-
Notifications
You must be signed in to change notification settings - Fork 19
/
handler.py
589 lines (523 loc) · 22.8 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import argparse
import json
import os
import tkinter as tk
from tkinter import Checkbutton, IntVar, filedialog, messagebox, ttk
from tkinter.ttk import Style
import cv2
from PIL import Image, ImageTk
from code_generator import CodeGenerator
from flowchart_generator.flowchart_generator import FlowchartGenerator
from graph import Graph
from model.shape_classifier import ShapeClassifier
from text_model.data.reader import Dataset
from text_model.text_classifier import TextClassifier
new = "new_data"
NEW_SOURCE_PATH = os.path.join("text_model", "data_model", f"{new}.hdf5")
class VerticalScrolledFrame(tk.Frame):
def __init__(self, parent, *args, **kw):
tk.Frame.__init__(self, parent, *args, **kw)
vscrollbar = tk.Scrollbar(self, orient=tk.VERTICAL,width=20)
vscrollbar.pack(fill=tk.Y, side=tk.RIGHT, expand=tk.TRUE)
canvas = tk.Canvas(self, bd=0, highlightthickness=0,
yscrollcommand=vscrollbar.set,height = 500)
canvas.pack(side=tk.LEFT, fill=tk.BOTH, expand=tk.TRUE)
vscrollbar.config(command=canvas.yview)
canvas.xview_moveto(0)
canvas.yview_moveto(0)
self.interior = interior = tk.Frame(canvas)
interior_id = canvas.create_window(
0, 0, window=interior, anchor=tk.NW
)
def _configure_interior(event):
size = (interior.winfo_reqwidth(), interior.winfo_reqheight())
canvas.config(scrollregion="0 0 %s %s" % size)
if interior.winfo_reqwidth() != canvas.winfo_width():
canvas.config(width=interior.winfo_reqwidth())
interior.bind('<Configure>', _configure_interior)
def _configure_canvas(event):
if interior.winfo_reqwidth() != canvas.winfo_width():
canvas.itemconfigure(interior_id, width=canvas.winfo_width())
canvas.bind('<Configure>', _configure_canvas)
interior.bind_all(
'<MouseWheel>', lambda event: vscrollbar.yview("scroll",event.delta,"units")
)
class HandlerGUI(object):
def __init__(self, master, env_name):
self.ds = Dataset(source="", name="iam")
self.RESULTS_PATH = "results/"
self.master = master
# Init of the master view
self.master.title("Handwritten flowchart with CNNs")
self.master.configure(background="gray99")
self.master.resizable(False,False)
self.master.geometry("600x500")
self.master.config(bg="#857074")
# Predict
self.selected_image = ""
self.models_path = "model/training_results/"
# training
self.env_name = env_name
# Header
self.header = tk.Frame(self.master)
self.header.config(width="1000",height="100",bg="#943340")
self.header.pack(fill="y")
self.header.pack_propagate(False)
self.title = tk.Label(self.header,text="3b-flowchart",font=("Arial",50),bg="#943340")
self.title.pack(pady = 20)
style = Style()
style.map('TButton', foreground = [('active', 'green')],background = [('active', 'black')])
# Buttons
btn1 = tk.Button(self.master, height=4,font=("Arial",15), width=25, text="Train shape model",command = self.train_window)
btn1.pack(pady=10)
btn2 = tk.Button(self.master, height=4, font=("Arial",15), width=25, text="Recognize flowchart", command = self.recognize_flowchart_window)
btn2.pack(pady=10)
btn3 = tk.Button(self.master,height = 4,font = ("Arial",15), width = 25,text = "Train text model",command = self.__train_text_model)
btn3.pack(pady = 10)
self.master.mainloop()
def start_train_action(self,args):
if(self.__validate_train_inputs(args)):
dataset_path = args[0]
rois = None if args[1] == '' else int(args[1])
weights_input = None if args[2] == '' else args[2]
epochs = None if args[3] == '' else int(args[3])
lr = None if args[4] == '' else float(args[4])
use_gpu = True if args[5] == 1 else False
cmd = 'source ~/anaconda3/etc/profile.d/conda.sh && conda activate ' + self.env_name
cmd += ' && cd model/ && python3 shape_model.py; exec bash'
args = {
"dataset": dataset_path,
"rois": rois,
"input_weight_path": weights_input,
"epochs": epochs,
"learning_rate": lr,
"gpu": use_gpu
}
with open('model/args.json', 'w') as json_file:
json.dump(args, json_file)
json_file.close()
cmd_exec = "gnome-terminal -e 'bash -c \"" + cmd + "\"'"
# cmd_exec = "gnome-terminal -e 'bash -c \"conda init bash && python3 test.py; exec bash\"'"
print(cmd_exec)
os.system(cmd_exec)
def train_window(self):
"""Train model window."""
window = tk.Toplevel(self.master)
window.pack_propagate(False)
window.title("Train shape model")
window.config(width="700", height="600",bg="#943340")
title = tk.Label(window,font = ("Arial",50),text="Train shape model",bg="#943340")
title.pack()
large_font = ('Arial',15)
text_font = ('Arial',12)
mini_text_font = ('Arial',7)
inputs = tk.Frame(window)
inputs.config(bg="#943340")
inputs.pack(side = tk.LEFT)
# Select folder path of dataset
text = tk.StringVar()
dataset_path_text = tk.Label(inputs,height=3, width=50,bg="#943340",font=mini_text_font, textvariable=text)
dataset_path_text.grid(row=0, column=1)
dataset_path_button = tk.Button(inputs,text="* Select dataset",font=("Arial",9),width=10,command=lambda : self.__select_dataset_path(text)).grid(row=0,column=0)
# Pre-trained-model-path
text_2 = tk.StringVar()
pretrained_model_path_text = tk.Label(inputs,height=3, width=50,bg="#943340",font=mini_text_font, textvariable=text_2)
pretrained_model_path_text.grid(row=1, column=1)
pretrained_model_path_button = tk.Button(inputs,text="Select trained model",font=("Arial",9),width=14,command=lambda : self.__select_pretrained_model_path(text_2)).grid(row=1,column=0)
# Number of Regions of Interest (RoIs)
num_rois_text = tk.Label(inputs,text="# RoIs",height=3, width=15,bg="#943340",font=text_font).grid(row=2)
num_rois_input = tk.Entry(inputs,font=large_font)
num_rois_input.grid(row=2, column=1)
# Number of epochs
num_epochs_text = tk.Label(inputs,text="* Epochs",height=3, width=15,bg="#943340",font=text_font).grid(row=3)
num_epochs_input = tk.Entry(inputs,font=large_font)
num_epochs_input.grid(row=3, column=1)
# Learning rate
learning_rate_text = tk.Label(inputs,text="* learning rate",height=3, width=15,bg="#943340",font=text_font).grid(row=4)
learning_rate_input = tk.Entry(inputs,font=large_font)
learning_rate_input.grid(row=4, column=1)
# Check - use_gpu
use_gpu_text = tk.Label(inputs,text="Use GPU",height=3, width=15,bg="#943340",font=text_font).grid(row=5)
use_gpu_val = IntVar()
use_gpu_check = Checkbutton(inputs, variable=use_gpu_val)
use_gpu_check.grid(row=5, column=1)
#start button
start_button = tk.Button(
inputs,
text="Start",
font=("Arial",15),
width=10,
command=lambda :
self.start_train_action(
[dataset_path_text.cget("text"),num_rois_input.get(), pretrained_model_path_text.cget("text"), num_epochs_input.get(), learning_rate_input.get(), use_gpu_val.get()]
)
)
start_button.grid(row=6,column=1)
# treeview = ttk.Treeview(window)
# treeview.pack(side = tk.LEFT,padx = 50)
def __select_dataset_path(self, label):
aux = filedialog.askdirectory()
label.set(aux)
def __select_pretrained_model_path(self, label):
aux = filedialog.askopenfilename(
title = "Select file",
filetypes = (("hdf5 files","*.hdf5"), ("h5 files","*.h5"))
)
label.set(aux)
def __select_image(self):
self.selected_image = filedialog.askopenfilename(
title="Select image",
filetypes=(
("all files","*.*"),
("jpeg files",("*.jpg, *.jpeg")),
("png files","*.png")
)
)
def __validate_train_inputs(self, args):
error_msg = ""
dataset_path = args[0]
num_rois = args[1]
pretrained_model_path = args[2]
num_epochs = args[3]
learning_rate = args[4]
vali = 5 * [True]
if not(os.path.isdir(dataset_path)):
vali[0] = False
error_msg += "Dataset path not valid"
if(num_rois != ""):
if(self.__represents_type(num_rois, "int")):
if(int(num_rois) <= 3):
vali[1] = False
error_msg += "\nNum rois not valid"
else:
vali[1] = False
error_msg += "\nNum rois must be a integer"
if(pretrained_model_path != ""):
if not(os.path.isfile(pretrained_model_path)):
vali[2] = False
error_msg += "\nPre-trained model path not valid"
if(num_epochs != ""):
if(self.__represents_type(num_epochs, "int")):
if(int(num_epochs) < 1):
vali[3] = False
error_msg += "\nNum epochs not valid"
else:
vali[3] = False
error_msg += "\nNum epochs must be a integer"
if(learning_rate != ""):
if(self.__represents_type(learning_rate, "float")):
if(float(learning_rate) <= 0.0):
vali[4] = False
error_msg += "\nLearning rate not valid"
else:
vali[4] = False
error_msg += "\nLearning rate must be a real number"
ans = vali[0] and vali[1] and vali[2] and vali[3] and vali[4]
# Display error message box
if not(ans):
messagebox.showerror("Error(s)", error_msg)
return ans
def __validate_predict_inputs(self, args):
error_msg = ""
folder_training_results = args[0]
image_path = args[1]
# args[2] => use_gpu, domain limited, not necessary validation
num_rois = args[3]
if(num_rois == "Type number of RoIs"):
num_rois = "32"
vali = 4 * [True]
model_path = self.models_path + folder_training_results
# Validation
# Path of model
if not(os.path.isdir(model_path)):
vali[0] = False
error_msg += "Training results folder not valid"
else:
file = self.__search_model(model_path)
if(file == "-1"):
vali[0] = False
error_msg += "Training results folder not contains any model"
# Image path
if(os.path.isfile(image_path)):
if('.' in image_path):
format = image_path.split(".")
format = format[len(format)-1]
if(format != 'png' and format != 'jpg' and format != 'jpeg'):
vali[1] = False
error_msg += "\nFormat image not valid"
else:
vali[1] = False
error_msg += "\nFormat image not valid"
else:
vali[1] = False
error_msg += "\nImage not found"
# Number of Regions of Interest (RoIs)
if(num_rois != ""):
if(self.__represents_type(num_rois, "int")):
if(int(num_rois) <= 3):
vali[1] = False
error_msg += "\nNum rois not valid"
else:
vali[1] = False
error_msg += "\nNum rois must be a integer"
ans = vali[0] and vali[1] and vali[3]
# Display error message box
if not(ans):
messagebox.showerror("Error(s)", error_msg)
return ans
def __search_model(self, model_path):
files = [f for f in os.listdir(model_path) if os.path.isfile(os.path.join(model_path, f))]
validated_file = ""
for file in files:
if('.' in file):
format = file.split(".")
format = format[len(format)-1]
if(format == 'hdf5' or format == 'h5'):
validated_file = file
break
if(validated_file == ""):
return "-1"
else:
# Return the first model founded
return validated_file
def __represents_type(self, var, type):
if(type == "int"):
try:
int(var)
return True
except ValueError:
return False
elif(type == "float"):
try:
float(var)
return True
except ValueError:
return False
elif(type == "str"):
try:
str(var)
return True
except ValueError:
return False
else:
return False
def __get_results_path(self):
results_dir = os.listdir(self.RESULTS_PATH)
n = len(results_dir) + 1
while(True):
new_dir = "results_"+str(n) + "/"
if(os.path.isdir(self.RESULTS_PATH + new_dir)):
n += 1
else:
break
print('Results will be stored in: ' + new_dir)
return new_dir
def recognize_flowchart_window(self):
""" Recognize flowchart window."""
window = tk.Toplevel(self.master)
header = tk.Frame(window)
header.config(width="400",height="50",bg="#857074")
header.pack(fill="y")
header.pack_propagate(False)
title = tk.Label(header,text="Recognize flowchart",font=("Arial",20),bg="#857074")
title.pack(pady = 5)
window.pack_propagate(False)
window.config(width="400", height="470",bg="#943340")
# Diferent models to select
model_folder_list = os.listdir(self.models_path)
model_folder_list.append("Select a folder of training results")
model_folder_list.reverse()
combobox_model_folder = ttk.Combobox(window,values = model_folder_list, width =27,font=("Arial",13))
combobox_model_folder.pack(pady=40)
combobox_model_folder.current(0)
# Button for select image
button_image = tk.Button(window,text="Select image",width=18,height=2,font=("Arial",12), command=self.__select_image)
button_image.pack(pady=10)
# Use GPU
use_gpu_val = IntVar()
use_gpu_check = Checkbutton(window, text="Use GPU", variable=use_gpu_val,width=20,height=2,background="#943340")
use_gpu_check.pack(pady=10)
# Number of RoIs
num_rois_lbl = tk.Label(window,text="Optional, default: 32",height=2, width=20,bg="#943340",font=("Arial",10))
num_rois_lbl.pack()
num_rois_input = tk.Entry(window,font=("Arial",12), width=20)
num_rois_input.insert(0, 'Type number of RoIs')
num_rois_input.bind('<FocusIn>', lambda args: num_rois_input.delete('0', 'end'))
num_rois_input.bind('<FocusOut>', lambda x: num_rois_input.insert('0', 'Type number of RoIs') if not num_rois_input.get() else 0)
num_rois_input.pack(pady=10)
# Button for start to predict
button_predict = tk.Button(
window,
text="Predict",
width=20,
height=2,
font=("Arial",15),
background="green",
command=lambda :
self.predict(
[
combobox_model_folder.get(),
self.selected_image,
use_gpu_val.get(),
num_rois_input.get()
],window
)
)
button_predict.pack(pady=20)
def __continue_process(self,text_nodes,shape_nodes,image_path,window):
if window != None:
window.destroy()
window.update()
graph = Graph(text_nodes,shape_nodes)
flow = graph.generate_graph()
# call function to traslate to code and flowchart
results_path = self.__get_results_path()
os.mkdir(self.RESULTS_PATH+results_path)
cg = CodeGenerator(graph,results_path)
cg.generate_code(graph.find_first_state(),-1)
fg = FlowchartGenerator(graph,flow,results_path)
fg.generate_flowchart()
self.show_results(results_path)
def __train_text_model(self):
if(os.path.isfile(NEW_SOURCE_PATH)):
tc = TextClassifier()
tc.train_new_data()
tc = None
else:
messagebox.showerror("Error", "there are no data to train model")
def __train_now(self,images,words,text_nodes,shape_nodes,image_path,window):
window.destroy()
window.update()
self.ds.save_new_data(images,words)
self.tc.train_new_data()
os.remove(NEW_SOURCE_PATH)
self.__continue_process(text_nodes,shape_nodes,image_path,None)
def __train_or_show(self,new_texts,text_nodes,shape_nodes,image_path,images,window):
window.destroy()
window.update()
for node,text in zip(text_nodes,new_texts):
node.set_text(text)
window = tk.Toplevel(self.master)
header = tk.Frame(window)
header.config(width="400",height="50",bg="#857074")
header.pack(fill="y")
header.pack_propagate(False)
title = tk.Label(header,text="",font=("Arial",20),bg="#857074")
title.pack(pady = 5)
window.pack_propagate(False)
window.config(width="400", height="200",bg="#943340")
train_now = tk.Button(window,text="Train text model now",font=("Arial",15),
background="green",command = lambda:self.__train_now(images,new_texts,text_nodes,shape_nodes,image_path,window))
train_now.pack(pady = 10)
train_after = tk.Button(window,text="Train text model later",font=("Arial",15),
background="green",command = lambda:self.__continue_process(text_nodes,shape_nodes,image_path,window))
train_after.pack(pady = 10)
def edit_text(self,text_nodes,shape_nodes,image_path,window):
window.destroy()
window.update()
text_nodes = list(text_nodes)
window = tk.Toplevel(self.master)
header = tk.Frame(window)
header.config(width="400",height="50",bg="#857074")
header.pack(fill="y")
header.pack_propagate(False)
title = tk.Label(header,text="Edit text",font=("Arial",20),bg="#857074")
title.pack(pady = 5)
message = tk.Label(window,text="If text prediction are not aceptable please edit it",font=("Arial",12),bg="#857074")
message.pack(pady = 5)
window.pack_propagate(False)
window.config(width="400", height="600",bg="#943340")
entrys = []
aux = [x[0] for x in text_nodes]
imgs = [x[1] for x in text_nodes]
continue_btn = tk.Button(window,text = "Continue",background="green",command = lambda: self.__train_or_show([x.get() for x in entrys],aux,shape_nodes,image_path,imgs,window))
continue_btn.pack()
display = tk.Frame(window)
display.pack(fill="x",pady=10,side=tk.LEFT,anchor=tk.N)
display.config(bg="#454545",width="700",height="400")
scframe = VerticalScrolledFrame(display)
scframe.pack()
for node in text_nodes:
index = tk.Frame(scframe.interior,relief = tk.RAISED)
index.pack(pady = 15)
imgL = ImageTk.PhotoImage(image = Image.fromarray(node[1]))
img = tk.Label(index,image = imgL)
img.image = imgL
img.pack()
txt = tk.Entry(index, width=100,font="Arial")
entrys.append(txt)
txt.insert(0,str(node[0].get_text()))
txt.pack()
def predict(self, args,window):
if(self.__validate_predict_inputs(args)):
#model = self.__search_model(self.models_path + args[0])
model = self.models_path + args[0]
image_path = args[1]
use_gpu = True if args[2] else False
num_rois = 32 if args[3] == 'Type number of RoIs' else int(args[3])
#Get the image
image = cv2.imread(image_path)
#Text segmentation(areas)
#Text predict(text value)
#[Node..........]
sc = ShapeClassifier(results_path = model,
use_gpu = use_gpu,
num_rois = num_rois,
bbox_threshold = 0.51,
overlap_thresh_1 = 0.9,
overlap_thresh_2 = 0.2)
print("Detecting the shapes and connectors...")
shape_nodes = sc.predict(image, display_image=True)
#build the graph
print("Detecting text")
self.tc = TextClassifier()
text_nodes = self.tc.recognize(image_path)
window.destroy()
window.update()
#collapse text nodes
self.edit_text(text_nodes,shape_nodes,image_path,window)
def show_results(self,results_path):
window = tk.Toplevel(self.master)
header = tk.Frame(window)
header.config(width="820",height="80",bg="#857074")
header.pack(fill="y")
header.pack_propagate(False)
title = tk.Label(header,text="Results",font=("Arial",50),bg="#857074")
title.pack(pady = 5)
window.pack_propagate(False)
window.config(width="820", height="660",bg="#943340")
window.title("Results")
# code visualization
code_panel = tk.Text(window,width=30,height=21,font=("Arial",15),bg="#ccc5c3")
code_panel.pack(side = tk.LEFT,padx = 30)
code_text = open("results/"+results_path+"code.c",'r')
count = 0
while True:
count += 1
line = code_text.readline()
if not line:
break
code_panel.insert(tk.INSERT,line)
code_panel.config(state=tk.DISABLED)
# Image
img = Image.open("results/"+results_path+"flowchart.png")
img = img.resize((400,500), Image.ANTIALIAS)
imgL = ImageTk.PhotoImage(img)
panel = tk.Label(window, image=imgL)
panel.image = imgL
panel.pack(side=tk.LEFT)
# Compile code source
filepath = 'results/' + results_path + "code.c"
objectpath = 'results/' + results_path + 'code.o'
os.system('gcc -Wall ' + filepath + ' -o ' + objectpath)
os.system('echo "Compilation done!"')
root = tk.Tk()
# get input args
parser = argparse.ArgumentParser()
parser.add_argument(
"--env", type=str, required=False, default="handwritten-flowchart-recog"
)
args = parser.parse_args()
conda_env_name = args.env
print(f"Using Conda env: {conda_env_name}")
my_gui = HandlerGUI(root, conda_env_name)