args.code_count = np.zeros(len(mask_code))
args.mask_dict_of_dict = {}
for i, entry in enumerate(mask_code):
mask_dict = {}
mask_color = ""
mask_texture = ""
mask_type = entry.split("-")[0]
if len(entry.split("-")) == 2:
mask_variation = entry.split("-")[1]
if "#" in mask_variation:
mask_color = mask_variation
else:
mask_texture = mask_variation
mask_dict["type"] = mask_type
mask_dict["color"] = mask_color
mask_dict["texture"] = mask_texture
args.mask_dict_of_dict[i] = mask_dict
# Check if path is file or directory or none
is_directory, is_file, is_other = check_path(args.path)
display_MaskTheFace()
if is_directory:
path, dirs, files = os.walk(args.path).__next__()
file_count = len(files)
dirs_count = len(dirs)
if len(files) > 0:
print_orderly("Masking image files", 60)
# Process files in the directory if any
for f in tqdm(files):
image_path = path + "/" + f
write_path = path# + "_masked"
if not os.path.isdir(write_path):
os.makedirs(write_path)
if True: #random.random() < 0.5:
if is_image(image_path):
# Proceed if file is image
if args.verbose:
str_p = "Processing: " + image_path
tqdm.write(str_p)
split_path = f.rsplit(".")
masked_image, mask, mask_binary_array, original_image = mask_image(
image_path, args
)
for i in range(len(mask)):
w_path = (
write_path
+ "/"
+ split_path[0]
# + "_"
# + mask[i]
+ "."
+ split_path[1]
)
img = masked_image[i]
cv2.imwrite(w_path, img)
print_orderly("Masking image directories", 60)
# Process directories withing the path provided
for d in tqdm(dirs):
dir_path = args.path + "/" + d
dir_write_path = args.write_path + "/" + d
if not os.path.isdir(dir_write_path):
os.makedirs(dir_write_path)
_, _, files = os.walk(dir_path).__next__()
# Process each files within subdirectory
for f in files:
image_path = dir_path + "/" + f
if args.verbose:
str_p = "Processing: " + image_path
tqdm.write(str_p)
write_path = dir_write_path
if is_image(image_path):
# Proceed if file is image
split_path = f.rsplit(".")
masked_image, mask, mask_binary, original_image = mask_image(
image_path, args
)
for i in range(len(mask)):
w_path = (
write_path
+ "/"
+ split_path[0]
+ "_"
+ mask[i]
+ "."
+ split_path[1]
)
w_path_original = write_path + "/" + f
img = masked_image[i]
# Write the masked image
cv2.imwrite(w_path, img)
if args.write_original_image:
# Write the original image
cv2.imwrite(w_path_original, original_image)
if args.verbose:
print(args.code_count)
# Process if the path was a file
elif is_file:
print("Masking image file")
image_path = args.path
write_path = args.path.rsplit(".")[0]
if is_image(image_path):
# Proceed if file is image
# masked_images, mask, mask_binary_array, original_image
masked_image, mask, mask_binary_array, original_image = mask_image(
image_path, args
)
# img = mask_binary_array[0]
# print(img.shape)
# np.set_printoptions(threshold=sys.maxsize)
# print(img)
for i in range(len(mask)):
w_path = write_path + "_" + mask[i] + "." + args.path.rsplit(".")[1]
img = masked_image[i]
cv2.imwrite(w_path, img)
else:
print("Path is neither a valid file or a valid directory")
print("Processing Done")