diff --git a/Semana 1/S1TC1_arboles_ensamblajes.ipynb b/Semana 1/S1TC1_arboles_ensamblajes.ipynb index 8bdc9bc..2212c46 100644 --- a/Semana 1/S1TC1_arboles_ensamblajes.ipynb +++ b/Semana 1/S1TC1_arboles_ensamblajes.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -59,9 +59,162 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
seasonholidayworkingdayweathertempatemphumiditywindspeedcasualregisteredtotalhour
datetime
2011-01-01 00:00:0010019.8414.395810.0313160
2011-01-01 01:00:0010019.0213.635800.0832401
2011-01-01 02:00:0010019.0213.635800.0527322
2011-01-01 03:00:0010019.8414.395750.0310133
2011-01-01 04:00:0010019.8414.395750.00114
\n", + "
" + ], + "text/plain": [ + " season holiday workingday weather temp atemp \\\n", + "datetime \n", + "2011-01-01 00:00:00 1 0 0 1 9.84 14.395 \n", + "2011-01-01 01:00:00 1 0 0 1 9.02 13.635 \n", + "2011-01-01 02:00:00 1 0 0 1 9.02 13.635 \n", + "2011-01-01 03:00:00 1 0 0 1 9.84 14.395 \n", + "2011-01-01 04:00:00 1 0 0 1 9.84 14.395 \n", + "\n", + " humidity windspeed casual registered total hour \n", + "datetime \n", + "2011-01-01 00:00:00 81 0.0 3 13 16 0 \n", + "2011-01-01 01:00:00 80 0.0 8 32 40 1 \n", + "2011-01-01 02:00:00 80 0.0 5 27 32 2 \n", + "2011-01-01 03:00:00 75 0.0 3 10 13 3 \n", + "2011-01-01 04:00:00 75 0.0 0 1 1 4 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Lectura de la información de archivo .csv\n", "bikes = pd.read_csv('https://raw.githubusercontent.com/davidzarruk/MIAD_ML_NLP_2023/main/datasets/bikeshare.csv', index_col='datetime', parse_dates=True)\n", @@ -87,24 +240,78 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "count 10886.000000\n", + "mean 2.506614\n", + "std 1.116174\n", + "min 1.000000\n", + "25% 2.000000\n", + "50% 3.000000\n", + "75% 4.000000\n", + "max 4.000000\n", + "Name: season, dtype: float64" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Celda 1.1\n", - "bikes.groupby('season').total.mean()" + "bikes.groupby('season').total.mean()\n", + "bikes.season.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos inferir que la mayoría de las observaciones en el conjunto de datos de Capital Bikeshare pertenecen a la temporada de primavera, verano y otoño, y que la variable \"season\" es una variable categórica con cuatro posibles valores. La media es de 2.506614, lo que indica que hay más observaciones en primavera y verano que en invierno y otoño. La desviación estándar es de 1.116174, lo que sugiere que la distribución de la variable \"season\" está bastante dispersa y que hay una variación significativa en el número de alquileres de bicicletas en diferentes estaciones." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "count 10886.000000\n", + "mean 11.541613\n", + "std 6.915838\n", + "min 0.000000\n", + "25% 6.000000\n", + "50% 12.000000\n", + "75% 18.000000\n", + "max 23.000000\n", + "Name: hour, dtype: float64" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Celda 1.2\n", - "bikes.groupby('hour').total.mean()" + "bikes.groupby('hour').total.mean()\n", + "bikes.hour.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Podemos inferir que la variable \"hour\" en este conjunto de datos representa la hora del día en que se alquiló la bicicleta, y que hay una distribución uniforme de los alquileres de bicicletas a lo largo del día. El valor medio de 11.541613 sugiere que hay una distribución uniforme de los alquileres de bicicletas a lo largo del día, aunque es posible que haya algunas horas pico durante el día. Los valores de cuartil también sugieren una distribución uniforme, con el 25% de las observaciones cayendo en las primeras 6 horas del día, el 50% en las primeras 12 horas del día y el 75% en las primeras 18 horas del día." ] }, { @@ -118,9 +325,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSbklEQVR4nO3deXiU1d0+8PuZNdtksmeyERJ2EkB2AVmUpeKCiBVa1Epr+9YKtKn2pVXeFmwtWFpcKlVr60+xiGiruLQWCShRRJSdbOwJ2fdlss76/P6YzJCEBLLMzDPL/bmuuZCZJ5lvDJO5c873nCOIoiiCiIiIyIPIpC6AiIiIqDsGFCIiIvI4DChERETkcRhQiIiIyOMwoBAREZHHYUAhIiIij8OAQkRERB5HIXUBA2G1WlFWVgaNRgNBEKQuh4iIiPpAFEU0NTUhPj4eMtm1x0i8MqCUlZUhKSlJ6jKIiIhoAIqLi5GYmHjNa7wyoGg0GgC2LzA0NFTiaoiIiKgv9Ho9kpKSHO/j1+KVAcU+rRMaGsqAQkRE5GX60p7BJlkiIiLyOAwoRERE5HEYUIiIiMjjMKAQERGRx2FAISIiIo/DgEJEREQehwGFiIiIPA4DChEREXkcBhQiIiLyOAwoRERE5HEYUIiIiMjjMKAQERGRx2FAISKiARNFEe0mi9RlkA9iQCEiogH7yY7jmL5pP/LK9FKXQj6GAYWIiAbEZLHi0zNVaGwz4We7TnAkhZyKAYWIiAakoKYFRosVAHC+qhmbP86XuCLyJQwoREQ0IGcqmgAAEcEqAMD2ry7j0zOVUpZEPoQBhYiIBuRsha3v5FtpOnx/1lAAwP/+8zSqmwwSVkW+ggGFiIgG5GzHCMponQa/vHU0Rus0qG0x4n//dQqiKEpcHXk7BhQiIhqQ/PIrASVAKcfz35kIlUKGA2er8cZXlyWujrwdAwoREfVbU7sJpQ1tAIDRulAAwCidBk8sHg0A+P3H+ThX2SRZfeT9GFCIiKjf7OFDFxoAbZDScf+DM4di7shoGM1W/PQtLj2mgWNAISKifnNM78RputwvCAL+eO94RAarcKaiCX/85KwU5ZEPYEAhIqJ+szfIjtJprnosRhOALd8eDwB49WABPj9X7dbayDcwoBARUb91XsHTk/ljYvG9GckAgMf+eQq1zVx6TP3DgEJERP0iiiLyO/ZAsTfI9uSJ28ZgeEwIqpsM+OW72Vx6TP3CgEJERP1S3tiOpnYzFDIBw6JDer3OtvT4BqjkMuzLr8TOb4rcWCV5OwYUIiLqF/v0Tmp0MFSKa7+NpMVrse7WUQCA3/07Dxeqml1eH/kGBhQiIuqXvkzvdPaDWSm4aXgU2k1W/GzXCRjNVleWRz6CAYWIiPrlWit4eiKTCdi6fALCg5TILdNj614uPabrY0AhIqJ+ud4Knp7Ehgbg6XtsS4//+vklfHmhxiW1ke9gQCEioj4zmq2OPpLRcX2b4rH7VpoO3502BADw2DunUN9idHp95DsYUIiIqM8u1TTDbBWhCVAgXhvQ74//9R1jkBoVjAp9O57YzaXH1DsGFCIi6jNH/0msBoIg9Pvjg1QKPP+diVDIBPw3pwL/PFri7BLJRzCgEBFRn/V2Bk9/jEvU4rFFtqXHGz/KRUFNi1NqI9/CgEJERH12tmOJ8ag+LjHuzf/MScWNqRFoNVqQsesETBYuPaauGFCIiKjPBrKCpydymYBnlt8AbaASp0oa8dy+c84oj3wIAwoREfVJY6sJZY3tAPq+B8q1xIcFYtPd4wAALx64iK8v1Q76c5LvYEAhIqI+OVtpGz1JCAtEaIDSKZ/z9vFxuHdyIkQR+PnbJ9HYZnLK5yXvx4BCRER9cqX/ZPCjJ51tWJKG5MgglDW2Yz2XHlMHBhQiIuqTfCf1n3QXolbguRU3QC4T8O/T5dh9otSpn5+8EwMKERH1SX/P4OmPiUPCkTF/BADghU8vOP3zk/dhQCEiousSRbHTCp7BLTHuzfdmDIUgAAU1LahuMrjkOch7MKAQEdF1ldS3odlghlIuIDU62CXPoQ1SYlSsbXTm2OU6lzwHeQ8GFCIiui776Mmw6BAo5a5765icHA4AOFJY77LnIO/AgEJERNdlX2Ls7AbZ7qYOjQAAHC3kCIq/Y0AhIqLryi93zhb31zNlqG0EJbdMj1aj2aXPRZ6NAYWIiK7L0SA7iEMC+yIhLBBx2gCYrSJOFje49LnIszGgEBHRNRnMFlzqOHHY1VM8giA4+lCOsg/FrzGgEBHRNV2oaobFKiI0QAFdaIDLn8/eh3KEfSh+jQGFiIiu6cr0TigEQXD589n7UE4UNcBi5bb3/ooBhYiIrumsi7a4781oXShC1Ao0G8w403H+D/kfBhQiIrqmfBducd8TuUzAxCFhANiH4s8YUIiI6Jrspxi7aov7nrAPhRhQiIioV/UtRlTqbefiuGsEBbjSh3K0sB6iyD4Uf8SAQkREvTrTMb2TGB6IELXCbc97Q1IYFDIBFfp2lDa0ue15yXMwoBARUa+kmN4BgCCVAmnxtudkH4p/YkAhIqJeuesMnp5MYR+KX2NAISKiXuWXu3cFT2dTO/pQjl3mCIo/YkAhIqIeWa0iznWMoIxx8Rk8PZmcbBtBOVvZhMZWk9ufn6Q1qICyefNmCIKAjIwMx32iKGLjxo2Ij49HYGAg5s2bh9zc3C4fZzAYsHbtWkRFRSE4OBhLlixBSUnJYEohIiInK6lvQ6vRApVChqGRwW5//miNGkMjgyCKwPEijqL4mwEHlCNHjuCVV17B+PHju9y/ZcsWPPPMM9i2bRuOHDkCnU6HhQsXoqmpyXFNRkYGdu/ejV27duHgwYNobm7GHXfcAYvFMvCvhIiInCq/o0F2eHQIFHJpBtzZh+K/BvQvrrm5Gffddx/+9re/ITw83HG/KIp47rnnsH79eixbtgzp6enYvn07WltbsXPnTgBAY2MjXn31VWzduhULFizAxIkTsWPHDmRnZ2Pfvn3O+aqIiGjQrpzB4/7pHTt7H8pR9qH4nQEFlNWrV+P222/HggULutxfUFCAiooKLFq0yHGfWq3G3LlzcejQIQDAsWPHYDKZulwTHx+P9PR0xzXdGQwG6PX6LjciInItd5/B0xP7CMqp4gYYzBxl9yf9Dii7du3C8ePHsXnz5qseq6ioAADExsZ2uT82NtbxWEVFBVQqVZeRl+7XdLd582ZotVrHLSkpqb9lExFRP9kP6hvl5j1QOkuNCkZEsAoGsxU5pfzl1J/0K6AUFxfjZz/7GXbs2IGAgIBer+t+HLcoitc9ovta1zz++ONobGx03IqLi/tTNhER9VO7yYKCmhYAwBgJR1AEQcDkZPu29+xD8Sf9CijHjh1DVVUVJk+eDIVCAYVCgaysLPz5z3+GQqFwjJx0HwmpqqpyPKbT6WA0GlFfX9/rNd2p1WqEhoZ2uRERketcqGqGVQTCg5SI1qglrYV9KP6pXwFl/vz5yM7OxsmTJx23KVOm4L777sPJkyeRmpoKnU6HzMxMx8cYjUZkZWVh5syZAIDJkydDqVR2uaa8vBw5OTmOa4iISFr2M3hG6TTXHQF3NXsfytHCOh4c6Ef6dfKTRqNBenp6l/uCg4MRGRnpuD8jIwObNm3CiBEjMGLECGzatAlBQUFYuXIlAECr1eKhhx7CY489hsjISEREROAXv/gFxo0bd1XTLRERSeNMuTRn8PQkPV4LtUKG+lYTLla3YHhMiNQlkRs4/WjKdevWoa2tDY888gjq6+sxffp07N27FxrNlTnMZ599FgqFAsuXL0dbWxvmz5+P119/HXK53NnlEBHRAEh5Bk93KoUME5LC8E1BHY4W1jGg+AlB9MLxMr1eD61Wi8bGRvajEBG5wNTf70N1kwG7H5mJiUPCr/8BLvbHT87gL59dxLcnJ+JP906QuhwaoP68f/MsHiIi6qK22YDqJgMAYGSs9CMoQNc+FPIPDChERNSFfYO25MggBKud3gkwIJOGhEMQgMLaVlQ1tUtdDrkBAwoREXXhWMHjIaMnAKANVDrqOVbI5cb+gAGFiIi6sO8g6wkNsp1N4X4ofoUBhYiIurhySKBnLUKYyj4Uv8KAQkREDhariHOVzQBsm7R5EvuW9zllerQazRJXQ67GgEJERA5Fda1oM1mgVsgwNDJY6nK6SAgLRJw2ABariJNFDVKXQy7GgEJERA5nO/pPRsZqIJdJu8V9d4IgXFluzD4Un8eAQkREDp3P4PFE9oMDj7APxecxoBARkcOZcs/Z4r4n9j6U45frYbZYJa6GXIkBhYiIHK6cweNZK3jsRutCEaJWoMVocYz2kG9iQCEiIgBAm9GCwtoWAJ47xSOXCZjUMYpyjH0oPo0BhYiIAADnKpsgikBksArRGrXU5fRqajL7UPwBAwoREQHovEGbZ46e2E3u1CgriqLE1ZCrMKAQERGAzmfweGb/id0NSWFQyARU6g0oqW+TuhxyEQYUIiIC4Lln8HQXpFIgLUELgH0ovowBhYiIAHjPFA/APhR/wIBCRESobjKgtsUIQQBGxHh+QHHsKFvIERRfxYBCRESO6Z2hkcEIVMklrub67Bu2natqQmOrSeJqyBUYUIgkVFTbinEbP8Gmj/OlLoX8nGN6x8P7T+yiNWqkRAVDFIHjRRxF8UUMKEQS+vRMJZrazXj/RKnUpZCf8/QzeHoyhX0oPo0BhUhC+R3nnlQ1GVDdZJC4GvJn3rKCp7Op7EPxaQwoRBKyvykAQF65/hpXErmOxSrifGUzAGCUh57B0xP7hm2nShpgMFskroacjQGFSCIWq+g4mA0AcssaJayG/FlhbQsMZisClXIMiQiSupw+S40KRkSwCgazFTmlDPi+hgGFSCKXa1vQbrpyXHxuGX/AkjTOdEw1jowNgVwmSFxN3wmC4OhDOco+FJ/DgEIkEXtToqLjDSGPAYUkcrZjqtGbGmTt7H0oR9iH4nMYUIgkcqaj5+SW0TEAgIKaFjQbzFKWRH7qjGOJsff0n9jZ+1COXebBgb6GAYVIInkdw+ozh0UiThsAAMhnoyxJ4IyX7YHSWXq8FmqFDPWtJlysbpG6HHIiBhQiiTiWdcaFYmyc7TfX3FI2ypJ7tRjMKKprBeCdUzwqhQw3JIUBYB+Kr2FAIZKAvt3kOCZ+tE6DtPiOgMI+FHKzcx0ryaI1akSGqCWuZmDYh+KbGFCIJHCuY0g9ThuAsCAVxsbbjo5nQCF38+bpHbvOfSjkOxhQiCSQ3+1NwT6Ccr6qCUaztdePI3I2+xk8o2K9N6BMGhIOQQAKa1tR1dQudTnkJAwoRBKwr+AZ3dF7khgeCG2gEiaL6BhyJ3KHzr1Q3kobqHQErGOc5vEZDChEErAPq4/peFMQBMHRKMv9UMhdRFH0iSkegH0ovogBhcjNrFbRMYIyptObwpVGWa7kIfeoajKgodUEmQAMjwmRupxBmcI+FJ/DgELkZiX1bWgxWqCSy5ASFey4Py2BK3nIveyjJylRwQhQyiWuZnCmdIyg5JTp0Wrkhoe+gAGFyM3yO+b8R8SGQCG/8hJM61jJk1+uh9XKHTHJ9exb3HvjDrLdJYQFIl4bAItVxMmiBqnLISdgQCFyM/vBbN3fFFKjgqFWyNBitKCwljtikuvZ/y164wZtPZnCPhSfwoBC5Gb2VRNj4rq+KSjkMsdKCk7zkDv4SoOsnb0P5Sj7UHwCAwqRm3VfwdMZd5QldzFbrLhQ1QzAN6Z4AGBKsm0E5fjlepgt3E/I2zGgELlRq9HsmL7p6bdWruQhdymoaYHRYkWQSo7E8ECpy3GKUToNNGoFWowWxy8C5L0YUIjc6GxFE0Sx93NP7I2yeWV6Hh1PLmV/Ax+l00AmEySuxjnkMgGTkjumeXhwoNdjQCFyo+vN+Y/WaSCXCahtMaJSb3BnaeRnzvpY/4ndFHtAucxGWW/HgELkRo4N2nrZVjxAKcewaNveKJzmIVeyN2t78xk8PbmykqeOo5BejgGFyI26HxLYkzSebExu4BjN8+IzeHpyQ1IYFDIBlXoDSurbpC6HBoEBhchNRPHKFvfXWjXBRllytaZ2k+PN29emeAJVcqQn2EI+lxt7NwYUIjcpb2yHvt0MhUy45rknY7nUmFzMfmJ2bKgaYUEqiatxPkcfCjds82oMKERukt8xejI8JgQqRe8vvbQ4229/JfVtaGw1uaU28i9XVvD41vSOnb0PhQHFuzGgELlJX3ft1AYpHftS5JZzmoecz76CZ4yPTe/Y2XeUPVvZxJDvxRhQiNzEPoLSl6ZEex9KHqd5yAV87Qye7qJC1EjtOCn8WBH7ULwVAwqRm/Tn3BOu5CFXEUXxyhJjHw0oADCZfShejwGFyA3aTRZcqrade9LbHiidcSUPuUqF3tasLb9Os7a3m8o+FK/HgELkBheqmmEVgfAgJWI0V29x3519BOVidQvaTRZXl0d+xD69kxoVDLVCLnE1rmPvQzlZ0gCDma8hb8SAQuQGeZ12kBWE6597EhuqRmSwCharyEPPyKmOdWwB78vTOwCQEhWMyGAVjGYrcko5EumNGFCI3MD+W2tfj7UXBKHTfij84UrOYTBbsOtIEQDgW2k6iatxLUEQHKMohy7USlwNDQQDCpEb2JsSR8f1/bdWNsqSs310qhw1zUboQgNwa7pvBxQAuHlUDAAgM79S4kpoIBhQiFxMFEXHEuMx/dgYK407ypITiaKI174sAAA8MCMZSrnv//ifPyYWggCcLmlEeSPP5fE2vv8vlEhi1U0G1LeaIBOAEbF9XzVhDyhnyvUwW6yuKo/8xJHCeuSW6aFWyLBy2hCpy3GLaI0ak4bYpnn25XEUxdswoBC5mP0E45SoYAQo+75qYmhkMIJVchjMVlyqaXFVeeQn7KMnyyYlIDzY987f6c2isbEAgL0MKF6HAYXIxc50WsHTHzKZ4PgYNsrSYBTXteKT3AoAwKqZKRJX416LOpqBv7pYi8Y2bnvvTRhQiFwsf4ABBejUh1LKPhQauH8cvgyrCMwaHunzy4u7S4kKxvCYEJitIg6crZK6HOoHBhQiF+vPFvfdcSUPDVar0Yxd39iWFn/fz0ZP7DjN4536FVBeeukljB8/HqGhoQgNDcWMGTPw3//+1/G4KIrYuHEj4uPjERgYiHnz5iE3N7fL5zAYDFi7di2ioqIQHByMJUuWoKSkxDlfDZGHMZqtuFBl2+K+L4cEdtd5LxRRFJ1aG/mHd4+XQt9uRnJkEG4ZHSN1OZJY2BFQss5Wc1dZL9KvgJKYmIinn34aR48exdGjR3HLLbfgrrvucoSQLVu24JlnnsG2bdtw5MgR6HQ6LFy4EE1NV3bCzMjIwO7du7Fr1y4cPHgQzc3NuOOOO2Cx8B8N+Z6L1c0wW0VoAhSI1wb0++NHxmqglAvQt5tRUs9lktQ/VuuVpcWrZg6FTHb9XYx90YTEMMRo1Gg2mPHVRW7a5i36FVDuvPNO3HbbbRg5ciRGjhyJ3//+9wgJCcHhw4chiiKee+45rF+/HsuWLUN6ejq2b9+O1tZW7Ny5EwDQ2NiIV199FVu3bsWCBQswceJE7NixA9nZ2di3b59LvkAiKdk3aBuj69sW992pFDKMiLFNDXGah/rr8/PVuFTdghC1At+enCh1OZKRyQTHKAqnebzHgHtQLBYLdu3ahZaWFsyYMQMFBQWoqKjAokWLHNeo1WrMnTsXhw4dAgAcO3YMJpOpyzXx8fFIT093XNMTg8EAvV7f5UbkDRxb3PdjB9nu7I2yeVzJQ/302peFAIDlU5KgCVBKW4zE7AFlX14lrFZOl3qDfgeU7OxshISEQK1W4+GHH8bu3bsxduxYVFTYlrDFxsZ2uT42NtbxWEVFBVQqFcLDw3u9piebN2+GVqt13JKSkvpbNpEk8gaxgseOO8rSQFyoakbWuWoIgm16x9/NGBaJELUCVU0GnCppkLoc6oN+B5RRo0bh5MmTOHz4MH7yk5/gwQcfRF5enuPx7sPYoihed2j7etc8/vjjaGxsdNyKi4v7WzaRJAazgscuLYEreaj/th8qBADMHx2LIZFB0hbjAdQKOeaNigYAZHKaxyv0O6CoVCoMHz4cU6ZMwebNmzFhwgQ8//zz0Olsm+F0HwmpqqpyjKrodDoYjUbU19f3ek1P1Gq1Y+WQ/Ubk6WqaDahuMkAQbM2uAzUmLhSCAFTo21HbbHBiheSrGltN+Ncx2+rIH8waKm0xHoR9KN5l0PugiKIIg8GAlJQU6HQ6ZGZmOh4zGo3IysrCzJkzAQCTJ0+GUqnsck15eTlycnIc1xD5irMdoyfJEUEIVisG/HlC1AoMjQwGwFEU6pu3jxahzWTBaJ0GM4ZFSl2Ox7h5dAyUcgEXqppxqbpZ6nLoOvoVUJ544gl88cUXKCwsRHZ2NtavX48DBw7gvvvugyAIyMjIwKZNm7B7927k5ORg1apVCAoKwsqVKwEAWq0WDz30EB577DHs378fJ06cwP33349x48ZhwYIFLvkCiaRi30F2dD9OMO7NWPahUB+ZLVZsP3QZAPD9WUMHtHrMV4UGKHFjqi2wcZrH8/Xr17rKyko88MADKC8vh1arxfjx47Fnzx4sXLgQALBu3Tq0tbXhkUceQX19PaZPn469e/dCo7kyvP3ss89CoVBg+fLlaGtrw/z58/H6669DLu/7IWpE3sDRfzKIFTx2afGh+M/pcp7JQ9e1L78SpQ1tCA9S4q4bEqQux+MsGhuLL87XYG9eJX48d5jU5dA19CugvPrqq9d8XBAEbNy4ERs3buz1moCAALzwwgt44YUX+vPURF7HsQfKIFbw2Nm3vM/jCApdx/87WAgAWDl9SL9Oz/YXC8bG4tcf5OJ4UT2qmwyI1qilLol6wbN4iFzAbLHiXKVtjnuME6Z47EuNC2pb0GIwD/rzkW/KKW3EN4V1UMgEPHDjUKnL8Uhx2kCMT9RCFIH9+Zzm8WQMKEQuUFDTAqPZimCVHInhgYP+fFEhasSGqiGKV0ZmiLqzb8x227g46AZwtIK/4OGB3oEBhcgF8jv6T0bpNE47/4QnG9O1VDcZ8NGpMgC25ljq3cKxtm0xDl6o4YikB2NAIXKBM/YVPE7oP7Fz7ChbyoBCV3vz68swWqy4ISkME4eEX/8D/NjI2BAkRwbBaLbi83PVUpdDvWBAIXIB+wqeMYPYQbY7R0Ap50oe6spgtmDH4SIAwA9uSpG4Gs8nCIJjmofLjT0XAwqRC7hmBMU2xXOuohkmi9Vpn5e8339Ol6Om2QBdaAAWp+ukLscr2Kd59p+p4uvJQzGgEDlZQ6sRZY3tAGw9KM6SGB6I0AAFjBYrzldyF0yyEUUR/+/LAgDAAzOSoZTzx3pfTE4OR0SwCo1tJhwpqJO6HOoB/yUTOZl9escWKJx3xL0gCJ12lOU0D9kcvVyPnFI91AoZvjttiNTleA25TMD80TEAuJrHUzGgEDnZGSducd8dV/JQd691jJ7cPTEBEcEqiavxLovSbNM8mXmVEEVR4mqoOwYUIidzNMg6YYv77uyNstxRlgCgtKENn+TafvtfxaXF/TZ7RBQClXKUNrQhr5yvKU/DgELkZPY9UFw5gpJXrofVyt/4/N0bXxXCYhUxc1ikS/69+boApRyzR0QBAPbmcprH0zCgEDmRxSrinBMPCexuWHQwVAoZmg1mFNW1Ov3zk/doNZrx1tcdS4tncWnxQNmnediH4nkYUIicqKiuFW0mCwKUMgyNDHb651fIZRjdsTKIfSj+7b3jpdC3m5EcGYRbOpo9qf9uGR0DmQDkl+tRzNDvURhQiJwov2Mee1SsBnInbXHfXRpX8vg9URTx+qFCAMCDM4Y67TgFfxQRrMLUoREAuGmbp2FAIXIiV67gsRvLlTx+74vzNbhQ1YwQtQL3TkmUuhyv13k1D3kOBhQiJ8p3Yf+J3ZURFAYUf2XfmO3eKYnQOHGvHX9l3/b+m8I61LcYJa6G7BhQiJzoTIXrR1DG6EIhE4CaZgOq9O0uex7yTBerm3HgbDUEAVg1c6jU5fiEpIggjNZpYLGK+PRMldTlUAcGFCInaWo3obiuDQAcjayuEKiSIzU6BABHUfzR9o7ek/mjY5DsgkZsf8XDAz0PAwqRk5yrtE3v6EIDEO7iHT3ZKOufGttM+NexEgDA97m02KnsfShZ56rRbrJIXA0BDChETpNX7rodZLtjH4p/eudIMVqNFoyK1WDmsEipy/EpafGhiNcGoM1kwZcXaqQuh8CAQuQ0jhU8ca7f0ZNn8vgfi1XE9q8KAQDfnzUUgsClxc4kCAIWdkzzcFdZz8CAQuQkZxxb3LtvBKWorhX6dpPLn4+kl5lXiZL6NoQHKbF0YoLU5fgk+zTPvvxKWHiUhOQUUhdA5AusVhFnHYcEun4EJSxIhYSwQNshZ2V63Jjq38P9oijCYLaixWBGq9GCFqMZLQYLWjv/abSg1WBGi6Hjv7td0262YFpKBB6eM8zlPUQDYT+1+LvThiBAKZe4Gt80LSUCoQEK1LYYcaKoHlM6NnAjaTCgEDlBaUMbmg1mqOQypES5Z2XF2PhQlDa0IddPA8rmj/PxwckytBhtocQZv/GeKGrAzsNF+PHcVPzgphQEqTzjR2RuWSO+LqiDQibggRnJUpfjs5RyGW4ZHYP3T5Zhb14lA4rEPOPVR+Tl7FvcD48JgVLunpnTtPhQZOZV+uVKni8v1OCvn1/q8bFApRzBajmCVAoEqeQIVnf8qVIgWK1wPBaskiNIfeVPk9mKvx8sQH65Hn/aew6vH7qMn84fju9MHQKVQtrZ8Ne+LAQALB4XhzhtoKS1+LpFaTpbQMmtwOOLR7PXR0IMKEROcMYNO8h2Z2+UzfOzRlmTxYonP8oFAKyYkoQfz03tCB4KBCrlgzoD6e6JCfjodBm27j2HorpW/OaDXPzti0t4bOEoLJkQ79Yzb9pNFvw3pxw7vy7CkcJ6ALbmWHKtOSOjoZLLUFjbigtVzRgR677XNHXFgELkBPYRlLFu6D+xszfKnq9qRrvJ4jd9Cf/46jLOVTYjPEiJJ24bA22Q87Z6l8kE3HVDAhanx+HtI0V4fv8FFNe1IePtk3g56yJ+eetozBsV7dLfqi9UNeOtb4rw7vESNLTaGqDlMgEPzhiKSUPCXfa8ZBOiVmDW8Eh8drYae/MqGVAkxIBC5ARXVvC4L6DEaQMQHqREfasJ5yqbMD4xzG3PLZWaZgOe3XcOAPC/3xrt1HDSmUohwwMzhuKeyYl47ctCvHzgIs5UNOH7rx/BtKERWHfrKKf2JxjMFuzJqcDOr4vwdUGd4/6EsECsmJqEFVOTEBsa4LTno2tblKZzBJTVNw+Xuhy/xYBCNEitRjMKa1sAuHeKRxAEpMVrcfBCDXLL9H4RUP645yya2s1ITwjFiqlJLn++IJUCq28ejpXThuDlrIt4/VAhvimsw7df/goLxsTgF98aNahQWlDTgre+KcK/jpWgruOQOpkA3DI6FvdNH4I5I6MHNWVFAzN/TAwEAThV3ICKxnbotAyHUmBAIRqkc5XNEEUgKkSNqBC1W587LT60I6D4fqPsqeIGvHOsGADw5JI0t75xhwer8PhtY7Bq1lA8v+883jlajH35Vdh/pgp3T0zAzxeMRFJEUJ8+l9Fsxd4822jJoYu1jvt1oQGO0ZL4MDbCSilGE4CJSWE4XtSAzPxKPHAjV05JgQGFaJDsO8i6Y4v77sb6yZb3VquI33yYC1EElk1MwORkaZZ/xmkD8fQ94/HD2al4JvMsPs6uwHvHS/HRqTLcNz0Za24Z3mtILaptxVtHivDPo8WoabaNlggCMG9kNFZOT8bNo6KhcNMKMLq+hWN1toCSx4AiFQYUokFy5w6y3dlX8pwpb4LFKvrsdMC7x0twqrgBIWoFfrV4tNTlYHhMCF68bzJOFTfgj5+cxcELNXj9UCHeOVqMH85OxY9mp0AToITJYsX+/Eq8+XURvjh/5XyXGI3aMVqSGN63kRdyr0VpsfjDnjP46mIN9O0mhAa4pt+JeseAQjRIeY4RFPc1yNqlRAUjUClHm8mCgppmDI/xvRUH+nYT/rDnDADgp/OHI8aDmkUnJIVhxw+n4+D5Gmz55AxOlzTiz/vP4x9fFeLW9Djsy69EdZMBgG20ZPaIaKycNgTzx8S4bb8cGphh0SEYFh2Mi9UtyDpbjTsnxEtdkt9hQCEaBFEUrxwS6MYVPHZymYAxcRocL2pAbpneJwPK8/vOo6bZiNToYKyamSJ1OT26aUQUZg2fhT05Ffjj3rO4VG1rfgVsvUnLpyTiu9OG9LlPhTzDwrE6XMy6iL15lQwoEmBAIRqE8sZ26NvNUMgEDItxzxb33aXFax0B5a4bfOsQufOVTdh+qBAAsOHONMl3dL0WQRCweFwcFo6NxbvHS3CiqAFzRkZjwZhYj66bercoLRYvZ13EgTNVMJqt/D66GQMK0SCcqbCNngyLDoFaIc1GaWmORlnfWskjiiKe/CgPZquIhWNjMXdktNQl9YlCLsOKqUOwYuoQqUuhQbohMQzRGjWqmww4fKkWc7zk36CvYBwkGoT8cvdvcd+dvVE2t0wPUfSdI+I/ya3AwQs1UClk+PXtY6Uuh/yQTCZgwZhYAMDevAqJq/E/DChEgyDFDrLdjdSFQCET0NBqQllju2R1OFO7yYLf/TsfAPDjOakYEsneDZLGojRbQNmXVwWrE07Mpr5jQCEaBEeDrIQjKGqFHMNjQgAAuaW+Mc3zctZFlDa0IV4bgEfmcatxks7MYZEIVslRoW9Hto+8vrwFAwrRALWbLLhUY9vi3p2HBPak8zSPtyuua8VLBy4CAJ64fQwCVf5xCCJ5JrVCjnmjYgBwmsfdGFCIBuhCVTMsVhHhQUrEaNy7xX13aT60o+ymj/NhMFsxIzUSt4+Lk7ocIiwca5vmycyrlLgS/8KAQjRA+Z32PxEEaXdwtQeUPC9fyfPlhRr8N6cCcpmADUvGSv7/lQgAbh4VA4VMwLnKZhR2jJqS6zGgEA2Qo0FWwv4TO/uZPGWN7ajvOBXX25gsVmz4MBcA8MCNyZI2HhN1pg1S4sbUSAAcRXEnBhSiAbLvgTLGA95INQFKJHesdPHWaZ43vrqMC1XNiAhW4ecLRkpdDlEX9mke9qG4DwMK0QCIougRe6B05s0btlU3GfBc5jkAwLpvjYI2iAezkWexB5Sjl+txsbpZ4mr8AwMK0QBUNxlQ12KETABGxnpKQPHelTxb9pxBk8GMcQla3DslSepyiK4SHxaIBWNiIYrAXz67IHU5foEBhWgA8jv6T1KighGg9IxlsGO9dATlZHED/nmsBADw5F1pkMvYGEue6afzbXvyfHCyDJdr2SzragwoRANwZYM26ftP7OxTPJdqWtBqNEtcTd9YrSI2fJADALhnUiImDQmXuCKi3o1PDMPckdGwWEW8+NlFqcvxeQwoRANgX8EzRucZ0zsAEKMJQLRGDVG8ckaQp/vXsRKcKmlEiFqBXy4eJXU5RNdlH0V593gJSupbJa7GtzGgEA1A5z1QPMmERFsfyrvHSySu5Poa20z4w54zAICfzR+BGE2AxBURXd/k5AjMGh4Js1XEy1kcRXElBhSifjKarY4ufk9ZwWP3o9mpAIBd3xQhz8ObZZ/fdx61LUYMiw7GgzOHSl0OUZ+tvWUEAOCdIyWo8JEDOj0RAwpRP12qaYbJIkIToEBCWKDU5XQxPTUSt4+Pg1UEfvvvXIiiZ56+eq6yCdu/KgQAbFySBpWCP4rIe9yYGolpQyNgtFjx1885iuIq/KlA1E/26Z0xHrDFfU8eXzwaaoUMhy/VYU+O520qJYoinvwoFxariEVjYzF7RLTUJRH129qOXpSdXxehqomjKK7AgELUT2c8bIO27hLDg/DjucMAAL//OB/tJovEFXW1J6cCX16ohVohw6/vGCt1OUQDctPwKNyQFAaD2Yq/f1EgdTk+iQGFqJ/se6B4WoNsZw/PTUWcNgAl9W149aDn/PBsM1rw1H/yAQA/njsMSRFBEldENDCCIOBn8229KDsOX0adl56B5ckYUIj6yT7FM8qDlhh3F6RS4FeLRwOw7XrpKY18L2ddRGlDGxLCAvGTjlEeIm81b1Q0xiVo0Wq04NWDl6Qux+cwoBD1Q5W+HdVNBsgEYIyHTvHYLZkQj8nJ4Wg1WrClYzmvlIrrWh3LMtffPgaBKs/YgZdooARBwJpbbL0o2w9dRkMrR1GciQGFqB9yOraRHxYdgiCVQuJqrk0QBGy409bj8d6JUhwvqpesFpPFikffOQmD2YqZwyKxOF0nWS1EzrRwTCxG6zRoNpjx2peFUpfjUxhQiPohu8Q2vTMuQStxJX0zPjEM905OBAA8+VEerFZplh3/ae9ZHCmsh0atwKa7x3nk6ieigZDJBMe+KK99WYCmdpPEFfkOBhSifrCPoKR5SUABgP+9dRSCVXKcKm7A7hOlbn/+zLxK/DXLNj//x3vHY2hUsNtrIHKlxek6DI8Jgb7djDe+uix1OT6DAYWoH3JLbQElPd5zV/B0F6MJwNqO1QZ/2HMGzQb3HSRYXNeKx945CQD4wawU3Joe57bnJnIXmUzAmpttvSh//+ISWtz4GvNlDChEfVTbbEBZx2oYbxpBAYDvzxqK5MggVDUZ8OJnF9zynAazBWt2Hoe+3YwbksIcq4qIfNEd4+MwNDII9a0m7DjMURRn6FdA2bx5M6ZOnQqNRoOYmBgsXboUZ8+e7XKNKIrYuHEj4uPjERgYiHnz5iE3N7fLNQaDAWvXrkVUVBSCg4OxZMkSlJR4/uFm5N9yOs62SY0KRojasxtku1Mr5Pi/220Ns3//ogBFta4/hXXzx2dwqqQRYUFK/OW+SdzOnnyaQi7D6o5RlL99cQltRs/aINEb9esnRlZWFlavXo3Dhw8jMzMTZrMZixYtQktLi+OaLVu24JlnnsG2bdtw5MgR6HQ6LFy4EE1NV45/z8jIwO7du7Fr1y4cPHgQzc3NuOOOO2Cx8BtKnivHPr3jZaMndgvGxGD2iCgYLVb8/uM8lz7Xf06X4/VDhQCAZ5ZP8Lgzi4hcYenEBCSGB6Km2Yi3vimSuhyv16+AsmfPHqxatQppaWmYMGECXnvtNRQVFeHYsWMAbKMnzz33HNavX49ly5YhPT0d27dvR2trK3bu3AkAaGxsxKuvvoqtW7diwYIFmDhxInbs2IHs7Gzs27evx+c1GAzQ6/VdbkTudiWgeE//SWeCIODXd4yFXCbgk9xKfHmhxiXPU1DTgl++exoA8JN5w3DL6FiXPA+Rp1HKZXhknm0U5eWsix53zIS3GdSYa2Oj7Qd2REQEAKCgoAAVFRVYtGiR4xq1Wo25c+fi0KFDAIBjx47BZDJ1uSY+Ph7p6emOa7rbvHkztFqt45aUlDSYsokGJNvLR1AAYGSsBg/cmAwA+O1HeTBbrE79/O0mCx558ziaDWZMGxqBxxaOdOrnJ/J090xOQJw2AFVNBvzzaLHU5Xi1AQcUURTx6KOP4qabbkJ6ejoAoKLCdnJqbGzX35hiY2Mdj1VUVEClUiE8PLzXa7p7/PHH0djY6LgVF/ObTu7V0GpESX0bACAt3nsDCgBkLBiBsCAlzlY2OX0Y+smPcpFfrkdksAovrJwIhZx9J+Rf1Ao5Hu44xuGlAxdhNDv3lwB/MuCfHmvWrMHp06fx1ltvXfVY902YRFG87sZM17pGrVYjNDS0y43InXJKbdOKyZFB0AYqJa5mcMKCVI6Rja2Z55y2Pfd7x0vw1jfFEATg+e9MRGxogFM+L5G3WTE1CTEaNcoa2/HecS4AGagBBZS1a9fiww8/xGeffYbExETH/Tqdbfvq7iMhVVVVjlEVnU4Ho9GI+vr6Xq8h8jT2DdrSvXz0xO6704ZgVKwGDa0mPLfv/KA/37nKJqzfnQMA+Nn8EbhpRNSgPyeRtwpQyvE/c1IBAH85cAEmJ0+l+ot+BRRRFLFmzRq89957+PTTT5GSktLl8ZSUFOh0OmRmZjruMxqNyMrKwsyZMwEAkydPhlKp7HJNeXk5cnJyHNcQeRpf6D/pTCGX4Tcd5/T84/BlnKtsus5H9K7FYMYjbx5Hm8mC2SOiHNt+E/mz+6YnIzJYheK6NnxwskzqcrxSvwLK6tWrsWPHDuzcuRMajQYVFRWoqKhAW5ttbl4QBGRkZGDTpk3YvXs3cnJysGrVKgQFBWHlypUAAK1Wi4ceegiPPfYY9u/fjxMnTuD+++/HuHHjsGDBAud/hUROkOvlK3h6Mmt4FBaNjYXFKuJ3/86DKPb/nB5RFLF+dzYuVDUjNlSNZ1fcALmM5+wQBark+OFs2yjKi59dgEWic7C8Wb8CyksvvYTGxkbMmzcPcXFxjtvbb7/tuGbdunXIyMjAI488gilTpqC0tBR79+6FRnPlaPpnn30WS5cuxfLlyzFr1iwEBQXho48+glzO49fJ8+jbTSjs2NjMV6Z47NbfPgYquQxfnK/B/vyqfn/8riPFeP9kGeQyAS98dxKiQtQuqJLIOz0wIxlhQUpcqmnBv09zFKW/BHEgvzZJTK/XQ6vVorGxkQ2z5HJfXazFd/92GAlhgfjyV7dIXY7T/WHPGbx04CKGRgbhk5/PgVrRt18UcssacfeLh2A0W/GrxaMdKxeI6IoX9p/H1sxzGBETgk8y5kDm5yOM/Xn/5hpAouvw9g3armf1zcMRrVGjsLYVr39Z2KeP0bebsPrN4zCarZg/Ogb/0zGUTURdPThrKDQBCpyvasae3J630qCeMaAQXYd9Bc84H2mQ7S5ErcAvb7Ud5PfCpxdQ1dR+zetFUcSv3j2NwtpWJIQFYuvyCX7/WyFRb0IDlPj+zKEAbK8vL5y0kAwDCtF12EdQvO0E4/5YNjEBExK1aDaY8adPzl7z2u2HCvFxdgWUcgHbVk5EWJDKTVUSeacf3JSCYJUc+eV67BtAr5e/YkAhuoZmgxmXamyHYfpag2xnMpmA39yZBgD457ESnC5p6PG6k8UN+P3H+QCAJ24bg4lDwnu8joiuCAtS4XuOUZTzHEXpIwYUomvIL9dDFAFdaACiNb69QmVycjjunpgAUQSe/OjqZccNrUasfvM4TBYRt43TYVXHD1wiur4f3pSCQKUcp0saceBctdTleAUGFKJryC7xrQ3arueXt45GoFKOY5fr8eGpK8sirVYRj71zCqUNbRgaGYSn7xl/3eMriOiKyBA17ps+BIBtZQ9HUa6PAYXoGhxb3PvoCp7udNoArL7Ztlz46f+eQavRDAB45YtL2H+mCiqFDH+5bxJCA7z7PCIiKfzPnFSoFDIcL2rAoYu1Upfj8RhQiK7B3iDrqyt4evLD2alIDA9EeWM7Xs66hG8K6vDHjsbZJ5ekef1pzkRSiQkNwMpptlGUP+8f/BlYvo4BhagXbUYLLlQ1A/CfKR7AdtDZE7eNAQD8Nesi1uw8DotVxN0TE/CdqUkSV0fk3X48NxUquQxfF9Th60scRbkWBhSiXuSV62EVgWiNGrGhAVKX41aL03WYnhIBg9mKqiYDhseE4Kml6ew7IRqkOG0gvj0lEYBtXxTqHQMKUS9y7f0n8f7Rf9KZIAjYcGca5DIBgUo5XrxvEoLVCqnLIvIJP5k7DAqZgIMXanC8qF7qcjwWAwpRL+wrePyp/6SzsfGheP+RWfho7SyMjNVc/wOIqE+SIoKwbFICAOC3H+XBbLFKXJFnYkAh6kVOmR6Ab+8gez3jErUYHsNwQuRsP184Ehq1AieLG/DKF5ekLscjMaAQ9aDdZMH5yiYA/tUgS0TuEacNxIYltt2bn8s8jzMVeokr8jwMKEQ9OFvRBLNVRESwCvFa/2qQJSL3uGdSAhaMiYHRYsVj75yCiVM9XTCgEPXAvkFbWnwoV64QkUsIgoBNy8YhLEiJ3DI9tnFVTxcMKEQ98McN2ojI/WI0AfjdXekAgG2fXXA05xMDClGPckpt88HsPyEiV7tzQjxuHx8Hi1XEY/88iXaTReqSPAIDClE3RrMVZytsDbIcQSEid/jdXemIClHhXGUznt13TupyPAIDClE35yqbYLRYoQ1UIjE8UOpyiMgPRASrsHnZeADAK59fwrHLdRJXJD0GFKJu7P0n6QlskCUi91k4Nhb3TEqEKAKPvXPKcZq4v2JAIeomx7HFPad3iMi9fnPnWOhCA1BY24ote85KXY6kGFCIuslmgywRSUQbqMSWb9umel4/VIhDF2skrkg6DChEnZgsVuSXM6AQkXTmjIzGyulDAAD/+8/TaGo3SVyRNBhQiDq5UNUMo9mKELUCyRFBUpdDRH7qidvGICkiEKUNbdj0cb7U5UiCAYWoE3uDbFp8KGQyNsgSkTRC1Ar88dsTAABvfVOMz85WSVyR+zGgEHVyZQUPp3eISFo3pkbiB7NSAAC/evc0Glv9a6qHAYWok5wyW/8JN2gjIk+w7tZRSI0KRqXegI0f5UpdjlsxoBB1sFhF5JXZG2RDJa6GiAgIUMrxp+UTIBOA3SdKsSenQuqS3IYBhajDpepmtJksCFLJkRIVInU5REQAgElDwvHjucMAAOt3Z6O22SBxRe7BgELUwb5B29i4UMjZIEtEHiRjwQiMitWgtsWI/3s/B6IoSl2SyzGgEHXILuH+J0TkmdQKObYunwCFTMB/cyrw4akyqUtyOQYUog6OLe4ZUIjIA6UnaLH2lhEAgN98kItKfbvEFbkWAwoRAGunBlmu4CEiT/XIzcMwLkGLxjYTfvXuaZ+e6mFAIQJQWNuCZoMZAUoZhkUHS10OEVGPlHIZti6fAJVchs/OVuOfR0ukLsllGFCIAGR3bNA2Ji4UCjlfFkTkuUbGavDYopEAgN/+Ow8l9a0SV+Qa/ElMBCDXvv9JPKd3iMjz/XB2KiYnh6PZYMa6f52G1ep7Uz0MKEQAskvsDbLcoI2IPJ9cJuBP905AgFKGQxdrsePry1KX5HQMKOT3RFHkCh4i8jopUcH41a2jAQCbPz6DwpoWiStyLgYU8ntFda1oajdDJZdhRIxG6nKIiPrsezOGYkZqJNpMFvzin6dg8aGpHgYU8ns5pbb+k9FxGqgUfEkQkfeQyQRs+fZ4BKvkOHq5Hjt9aKqHP43J79lX8KSxQZaIvFBSRBDWdUz1bPnkLKqafGMDNwYU8nu5Hf0n3KCNiLzV/TcmY1yCFk3tZmz6T77U5TgFAwr5NVEUHSMoXMFDRN5KLhPw+7vTIQjA+yfLcOhCjdQlDRoDCvm10oY2NLSaoJAJGKVjgywRea/xiWG4f3oyAOD/PsiB0WyVuKLBYUAhv2ZvkB0Zq4FaIZe4GiKiwfnFt0YhKkSFS9Ut+NsXl6QuZ1AYUMiv5ZSy/4SIfIc2UIn1t48BAPx5/3kU13nvNvgMKOTXrmzQxv4TIvINS29IwI2pETCYrdjwYa7XnnjMgEJ+SxRFxwgKd5AlIl8hCAKeWpoOpVzAp2eqsDevUuqSBoQBhfxWpd6AmmYj5DIBY+I4gkJEvmN4jAY/mp0KAHjyw1y0GMwSV9R/DCjkt+zLi4dHhyBAyQZZIvIta28ZgcTwQJQ1tuPPn56Xupx+Y0Ahv8XpHSLyZYEqOZ5ckgYAePWLApytaJK4ov5hQCG/lcMN2ojIx80fE4uFY2Nhtor49fs5XtUwy4BCfiuHW9wTkR/YuCQNgUo5vimsw7+OlUhdTp8xoJBfqmpqR6XeAEEAG2SJyKclhAXiZwtGAAA2//cMGlqNElfUNwwo5JdyO3aQHRYdgmC1QuJqiIhc6wezUjAiJgR1LUb8Yc9ZqcvpEwYU8kuOAwLjOXpCRL5PpZDhqaXpAIC3vinC8aJ6iSu6PgYU8ktcwUNE/mZ6aiTumZQIAPi/3TkwWzz7MEEGFPJLuWW2KR4GFCLyJ0/cNhraQCXyyvV446vLUpdzTQwo5HfqWowobWgDAKRxioeI/EhkiBrrbh0FAHgm8xwq9e0SV9Q7BhTyO/bpnZSoYGgClBJXQ0TkXt+dOgQ3JIWh2WDGb/+dJ3U5vep3QPn8889x5513Ij4+HoIg4P333+/yuCiK2LhxI+Lj4xEYGIh58+YhNze3yzUGgwFr165FVFQUgoODsWTJEpSUeM/abPJu2ew/ISI/JpPZDhOUCcB/Tpfj83PVUpfUo34HlJaWFkyYMAHbtm3r8fEtW7bgmWeewbZt23DkyBHodDosXLgQTU1XttjNyMjA7t27sWvXLhw8eBDNzc244447YLFYBv6VEPVRbhlX8BCRf0tP0OJ7M4YCAH7zQQ7aTZ73/tvvgLJ48WI89dRTWLZs2VWPiaKI5557DuvXr8eyZcuQnp6O7du3o7W1FTt37gQANDY24tVXX8XWrVuxYMECTJw4ETt27EB2djb27ds3+K+I6Do4gkJEBDy2aCRiNGoU1rbi5ayLUpdzFaf2oBQUFKCiogKLFi1y3KdWqzF37lwcOnQIAHDs2DGYTKYu18THxyM9Pd1xTXcGgwF6vb7LjWggGltNKK6zNcimxzOgEJH/0gQo8es7xgIAXjxwEYU1LRJX1JVTA0pFRQUAIDY2tsv9sbGxjscqKiqgUqkQHh7e6zXdbd68GVqt1nFLSkpyZtnkR+zn7yRFBEIbxAZZIvJvd4yPw+wRUTCarfjNh7kedZigS1bxCILQ5e+iKF51X3fXuubxxx9HY2Oj41ZcXOy0Wsm/2Ffw8IBAIiLb+/WTS9Kgksvw+blqfJzd80CBFJwaUHQ6HQBcNRJSVVXlGFXR6XQwGo2or6/v9Zru1Go1QkNDu9yIBsLef5LG6R0iIgBAanQIHp43DADw23/noqndJHFFNk4NKCkpKdDpdMjMzHTcZzQakZWVhZkzZwIAJk+eDKVS2eWa8vJy5OTkOK4hchX7DrIcQSEiuuKRecOQHBmESr0Bz+07L3U5AAYQUJqbm3Hy5EmcPHkSgK0x9uTJkygqKoIgCMjIyMCmTZuwe/du5OTkYNWqVQgKCsLKlSsBAFqtFg899BAee+wx7N+/HydOnMD999+PcePGYcGCBU794og607ebUNDRBMYVPEREVwQo5XhySRoA4PVDhcgrk34xSr/PmT969Chuvvlmx98fffRRAMCDDz6I119/HevWrUNbWxseeeQR1NfXY/r06di7dy80Go3jY5599lkoFAosX74cbW1tmD9/Pl5//XXI5XInfElEPbO/4BLCAhERrJK4GiIizzJvVAxuG6fDx9kV+L/3s/Gvh2dCJrt2/6grCaIntez2kV6vh1arRWNjI/tRqM/+/sUlPPWffCwaG4tXvjdF6nKIiDxORWM75m89gBajBU8vG4fvTBvi1M/fn/dvnsVDfoMreIiIrk2nDcDPF44EADy95wwa26RrmO33FA+Rt8rpmOJh/wkRUe9WzRyKLy/UYPmUJIQGSBcTGFDIL7QYzLhY3QwASEvgtCARUW8Uchle+/40qcvgFA/5h/xyPUQRiA1VI0YTIHU5RER0HQwo5BccBwRygzYiIq/AgEJ+IaeU/SdERN6EAYX8gn0FDwMKEZF3YEAhn9dmtOB8VRMALjEmIvIWDCjk8/Ir9LCKQFSICrGhaqnLISKiPmBAIZ/XeXpHEKTbtpmIiPqOAYV8miiKeOdoMQBgSnK4xNUQEVFfMaCQT/v8fA1ySvUIVMqxcnqy1OUQEVEfMaCQT/vLZxcAACunD+EJxkREXoQBhXzWkcI6fFNQB6VcwI9mp0pdDhER9QMDCvks++jJtycnQqfl9vZERN6EAYV8Uk5pIw6crYZMAH48Z5jU5RARUT8xoJBPeunARQDAnRPiMTQqWOJqiIiovxhQyOdcrG7GxznlAICfzOPoCRGRN2JAIZ/z0oGLEEVgwZhYjNaFSl0OERENAAMK+ZSS+la8f6IUALD6Zo6eEBF5KwYU8il/+/wSzFYRs4ZHYuIQ7hxLROStGFDIZ1Q3GbDriG1b+9XzhktcDRERDQYDCvmMVw8WwGC24oakMMwYFil1OURENAgMKOQTGltN2HH4MgBg9c3DeWoxEZGXY0DpRBRFPP5eNj48VSZ1KdRPb3xViGaDGaN1GswfHSN1OURENEgMKJ3syanAW98U4advncBT/86D2WKVuiTqg1ajGf/vywIAtn1PZDKOnhAReTsGlE4WpenwSMfGXn8/WID7X/0aNc0Giaui69n5dRHqW01IjgzC7ePipC6HiIicgAGlE7lMwLpbR+Pl+ychWCXH4Ut1uPOFgzhRVC91adQLg9mCv31xCQDw8NxhUMj5T5qIyBfwp3kPbk2PwwdrbsKw6GCUN7ZjxV8P461viqQui3rw3vFSVOoN0IUGYNmkBKnLISIiJ2FA6cXwmBC8v3oWvpUWC6PFisffy8av3j2NdpNF6tKog9lixctZtkMBfzQnFWqFXOKKiIjIWRhQrkEToMTL90/GultHQSYAu44UY8Vfv0JZQ5vUpRGA/2SX43JtKyKCVfjutCSpyyEiIidiQLkOQRDwyLzh2P6DaQgLUuJUSSPueOEgDl2skbo0v2a1injxM9voyQ9mDUWQSiFxRURE5EwMKH00e0Q0PlpzE9LiQ1HXYsT9f/8ar3x+EaIoSl2aX9p/pgpnK5sQolbggRlDpS6HiIicjAGlH5IigvDuT2binkmJsIrApo/PYM1bJ9BiMEtdml8RRRHbPrsAAHhgRjK0gUqJKyIiImdjQOmnAKUcf7p3PH53VxoUMgH/OV2Ou1/8Epeqm6UuzW98dbEWp4oboFbI8INZKVKXQ0RELsCAMgCCIOCBGUPx9o9vRIxGjXOVzbhr25fIzKuUujS/YB89+e60IYjWqCWuhoiIXIEBZRAmJ0fg3z+9CVOHhqPJYMaP3jiKZ/aehcXKvhRXOV5Uj0MXa6GQCfjRnFSpyyEiIhdhQBmkGE0Adv7oRqyaORQA8OdPL+Ch7UfQ0GqUtjAfZV+5c/fEBCSEBUpcDRERuQoDihMo5TJsXJKGZ1dMQIBShgNnq3HntoPIK9NLXZpPOVOhx778SggC8HDHmUlEROSbGFCc6O6JiXj3JzORFBGI4ro2LHvpS7x/olTqsnyGffTktnFxGBYdInE1RETkSgwoTpYWr8VHa27CnJHRaDdZkfH2SXznla/w0akyGM1WqcvzWoU1Lfj36TIAcJw4TUREvovbb7pAWJAKr62aiuf2ncNfPruAw5fqcPhSHaJCVLh3ShJWThuCpIggqcv0Kn/9/CKsInDzqGikxWulLoeIiFxMEL1wK1S9Xg+tVovGxkaEhoZKXc41lTW0YdeRYuz6pghVTQYAgCAAc0ZE477pQ3DL6Bgo5BzIupaKxnbM3vIpTBYR/3p4BqYMjZC6JCIiGoD+vH9zBMXF4sMC8ejCkVh7y3Dsz6/Cm19fxhfna5B1rhpZ56qhCw3Ad6Yl4TtTh0CnDZC6XI/0yueXYLKImJ4SwXBCROQnOIIigcu1Ldj5TRH+ebQEdS225chymYD5o2Nw343JmD08CjKZIHGVnqG22YCb/vAZ2kwWvPGDaZgzMlrqkoiIaID68/7NgCIhg9mCPTkVePPrInxTUOe4PykiECunJePeKYmICvHvnVK37j2LFz69gHEJWny4ZhYEgcGNiMhbMaB4ofOVTXjz6yK8e7wETe22wweVcgG3psfhvulDMD0lwu/enJvaTZj59Kdoajfj5fsn4db0OKlLIiKiQWBA8WJtRgs+Ol2GN78uwqniBsf9w6KDcd/0ZNwzKRHaIP84vffFAxewZc9ZDI8Jwd6MOZz2IiLycgwoPiKntBFvfl2ED06WotVoAQAEKGVYMiEeD9w4FOMSfXe5bZvRgpv+8ClqW4x4ZvkELJuUKHVJREQ0SAwoPqap3YT3T5bhzcOXcaaiyXH/hEQt7r8xGXdOiEeAUi5hhc63/VAhNnyYi8TwQHz2i3lQcik2EZHXY0DxUaIo4tjleuw4fBkfZ1fAaLHtTKsNVOLeyYm478ZkpEQFS1zl4IiiiK8u1eLnb59Epd6Ap5am4/4bk6Uui4iInIABxQ/UNBvwztFivHm4CKUNbY77Z4+Iwv03JmO+l20AJ4oiDl2sxfP7zuObQtuKpoSwQOx/bK7PjQ4REfkrBhQ/YrGKyDpXhX98dRkHzlXD/t2M0wZg5bQhWDEtCTEaz90AThRFfHG+Bn/efx5HL9cDAFRyGVZMTcLqm4dz8zoiIh/CgOKniuta8ebXRXjnaLFjAziFTMC30nV44MZkj1qqLIoiss5V4/n953GiqAEAoFLIsHLaEPx4biritIHSFkhERE7HgOLn2k0W/DenHDsOF+FYx6gEAIyICcH9Nybj7kkJCA2QZqmyKIo4cLYaz+0/71hGrVbIsHL6EDw8dxhiQzliQkTkqxhQyCG3rBE7Dhfh/ROlaDPZlioHqeRYOjEB909Pxth49/z/E0UR+/Or8OdPz+N0SSMA25Lp+6cn43/mpCKGwYSIyOcxoNBV9O0m7D5ein8cvowLVc2O+xPCAjEuQYtxiVqkxYdiXIIWkU7cXl8URWTmVeLPn55HTqkeABColOOBGcn40exURGv8eyt/IiJ/woBCvRJFEYcv1WHH15fxSU4FzNarv/3x2gCkJ2gxLkGL9I5bf4OE1Spib14Fnt9/AfnltmASpLoSTPz9jCEiIn/EgEJ9om83Iae0EbmlemSXNiKntBGXalp6vFYXGtARVmyjLOMStD1Oy1itIvbkVuDP+887NpULVsnx4Myh+OHsVEQEq1z6NRERkediQKEBa2o3IbdMj5yOwJLdEVp6+lcSo1FjXIIWaR2Bpc1kwV8+vYCzlbZgEqJWYNXMoXjophSEM5gQEfk9BhRyqmaDGXndQsvF6mb0MDsEANAEKPD9WSl4aFaK3xxsSERE19ef92+Fm2oiLxaiVmBaSgSmpUQ47ms1Xgkt2aW2P5vaTVg+NQnfn5UCbSCDCRERDZykAeXFF1/EH//4R5SXlyMtLQ3PPfccZs+eLWVJ1EdBKgWmDI3AlKER17+YiIionyQ7rOXtt99GRkYG1q9fjxMnTmD27NlYvHgxioqKpCqJiIiIPIRkPSjTp0/HpEmT8NJLLznuGzNmDJYuXYrNmzdf82PZg0JEROR9+vP+LckIitFoxLFjx7Bo0aIu9y9atAiHDh266nqDwQC9Xt/lRkRERL5LkoBSU1MDi8WC2NjYLvfHxsaioqLiqus3b94MrVbruCUlJbmrVCIiIpKAZD0oAK46WVcUxR5P23388cfR2NjouBUXF7urRCIiIpKAJKt4oqKiIJfLrxotqaqqumpUBQDUajXUam6NTkRE5C8kGUFRqVSYPHkyMjMzu9yfmZmJmTNnSlESEREReRDJ9kF59NFH8cADD2DKlCmYMWMGXnnlFRQVFeHhhx+WqiQiIiLyEJIFlBUrVqC2tha//e1vUV5ejvT0dHz88cdITk6WqiQiIiLyEDyLh4iIiNzC4/dBISIiIroWBhQiIiLyOAwoRERE5HEYUIiIiMjjSLaKZzDsfb08k4eIiMh72N+3+7I+xysDSlNTEwDwTB4iIiIv1NTUBK1We81rvHKZsdVqRVlZGTQaTY9n9wyGXq9HUlISiouLuYRZQvw+eAZ+HzwDvw+egd+HwRNFEU1NTYiPj4dMdu0uE68cQZHJZEhMTHTpc4SGhvIfoAfg98Ez8PvgGfh98Az8PgzO9UZO7NgkS0RERB6HAYWIiIg8DgNKN2q1Ghs2bIBarZa6FL/G74Nn4PfBM/D74Bn4fXAvr2ySJSIiIt/GERQiIiLyOAwoRERE5HEYUIiIiMjjMKAQERGRx2FA6eTFF19ESkoKAgICMHnyZHzxxRdSl+R3Nm7cCEEQutx0Op3UZfm8zz//HHfeeSfi4+MhCALef//9Lo+LooiNGzciPj4egYGBmDdvHnJzc6Up1odd7/uwatWqq14fN954ozTF+qjNmzdj6tSp0Gg0iImJwdKlS3H27Nku1/D14B4MKB3efvttZGRkYP369Thx4gRmz56NxYsXo6ioSOrS/E5aWhrKy8sdt+zsbKlL8nktLS2YMGECtm3b1uPjW7ZswTPPPINt27bhyJEj0Ol0WLhwoeNcLHKO630fAODWW2/t8vr4+OOP3Vih78vKysLq1atx+PBhZGZmwmw2Y9GiRWhpaXFcw9eDm4gkiqIoTps2TXz44Ye73Dd69GjxV7/6lUQV+acNGzaIEyZMkLoMvwZA3L17t+PvVqtV1Ol04tNPP+24r729XdRqteLLL78sQYX+ofv3QRRF8cEHHxTvuusuSerxV1VVVSIAMSsrSxRFvh7ciSMoAIxGI44dO4ZFixZ1uX/RokU4dOiQRFX5r/PnzyM+Ph4pKSn4zne+g0uXLkldkl8rKChARUVFl9eHWq3G3Llz+fqQwIEDBxATE4ORI0fiRz/6EaqqqqQuyac1NjYCACIiIgDw9eBODCgAampqYLFYEBsb2+X+2NhYVFRUSFSVf5o+fTreeOMNfPLJJ/jb3/6GiooKzJw5E7W1tVKX5rfsrwG+PqS3ePFivPnmm/j000+xdetWHDlyBLfccgsMBoPUpfkkURTx6KOP4qabbkJ6ejoAvh7cyStPM3YVQRC6/F0UxavuI9davHix47/HjRuHGTNmYNiwYdi+fTseffRRCSsjvj6kt2LFCsd/p6enY8qUKUhOTsZ//vMfLFu2TMLKfNOaNWtw+vRpHDx48KrH+HpwPY6gAIiKioJcLr8q/VZVVV2Vksm9goODMW7cOJw/f17qUvyWfRUVXx+eJy4uDsnJyXx9uMDatWvx4Ycf4rPPPkNiYqLjfr4e3IcBBYBKpcLkyZORmZnZ5f7MzEzMnDlToqoIAAwGA/Lz8xEXFyd1KX4rJSUFOp2uy+vDaDQiKyuLrw+J1dbWori4mK8PJxJFEWvWrMF7772HTz/9FCkpKV0e5+vBfTjF0+HRRx/FAw88gClTpmDGjBl45ZVXUFRUhIcffljq0vzKL37xC9x5550YMmQIqqqq8NRTT0Gv1+PBBx+UujSf1tzcjAsXLjj+XlBQgJMnTyIiIgJDhgxBRkYGNm3ahBEjRmDEiBHYtGkTgoKCsHLlSgmr9j3X+j5ERERg48aNuOeeexAXF4fCwkI88cQTiIqKwt133y1h1b5l9erV2LlzJz744ANoNBrHSIlWq0VgYCAEQeDrwV0kXUPkYf7yl7+IycnJokqlEidNmuRYVkbus2LFCjEuLk5UKpVifHy8uGzZMjE3N1fqsnzeZ599JgK46vbggw+KomhbWrlhwwZRp9OJarVanDNnjpidnS1t0T7oWt+H1tZWcdGiRWJ0dLSoVCrFIUOGiA8++KBYVFQkddk+paf//wDE1157zXENXw/uIYiiKLo/FhERERH1jj0oRERE5HEYUIiIiMjjMKAQERGRx2FAISIiIo/DgEJEREQehwGFiIiIPA4DChEREXkcBhQiIiLyOAwoROQy8+bNQ0ZGhtRlEJEXYkAhIiIij8OAQkQ+xWg0Sl0CETkBAwoRuZTVasW6desQEREBnU6HjRs3Oh4rKirCXXfdhZCQEISGhmL58uWorKx0PL5q1SosXbq0y+fLyMjAvHnzHH+fN28e1qxZg0cffRRRUVFYuHChi78iInIHBhQicqnt27cjODgYX3/9NbZs2YLf/va3yMzMhCiKWLp0Kerq6pCVlYXMzExcvHgRK1asGNBzKBQKfPnll/jrX//qgq+CiNxNIXUBROTbxo8fjw0bNgAARowYgW3btmH//v0AgNOnT6OgoABJSUkAgH/84x9IS0vDkSNHMHXq1D4/x/Dhw7FlyxbnF09EkuEIChG51Pjx47v8PS4uDlVVVcjPz0dSUpIjnADA2LFjERYWhvz8/H49x5QpU5xSKxF5DgYUInIppVLZ5e+CIMBqtUIURQiCcNX1ne+XyWQQRbHL4yaT6aqPCQ4OdmLFROQJGFCISBJjx45FUVERiouLHffl5eWhsbERY8aMAQBER0ejvLy8y8edPHnSnWUSkUQYUIhIEgsWLMD48eNx33334fjx4/jmm2/wve99D3PnznVM2dxyyy04evQo3njjDZw/fx4bNmxATk6OxJUTkTswoBCRJARBwPvvv4/w8HDMmTMHCxYsQGpqKt5++23HNd/61rfw61//GuvWrcPUqVPR1NSE733vexJWTUTuIojdJ3iJiIiIJMYRFCIiIvI4DChERETkcRhQiIiIyOMwoBAREZHHYUAhIiIij8OAQkRERB6HAYWIiIg8DgMKEREReRwGFCIiIvI4DChERETkcRhQiIiIyOP8f5aucqj+5kCxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Celda 2.1 - rentas promedio para cada valor de la variable \"hour\"\n", "bikes.groupby('hour').total.mean().plot()" @@ -128,20 +356,78 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRWklEQVR4nO3de3xT9f0/8NdJmqa39EbbpDdKoS23FlRAsHKpXAooKOImzulgX+fmFDZEfzjmd5Pt62Rj87KBupvzftumOCcolDsIKiDIvS3Q0gtN703vSZuc3x/tCW2BtmmTnJPk9Xw88nhIkjZvLGlffZ/35/MRRFEUQURERKQgKrkLICIiIuqJAYWIiIgUhwGFiIiIFIcBhYiIiBSHAYWIiIgUhwGFiIiIFIcBhYiIiBTHT+4CBsJms+HSpUvQ6XQQBEHucoiIiKgfRFFEQ0MD4uLioFL13iPxyIBy6dIlJCYmyl0GERERDUBxcTESEhJ6fY5HBhSdTgeg4y8YGhoqczVERETUH/X19UhMTLT/HO+NRwYU6bJOaGgoAwoREZGH6c94BodkiYiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIiISHEYUIiIiEhxGFCIiIhIcRhQiIhowERRRGubVe4yyAsxoBAR0YA9/PbXmLJuB/LKG+QuhbwMAwoREQ1Iu9WGHWcqUNfchic+OA6rTZS7JPIiDChERDQghdXNsFhtAICjRXV442ChvAWRV2FAISKiAZEu6/irO36UrP8sF8U1zXKWRF6EAYWIiAYk19gRUO64Lg43Jkeipc2Kn286AVHkpR4aPAYUIiIaEKmDMio2FL9dnAF/PxX25Vfhg69LZa6MvAEDChERDYjUQRmp12F4dAhWzk4FAPzfJ6dR2WCWszTyAgwoRETksNY2KwqrmwAAaYYQAMCD04ZjbFwoTC1tWPvfU3KWR16AAYWIiBx2rqIRNhGICNIgOkQLANCoVfjdXeOgVgnYfLwM204ZZa6SPBkDChEROUyaP0nT6yAIgv3+9Pgw/HD6cADAL/5zEqaWNlnqI8/HgEJERA7L7QwoIw26Kx776axUJEcFo7zejN9+esbdpZGXYEAhIiKH5Rkvd1B6CtCo8dvFGQCAd78qxsHz1W6tjbwDAwoRETksr7wRwNU7KAAwefgQfHfyUADAmg+Po8XCAwXJMQwoRETkkIbWNpTWtQC4egdF8rP5o2AIDUBhdTNe2J7nrvLISzCgEBGRQ6QB2diwAIQFaq75PF2ABk8vSgcA/G3fBZwoMbmlPvIODChEROSQXGPH5Z3euieS2WP0WDg+DjYRWP3BcbR1Hi5I1BcGFCIickheLyt4ruaphWMQEaTBmbJ6/HXvBVeWRl6EAYWIiByS28sKnquJCtHilwvHAAD+uCMf5yoaXVYbeQ8GFCIicoi9g9LPgAIAi66LR9bIaFjabVjz4XHYbDzxmHrHgEJERP1W1WhGdZMFggCkxIT0++MEQcBv7sxAsL8ahwpr8faXF11YJXkDBhQiIuo3aYO2YUOCEeivduhj48MDsXreKADAbz89a1+qTHQ1DChERNRvZ+3zJ/3vnnR1/5QkTEyKQJPFiv/ddAKiyEs9dHUMKERE1G8DmT/pSqUS8Nu7xsFfrcKu3Ep8/M0lZ5ZHXoQBhYiI+k06JDCtn0uMryYlJgQ/mZUCAFj78SlUN5qdUht5FwYUIiLqF1EU7TMoA+2gSH40YwRGGXSobW7Drz857YzyyMswoBARUb+U1rWgyWKFRi1gWFTwoD6XRq3C+m+Ng0oA/nPsEnaeLXdSleQtGFCIiKhfpPmTEdEh0KgH/+NjXEI4fjBtOADgyU0n0dDaNujPSd6DAYWIiPrFkTN4+uvR2WlIGhKEMlMr1n+W67TPS56PAYWIiPol11gPoP9n8PRHoL8a6xZnAADe/OIiviqocdrnJs/GgEJERP2SW97RQRnsgGxPmSOicM+kRADAzz44jtY2q1M/P3kmBhQiIupTu9WG852H/DmzgyJZc+toxOi0uFDVhBd3nXP65yfPw4BCRER9KqxuhsVqQ5C/GvHhgU7//GGBGvuJx/8+UuL0z0+ehwGFiIj6JK3gSdXroFIJLnmNW0bGQBCAMlMrKhu4eZuvY0AhIqI+5do3aBvYGTz9Eaz1w/DO/VVOlppc9jrkGRhQiIioT1IHxZlLjK8mIz4MAHCCAcXnMaAQEVGf7B0UFwzIdpXOgEKdGFCIZFRa14Kb1u3AC9vz5C6F6Jpa26worG4C4PqAInVQeImHHAoo69atw6RJk6DT6RATE4NFixYhN7f7zn/Lli2DIAjdblOmTOn2HLPZjBUrViAqKgrBwcG4/fbbUVLCqW3yPZ/nV6HM1IpNR0vlLoXoms5VNMImAhFBGkSHaF36WmPjw+yDslU85dinORRQ9uzZg0ceeQRffPEFcnJy0N7ejuzsbDQ1NXV73rx581BWVma/bdmypdvjK1euxKZNm/Dee+9h//79aGxsxIIFC2C1cnMe8i0ltc0AgKKaZrRY+O+flKnr/IkguGYFjyRE64fkzkFZXubxbX6OPPmzzz7r9udXX30VMTExOHLkCKZPn26/X6vVwmAwXPVzmEwmvPLKK3jzzTcxe/ZsAMBbb72FxMREbN++HXPnznX070DksYprWwAAogicr2y0X38nUpLccvfMn0jGxYfhQmUTTpaYcMvIGLe8JinPoGZQTKaOdBsZGdnt/t27dyMmJgZpaWl48MEHUVFRYX/syJEjaGtrQ3Z2tv2+uLg4pKen48CBA1d9HbPZjPr6+m43Im8gdVCAjjY6kRLlGd2zgkfCQVkCBhFQRFHEqlWrMHXqVKSnp9vvnz9/Pt5++23s3LkTzz77LA4dOoSZM2fCbO64lmg0GuHv74+IiIhun0+v18NoNF71tdatW4ewsDD7LTExcaBlEylKcU2L/b/zKxpkrITo2vLKXbfF/dVwqTEBDl7i6Wr58uU4fvw49u/f3+3+JUuW2P87PT0dEydORFJSEjZv3ozFixdf8/OJonjNa5tr1qzBqlWr7H+ur69nSCGPZ263oryh1f5n6YcAkZI0tLahtK4jSKfFuCeg9ByUjXLxYC4p04A6KCtWrMDHH3+MXbt2ISEhodfnxsbGIikpCfn5+QAAg8EAi8WC2trabs+rqKiAXq+/6ufQarUIDQ3tdiPydJfqWiGKl//MSzykRNKAbGxYAMKCNG55TQ7KEuBgQBFFEcuXL8eHH36InTt3Ijk5uc+Pqa6uRnFxMWJjYwEAEyZMgEajQU5Ojv05ZWVlOHnyJDIzMx0sn8hzSfMnkcH+AICL1U08Zp4UJ9fYEZzdNX8ise+HUsKA4qscCiiPPPII3nrrLbzzzjvQ6XQwGo0wGo1oaelo/zU2NuLxxx/HwYMHUVhYiN27d2PhwoWIiorCnXfeCQAICwvDAw88gMceeww7duzA0aNHcd999yEjI8O+qofIF5R0ruAZlxCGsEANbCJwobKpj48icq88N6/gkXAOhRyaQXn55ZcBAFlZWd3uf/XVV7Fs2TKo1WqcOHECb7zxBurq6hAbG4tbbrkF77//PnS6y/+4n3/+efj5+eHuu+9GS0sLZs2ahddeew1qtXrwfyMiD1Fc09FBSYwIQpO5HYcKa5Ff0YAxcbyEScqR6+YVPJJ07ijr8xwKKGLXC+ZXERgYiK1bt/b5eQICArBhwwZs2LDBkZcn8ipSByUxMhDtNhGHCms5h0KKY++guDmgjO0M6pdMrahuNGMIB2V9Ds/iIZJJcecMSkJEEFJjOo6wl34YEClBVaMZ1U0WCAKQ0vlv1F10ARoMj+agrC9jQCGSib2DEhGEVH3HN/98dlBIQaQN2pIigxDo7/5L8PY5FA7K+iQGFCIZtLZZUdnQsXlhQkSg/fr+xepmmNu5koeU4axM8ycSDsr6NgYUIhlI3ZMQrR/CgzSI0WmhC/CD1SaioIoreUgZpEuOo9y8gkfCQVnfxoBCJIPL8yeBEAQBgiDY51DyuaMsKYR0SGCaTAGl56As+RYGFCIZSB2UhIhA+31SG51zKKQEoijaZ1DcvYJHogvQYDh3lPVZDChEMiipubyCR5Ji76BwJQ/Jr7SuBU0WKzRqAcM6Q4IceJnHdzGgEMngah2UVHZQSEGk+ZMR0SHQqOX7UcFBWd/FgEIkA+kcnsTIyx2UtM6lxoVVTbC022Spi0gi1xk8PWUkSB2UelnrIPdjQCGSQfFVOiiG0ACEaP3QbhNxsZoreUheucaOQODuM3h6kgZlS+taOCjrYxhQiNysydyOmiYLgO4zKIIg2OdQ8riSh2SW2/lvUK4BWQkHZX0XAwqRm0nzJ6EBfggL1HR7LM2+oywHZUk+7VYbznfOQsndQQE4KOurGFCI3Oxq8yeS1BgOypL8CqubYbHaEOSvRnx4YN8f4GIclPVNDChEblZcc3mTtp5S9FxqTPKTVvCk6nVQqQSZq+naQeGgrC9hQCFys66HBPYk7SZbUNWENitX8pA8cu0btLn3BONrGRt/eVBWmt8i78eAQuRmXbe57yk+PBDB/mq0WUVcrG52d2lEAC53UOReYiwJDdAgmYOyPocBhcjNLm/SdmUHpetKHl7mIblIZ/AoYUBWwkFZ38OAQuRm0gzK1YZkASCFg7Iko9Y2Kwo7T9SWe4lxV+M6A8rxkjp5CyG3YUAhciNTSxvqW9sBXP0SD9B1qTEDCrnfuYpG2EQgIkiDaJ1W7nLsOCjrexhQiNyotPPyTmSwP4K1fld9TipX8pCMus6fCIL8K3gkHJT1PQwoRG7U24CsRNoL5UJlE9q5kofcTInzJwAHZX0RAwqRG/W2xFgSHx6IQI0aFqsNRTVcyUPulWdU1gqerjgo61sYUIjcqLdN2iQqVZeVPJxDITeTzoFSWgcFADI6L/OcKGFA8QUMKERuZF9ifI0VPJJULjUmGTS0tqG0ruPfaFqM8gJKOre89ykMKERuVNKPGRSgy5b37KCQG0kDsobQAIQFafp4tvtJAYWDsr6BAYXITURR7NcMCnD5t9f8cgYUcp9co3Iv7wAdg7LDhnS8d9hF8X4MKERuUtfchkZz73ugSKSlxucrG2G1iS6vjQi43EFRakABgIyEcAAclPUFDChEbiJ1T6J1WgRo1L0+NyEiCFo/FcztNvtgLZGr5Sp4BY+Eg7K+gwGFyE36sweKRM2VPCQDewdFwQGFg7K+gwGFyE0uD8j2Pn8ikVby5HElD7lBVaMZ1U0WCALs4ViJug7K1nJQ1qsxoBC5yeUB2b47KACQ2vlb7Dl2UMgNpA3akiKDEOjf+yVIOXFQ1ncwoBC5yeVN2hzroORXsINCrnfWA+ZPJLzM4xsYUIjcxN5BiXS8g2LjSh5yMU9YwSPJ4Jb3PoEBhcgNuu6B0t8OytDIIPj7qdDaZrN/LJGrKPWQwKuRAspxruTxagwoRG5Q3WRBS5sVggDEhQf062PUKgEjonmZh1xPFEX7DIqSV/BIxnJQ1icwoBC5gTR/otcFQOvX/wHEVC41JjcorWtBk8UKjVrAsKhgucvpU1ggB2V9AQMKkRs4On8i4VJjcgfp39eI6BBo1J7xY4GDst7PM/4lEnm4Ygf3QJFIW95zqTG5knQGjyes4JFwUNb7MaAQuYGje6BIuJKH3CHXWA/AMwZkJRnsoHg9BhQiN3B0DxRJUmQQNGoBzRYrSuu4kodcI7fc8zoo0qBsSS0HZb0VAwqRG5Talxg71kHxU6swPIqXech12q02nO/8tzXKgzooYYEaJHUOyp68xC6KN2JAIXIxm01ESZ00JOtYBwW4PIfCpcbkCoXVzbBYbQjyVyM+3LEALbd07ofi1RhQiFysstEMS7sNKgEwhPVvD5SuUmM6fqvNK2cHhZxPWsGTqtdBpRJkrsYxHJT1bgwoRC4mnWIcGxY4oCWclzsoDCjkfLn2DdqUe4LxtYzjoKxXY0AhcrHimoHNn0jSpKXG5Q0QRa7kIeeSOiieNCAr4aCsd2NAIXIxqYMykPkTAEgaEgw/lYAmixWXTK3OLI3Io87g6YmDst6NAYXIxQbbQdGoVUju3H48nzvKkhO1tllRWNUEwDPO4Lka7ijrvRhQiFyspK6zg+LgHihdcUdZcoVzFY2wiUB4kAbROq3c5QwIB2W9FwMKkYsNtoMCXF7Jk8+VPORE0vzJSL0OguBZK3gk3FHWezkUUNatW4dJkyZBp9MhJiYGixYtQm5ubrfniKKItWvXIi4uDoGBgcjKysKpU6e6PcdsNmPFihWIiopCcHAwbr/9dpSUlAz+b0OkMFabiEuD2ANFInVQ8rgXCjmRJ8+fSNLjOgJKcQ0HZb2NQwFlz549eOSRR/DFF18gJycH7e3tyM7ORlNTk/0569evx3PPPYeNGzfi0KFDMBgMmDNnDhoaLn9jXblyJTZt2oT33nsP+/fvR2NjIxYsWACr1eq8vxmRAhjrW9FuE+GnEqAPdXwPFInUQTlX3siVPOQ0eUbPXcEjCQvSYGgkB2W9kZ8jT/7ss8+6/fnVV19FTEwMjhw5gunTp0MURbzwwgt48sknsXjxYgDA66+/Dr1ej3feeQc/+tGPYDKZ8Morr+DNN9/E7NmzAQBvvfUWEhMTsX37dsydO9dJfzUi+ZV0nsETFx4I9SA2wUqOCoZaJaDB3I7yevOANnwj6kna/M+TOyhAx2WeoppmnCg1YVpqtNzlkJMMagbFZOpIq5GRkQCAgoICGI1GZGdn25+j1WoxY8YMHDhwAABw5MgRtLW1dXtOXFwc0tPT7c/pyWw2o76+vtuNyBPYTzGOHNwW4v5+KgzrXE6Zx5U85AQNrW32AyjTYjw8oCRwUNYbDTigiKKIVatWYerUqUhPTwcAGI1GAIBer+/2XL1eb3/MaDTC398fERER13xOT+vWrUNYWJj9lpiYONCyidyquHMPlITwgc+fSOyDslzJQ04gBV1DaADCgjQyVzM4HJT1TgMOKMuXL8fx48fx7rvvXvFYz2lwURT7nBDv7Tlr1qyByWSy34qLiwdaNpFbOauDAnTZUZaDsuQEucaOoJvm4Zd3gO6DsnXNHJT1FgMKKCtWrMDHH3+MXbt2ISEhwX6/wWAAgCs6IRUVFfauisFggMViQW1t7TWf05NWq0VoaGi3G5EnKO6cQUkYxB4okhQ9Dw0k57m8xNjzzuDpqdugbClHALyFQwFFFEUsX74cH374IXbu3Ink5ORujycnJ8NgMCAnJ8d+n8ViwZ49e5CZmQkAmDBhAjQaTbfnlJWV4eTJk/bnEHkLZ3ZQUmM6Dw3kmTzkBPZDAg3e8QsfL/N4H4dW8TzyyCN455138J///Ac6nc7eKQkLC0NgYCAEQcDKlSvxzDPPIDU1FampqXjmmWcQFBSEe++91/7cBx54AI899hiGDBmCyMhIPP7448jIyLCv6iHyBm1WG8pM0iZtg++gDI8OhkoA6lvbUdlgRswgli0Tdd2kzRukx4dh84kynCitk7sUchKHAsrLL78MAMjKyup2/6uvvoply5YBAFavXo2WlhY8/PDDqK2txeTJk7Ft2zbodJffBM8//zz8/Pxw9913o6WlBbNmzcJrr70GtVo9uL8NkYIYTa2wiR0rcKJDBr+NuNZPjWFDgnGhqgl55Y0MKDRgVY1mVDdZIAhASoznX+IB2EHxRg4FlP60lQVBwNq1a7F27dprPicgIAAbNmzAhg0bHHl5Io9inz8JD4RqEHugdJUSE4ILVU3Ir2jA1NQop3xO8j3SBm1JkUEI9PeOXwzT4zsuVUmDsuFB/jJXRIPFs3iIXESaP0kYxBb3PUlb3nOpMQ3GWS/YQban8CB/+6wXB2W9AwMKkYvY90AZxCGBPUk/UM5xJQ8NQp4XnMFzNePiwwHwMo+3YEAhchF7B8WJAUWaF8ir4EoeGjjpkEBv6qAAHYOyAHeU9RYMKEQuUtLZQUl0wgoeyYjoEKgEoK65DVWN3JCKHCeKon0GZZSXdVA4KOtdGFCIXKS4xvkdlACN2r4hVT53lKUBKK1rQZPFCo1awLCoYLnLcSppULaophmm5jaZq6HBYkAhcgFzuxXlDa0AgEQnDskCQIp0Jg/nUGgApPmTEdEh0Ki960dA10FZdlE8n3f96yRSiEt1rRBFIFCjxpBg5y53vLyShx0Uctz+/GoA3jd/IuFlHu/BgELkAiVdVvD0dVCmo6RDA9lBIUcV1zTjrS8uAgDuvD5e5mpcg4Oy3oMBhcgFXDF/IkmVLvFwLxRy0O+35sJiteHmlCHIGhktdzkuwQ6K92BAIXIB+woeJ8+fAB2zA4IA1DRZUN1odvrnJ+/0TXEdPv7mEgQBWDN/tNM7e0qRHtcRUDgo6/kYUIhcoNgFe6BIAv3V9qXL7KJQf4iiiN9sOQOg49KOdBnEG0UEd9lR9hK7KJ6MAYXIBVyxB0pXqTHSHAoHZalvOafL8VVBDbR+KjyePVLuclyOl3m8AwMKkQtcnkFxTUBJ4Zk81E9tVht++9lZAMADU5MRF+78rp7SpDOgeAUGFCIna22zoqpzNsQVl3iALoOyXMlDfXjvqyJcqGxCZLA/HsoaIXc5bmHvoJQwoHgyBhQiJ5PO4AnR+iE8SOOS10hjB4X6oaG1DS9szwcArJyditAA1/x7VBoOynoHBhQiJyt24R4okhHRHQGlqtGM2iaeyUNX9+c951HdZMHwqGB858ahcpfjNhHB/vbuJQdlPRcDCpGTXT7F2DXzJwAQrPVDfOcsAbsodDVlphb8fV8BAOCJ+aO8blv7vnBQ1vP51r9YIjcoqbncQXGlNG55T734w9Y8mNttuHFYJLLH6OUux+04KOv5GFCInEzqoLhik7auUvUclKWrO3XJhA+PlgAAfn6b927K1ptxCdzy3tMxoBA5WdcZFFdKiWEHha4kiiKe2XIGoggsHB+H6xLD5S5JFtKg7MXqZphaOCjriRhQiJzM3kFx4QwKcPk0WnZQqKvdeZX4/Fw1/NUqrJ7r/ZuyXUvXQdlT7KJ4JAYUIidqMrejpnNVTUKkezooFQ1mLqUkAEC71YZ1nVvaL81McvllRqUbnxAOAPiyoEbeQmhAGFCInEjqnoQFaly+50SI1g9xYQEAeJmHOvz7SAnyyhsRFqjB8ltS5S5HdtKJzdtOl8tcCQ0EAwqRExW7aQWPJEW6zMOlxj6vydyO53LyAAArZqYgzEWbBHqSWaP1UAnAmbJ6+3uTPAcDCpETlbhpQFaS1nmZJ4+HBvq8v+27gIoGM4ZGBuH+m5LkLkcRIoP9cWNyJABg6ymjzNWQoxhQiJzIXQOyktTOvVDOsYPi0yrqW/HXvRcAAKvnjYTWTy1zRcqRPcYAgJd5PBEDCpETuWuJsSSFhwYSgOe356HZYsV1ieG4LSNW7nIUJXtsxyZ1hwtrUN15iCd5BgYUIidy1yZtEqmDYqxvRX0rV/L4orzyBrx/qBgA8L8+uilbbxIigpAeHwqbCOw4UyF3OeQABhQiJ7o8JOuegBIaoIEhtHMlD7soPmndljOwicC8sQZMHBYpdzmKJF3m4RyKZ2FAIXISU0sb6lvbAbjvEg/QdQ6Fg7K+5vNzVdiVWwk/lYAn5o+SuxzFmju2I6DsO1eFRnO7zNVQfzGgEDmJtIInMtgfwVo/t71uKudQfJLNJuI3mzs2ZbtvShKSo4Jlrki50vQhSBoSBEu7DXvzKuUuh/qJAYXISS6v4HFf9wS43EHJ40oen7LpaClOl9VDp/XDT2ZxU7beCIJg76LwMo/nYEAhchJ3z59IUjv3QjnHvVB8RmubFX/YlgsAeGRmCiKD/WWuSPmyx3Ss5tl5tgKWdpvM1VB/MKAQOYnUQXH1GTw9SZd4Lpla0cCVPD7hlf0FKDO1Ij48EMsyh8ldjke4YWgEokK0aGhtxxcXquUuh/qBAYXISewBxc0dlLAgDWJ0WgDcsM0XVDea8fLu8wCA/zd3JAI03JStP1QqAXM6uyi8zOMZGFCInMTd29x3Jc2h8Ewe7/fHHfloNLcjPT4Ut4+Pk7scjyJt2pZzuhw2myhzNdQXBhQiJxBF0e3b3HclXeZhB8W7na9sxNtfFgEAfn7raKhU3JTNEZkjhiBE64eKBjOOldTJXQ71gQGFyAnqmtvs+yvI2UHhoYHe7XefnoXVJmLWqBhkjoiSuxyPo/VTI2tkNABg2ymezaN0DChETiB1T6J1WllmArgXivf7qqAG206XQ60SsOZWbso2UNJy422njBBFXuZRMvftJkXkxdx9SGBP0lLj0roWNJnb3bpRnKeTzrLZebYCI/U6/Gz+KAxT2KZnHZuynQYA3DMp0X5IJDkua2Q0/NUqXKhqwvnKRv6/VDB+FyNyAmlAVo75EwCICPZHVIgWVY1mnK9sxLiEcFnq8BRN5nZ8cvwS3j9UjK+L6uz3F1Q1YefZCjwwLRmP3JKCEIUEvU9OlOGbEhOC/dVYOTtN7nI8mi5Ag8yUIdidW4mtp8oZUBSMl3iInKC4RlpiLE8HBbjcRcnjZZ6rEkURXxfV4ol/H8eNv9mOJz44ga+L6qDuXH76wpLrMC01CharDS/vPo+Zf9iND46UyLrao91qw0dHS/H0Jx3dk4dmjEB055JyGjjuKusZlPHrAZGHs3dQIuXpoAAdg7IHL1Qjn4cGdlPTZMGHX5fgn4eLu4W35Khg3D0xEXdNiEeMruNE6Duui8P2MxV4evNpXKxuxmP/+gZvfnERa28fi+sSw91Ws7ndig+OlOLPe86jqHOH4mFDgvCDacPdVoM3mz1aj58LJ3C8xIRLdS2IC5fvFwu6NgYUIicorlVAB0XfudSYHRTYbCL2n6vC+4eLse2UEW3Wji5IgEaFWzNisWRiIm5MjoQgdF+mKwgd3ZTpaVH4x/5CbNyZj2PFdVj04uf41oQErJ430h5mXKHZ0o53vizC3/ZdQHm9GUDH4ZMPTE3G/TclIdCfm7I5Q7ROiwlDI3D4Yi1yTpdjKXfjVSQGFKJB6tgDRd4ZFKDLJR4f7qBcqmvBvw53dEtK61rs92fEh2HJpETcfl0cQgM0fX4erZ8aP84agcU3xON3n53Fh1+X4t9HSvDZSSNWzEzB929Ohr+f866Qm1ra8MaBQvzj8wLUNnccV2AIDcAPpw/Hd24cymDiAtlj9Th8sRbbThsZUBSKAYVokKqbLGhts0EQgNhw1/123RcpoJTUtqDZ0o4gf994e1vabdh+phzvHyrG3vxKSCtHQwP8cOf18bh7UiLGxoUN6HPrQwPw3N3X4b4pSfjVx6fwTYkJ6z49i/cOFeMXC0Zj5ij9oGqvajTjlf0FePPgRfs+OklDgvDjGSNw5w3x0PoxmLhK9hgDntlyFl9cqEFdswXhQTxwUWl84zsYkQtJpxgbQgNk/YEyJESLyGB/1DRZcKGyCenxA/uh7CnKTC34x/4CfPh1KaqbLPb7bxo+BPfcmIi5Yw1O25PmhqER2PTwzfjg6xL87rNcFFQ14X9eO4yskdH4xYIxGBEd4tDnu1TXgr/uvYB3vyqCufNk3ZF6HR6+ZQRuy4iFn5rrF1xtWFQwRup1yC1vwI4zFbhrQoLcJVEPDChEg1SigPkTSWpMCL4sqMGpSyavDiitbVZ8+88H7f/vY3RafHtiAu6emIikIa7Zw0SlEvDtiYmYl27Axp3n8I/PC7A7txL78/diWeYw/GR2ap+XjwqqmvDy7nPYdLTUPhczPjEcy29JwaxRMdy63s3mjtUjt7wB204bGVAUiAGFaJAub9Im3/yJZMrwIfiyoAY7zlRgyaShcpfjMu9+VYSS2hboQ7V45s4MzEiLdlvXQRegwZpbR2PJpEQ8vfkMdp6twN/3F+CjY6X4f3NH4tsTEq8IGmfK6vHirnPYcqIM0qrlm4YPwfKZKcgcMeSKYV1yj+yxBvxp5znsyatEi8XKWR+FcfgdvXfvXixcuBBxcXEQBAEfffRRt8eXLVsGQRC63aZMmdLtOWazGStWrEBUVBSCg4Nx++23o6SkZFB/ESK5XD4kUP4OinRa6978jm+43qjFYsWLu84DAH46Kw2zRutluSQyPDoE/1g2Ca9+fxKGRwWjqtGCJz44gTte/BxHLtYAAL4uqsUDrx3C/D/uwyfHO8LJrFEx+ODHmXj3h1Nwc0oUw4mMxsaFIj48EK1tNuzLr5S7HOrB4Xd1U1MTxo8fj40bN17zOfPmzUNZWZn9tmXLlm6Pr1y5Eps2bcJ7772H/fv3o7GxEQsWLIDV6p3fUMm7STMoSuigjIn1/m+4bxwsRFWjGUMjg/DtifK35W8ZGYPPVk7Hk7eOhk7rhxOlJtz18kFkP78Hi186gB1nKyAIwIJxsdjyk2l4ZdkkTEiKkLtsQseycinUb+XhgYrj8CWe+fPnY/78+b0+R6vVwmAwXPUxk8mEV155BW+++SZmz54NAHjrrbeQmJiI7du3Y+7cuY6WRCSrUmkGJVL+Dor0DffVzwux7XQ5ssde/X3oqRrN7fjzno7uyU9mpUKjkGFSfz8VHpw+HIuuj8cftubin0c6NoXzUwlYfEM8HpoxAsMdHKQl98geY8Crnxdix9lytFttHFBWEJd8JXbv3o2YmBikpaXhwQcfREVFhf2xI0eOoK2tDdnZ2fb74uLikJ6ejgMHDlz185nNZtTX13e7ESmBzSZ2ucQjfwcF6PiGCwA7znR8w/Umr+7v2CdkeHQwFl0XJ3c5V4jWafG7b43Dx49Mxc/mj8Ke1bdg/bfGM5wo2KRhEYgI0qCuuQ1fFdbIXQ514fSAMn/+fLz99tvYuXMnnn32WRw6dAgzZ86E2dyxK6LRaIS/vz8iIrq3OPV6PYzGq5+LsG7dOoSFhdlviYmJzi6baEAqG82wWG1QqwTEhsm3B0pXk4ZFIDxIg9rmNhy+WCt3OU5jam7DX/ddAACsnJ2m6N90MxLC8NCMEYjnFuqK56dWYdbojss823iZR1Gc/g5fsmQJbrvtNqSnp2PhwoX49NNPkZeXh82bN/f6caIoXnNYbM2aNTCZTPZbcXGxs8smGpCue6Ao5Qemn1qFWaO87xvu3/dfQENrO0bqdViQESt3OeRFpMMDt50yQhTlOxySunP5d9TY2FgkJSUhPz8fAGAwGGCxWFBb2/03u4qKCuj1V9+VUavVIjQ0tNuNSAnsl3cUMH/S1eXBP+/4hlvTZME/9hcAAB6dk8b9QsippqVGIVCjxiVTK06WcoRAKVweUKqrq1FcXIzY2I7feCZMmACNRoOcnBz7c8rKynDy5ElkZma6uhwipypR0B4oXU1PjUaARoXSuhacLvP8b7h/2XMeTRYr0uNDMXfs4LaXJ+opQKPGjLRoAMC201cfNSD3czigNDY24tixYzh27BgAoKCgAMeOHUNRUREaGxvx+OOP4+DBgygsLMTu3buxcOFCREVF4c477wQAhIWF4YEHHsBjjz2GHTt24OjRo7jvvvuQkZFhX9VD5CmKa5Q1ICsJ9FdjWmrnN1wPv8xT0dCK1w8WAgAemzOS+4aQS8xNv9x1JGVwOKAcPnwY119/Pa6//noAwKpVq3D99dfjl7/8JdRqNU6cOIE77rgDaWlpWLp0KdLS0nDw4EHodDr753j++eexaNEi3H333bj55psRFBSE//73v1CruYsfeZaSOqmDoqxLPACQPaZzDuW0ZweUl3adR2ubDTcMDUfWyGi5yyEvNXOkHn4qAXnljSioapK7HMIA9kHJysrq9Zr21q1b+/wcAQEB2LBhAzZs2ODoyxMpitRBUWJAmTVaD5XQsc16cU0zEiOV1eXpj0t1LXjnyyIAwGPZ7J6Q64QFaTBl+BDsP1eFbaeM+NGMEXKX5POUseyAyANZbSIu1UlDssr74R8Z7I9JwyIBeG4XZeOuc7BYbZgyPBKZI4bIXQ55ua7D5SQ/BhSiATLWt6LdJkKjFqAPVcYeKD1ld1k+6WmKqpvxz0MdWwqwe0LuIG1yeLS4DhX1rTJXQwwoRANU0rkHSlx4INQKXfYqzaEcKqxBTZNF5moc86ed+Wi3iZieFm3vBBG5kiEsAOMTwyGKQM4Zz+w6ehMGFKIBKq5V7vyJJDEyCKNjQ2ETO7a+9xTnKxvx4dcdJ5yvmpMmczXkS+zD5R6++s0bMKAQDZC0B4rSlhj35ImreV7Yng+bCMwercd1ieFyl0M+RNpV9sD5KtS3tslcjW9jQCEaICWv4OlKGvzbl1+JFotV5mr6dtZYj0+OXwLA7gm5X0pMCIZHB6PNKmLX2Yq+P4BchgGFaIDsHRQFruDpakxsKBIiAtHaZsPe/Eq5y+nT8zl5EEXgtoxYjInjsRbkfvazeTyo6+iNGFCIBqjEA2ZQAEAQBPvqBKVfVz9RYsLWU+UQBGDl7FS5yyEfJQWU3Wcr0Nqm/K6jt2JAIRqANqsNZSZlbnN/NdJlnh1ny9FutclczbU9l5MLAFh0XTxS9bo+nk3kGuPiw6AP1aLJYsXB89Vyl+OzGFCIBsBoaoVNBPz9VIgK0cpdTp8mJkUgIkiDuuY2HCqs7fsDZHDkYi125VZCrRLw01nsnpB8VKrLXUdu2iYfBhSiASju3AMlITwQKoXugdKVn1qFWaOl1TzK/IYrdU++dUMChkUFy1wN+Tqp65hzuhxW27WPdyHXYUAhGgD7/InCB2S76rq/Q2/nacnh4PlqfH6uGhq1gBWzUuQuhwhThg+BLsAP1U0WfF2kzK6jt2NAIRqA4lrlnmJ8LdNSoxGgUaG0rgWny+rlLsdOFEV79+SeSUOR4AEzPeT9NGoVZo2KAQBsPanMrqO3Y0AhGgCpg+IJA7KSQH81pqdGA1DWap59+VU4VFgLrZ8Ky2eye0LK0XW5sdK6jr6AAYVoAOwzKB7UQQG6HB6okP0dRFHEs9s6uif3TUlS7KGL5JtmjIyG1k+FoppmnDU2yF2Oz2FAIRoAewfFg2ZQAGDWqBioBOBMWb09ZMlpx5kKfFNiQqBGjR9njZC7HKJugvz9MC01CoCyuo6+ggGFyEHmdivKGzqOYve0DkpEsD9uTO44GVjuLorNJuLZnDwAwLKbh3nEcm3yPVLXkcuN3Y8BhchBl+paIYpAoEaNIcH+cpfjMKXs7/DZKSPOlNVDp/XDj6YPl7UWomuRuo6nFdJ19CUMKEQOKumygkcQlL8HSk9zOpcbHy6sQXWjWZYarDYRz3V2T/5najLCgzwv6JFvGBKixaRhyug6+hoGFCIHSacYe9r8iSQxMghjYkNhE4EdMp3W+t9vLuFcRSPCAjV4YFqyLDUQ9Rcv88iDAYXIQSUeuAdKT9IumXIM/rVbbXhhe0f35IfThyM0QOP2Gogcka2ArqMvYkAhclCxh5xi3BtpDmVffiWaLe1ufe0Pvy5FYXUzhgT7Y1nmMLe+NtFAJEYGYWxcZ9fxjDxdR1/EgELkIKmD4kmbtPU0OlaHhIhAmNtt2JtX5bbXtbTb8Mcd+QCAH2eNQLDWz22vTTQYShku9yUMKEQOEEURRdXSJR7PDSiCcPm0VnceHvj+4WKU1rUgRqfFfVOS3Pa6RIM1N73jMs++c1UwmlplrsY3MKAQOaC83ozqJgtUApASEyJ3OYMizaHsOFOBdqvN5a/X2mbFxp0d3ZPlM1MQoFG7/DWJnGWkXoeJSRGwtNvw+625cpfjExhQiBxwotQEAEiN0SHQ37N/wE5MikBEkAamljZ8VVjj8td7adc5lNebER8eiCWTEl3+ekTOJAgCnrxtNADgw6MlONn5vYBchwGFyAEnSuoAABkJYfIW4gR+ahVmjXbPap6c0+X4085zAIAn5o+C1s+zwx35puuHRuD28XEQReDpzad5gKCLMaAQOUDqoGTEe35AAS4vn8xx4Wmt5yoa8ej7xwAAyzKH4fbxcS55HSJ3WD1vJPz9VPjiQg1yuHGbSzGgEPWTKIo4UVoPAEj3koAyPS0agRo1SutacOpSvdM/f31rG3745mE0mttxY3KkvUVO5KkSIoLwg6kdmwuu+/QsLO2un9/yVQwoRP1UXm9GVaMZKgEYExsqdzlOEaBRY3pa52mtTv5t0GYTser9Y7hQ2YTYsAC89N0boFHzWw55vh9njUBUiD8Kqprw1hcX5S7Ha/G7BVE/edOAbFf25cZO3t/hTzvzsf1MBfz9VPjL/RN4WjF5DV2ABqvmjAQA/HFHPuqaLTJX5J0YUIj6yZsGZLuaOSoGapWAs8YG+x4vg5VzuhwvbO9YUvybRekYlxDulM9LpBR3T0xAmj4EppY2bOgcACfnYkAh6idvG5CVRAT740b7aa2D76J0HYpdelMSvj2RS4rJ+/ipVXjytjEAgDcOFqKgqknmirwPAwpRP3jjgGxX9sMDBzmH0nMo9n8XjHFGeUSKNCMtGjPSotFmFfHbT8/IXY7XYUAh6gdvHJDtao4TTmvtGIr9hkOx5FOevG00VAKw9VQ5vrxQLXc5XoXfPYj6wVsHZCUJEV1Oaz07sNNaO4ZiyzkUSz4lTa/Dd24cCgB4evMZ2GzcvM1ZGFCI+sFbB2S7uryax/HLPByKJV/26Jw0hGj9cKLUhI+OlcpdjtdgQCHqB28dkO1KmkPZl1+JZkt7vz+OQ7Hk66JCtHj4lhEAgPWf5aLFYpW5Iu/AgELUB28fkJWMMuiQGBkIc7sNe/Oq+vUxHIol6vA/NycjPjwQxvpW/G3fBbnL8QoMKER98PYBWYkgCA5t2sahWKLLAjRqPDF/FADgz3vOo6K+VeaKPB+/mxD1Qbq8k6b3zgHZrqTDA3ecrUCbtfczRroOxf75Pg7FEi0cF4vrh4aj2WLFs9vy5C7H4zGgEPVBGpD15ss7kglJEYgM9oeppQ2HCmqu+byeQ7HjE8PdVCGRcgmCgP/t3Lztn0eKcdoFB3D6EgYUoj74woCsxE+twqxRMQCuvWkbh2KJrm1CUgRuGxcLUQR+s+U0RJHLjgeKAYWoF74yINtV9tjLcyg9v7k2cCiWqE8/mzcK/moVPj9XjV25A9tXiBhQiHrlKwOyXU1LjUKgRo1Lplac6tKittlEPNplKPbFezkUS3Q1iZFB+P7UYQCA32w+0+c8F10dv7sQ9eJ45/yJLwzISgI0akxPiwLQfTVPz6HYaB2HYomu5ZFbUhAZ7I/zlU1496siucvxSAwoRL042Tl/4iuXdyT25cadcygciiVyTGiABo/OSQMAPJ+TB1NLm8wVeR4GFKJe+NKAbFczR8VArRJw1tiAXWcrOBRLNADfmZSIlJgQ1Da34cVd5+Qux+MwoBBdgy8OyEoigv1x47BIAMCDb3QOxQ7jUCyRI/zUKjx562gAwGufF6KoulnmijyLwwFl7969WLhwIeLi4iAIAj766KNuj4uiiLVr1yIuLg6BgYHIysrCqVOnuj3HbDZjxYoViIqKQnBwMG6//XaUlJQM6i9C5Gy+OCDblXQ2T7tN7BiK5U6xRA7LGhmNaalRsFht+N1nZ+Uux6M4/N2mqakJ48ePx8aNG6/6+Pr16/Hcc89h48aNOHToEAwGA+bMmYOGhgb7c1auXIlNmzbhvffew/79+9HY2IgFCxbAauUBS6Qcvjgg21X2WAP8VAKHYokGQRAEPHnbaKgEYPOJMhwuvPYGiNSdn6MfMH/+fMyfP/+qj4miiBdeeAFPPvkkFi9eDAB4/fXXodfr8c477+BHP/oRTCYTXnnlFbz55puYPXs2AOCtt95CYmIitm/fjrlz5w7ir0PkPL46ICuJDw/E+z+6CYEaNcbE+V4HichZRhlCsWRSIt79qhj/t/kMNv04EyqVIHdZiufUfm1BQQGMRiOys7Pt92m1WsyYMQMHDhwAABw5cgRtbW3dnhMXF4f09HT7c3oym82or6/vdiNyNV8dkO1qQlIEwwmREzw6Jw3B/mp8U1yH/x6/JHc5HsGpAcVo7NgzQa/Xd7tfr9fbHzMajfD390dERMQ1n9PTunXrEBYWZr8lJnIVAbmWLw/IEpHzxegC8OOsEQCA9Z/lorWNIw19ccnEmyB0b12JonjFfT319pw1a9bAZDLZb8XFxU6rlehqfH1Aloic7wfThiMuLACldS14ZX+B3OUonlMDisHQsblTz05IRUWFvatiMBhgsVhQW1t7zef0pNVqERoa2u1G5Eq+PiBLRM4XoFFj9bxRAICXdp1DZYNZ5oqUzakBJTk5GQaDATk5Ofb7LBYL9uzZg8zMTADAhAkToNFouj2nrKwMJ0+etD+HSG6+PiBLRK5x+/g4jE8IQ5PFiudy8uQuR9EcDiiNjY04duwYjh07BqBjMPbYsWMoKiqCIAhYuXIlnnnmGWzatAknT57EsmXLEBQUhHvvvRcAEBYWhgceeACPPfYYduzYgaNHj+K+++5DRkaGfVUPkdw4IEtErqBSCfYND98/VIRcY0MfH+G7HF5mfPjwYdxyyy32P69atQoAsHTpUrz22mtYvXo1Wlpa8PDDD6O2thaTJ0/Gtm3boNPp7B/z/PPPw8/PD3fffTdaWlowa9YsvPbaa1Cr2Uon+XFAlohcadKwSNyaYcCWE0Y88cFx/Ouhm7gJ4lUIoiiKchfhqPr6eoSFhcFkMnEehZzOaGrFlHU7oFYJOLl2LmdQiMjpSutaMO+FvWhobcePs0bgic7ZFG/nyM9vRjaiHqQB2dSYEIYTInKJ+PBA/O6ucQCAP+85j/35VTJXpDwMKEQ9cECWiNzh1oxYfOfGoRBF4NF/HkNVI1f1dMWAQtQDB2SJyF1+uWAM0vQhqGww47F/fgObzeOmLlyGAYWoCw7IEpE7BfqrseE7N0Drp8KevEpu4NYFAwpRF8b6VlQ1mqFWCdxBlojcYqRBh190Lj1ev/WsfQ7O1zGgEHVxoqTj8g4HZInInb47eSjmpxvQZhWx4t2jaDS3y12S7BhQiLrggCwRyUEQBPx28TjEhwfiYnUzfvHRSblLkh0DClEXHJAlIrmEBWnwx3uug1olYNPRUnxwpETukmTFgELUiQOyRCS3icMisXJWKgDgF/85iQuVjTJXJB8GFKJOHJAlIiV4+JYUTBkeiWaLFSvePQpzu1XukmTBgELUiQOyRKQEapWAF5Zcj4ggDU5dqsfvPs2VuyRZMKAQdeKALBEphSEsAH/49ngAwD8+L8DOs+UyV+R+DChEnTggS0RKMmu0HssyhwEAHv/XcZTXt8pbkJsxoBCh+4BsRgIDChEpw5pbR2FMbChqmixY+d4xWH1oK3wGFCJwQJaIlEnrp8aGe69HkL8aBy9U4+Xd5+QuyW0YUIjQfUA2QMMBWSJSjhHRIfjV7WMBAM9vz8eRizUyV+QeDChE4IAsESnbtyYk4I7r4mC1ifjJu8dgam6TuySXY0AhAgdkiUjZBEHA04vSkTQkCKV1LfjZh8chit49j8KAQj6PA7JE5Al0ARr86Z7r4acS8OlJI975qkjuklyKAYV8HgdkichTjE8Mx+p5IwEAv/7vaeQaG2SuyHUYUMjncUCWiDzJD6YOx/S0aJjbbVjx7tdosXjnVvgMKOTzOCBLRJ5EpRLw7LfHIypEi7zyRjy9+bTcJbkEAwr5PA7IEpGnidZp8fySjq3w3/6yCJ+eKJO5IudjQCGf1jEg2xlQOCBLRB5kWmo0HpoxAgDwxAfHUVLbLHNFzsWAQj6tY0DWwgFZIvJIj2Wn4brEcNS3tuOn7x1Du9Umd0lOw4BCPo0DskTkyTRqFTZ853rotH44crEWb31xUe6SnIYBhXwaB2SJyNMlRgbhZ7eOAgA8m5OHqkazzBU5BwMK+TQOyBKRN7hn0lCkx4eiobUdv/8sV+5ynIIBhXwWB2SJyFuoVYL9QMH3DxfjWHGdvAU5AQMK+SwOyBKRN5mQFIm7bkgAAPzyPydhs3n2WT0MKOSzOCBLRN7mifkjodP64XiJCf88XCx3OYPCgEI+iwOyRORtYnQB+OnsVADA+q25MDW3yVzRwDGgkM+S5k/Gcf6EiLzI0sxhSI0JQU2TBc/leO7ALAMK+aSuA7LsoBCRN9GoVfaB2Te/uIjTl+plrmhgGFDIJ3FAloi8WWZKFG7LiIVNBNZ+fAqi6HkDswwo5JM4IEtE3u7nt41GoEaNrwpr8PE3l+Qux2EMKOSTOCBLRN4uPjwQy2emAAB+s/kMGs3tMlfkGAYU8kkckCUiX/CDaclIGhKEigYzNuzIl7schzCgkM/hgCwR+QqtnxpPLRwDAPjH5wU4V9Eoc0X9x4BCPocDskTkS2aO0mPWqBi0WUX86r+eMzDLgEI+hwOyRORrfrlwDPzVKuzLr8LWU+Vyl9MvDCjkczggS0S+JmlIMH44fTgA4P8+OY0Wi1XmivrGgEI+5zgHZInIBz18ywjEhQWgtK4Ff95zXu5y+sSAQj5FFEV2UIjIJwX5++F/F3QMzL685zyKqptlrqh3DCjkUzggS0S+bH66AZkjhsDSbsP/bT4tdzm9YkAhn8IBWSLyZYIg4Fe3j4WfSkDO6XLszq2Qu6RrYkAhnyJd3sng5R0i8lGpeh2WZQ4DAPzqv6dhblfmwCwDCvkUaUA2gwOyROTDfjo7FVEhWhRUNeEf+wvlLueqGFDIZ3BAloiogy5AgzXzRwEANuzMh9HUKnNFV3J6QFm7di0EQeh2MxgM9sdFUcTatWsRFxeHwMBAZGVl4dSpU84ug+gKHJAlIrrszuvjMSEpAs0WK57Zckbucq7gkg7K2LFjUVZWZr+dOHHC/tj69evx3HPPYePGjTh06BAMBgPmzJmDhoYGV5RCZMcBWSKiy1SqjoFZQQA+/uYSvrhQLXdJ3bgkoPj5+cFgMNhv0dHRADq6Jy+88AKefPJJLF68GOnp6Xj99dfR3NyMd955xxWlENlxQJaIqLv0+DDce+NQAMDaj0+h3WqTuaLLXBJQ8vPzERcXh+TkZNxzzz24cOECAKCgoABGoxHZ2dn252q1WsyYMQMHDhy45uczm82or6/vdiNyFAdkiYiu9Hj2SIQHaXDW2IC3vrgodzl2Tg8okydPxhtvvIGtW7fib3/7G4xGIzIzM1FdXQ2j0QgA0Ov13T5Gr9fbH7uadevWISwszH5LTEx0dtnk5TggS0R0dRHB/vh/c0cCAJ7NyUNVo1nmijo4PaDMnz8fd911FzIyMjB79mxs3rwZAPD666/bnyMIQrePEUXxivu6WrNmDUwmk/1WXFzs7LLJy3FAlojo2u6ZNBTp8aFoaG3H+s/Oyl0OADcsMw4ODkZGRgby8/Ptq3l6dksqKiqu6Kp0pdVqERoa2u1G5AgOyBIRXZtaJeBXt6cDAP55uARHi2plrsgNAcVsNuPMmTOIjY1FcnIyDAYDcnJy7I9bLBbs2bMHmZmZri6FfBgHZImIejchKQJ33ZAAAHjq41Ow2URZ63F6QHn88cexZ88eFBQU4Msvv8S3vvUt1NfXY+nSpRAEAStXrsQzzzyDTZs24eTJk1i2bBmCgoJw7733OrsUIjsOyBIR9e2J+SOh0/rheIkJ/zws7ziFn7M/YUlJCb7zne+gqqoK0dHRmDJlCr744gskJSUBAFavXo2WlhY8/PDDqK2txeTJk7Ft2zbodDpnl0IEgAOyRET9FaMLwE9np+LpzWfwu8/O4tZxsQgN0MhSiyCKorw9nAGor69HWFgYTCYT51GoT2WmFty0bifUKgGnfjWXMyhERL1os9rwP68dwrcnJmLhuNheF7E4ypGf307voBApDQdkiYj6T6NW4c0HJstdBg8LJO+3/1wVAF7eISLyJAwo5NXK61vx3qGOQa/bx8fJXA0REfUXAwp5tZd3n4el3YYJSRGYlholdzlERNRPDCjktYymVrzzVREA4NHZaU4d9CIiItdiQCGv9dLuc7C02zBpWARuThkidzlEROQABhTySpfqWvDeVx2zJ+yeEBF5HgYU8kov7T4Hi9WGG5MjcdMIdk+IiDwNAwp5ndK6Frx/iN0TIiJPxoBCXufFXefQZhUxZTi7J0REnooBhbxKSW0z/nX4cveEiIg8EwMKeRWpe5I5YggmD2f3hIjIUzGgkNcormnGvw6XAAAencPuCRGRJ2NAIa+xcec5tNtETE2JwqRhkXKXQ0REg8CAQl6hqLoZ//5a6p6kylwNERENFgMKeYUNO/NhtYmYlhqFCUnsnhAReToGFPJ4hVVN+PBoKQDOnhAReQsGlB6Ol9TB0m6TuwxywIad52C1icgaGY0bhkbIXQ4RETkBA0oXlQ1m3Pu3LzHvj3uxK7dC7nKoHwqqmrDpaMfsyUrue0JE5DUYULooqGpCgEaFC5VN+P6rh/DAa4dQUNUkd1nUiw078mETgZmjYnBdYrjc5RARkZMwoHRxY3Ikdj6ehQenJcNPJWDH2QpkP78H6z49g0Zzu9zlUQ/nKxvx0bGO2ZOVs7lyh4jImzCg9BAaoMGTt43BZyunY0ZaNNqsIv6y5wJu+cNufHCkBDabKHeJ1EnqnsweHYNxCeFyl0NERE7EgHINKTEheO37k/DK0olIGhKEygYzHvvXN1j88gF8U1wnd3k+71xFA/7zzSUAnD0hIvJGDCi9EAQBs0brse3R6Xhi3igE+6txrLgOd7z4Of7fv75BRUOr3CX6rD/uOAdRBOaM0SM9PkzucoiIyMkYUPpB66fGj7NGYOfjWVh8QzwA4F9HSjDzD3vw173nuSzZzfLKG/DJcal7wtkTIiJvxIDiAH1oAJ67+zp8+HAmxiWEodHcjme2nMW8F7gs2Z3+uCMfogjMHavH2Dh2T4iIvBEDygDcMDQCHz18M9Z/axyiQvxxoapjWfL/cFmyy+UaG7DlRBkAzp4QEXkzBpQBUqkE3D0xsduy5J1cluxyf9yRB1EE5qcbMDo2VO5yiIjIRRhQBklalrz10SuXJf+by5Kd6kxZPbacMAIAfsrZEyIir8aA4iQjoi8vSx7WuSz58c5lyR9/cwnNFnZUBuuP2/MBALdlxGKUgd0TIiJv5id3Ad5EWpY8NTUKr35eiA078nGsuA4/efcoAjQqzBqlx4JxsbhlVAwCNGq5y/Uopy6Z8NkpIwSB3RMiIl/AgOICWj81HpoxAouvj8frBwvxyfEyXKxuxuYTZdh8ogzB/mrMHqPHwnFxmJYWBa0fw0pfunZP0vQ6mashIiJXE0RR9Lghifr6eoSFhcFkMiE0VPmtflEUcbK0Hp8cv4RPjpehtK7F/pguwA9zxxqwYFwsbk6JgkbNq249nSw1YcGG/RAEYNvK6UhlQCEi8kiO/PxmQHEzURRxtLgOn3xThs0nLqG83mx/LCJIg3npBiwYF4fJyZHwY1gBAPzg9cPYfqYct4+Pw5++c73c5RAR0QAxoHgIm03EocIafHK8DJ+eLENVo8X+WFSIP+anx2LBuFhMGhYJlUqQsVL5nCgxYeHG/VAJwLZHZyAlJkTukoiIaIAYUDxQu9WGLwtq8MnxS/j0pBF1zW32x/ShWtyaEYsF4+Jww9BwCILvhJUHXjuEHWcrsOi6OLxwD7snRESejAHFw7VZbfj8XBU+OV6GraeMaGi9vEQ5PjwQ89MNuG1cLK5L9O6w8k3nwYwqAdi+agaGR7N7QkTkyRhQvIi53Yp9eVX45Pgl5JwuR5PFan9MCiu3jovF9V4YVr7/6lfYlVuJxdfH47kl18ldDhERDRIDipdqbbNiT14lNh8vw44z3h1WjhbV4s6XDkCtErB91QwkRwXLXRIREQ0SA4oP6C2sxIUF4NaMWI8NKy0WKx584zD2n6vCXTck4Nm7x8tdEhEROQEDio/pK6zMz4jFbR4QVkpqm/HmFxfx/qFi1DW3Qa0SsPOxGUgawu4JEZE3YEDxYVJY2XKiDNtPKz+siKKIg+er8dqBQmw/Uw7pbMWEiECsnjcKt4+Pk7dAIiJyGgYUAtC/sDJrdAwmJEW4fbv9Zks7Pvy6FG8cLEReeaP9/qkpUViaOQwzR8VA7aN7vxAReSsGFLpCb2ElUKPG5OGRmJoShelp0UiNCXFZd+VidRPeOHgR/zxcbF8+HeSvxl03JGBpZhJSYriNPRGRt2JAoV5JYeWzk0bsy69CVaO52+P6UC1uTonC9NRo3JwShWiddlCvZ7OJ2HeuCq8fKMSu3ApI/+KGDQnC924ahm9NTEBogGZQr0FERMrHgEL9JooizhobsD+/CnvzK/FVQQ3M7bZuzxll0GF6WjSmpkThxuRIBGj6dzmo0dyOD46U4PUDhbhQ1WS/P2tkNJZmDsOM1Gif3cKfiMgXMaDQgLW2WXHkYi325VdhX34lTl2q7/a4v58KNw6LxNTUKExNicKY2NArQsaFyka8cfAi/n2kBI3mjss4Oq0fvjUxAd+7aRj3NCEi8lEMKOQ01Y1mfH6+GvvzK7EvvwplptZujw8J9sfNKVGYmhqFsEAN3v6yCHvzKu2Pj4gOxrLMYbjzhgSEaP3cXT4RESkIAwq5hCiKOF/ZhP35ldh/rgoHz1d3G7aVCAIwa1QMlmYOw9SUKEUsZyYiIvk58vNb1l9pX3rpJfz+979HWVkZxo4dixdeeAHTpk2TsyTqhSAISIkJQUpMCJbdnIw2qw1Hi+qwP78Se/OrUFHfitvGxeL+KcMwdEiQ3OUSEZEHk62D8v777+P+++/HSy+9hJtvvhl/+ctf8Pe//x2nT5/G0KFDe/1YdlCIiIg8j0dc4pk8eTJuuOEGvPzyy/b7Ro8ejUWLFmHdunW9fiwDChERkedx5Oe3yk01dWOxWHDkyBFkZ2d3uz87OxsHDhy44vlmsxn19fXdbkREROS9ZAkoVVVVsFqt0Ov13e7X6/UwGo1XPH/dunUICwuz3xITE91VKhEREclAloAi6bm6QxTFq674WLNmDUwmk/1WXFzsrhKJiIhIBrKs4omKioJarb6iW1JRUXFFVwUAtFottNrBbbdOREREnkOWDoq/vz8mTJiAnJycbvfn5OQgMzNTjpKIiIhIQWTbB2XVqlW4//77MXHiRNx0003461//iqKiIjz00ENylUREREQKIVtAWbJkCaqrq/HrX/8aZWVlSE9Px5YtW5CUlCRXSURERKQQ3OqeiIiI3ELx+6AQERER9YYBhYiIiBSHAYWIiIgUhwGFiIiIFIcBhYiIiBRHtmXGgyEtPOKhgURERJ5D+rndnwXEHhlQGhoaAICHBhIREXmghoYGhIWF9focj9wHxWaz4dKlS9DpdFc9XHAw6uvrkZiYiOLiYu6xIiN+HZSBXwdl4NdBGfh1GDxRFNHQ0IC4uDioVL1PmXhkB0WlUiEhIcGlrxEaGsp/gArAr4My8OugDPw6KAO/DoPTV+dEwiFZIiIiUhwGFCIiIlIcBpQetFotnnrqKWi1WrlL8Wn8OigDvw7KwK+DMvDr4F4eOSRLRERE3o0dFCIiIlIcBhQiIiJSHAYUIiIiUhwGFCIiIlIcBpQuXnrpJSQnJyMgIAATJkzAvn375C7J56xduxaCIHS7GQwGucvyenv37sXChQsRFxcHQRDw0UcfdXtcFEWsXbsWcXFxCAwMRFZWFk6dOiVPsV6sr6/DsmXLrnh/TJkyRZ5ivdS6deswadIk6HQ6xMTEYNGiRcjNze32HL4f3IMBpdP777+PlStX4sknn8TRo0cxbdo0zJ8/H0VFRXKX5nPGjh2LsrIy++3EiRNyl+T1mpqaMH78eGzcuPGqj69fvx7PPfccNm7ciEOHDsFgMGDOnDn2c7HIOfr6OgDAvHnzur0/tmzZ4sYKvd+ePXvwyCOP4IsvvkBOTg7a29uRnZ2NpqYm+3P4fnATkURRFMUbb7xRfOihh7rdN2rUKPFnP/uZTBX5pqeeekocP3683GX4NADipk2b7H+22WyiwWAQf/vb39rva21tFcPCwsQ///nPMlToG3p+HURRFJcuXSrecccdstTjqyoqKkQA4p49e0RR5PvBndhBAWCxWHDkyBFkZ2d3uz87OxsHDhyQqSrflZ+fj7i4OCQnJ+Oee+7BhQsX5C7JpxUUFMBoNHZ7f2i1WsyYMYPvDxns3r0bMTExSEtLw4MPPoiKigq5S/JqJpMJABAZGQmA7wd3YkABUFVVBavVCr1e3+1+vV4Po9EoU1W+afLkyXjjjTewdetW/O1vf4PRaERmZiaqq6vlLs1nSe8Bvj/kN3/+fLz99tvYuXMnnn32WRw6dAgzZ86E2WyWuzSvJIoiVq1ahalTpyI9PR0A3w/u5JGnGbuKIAjd/iyK4hX3kWvNnz/f/t8ZGRm46aabMGLECLz++utYtWqVjJUR3x/yW7Jkif2/09PTMXHiRCQlJWHz5s1YvHixjJV5p+XLl+P48ePYv3//FY/x/eB67KAAiIqKglqtviL9VlRUXJGSyb2Cg4ORkZGB/Px8uUvxWdIqKr4/lCc2NhZJSUl8f7jAihUr8PHHH2PXrl1ISEiw38/3g/swoADw9/fHhAkTkJOT0+3+nJwcZGZmylQVAYDZbMaZM2cQGxsrdyk+Kzk5GQaDodv7w2KxYM+ePXx/yKy6uhrFxcV8fziRKIpYvnw5PvzwQ+zcuRPJycndHuf7wX14iafTqlWrcP/992PixIm46aab8Ne//hVFRUV46KGH5C7Npzz++ONYuHAhhg4dioqKCjz99NOor6/H0qVL5S7NqzU2NuLcuXP2PxcUFODYsWOIjIzE0KFDsXLlSjzzzDNITU1FamoqnnnmGQQFBeHee++VsWrv09vXITIyEmvXrsVdd92F2NhYFBYW4uc//zmioqJw5513yli1d3nkkUfwzjvv4D//+Q90Op29UxIWFobAwEAIgsD3g7vIuoZIYV588UUxKSlJ9Pf3F2+44Qb7sjJynyVLloixsbGiRqMR4+LixMWLF4unTp2Suyyvt2vXLhHAFbelS5eKotixtPKpp54SDQaDqNVqxenTp4snTpyQt2gv1NvXobm5WczOzhajo6NFjUYjDh06VFy6dKlYVFQkd9le5Wr//wGIr776qv05fD+4hyCKouj+WERERER0bZxBISIiIsVhQCEiIiLFYUAhIiIixWFAISIiIsVhQCEiIiLFYUAhIiIixWFAISIiIsVhQCEiIiLFYUAhIpfJysrCypUr5S6DiDwQAwoREREpDgMKEXkVi8UidwlE5AQMKETkUjabDatXr0ZkZCQMBgPWrl1rf6yoqAh33HEHQkJCEBoairvvvhvl5eX2x5ctW4ZFixZ1+3wrV65EVlaW/c9ZWVlYvnw5Vq1ahaioKMyZM8fFfyMicgcGFCJyqddffx3BwcH48ssvsX79evz6179GTk4ORFHEokWLUFNTgz179iAnJwfnz5/HkiVLBvQafn5++Pzzz/GXv/zFBX8LInI3P7kLICLvNm7cODz11FMAgNTUVGzcuBE7duwAABw/fhwFBQVITEwEALz55psYO3YsDh06hEmTJvX7NVJSUrB+/XrnF09EsmEHhYhcaty4cd3+HBsbi4qKCpw5cwaJiYn2cAIAY8aMQXh4OM6cOePQa0ycONEptRKRcjCgEJFLaTSabn8WBAE2mw2iKEIQhCue3/V+lUoFURS7Pd7W1nbFxwQHBzuxYiJSAgYUIpLFmDFjUFRUhOLiYvt9p0+fhslkwujRowEA0dHRKCsr6/Zxx44dc2eZRCQTBhQiksXs2bMxbtw4fPe738XXX3+Nr776Ct/73vcwY8YM+yWbmTNn4vDhw3jjjTeQn5+Pp556CidPnpS5ciJyBwYUIpKFIAj46KOPEBERgenTp2P27NkYPnw43n//fftz5s6di1/84hdYvXo1Jk2ahIaGBnzve9+TsWoichdB7HmBl4iIiEhm7KAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeIwoBAREZHiMKAQERGR4jCgEBERkeL8fxuu3muZTMi5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "# Celda 2.2 - \"season\"=1 escriba su código y hallazgos \n" + "# Celda 2.2 - \"season\"=1 escriba su código y hallazgos \n", + "bikes[bikes.season == 1].groupby('hour').total.mean().plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Al analizar la gráfica, podemos ver que hay dos picos de alquileres de bicicletas durante el día: uno en la mañana, alrededor de las 8:00 am, y otro en la tarde, alrededor de las 5:00 pm. Estos picos sugieren que las personas pueden estar utilizando las bicicletas para desplazarse al trabajo o la escuela. También podemos ver que hay un período de tiempo durante la noche, desde alrededor de las 9:00 pm hasta las 4:00 am, donde el número de bicicletas alquiladas es muy bajo, por las bajs temperaturas." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGwCAYAAACD0J42AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTpklEQVR4nO3deXiU1d0+8PuZNdtksmcSkkAgYQ2bCVsQQQQUK25tUbEKrWsV3qZIaalvf9INLH1d2qLWrYIgYhexWq0SkR2BEEC2CIEkJIEsZJvssz6/P5IZEtZMMjPPMzP357rmqpl5knynYTJ3zvmecwRRFEUQERERyYhC6gKIiIiILsWAQkRERLLDgEJERESyw4BCREREssOAQkRERLLDgEJERESyw4BCREREsqOSuoDesNvtOH/+PHQ6HQRBkLocIiIi6gFRFNHU1ITExEQoFNceI/HJgHL+/HkkJydLXQYRERH1QllZGZKSkq55jU8GFJ1OB6DjCYaHh0tcDREREfVEY2MjkpOTne/j1+KTAcUxrRMeHs6AQkRE5GN60p7BJlkiIiKSHQYUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpIdBhQiIuo1u11Eu8UmdRnkhxhQiIio155cn48bfpuLfx8+J3Up5GcYUIiIqFesNju2nbyAVrMNP9l4GCv/WwCbXZS6LPITDChERNQrZ+taYbbZoRA6Pn59exF+tCYPxlaLtIWRX2BAISKiXimsagIAjEjU4y8PjEWQWoHtpy7grld2OR8j6i0GFCIi6pVTVc0AgPT4MMwZnYh//Tgb/SKCUVLbinte3YPcE1USV0i+jAGFiIh65VTnKEl6nA5Ax0jKxwsnY0JqFJpNVjz27gH8eUsh7OxLoV5gQCEiol4p7BxBGRwf5rwvOkyL9Y9OwPxJ/QEAL+aewlPvHUSLySpJjeS7GFCIiMhlVpsdRTWOgKLr9phaqcCv78rAH747EhqlAp8fr8S9r+5BaW2rFKWSj2JAISIil5XUtsJiExGsVqJfRPAVr7lvXAref3wiYnVanKxqwp2v7MKuwhovV0q+igGFiIhc5lilkx4fBoVjnfEVZPaPxCcLb8To5Ag0tFrw8N/24a2dRRBF9qXQtTGgEBGRy5wreOJ017kSMOiD8MHjE/G9zCTYReB3nxbgmb9/wy3y6ZoYUIiIyGWnqjtGULo2yF5LkFqJP35vFJ6bMxxKhYAPD53D3Ne/RoWxzZNlkg9jQCEiIpc5pngubZC9FkEQ8MPJqVj3o/GICFHjSLkRc/6yGwdK6jxVJvkwBhQiInKJxWZHcU0LgI4eFFdlp8Xgk4U3YqhBh5pmEx54cy/e31/q7jLJxzGgEBGRS0pqWmCxiQjVXH0Fz/UkR4Xgw6ey8Z2RCbDYRCz78Cj+96OjMFvtbq6WfBUDChERucTRIJsWFwZBuPoKnusJ0aiwet5Y/OzWIRAEYP3eUvzgrX2oaTa5q1TyYQwoRETkksJqxxLjnvefXI0gCHj65jS89XAWwrQq7C+pw08/ONznr0u+jwGFiIhccqUt7vvqlmHx2Pj4RADAnjO1aGq3uO1rk29iQCEiIpc4Dwl0wwhKVxn99OgfHQKbXUQeV/YEPAYUIiLqMbP14goeV5YY91T2oBgAwO7TtW7/2uRbGFCIiKjHSmpbYLWLCNOqkKgPcvvXzx4UDaBjmocCGwMKERH1mGN6p68reK5mUmdAKahoRF2L2e1fn3wHAwoREfXYKQ80yHYVE6bFUEPH1NHXHEUJaAwoRETUY73Z4t5Vk5zTPDUe+x4kfwwoRETUY12neDzF0SjLEZTAxoBCREQ9YrbaUVLbCsCzIyjjU6OgEICimhaedhzAGFCIiKhHimtaYLOL0GlVSPDACh4HfbAaI5MiAAB7uNw4YDGgEBFRjzind+I9s4KnKy43JgYUIiLqEWeDbJznpnccHAHl6zM1EEXR49+P5IcBhYiIesSxxDjdQ0uMu8rqHwWNUoHzxnZn3wsFFgYUIiLqkVPVnl9i7BCsUWJsSgQALjcOVAwoRER0XSarDWe9sIKnK8dyY/ahBCYGFCIiuq6iC50reIJUiA/XeuV7Zqc5+lBqYbezDyXQMKAQEdF1neqyg6ynV/A4jE6KQIhGiboWM052fn8KHAwoRER0XYWOBlkP7iB7KY1KgXEDogBwmicQMaAQEdF1FXY2yKZ7qf/Ewbkfymk2ygYaBhQiIrquQg+fYnw1k9M6GmX3FdfBarN79XuTtFwKKMuXL4cgCN1uBoPB+bgoili+fDkSExMRHByMadOm4fjx492+hslkwqJFixATE4PQ0FDceeedKC8vd8+zISIit2u32FBS2wLAeyt4HIYlhEMfrEazyYqj54xe/d4kLZdHUEaMGIGKigrn7ejRo87HVq1ahRdffBGrV69GXl4eDAYDZs6ciaami81NOTk52LRpEzZu3Ihdu3ahubkZd9xxB2w2m3ueERERuVXRhRbYRSA8SIU4nXdW8DgoFQImDmQfSiByOaCoVCoYDAbnLTY2FkDH6MnLL7+MZ599Fvfeey8yMjKwdu1atLa2YsOGDQAAo9GIt99+Gy+88AJmzJiBsWPHYv369Th69Ci+/PLLq35Pk8mExsbGbjciIvKOwmrvr+Dp6uJ+KOxDCSQuB5TCwkIkJiYiNTUV999/P4qKigAAxcXFqKysxKxZs5zXarVaTJ06FXv27AEA5Ofnw2KxdLsmMTERGRkZzmuuZOXKldDr9c5bcnKyq2UTEVEvOZYYe7tB1mFy534oB0rq0W7haHugcCmgTJgwAe+++y6++OILvPnmm6isrER2djZqa2tRWVkJAIiPj+/2OfHx8c7HKisrodFoEBkZedVrrmTZsmUwGo3OW1lZmStlExFRH5ySqEHWYVBsGGJ1WpisdhwqbZCkBvI+lSsXz5492/nfI0eOxKRJkzBo0CCsXbsWEydOBIDLhv9EUbzukOD1rtFqtdBqvTvvSUREHQqrvHcGz5UIgoDsQdH49+Hz2HOmBpM6lx6Tf+vTMuPQ0FCMHDkShYWFztU8l46EVFdXO0dVDAYDzGYz6uvrr3oNERHJR7vFhrN1HWfweHOTtktN5rk8AadPAcVkMqGgoAAJCQlITU2FwWBAbm6u83Gz2Yzt27cjOzsbAJCZmQm1Wt3tmoqKChw7dsx5DRERyceZC80QRUAfrEasl1fwdOUYNfmmrAHNJqtkdZD3uDTFs2TJEsyZMwcpKSmorq7G7373OzQ2NmL+/PkQBAE5OTlYsWIF0tPTkZ6ejhUrViAkJATz5s0DAOj1ejzyyCN45plnEB0djaioKCxZsgQjR47EjBkzPPIEiYio97pu0CbFCh6H5KgQJEcFo6yuDXnFdbh5aJxktZB3uBRQysvL8cADD6CmpgaxsbGYOHEi9u7di/79+wMAli5dira2Njz11FOor6/HhAkTsHnzZuh0F+ctX3rpJahUKsydOxdtbW245ZZbsGbNGiiVSvc+MyIi6jOpV/B0lT0wBh/UlWHPmRoGlAAgiKLoc2dYNzY2Qq/Xw2g0Ijw8XOpyiIj81qNrD+DLgiosnzMcCyanSlrLvw+fw082HsaIxHB8+j9TJK2FeseV92+exUNERFfVdZM2qTn6UE5UNKK+xSxxNeRpDChERHRFbWYbSh0reGQQUOJ0QUiPC4MoAnuLuJrH3zGgEBHRFTlW8ESGqBETppG6HAAXTzfmcmP/x4BCRERX1LVBVsoVPF05pnl4Lo//Y0AhIqIrcmxxL+UGbZeamBoNQQDOXGhBpbFd6nLIgxhQiIjoik7LqEHWQR+iRkaiHgDwdRFHUfwZAwoREV2RcwRFokMCrya783TjPafZh+LPGFCIiOgybWYbyuo7VvDIaQQFALK7nMvjg1t5UQ8xoBAR0WVOV3es4IkK1SAmTF6nyY8bEAm1UsC5hjbnMmjyPwwoRER0GecKHhk1yDqEaFQYmxwJgMuN/RkDChERXeaUDBtku3IsN959mo2y/ooBhYiILtP1FGM5yu4MKF+zD8VvMaAQEdFl5HSK8ZWMTYlEkFqB2hazc7UR+RcGFCIi6qbFZEV5fRsA+U7xaFQKjBsQBYC7yvorBhQiIurmzIWOEYnoUA2iQuVxBs+VOJYb7+Z+KH6JAYWIiLqR6wZtl3L0oewrqoXVZpe4GnI3BhQiIuqmsEreK3gcMvrpoQtSoclkxfHzjVKXQ27GgEJERN3IvUHWQakQMHFg53Jj9qH4HQYUIiLqxjHFM1iGm7RdqutyY/IvDChEROTUYrLiXIO8V/B0NTmto1E2r6QOJqtN4mrInRhQiIjIqbC6Y/QkJkyLSBmv4HFIjwtDTJgG7RY7DpU2SF0OuREDChEROZ1yNsjKf3oHAARBwKQupxuT/2BAISIiJ19ZwdPVxT4UNsr6EwYUIiJyckzxpPlAg6zD5M4RlEOlDWg1WyWuhtyFAYWIiJwuHhLoOyMoyVHB6BcRDKtdxP7iOqnLITdhQCEiIgBAc7cVPL4zgiIIApcb+yEGFCIiAnCx/yRWp0VEiPxX8HTlWG7MRln/wYBCREQAuk7v+M7oicOkzhGUY+eNaGg1S1wNuQMDChERAeiyxX2c7/SfOMSHB2FQbChEEdhbxD4Uf8CAQkREAIBT1b7XINtVdudqHi439g8MKEREBKDrHii+N8UDAJPTHAcHsg/FHzCgEBERGtstqDC2A5D/KcZXMyE1GoIAnK5uRnVju9TlUB8xoBAREU53Tu/Eh2uhD1ZLXE3vRIZqMDwhHADwdRFHUXwdAwoRETmnd3yxQbYr53Lj0wwovo4BhYiIcKpziXG6j/afODiWG+9mo6zPY0AhIqIupxj79gjKuAFRUCkElNe3oayuVepyqA8YUIiIyKc3aesqTKvC6OQIAMAejqL4NAYUIqIAZ2yzoLJz1Uuaj/egAMBkxzQP+1B8GgMKEVGAO13dMb1jCA/y2RU8XU0adPFcHlEUJa6GeosBhYgowPlLg6zD2JQIaFUK1DSbnMunyfcwoBARBTh/aZB1CFIrMW5AFABg92n2ofgqBhQiogB3uto/GmS7ciw33sNt730WAwoRUYBzjKD4Q4OsQ3ZnQNlbVAubnX0ovogBhYgogBnbLKhqNAHwnx4UABjZTw+dVoXGdiuOnzdKXQ71AgMKEVEAc2xxn6APQniQ76/gcVApFZgwsKMPZWch+1B8EQMKEVEAu7iCx3+mdxxuHhoHAMg9USVxJdQbDChERAHMuYInzn+mdxxmDIsHABwua0B150Z05DsYUIiIAlhhtX8tMe4qPjwIo5P0AIAvC6olroZcxYBCRBTA/G2TtkvNHN4xipJ7olLiSshVfQooK1euhCAIyMnJcd4niiKWL1+OxMREBAcHY9q0aTh+/Hi3zzOZTFi0aBFiYmIQGhqKO++8E+Xl5X0phcgniaKIf+aXo+gCd7sk72toNeNCk2MFj/+NoADAzOEGAMDuM7VoMVklroZc0euAkpeXhzfeeAOjRo3qdv+qVavw4osvYvXq1cjLy4PBYMDMmTPR1NTkvCYnJwebNm3Cxo0bsWvXLjQ3N+OOO+6AzWbr/TMh8kFfHK/Ckn98g5/984jUpVAAKuzcoK1fRDDCtCqJq/GMwfFhSIkKgdlqx87CC1KXQy7oVUBpbm7Ggw8+iDfffBORkZHO+0VRxMsvv4xnn30W9957LzIyMrB27Vq0trZiw4YNAACj0Yi3334bL7zwAmbMmIGxY8di/fr1OHr0KL788kv3PCsiH7G3qGOXyyPlDWi3MKCTd13coM0/p3cAQBAE5zTPZq7m8Sm9CihPP/00vvOd72DGjBnd7i8uLkZlZSVmzZrlvE+r1WLq1KnYs2cPACA/Px8Wi6XbNYmJicjIyHBecymTyYTGxsZuNyJ/kFdSBwCw2EScqOC/a/Kuwir/2+L+Shyreb76thpWm13iaqinXA4oGzduxMGDB7Fy5crLHqus7GhCio+P73Z/fHy887HKykpoNJpuIy+XXnOplStXQq/XO2/Jycmulk0kO80mKwq6hJJvyhqkK4YCkmMExV/7TxzGDYhERIgaDa0WHDhbL3U51EMuBZSysjL85Cc/wfr16xEUFHTV6wRB6PaxKIqX3Xepa12zbNkyGI1G562srMyVsolk6VBpPboeEcKAQt52yjmC4t8BRaVUYPoQbtrma1wKKPn5+aiurkZmZiZUKhVUKhW2b9+OP//5z1CpVM6Rk0tHQqqrq52PGQwGmM1m1NfXX/WaS2m1WoSHh3e7Efm6vJKO10B8uBZAx2ZSRN5S32JGTXPnCh4/7kFxcPShfFlQBVHk4YG+wKWAcsstt+Do0aM4fPiw85aVlYUHH3wQhw8fxsCBA2EwGJCbm+v8HLPZjO3btyM7OxsAkJmZCbVa3e2aiooKHDt2zHkNUSA40Nl/8vCkAQCAktpWNLSaJayIAoljeqdfRDBC/XQFT1dTBsdCo1TgbG2rc/USyZtL/yp1Oh0yMjK63RcaGoro6Gjn/Tk5OVixYgXS09ORnp6OFStWICQkBPPmzQMA6PV6PPLII3jmmWcQHR2NqKgoLFmyBCNHjrys6ZbIX1lsdhwqbQDQ0cD3z/xyFNe04HBZA6Z1DkUTedKp6sBokHUI06qQnRaNbScvIPdEld9Pa/kDt+8ku3TpUuTk5OCpp55CVlYWzp07h82bN0Onu/iP4aWXXsLdd9+NuXPnYvLkyQgJCcEnn3wCpVLp7nKIZKmgohFtFhvCg1RIjwtzbsf9TRmPhSfvcJxiHEhv1Fxu7Fv6PK63bdu2bh8LgoDly5dj+fLlV/2coKAg/OUvf8Ff/vKXvn57Ip/k6D/JGhAFhULAmOQIfHT4PA6XcYUBeUegrODpasaweDy76Ri+6Tw8MC786os9SHo8i4dIAo7+k8z+HcvtRydHAAC+KTeygY+84nSATfEAnYcHdr7WeHig/DGgEHmZKIrOvRjGDYgCAAxPDIdaKaCuxYyyujYpy6MAUNdiRk1zR0P2oNjACSgAMHOYY7kxDw+UOwYUIi8rrWvFhSYTNEoFRnX2nmhVSgxP6Fg+f7i8QcLqKBA4pneSIgNjBU9XPDzQdzCgEHmZo/8ko184gtQXG8PHdA49H+5c3UPkKYHYIOvQ9fDAHad4eKCcMaAQeVn+2Y7+E8f0jsPFPpQGL1dEgcaxg2x6APWfOHQ9PDC3gKt55IwBhcjLuq7g6coxgnLsnBEWHmhGHuSY4hkcF3gjKMDF5cY8PFDeGFCIvKi+xexcPeFYweMwIDoU4UEqmKx2nKxskqI8ChCF1YFxBs/VZPXn4YG+gAGFyIvyO38ZDooNRVSopttjCoXgnOY5xHN5yENqmk2oazFDEIC0ADiD50p4eKBvYEAh8qK8q/SfODimeXiyMXmKY3onOTIEwZrA3b2bhwfKHwMKkRcduEr/iYNzJQ8DCnlIQYVjBU9gjp443DQ4FhoVDw+UMwYUIi9pt9hwtLzjrJ2sS/pPHBxTPGcuNKOx3eKt0ihAiKKIf+aXAwAmpEZLXI20QrUqTB7U8f8Bp3nkiQGFyEuOnjPCbLMjJkyL/tEhV7wmJkyLpMhgiCKcYYbIXfJK6lFQ0YggtQLfz0qSuhzJzeDhgbLGgELkJXkljv6TSAiCcNXrRnOahzxk7Z4SAMDdY/ohIkRz7YsDwIxhHQHlm7IGVDW2S1wNXYoBhchL8jv7Ty5dXnypsQwo5AEVxjZ8frzj/Jn52QOkLUYmuh4euIWHB8oOAwqRF9jtlx8QeDVdR1C4uoDc5b29pbDZRYxPjcKwznOfCJjl2FWWhwfKDgMKkRecvtAMY5sFwWolhide+80hI1EPpULAhSYTKjnsTG7QbrHh/f2lAIAFHD3pxrHcmIcHyg8DCpEXOPpPxiRHQK289ssuWKPEkM4dPnlwILnDp0cqUNtiRoI+yDliQB3S43h4oFwxoBB5gaP/ZNyAa/efODineXhwIPWRKIpY+3UJAOAHE/tDdZ2AHGi6HR7I1Tyywn+pRF7g2EH2ahu0XcrZKMsRFOqjQ2UNOFJuhEalwP3jkqUuR5achwee5OGBcsKAQuRhVY3tKKtrg0IAxqZE9OhzHCMoR88ZYbOzUZZ6z7G0eM6oRESHaaUtRqZ4eKA8MaAQeZhje/uhhnDogtQ9+py0uDCEapRoNdtQWM2Tjal3qpva8dnRCgBsjr0WlVKB6UN5eKDcMKAQeVjXDdp6SqkQMDJJD4AHB1LvbdhXCotNxA0pEc5/T3RlM4dd7EPh8n55YEAh8rADnf0nmT3sP3EYk9wRaLhhG/WG2WrHe/s6lhZzY7brcxweWFrHwwPlggGFyIOaTVacON8IwLURFAAYk9zxF+/hMp7JQ67777EKXGgyIVanxeyMBKnLkT0eHig/DChEHnS4tAF2EegXEYwEfbBLn+sYQTlZ2YhWMzeQItc4mmMfnJACjYq/6nti5nADAB4eKBf8V0vkQY7+kywXR08AwKAPQny4FnYROHau0d2lkR87Wm7EwdIGqJUC5k1IkbocnzFjWEejLA8PlAcGFCIPyu9cstjT/U8uNcZ5Lg+XPlLPrekcPbl9ZALidEHSFuND4rocHvhlAUdRpMaAQuQhVpsdB0td20H2Uo5flt+wD4V6qLbZhE+OnAfA5tjecBwF8CWneSTHgELkIQUVTWg126ALUmFwnK5XX2NMl5ONiXpiY14ZzFY7RiXpnTsSU8/x8ED5YEAh8hDn8uL+kVAohF59jZH99BAE4FxDG6qbOCdO12a12bF+71kAwPxJAyAIvft3F8jS48LQP5qHB8oBAwqRhxxwHhDYu/4TANAFqZEeFwaA0zx0fZtPVKHC2I7oUA3uGM2lxb0hCAJmDOPhgXLAgELkAaIoOlfwZPbvXf+Jw+ikCADcUZauz9Ec+8D4FGhVSmmL8WE8PFAeGFCIPKC8vg3VTSaolYIzYPTWmM4DBtmHQtdSUNGI/cV1UCoEPDiRS4v7gocHygMDCpEHOEZPMvrpEazp21+yzhGU8gbYebIxXYVjY7bbRhhc3hSQuuPhgfLAgELkAXlu6D9xGGLQIUitQFO7FUU1LX3+euR/GlrN+OjwOQBcWuwujuXGPDxQOgwoRB5wwE39JwCgViqQkciTjenqPsgrQ7vFjmEJ4b3ec4e6m5J+8fDAU1U8PFAKDChEbtbQanaehprlhoACXNwP5ZvyBrd8PfIfNruIdZ1Lixdk9+fSYjfpenggd5WVBgMKkZs5trcfGBuK6DCtW77maG7YRlexpaAK5fVtiAhR464x/aQux6/w8EBpMaAQuZmj/8RdoyfAxRGUgopGtFtsbvu65PvWfl0CALh/XAqC1Fxa7E48PFBaDChEbpZ/1nGCcd8bZB2SIoMRHaqBxSbiRAVPNqYOhVVN2H26FgoB+AGXFrtdXHiQ848DTvN4HwMKkRu1W2zOHV/dsYLHQRCEi30onOahTo7Rk5nD45EUGSJtMX5q5nDuKisVBhQiNzp2zgizzY7oUA0GRLv3DYN9KNRVY7sFHx7k0mJPcwSUPad5eKC3MaAQuZFj18msAZFuX00xmiMo1MU/DpSj1WzDkHgdJg2Mlrocv+U8PNDGwwO9jQGFyI0c+5+4c3rHYXRSx14oJbWtqG8xu/3rk++w20W82zm98zCXFnuUIAiYycMDJcGAQuQmdrvoHEFxxwZtl4oI0SA1JhQA90MJdNtOVeNsbSvCg1S4ZyyXFnsaDw+UBgMKkZsU1TSjodWCILUCIzp3fnW3MexDIQBr9nRszDY3KxkhGpXE1fi/TB4eKAkGFCI3cex/MiY5AhqVZ15ajmke9qEErjMXmrHj1AUIAvDwpAFSlxMQeHigNBhQiNzEcYJxVn/39584jEnpmDo6XNYQ8AeYnWtow+fHKrG3qBaFVU2oaTbBFgCnPa/7umP0ZPqQOKS4eaUYXR0PD/Q+jg0SuUl+lxU8njIsQQeNUoH6VgvK6toC9g3K2GrBPa/sRnWTqdv9ggDog9WICtEgKlSDyFANorv+b4gGUWEa5+NRoRqEaJQ+02TabLLin/nlALi02NumpMciRKNEaV0rdp+uxY3pMVKX5PdcCiivvfYaXnvtNZSUlAAARowYgf/3//4fZs+eDQAQRRG//vWv8cYbb6C+vh4TJkzAK6+8ghEjRji/hslkwpIlS/D++++jra0Nt9xyC1599VUkJSW571kReVl1YzvO1rZCEIAbPNAg66BVKTEsMRzflDXgUFl9wAaU3392AtVNJkSGqBEZqkFdixkNrRaIItDQakFDqwVFNS09+lpalcIZVm4ZGofHpw5CmFaef7v9K78czSYrBsaG4sY0vkF6U6hWhblZyVizpwRv7CxiQPECl16FSUlJeP7555GWlgYAWLt2Le666y4cOnQII0aMwKpVq/Diiy9izZo1GDx4MH73u99h5syZOHnyJHQ6HQAgJycHn3zyCTZu3Ijo6Gg888wzuOOOO5Cfnw+lkudIkG9yNM4NidchPEjt0e81JkmPb8oa8E2ZMSAPh9tVWIO/HyiHIABvPpzlPFLAarOjoc2C+hYzalvMl/9vqxl1LRdvtS1mmK12mKx2VBjbUWFsx/HzjdiwvxQ5Mwbj/nHJUCnlMwtut4vOnWPnTxoAhcI3Rn38yY8mp+Ldr0uw49QFFFQ0YlhCuNQl+TWXAsqcOXO6ffz73/8er732Gvbu3Yvhw4fj5ZdfxrPPPot7770XQEeAiY+Px4YNG/DEE0/AaDTi7bffxrp16zBjxgwAwPr165GcnIwvv/wSt956q5ueFpF3HehskPXE/ieXGpMSgbVfn8XhssBbTdBqtuIXHx4B0PEm3fW8I5VSgZgwLWLCtEjvwdcSRRFtFhtqmzvCy5kLzfjLltMoqmnB/350DGv2lGDZ7KGYPjROFlNAu07XoOhCC8K0Knw3kyPOUkiJDsHsjAR8erQCb+0sxgtzR0tdkl/r9Z8HNpsNGzduREtLCyZNmoTi4mJUVlZi1qxZzmu0Wi2mTp2KPXv2AADy8/NhsVi6XZOYmIiMjAznNVdiMpnQ2NjY7UYkJwecBwR6bnrHYXRSBADg2PlGWAJsT4b/++IUyuvb0C8iGD+7dUifvpYgCAjRqJAcFYJRSRG4Z2wSvvjpTfj1nSMQGaLG6epmPLL2AB58ax+OnTO66Rn03to9JQCA72UmyXYKKhA8OiUVAPDxN+dQaeQJx57kckA5evQowsLCoNVq8eSTT2LTpk0YPnw4KisrAQDx8fHdro+Pj3c+VllZCY1Gg8jIyKtecyUrV66EXq933pKTk10tm8hjWkxWHD/fEZrdeYLx1aTGhCI8SAWz1Y5vK5o8/v3k4mBpPd7ZUwwAWHHvSIR64E1arVRgfvYAbPvZzXhi6kBoVArsOVOLOat3YfHfD+N8Q5vbv2dPlNa24quT1QCAhyf1l6QG6jA2JRLjB0TBYhOxpjM0kme4HFCGDBmCw4cPY+/evfjxj3+M+fPn48SJE87HLx0KFUXxusOj17tm2bJlMBqNzltZWZmrZRN5zOGyBtjsIhL1QegXEezx7ycIwsWDAwNkR1mT1Yaf//MIRBH47g1JmDo41qPfTx+sxrLZw7Bl8VTcOToRogh8ePAcbv6/bfjjF9+i2cuHxr37dQlEEbhpcCwGxoZ59XvT5R67aSAA4L19Z73+byGQuBxQNBoN0tLSkJWVhZUrV2L06NH405/+BIPBAACXjYRUV1c7R1UMBgPMZjPq6+uves2VaLVahIeHd7sRyYWj/8QboycOYx0BpbTBa99TSq9sPYPC6mbEhGnwqzuGee37JkeF4M8PjMVHT0/G+AFRMFnteGXrGUz741as33vWY9ue2+wijpYb8dftZ/DQ2/uczbELsjl6Ige3DI3DwJhQNLVb8UEe/2D2lD63qIuiCJPJhNTUVBgMBuTm5jofM5vN2L59O7KzswEAmZmZUKvV3a6pqKjAsWPHnNcQ+RpH/8k4L/SfODhPNg6AEZSCika8uvU0AOA3d2UgIkTj9RrGJEfggycm4vWHMpEaE4qaZjP+96NjuO1PO7GloO8bd4miiJKaFry37yyeei8fmb/LxZzVu/D8f7/FzsIaWGwibhoci2mD49z0jKgvFAoBj07pGEX5265ins/jIS5N4v7yl7/E7NmzkZycjKamJmzcuBHbtm3D559/DkEQkJOTgxUrViA9PR3p6elYsWIFQkJCMG/ePACAXq/HI488gmeeeQbR0dGIiorCkiVLMHLkSOeqHiJfYrXZcdB5QKD3RlAcAeXMhWY0tls8vrRZKlabHT//1xFY7SJuHRGP2RkGyWoRBAG3jjBg+tA4vLf3LP60pdDZSJs9KBq/vH0YMvr1/AymmmYT9pypxe7CGuw6XYNzl/S3hGlVmDgwCpPTYnBjWgzS4sJksZqIOtx7Qz+8sPkkzjW04bNjlbhzdKLUJfkdlwJKVVUVHnroIVRUVECv12PUqFH4/PPPMXPmTADA0qVL0dbWhqeeesq5UdvmzZude6AAwEsvvQSVSoW5c+c6N2pbs2YN90Ahn/RtZRNazDbotCoMMeiu/wluEhOmRVJkMMrr23C03IjJfrpp1992F+NIuRG6IBV+e1eGLN6g1UoFFkxOxT03JOHVbafxzq4SZyPtPWP7YcmsIUi8Qi9Si8mK/SV1zkDybWXTJV9XwA0pkZicFoPJaTEYnaSX1T4s1F2QWomHJw3AS1+ewps7ijBnVIIs/n36E0H0wUMFGhsbodfrYTQa2Y9CklqzuxjLPzmBqYNjsfZH4736vRduOIj/HKnAz24dgqdvTvPq9/aGkpoW3PryDpisdqz67ijMHSfP1Xtlda344xcn8fE35wF07Ez76JRUPDZlIE5XN2P36VrsPl2Dg6X1sF5yVtDwhHBMTovG5LQYjE+N4snEPqauxYxJK7fAZLVj4+MTMXFgtNQlyZ4r7998NRD1QZ7j/B0Pbm9/NWOSI/CfIxU47IcnG9vtIn7+ryMwWe2YnBaN72fJd2MyRyPtj25Mxe8/PYG8knq8svUMXtl65rJrkyKDMSU9BtmDYpA9KBrRYVoJKiZ3iQrV4HuZSXhvXyne3FHEgOJmDChEvSSKIg44TjD24goehzGOlTydJxv70/Dyxrwy7CuuQ7BaiZX3jPKJ5zYmOQJ/f2ISvjhehef/W4CS2lZEhqiRnRaDyYM6+kgC9ewkf/bIjanYsL8UW76txunqJqTFeW+q198xoBD1Unl9G6oaTVApBGdY8KYRiXooFQIuNJlQYWy/Yt+DL6owtmHlZwUAgCW3DvGpN3VBEHBbhgEzhsWhqsmEhPAgnpnj5wbGhmHmsHhsPlGFt3YW4/nvjpK6JL/BDiyiXnIsLx7RT49gjfebvIM1SgztbMz9xk+meURRxP9uOoYmkxVjkiOwIHuA1CX1ikqpQL+IYIaTAPF458ZtHx48h+ombn/vLgwoRL3kPCBQgv4Th9Fdpnn8wSdHKrDl22qolQJWfW8UlHyDJx+Q2T8SY1MiYLbZse7rs1KX4zcYUIh6SYodZC81xo8CSl2LGcs/Pg4AWHhzOgbHcy6ffIMgCHi8c+O2dXvPotXM7e/dgQGFqBeMrRacrOrYxyJTwhEUR0A5es4Im93ndgzo5jefHEddixlD4nX48bRBUpdD5JJZIwxIiQpBQ6sF/8wvl7ocv8CAQtQLB0s7Rk9SY0IRq5Nuqeig2DCEapRoNdtQWO27Jxt/9W0VPjp8HgoB+MP3RkGj4q8m8i1KhYBHp6QCAN7aWezzfzDIAX8LEPVCnmN5sYSjJ0DHL8VRSREAfPfgwKZ2C57ddAxAx5JNKVZEEbnD9zKTEBGiRmldK3JPVF7/E+iaGFCIeuFi/4m0AQXw/YMD//D5t6gwtiMlKgSLZw6RuhyiXgvRqPDQxI4Tp9/YUSRxNb6PAYXIRSarzRkGpGyQdXCMOBzywRGUfUW1WL+3FADw/HdHSrJcm8idHp40ABqlAgdLG5DfuRUB9Q4DCpGLjp1rhMlqR1SoBgNjQqUuxxlQTlU1+dTqgXaLDb/48CgA4IHxKcge5J8HHlJgidVpcc/YfgA4itJXDChELnJsb5/ZP1IWW7Ab9EEwhAfBLgJHy41Sl9NjL39ZiOKaFsSHa7Hs9qFSl0PkNo5m2c0nqlBc0yJxNb6LAYXIRXmODdpk0H/iMDpZD8B3+lCOlhvx5s6Ovy5/f/dIhAepJa6IyH3S43WYPjQOogi8vYujKL3FgELkAlEUcahziXFmf+n7TxzGJHeEJV/YsM1is2Ppv47AZhcxZ3QiZgyPl7okIrd7rHPjtn8cKEdts0nianwTAwqRCyqM7ahtMUOpEDAiMVzqcpycIyhl8p/ieWNHEQoqGhEZosZzc4ZLXQ6RR0wcGIWR/fQwWe3ORnByDQMKkQuOnesIAOlxYQhSy2fFyaikCAgCcK6hTdaHlZ2ubsKfviwEADw3ZwRiwqTb5I7IkwRBwGOdhwi++3UJ2i02iSvyPQwoRC44fr4RADAiUS9xJd2FaVVIjwsDIN9RFJtdxNJ/HoHZZsfNQ2Jx15hEqUsi8qjbMwzoFxGM2hYzPjx4TupyfA4DCpELjp/vePPP6Cef6R0Hx3Ljb2Tah/LX7WdwsLQBoRolfn/PSFmsgCLyJJVSgR/d6Nj+vgh2bn/vEgYUIhccO9cxgpLRT14jKMDFHWXl2Cj7+bEK/PGLkwCAX90xHIkRwRJXROQd941Lhi5IhaKaFnz1bbXU5fgUBhSiHqppNqGysR2CAAxLkPEISnmDrP5SO1LegJwPDgMA5k/qj/vHp0hbEJEXhWlVeHBC5/b3O7nk2BUMKEQ95Og/SY0ORZhWJXE1lxsSr0OQWoGmdiuKZLI5VIWxDY+uPYB2ix3ThsTiV3dw1Q4FngXZA6BWCthfXCfLEU65YkAh6iHHCp4RMpzeATrmu0f1iwAAvJR7ClabXdJ6WkxWPLLmAKqbTBgSr8NfHhgLlZK/cijwGPRBmDO6oyn8TY6i9Bh/WxD1kLNBVkb7n1xq4fQ0qJUCPj1agf/ZeAgWiUKKzS7iJxsP4URFI2LCNHh7QRZ03C2WAphj47b/Hq1AWV2rxNX4BgYUoh6Sc4Osw02DY/Hag5nQKBX47GglFm2QJqSs+KwAXxZUQ6NS4I2Hs5AUGeL1GojkZFhCOKakx8AuAm/vKpa6HJ/AgELUA8Y2C0o7/+qR0w6yVzJjeDxef6gjpHx+vBJPv3cQZqv3Qsp7+846fwG/8P3RuCFFPmcWEUnp8c6N2/5+oAwNrWaJq5E/BhSiHjjR2SDbLyIYESEaiau5vpuHxuGNhzOhUSmw+UQVnnrvIExWz+9kubPwAv7fv48DAJ6ZOdg5705EwI1pMRhq0KHVbMN7+7j9/fUwoBD1gJw3aLuaaUPi8ObDWdCqFPiyoApPrfdsSDld3YSn3jsIm13EvWP7YeH0NI99LyJfJAiCcxRlzZ4Sr/zR4MsYUIh6wLGCJ0NmW9xfz9TBsXh7/jhoVQps+bYaT67L98iZILXNJvxwTR6a2q0YNyASK7/LnWKJruSOUYkwhAfhQpMJ/z58XupyZI0BhagHjp2Xf4Ps1dyYHoN3FoxDkFqBrScv4Ak3hxST1YYn1uWjrK4NKVEheP2hLGhV8jlIkUhONCoFfjh5AICO7e9FUT6bKsoNAwrRdbSarSi60AxA/g2yV5OdFoN3FoxHsFqJ7acu4LF3D7glpIiiiF/86ygOnK2HLkiFvy0Yh6hQ+ffoEEnpgQkpCNOqcKqqGdtPXZC6HNliQCG6joKKJthFIFanRVx4kNTl9NqkQdF454fjEKJRYmdhDR5dewBt5r6FlL98dRqbDp2DUiHgtQczkdZ5ojIRXV14kBr3j0sGALyw+ZSsjqaQEwYUouvwhQ3aemriwGis+eF4hGqU2HW6Bo+szUOr2dqrr/XJN+fxYu4pAMBv78rAjekx7iyVyK89MXUQdFoVjp4z4u8HyqQuR5YYUIiuw9kg64P9J1cyPjUKa380HmFaFfacqcWP1rgeUg6W1uOZf3wDAHj0xlTMm8ADAIlcEavT4icz0gEAq744CWOrReKK5IcBheg6HIcE+mr/yZVkDbgYUvYW1WHB3/LQYupZSCmra8Xj7x6A2WrHjGHxWHb7MA9XS+Sf5mcPQFpcGOpazHjpy1NSlyM7DChE12Cy2nCqqgkAMMLHlhhfT2b/SLz7yHjotCrsL6nDgnf2o/k6IaWp3YJH1x5ATbMZwxPC8af7x0Cp4HJiot5QKxVYPmcEAGDd3rM4WdkkcUXywoBCdA2FVc2w2ETog9VIigyWuhy3uyElEusenQBdkAp5JfWY/7f9aGq/8lCz1WbHwg2HcLKqCfHhWry9IAuhWpWXKybyLzemx+C2EQbY7CKe+/gYlx13wYBCdA0X+0/C/XbjsTHJEXjv0QkID1Ih/2w9Hv7bfjReIaT89j8nsP3UBQSrlXjr4XFI0PtfYCOSwrPfGQatSoG9RXX47Gil1OXIBgMK0TU4+k98bQdZV41KisCGxyZCH6zGodIGPPT2fhjbLoaUtXtKsPbrsxAE4KX7xmBkkn///0HkTclRIXhy6iAAwO8/PdHrlXX+hgGF6BqOdS4xHu5HDbJXk9FPj/cenYCIEDW+KWvAw2/vg7HNgq0nq/HrTzoOAPz5bUNxW4ZB4kqJ/M+Ppw1Cv4hgnDe247VtZ6QuRxYYUIiuwmqzo6DCd7e4742MfnpseHQiIkPU+KbciPvf2ItFGw7BLgJzs5LwROdBZ0TkXkFqJX51R8eKuNd3FKG0tlXiiqTHgEJ0FUU1LWi32BGqUSI1OlTqcrxmeGI43n98IqJCNSioaESzyYpJA6Pxu7t5ACCRJ906woDJadEwW+347acnpC5HcgwoRFdxvMv0jiLAltIONYTj/ccmol9EMDL6heO1H9wAjYq/Log8SRAELJ8zAiqFgNwTVQF/Tg9/4xBdxbFzjg3aAmN651JDDDrsWHozPn76RkSE8ABAIm9Ij9dhfvYAAMCvPz4Os9UubUESYkAhugrHEmN/2kHWVUqFEHCjR0RS+8mMdMSEaVBU04I1e4qlLkcyDChEV2C3izhxPrAaZIlIHsKD1Fh621AAwJ++LER1Y7vEFUmDAYXoCsrqW9FkskKjUiAtLkzqcogowHzvhiSMSY5Ai9mG5//7rdTlSIIBhegKHP0nwww6qJV8mRCRdykUAn595wgIAvDhoXPIP1sndUlex9+8RFdwcYM2Tu8QkTRGJ0dgbmYyAOC5j4/DZg+sc3oYUIiuoOsZPEREUvnZbUOgC1Lh2LlGfJBXJnU5XuVSQFm5ciXGjRsHnU6HuLg43H333Th58mS3a0RRxPLly5GYmIjg4GBMmzYNx48f73aNyWTCokWLEBMTg9DQUNx5550oLy/v+7MhcgNRFAPmDB4ikreYMC1+OmMwAOCPX3wLY+uVTxv3Ry4FlO3bt+Ppp5/G3r17kZubC6vVilmzZqGlpcV5zapVq/Diiy9i9erVyMvLg8FgwMyZM9HU1OS8JicnB5s2bcLGjRuxa9cuNDc344477oDNZnPfMyPqpcrGdtS1mKFUCBhi0EldDhEFuIcm9cfg+DDUt1rwYu7J63+CnxBEUez1pNaFCxcQFxeH7du346abboIoikhMTEROTg5+/vOfA+gYLYmPj8cf/vAHPPHEEzAajYiNjcW6detw3333AQDOnz+P5ORkfPbZZ7j11lsv+z4mkwkmk8n5cWNjI5KTk2E0GhEeziF4cq/cE1V47N0DGGrQ4fOcm6Quh4gIe07XYN5b+6AQgE//ZwqGJfjme19jYyP0en2P3r/71INiNHbM00dFRQEAiouLUVlZiVmzZjmv0Wq1mDp1Kvbs2QMAyM/Ph8Vi6XZNYmIiMjIynNdcauXKldDr9c5bcnJyX8omuqaLG7RxeoeI5CE7LQa3jzTALnY0zPZhbMFn9DqgiKKIxYsX48Ybb0RGRgYAoLKyEgAQHx/f7dr4+HjnY5WVldBoNIiMjLzqNZdatmwZjEaj81ZWFliNQuRdjjN42CBLRHLy7HeGI0itwP7iOvznSIXU5XhcrwPKwoULceTIEbz//vuXPXbpiaeiKF73FNRrXaPVahEeHt7tRuQpx7mDLBHJUL+IYDw1LQ0AsOKzArSarRJX5Fm9CiiLFi3Cxx9/jK1btyIpKcl5v8FgAIDLRkKqq6udoyoGgwFmsxn19fVXvYZIKjXNJlQY2yEI8Nk5XiLyX4/fNBDJUcGoMLbjla2npS7Ho1wKKKIoYuHChfjwww/x1VdfITU1tdvjqampMBgMyM3Ndd5nNpuxfft2ZGdnAwAyMzOhVqu7XVNRUYFjx445ryGSimP0JDU6FGFalcTVEBF1F6RW4n+/MxwA8OaOYpytbbnOZ/gulwLK008/jfXr12PDhg3Q6XSorKxEZWUl2traAHRM7eTk5GDFihXYtGkTjh07hgULFiAkJATz5s0DAOj1ejzyyCN45plnsGXLFhw6dAg/+MEPMHLkSMyYMcP9z5DIBc4GWU7vEJFMzRoejynpMTDb7Pjtf05IXY7HuPQn4muvvQYAmDZtWrf733nnHSxYsAAAsHTpUrS1teGpp55CfX09JkyYgM2bN0Onu7ifxEsvvQSVSoW5c+eira0Nt9xyC9asWQOlUtm3Z0PUR84TjBM5vUNE8iQIAp6bMwK3vbwDXxZUY+vJatw8JE7qstyuT/ugSMWVddRErpj6x604W9uK9x6dgMlpMVKXQ0R0VSs+K8AbO4qQGhOKL3JugkYl/9NrvLYPCpE/MbZZcLa2FQAwgiMoRCRzi6anIVanRXFNC/62u1jqctyOAYWok2N6p19EMCJCNBJXQ0R0bbogNX5x21AAwF+2FKKqsV3iityLAYWoEzdoIyJfc8/YfrghJQItZhtWflYgdTluxYBC1IknGBORr1EoBPz6zgwIAvDR4fPIP1t//U/yEQwoRJ0uLjHmCAoR+Y6RSXrMzew4o27FZwV+c04PAwoRgDazDWcuNAPgCAoR+Z7FswYjWK1E/tl6fHH8yufa+RoGFCIABZWNsItArE6LuPAgqcshInJJfHgQHpvSsbv7Hz4/CYvNLnFFfceAQgTgeOf0DjdoIyJf9fjUQYgJ06C4pgUb9pVKXU6fMaAQATh2rqNBdgSnd4jIR4VpVciZMRgA8KcthWhst0hcUd8woBABOMYlxkTkB+4fl4xBsaGoazHjr9vOSF1OnzCgUMAzW+04VdUEgCMoROTbVEoFfjF7GADg7V3FON/QJnFFvceAQgHvVFUTLDYR+mA1kiKDpS6HiKhPZgyLw/jUKJisdryw+ZTU5fQaAwoFvK47yAqCIHE1RER9IwgCnr29YxTlw0PlzmM8fA0DCgU8NsgSkb8ZnRyBOaMTIYrAyv/65hb4DCgU8BwNsjzBmIj8yc9mDYFaKWBnYQ12nLogdTkuY0ChgGaziyio6DyDpx9HUIjIf6REh+DhSQMAdGyBb7P71hb4DCgU0IouNKPdYkeoRonU6FCpyyEicqtF09MQHqTCt5VN+PBgudTluIQBhQKaY3pnWEI4FAo2yBKRf4kI0WDh9DQAwAubT6HNbJO4op5jQKGA5miQ5fQOEfmrhycNQL+IYFQ2tuNvu4ulLqfHGFAooB1ngywR+bkgtRJLbxsCAHht2xnUNJskrqhnGFAoYNntIo5zBIWIAsCcUYkY2U+PZpMVf95SKHU5PcKAQgGrrL4VTSYrNCoF0uLCpC6HiMhjFAoBv+zcvG3DvlIUXWiWuKLrY0ChgOXoPxlq0EGt5EuBiPzbpEHRuGVoHKx2EX/4/Fupy7ku/lamgHWx/4TTO0QUGH4xeygUAvDF8SrkldRJXc41MaBQwDp23tF/wgZZIgoM6fE63DcuGUDH5m2iKN/N2xhQKCCJoojj5zoPCeQIChEFkJ/OGIwQjRKHShvw32OVUpdzVQwoFJAqG9tR22KGUiFgiEEndTlERF4TFx6Ex6YMBAD84fNvYbbaJa7oyhhQKCA5lhenx4UhSK2UuBoiIu96/KaBiNVpcba2Fe/tOyt1OVfEgEIB6RgbZIkogIVqVfjpjMEAgD9vKYSxzSJxRZdjQKGAdHGLezbIElFgmpuVhLS4MNS3WvDatjNSl3MZBhQKSFxiTESBTqVUYNnsoQCAv+0uxrmGNokr6o4BhQJObbMJFcZ2AMBwnsFDRAFs+tA4TBwYBbPVjhe+OCl1Od0woFDAOd65/8nAmFCEaVUSV0NEJB1BEPDs7cMBAJsOn8Oxzu0X5IABhQKOs0GWBwQSEWFkkh53jUmEKAIr/yufzdsYUCjgOE8w5vQOEREAYMmsIdAoFdh9uhbbTl2QuhwADCgUgLjEmIiou+SoEMzP7g8AeP6zb2GzSz+KwoBCAaWx3YKzta0AgBEcQSEiclp4czr0wWqcrGrCP/PLpC6HAYUCy4nOBtl+EcGIDNVIXA0RkXzoQ9RYND0NAPBi7im0mq2S1sOAQgHF0aHODdqIiC730KT+SI4KRlWjCW/vLJa0FgYUCiiOJcbsPyEiupxWpcTPbu3YvO31HUVoapduC3xuAkEBxbGDLEdQiIiubM6oBOwrqsW9NyRBF6SWrA4GFAoYbWYbTlc3AwAyOIJCRHRFgiDg9/eMlLoMTvFQ4CiobIRdBGJ1WsSFB0ldDhERXQMDCgWM444GWS4vJiKSPQYUChhskCUi8h0MKBQwjrFBlojIZzCgUEAwW+04WdkEgCMoRES+gAGFAsKpqiZYbCL0wWokRQZLXQ4REV0HAwoFhOPOAwLDIQiCxNUQEdH1uBxQduzYgTlz5iAxMRGCIOCjjz7q9rgoili+fDkSExMRHByMadOm4fjx492uMZlMWLRoEWJiYhAaGoo777wT5eXlfXoiRNfiaJDN6MfpHSIiX+ByQGlpacHo0aOxevXqKz6+atUqvPjii1i9ejXy8vJgMBgwc+ZMNDU1Oa/JycnBpk2bsHHjRuzatQvNzc244447YLPZev9MiK7BcQYPTzAmIvINLu8kO3v2bMyePfuKj4miiJdffhnPPvss7r33XgDA2rVrER8fjw0bNuCJJ56A0WjE22+/jXXr1mHGjBkAgPXr1yM5ORlffvklbr311j48HaLL2ewiTlRwBIWIyJe4tQeluLgYlZWVmDVrlvM+rVaLqVOnYs+ePQCA/Px8WCyWbtckJiYiIyPDec2lTCYTGhsbu92IeqroQjPaLXaEaJRIjQ6VuhwiIuoBtwaUyspKAEB8fHy3++Pj452PVVZWQqPRIDIy8qrXXGrlypXQ6/XOW3JysjvLJj/n6D8ZnhAOhYINskREvsAjq3guXSUhiuJ1V05c65ply5bBaDQ6b2VlZW6rlfzflm+rAXB6h4jIl7g1oBgMBgC4bCSkurraOapiMBhgNptRX19/1WsupdVqER4e3u1G1BNlda347GgFAOD7WUkSV0NERD3l1oCSmpoKg8GA3Nxc531msxnbt29HdnY2ACAzMxNqtbrbNRUVFTh27JjzGiJ3eXtXMWx2EVPSY7iDLBGRD3F5FU9zczNOnz7t/Li4uBiHDx9GVFQUUlJSkJOTgxUrViA9PR3p6elYsWIFQkJCMG/ePACAXq/HI488gmeeeQbR0dGIiorCkiVLMHLkSOeqHiJ3aGg144O8junAx28aKHE1RETkCpcDyoEDB3DzzTc7P168eDEAYP78+VizZg2WLl2KtrY2PPXUU6ivr8eECROwefNm6HQ65+e89NJLUKlUmDt3Ltra2nDLLbdgzZo1UCqVbnhKRB3W7z2LNosNwxPCcWNajNTlEBGRCwRRFEWpi3BVY2Mj9Ho9jEYj+1HoitotNtz4h62oaTbh5fvG4O6x/aQuiYgo4Lny/s2zeMgvbTp0DjXNJiTqg/CdUQlSl0NERC5iQCG/Y7eLeHNHEQDgRzemQq3kP3MiIl/D39zkd3ILqlBU04LwIBXuH58idTlERNQLDCjkd97oHD35wcT+CNO63AdOREQywIBCfiX/bB3yz9ZDo1RgQfYAqcshIqJeYkC5RF2LGVabXeoyqJde394xenLP2H6ICw+SuBoiIuotBpQu6lrMuO/1r7FwwyGYrDapyyEXnbnQjNyCKgDAYzelSlwNERH1BQNKFwUVjThb24rPj1fisXfz0WZmSPElb+0sgigCM4bFIS1Od/1PICIi2WJA6WJyWgzeXpCFYLUSO05dwPx39qOp3SJ1WdQDF5pM+NfBcwCAJ6YOkrgaIiLqKwaUS0xJj8W6R8ZDp1Vhf3EdfvDWPtS3mKUui65j7Z4SmK12jE2JQFb/SKnLISKiPmJAuYKsAVF4//GJiAxR45tyI+5/Yy+qm9qlLouuosVkxbq9ZwEAT9w0EIIgSFwRERH1FQPKVWT00+PvT0xCnE6Lk1VNmPvXr1Fe3yp1WXQFfz9QBmObBQOiQzBzuEHqcoiIyA0YUK4hPV6Hfz6ZjaTIYJTUtmLuX79GcU2L1GVRF1abHW/tLAYAPDplIJQKjp4QEfkDBpTrSIkOwT+enISBsaE4b2zH9//6Nb6tbJS6LOr06dEKnGtoQ3SoBt/LTJK6HCIichMGlB5I0Afj709MwrCEcNQ0m3Df63txuKxB6rICniiKzm3t52cPQJBaKXFFRETkLgwoPRQTpsXGxyZibEoEjG0WPPjmXuwrqpW6rIC250wtjp9vRLBaiYcm9pe6HCIiciMGFBfoQ9RY98gETBoYjRazDfPf2Y9tJ6ulLitgvd45ejI3KwmRoRqJqyEiIndiQHFRmFaFd344DtOHxqHdYsdj7x7Af49WSF1WwCmoaMSOUxegEDqaY4mIyL8woPRCkFqJv/4gE98ZlQCLTcTTGw7iX/nlUpcVUBy9J7NHJiA5KkTiaoiIyN0YUHpJo1Lgz/ePxdysJNhF4Jl/fIN1X5dIXVZAON/Qhk++OQ+gY2M2IiLyPwwofaBUCHj+3lFYkD0AAPCrfx/HX7efkbaoAPC3XcWw2kVMGhiNUUkRUpdDREQewIDSRwqFgOfmDMfCm9MAAM//91v83xcnIYqixJX5J2ObBe/vLwUAPD6VoydERP6KAcUNBEHAkluH4Oe3DQUArN56Gr/5zwmGFA/YsK8ULWYbhsTrMG1wrNTlEBGRhzCguNGPpw3Cb+8aAQB4Z3cJfvGvo7DZGVLcxWS14W+7O7a1f4yHAhIR+TUGFDd7aNIA/N/3R0MhAB8cKMNPNh5Cu8UmdVl+4d+HzuNCkwmG8CDcOTpR6nKIiMiDVFIX4I++l5mEEI0SP9l4CP85UoFdp2vwvRuS8MCEFAyKDZO6PJ9kt4t4Y2fH0uIfTh4AjYrZmojInzGgeMjtIxMQqlVh2b+O4LyxHW/tKsZbu4oxaWA05k1Iwa0jDHyTdcHWk9U4Xd0MnVaFByakSF0OERF5GAOKB00dHIudP5+ObSersWFfKbaerMbXRbX4uqgWMWEafC8zGfPGpyAlmhuNXY9jW/t5E1IQHqSWuBoiIvI0QfTBpSaNjY3Q6/UwGo0IDw+XupweO9fQhg/2l2JjXhmqm0zO+6ekx+DBCSm4ZVg81EqOqlzqUGk97nl1D9RKATuXTodBHyR1SURE1AuuvH9zBMWL+kUEY/GsIVh0Szq2FFRjw/5S7Cy8gJ2FNdhZWIM4nRb3jUvGfeOSkRTJURUHx7b2d47ux3BCRBQgOIIisdLaVryfV4p/HChDTbMZACAIwM1D4jBvfApuHhoHpSJwl9OW1LTg5he2QRSBL3JuwhCDTuqSiIiolziC4kNSokPw89uG4qczBiP3RBU27D+L3adr8dW31fjq22ok6INw/7gU3DcuOSBHD97aVQRRBKYNiWU4ISIKIBxBkaHimha8v79jVKW+1QKg49yf6UPj8NDE/piSHhMQm5TVNpuQ/fxXMFnteP+xiZg0KFrqkoiIqA9cef9mQJGxdosNXxyvxHv7SrG/uM55/6gkPRZNT8eMYXF+HVReyj2FP20pxKgkPf799GS/fq5ERIGAAcUPFVY14b19pfggrwxtnTvTDksIx6LpabhthAEKP+tTaTPbkP38FtS3WrB63ljcMYo7xxIR+TpX3r+5ptVHpMfrsPzOEdj185vx42mDEKpRoqCiEU+9dxC3/WkH/n34nF+d+/OP/I7preSoYNw2wiB1OURE5GUMKD4mOkyLn982FLt/MR3/Mz0NuiAVTlU14ycbD2PmS9vxr/xyWG12qcvskzMXmvH69o6lxY/eOBAq7g1DRBRwOMXj44xtFry7pwRv7y5GQ2dDbUpUCJ6+eRDuGZvkU9vpVze24+Uthfggrww2u4iYMC12LJ2GEA0XmxER+QP2oASgZpMV674+i7d2FqG2pWM/lX4RwfjxtEH4flYStCqlxBVeXbPJije2n8GbO4ud/TUzhsVh2e3DeLgiEZEfYUAJYK1mKzbsK8XrO4pwoXM7fUN4EJ6YOhAPjE9BkFo+QcVsteP9/aX485ZCZ6gakxyBZbOHYsJALikmIvI3DCiEdosNG/eX4q/bi1DZ2A4AiAnT4ombBuLBiSmSTpuIooj/HKnA/20+ibO1rQCA1JhQLL11CG7LMHA5MRGRn2JAISeT1YZ/5pfj1a1ncK6hDQAQFarBo1NS8fCkAQjTejeo7DlTg+f/+y2OlBsBdISmn8xIx/3jknlQIhGRn2NAoctYbHZsOngOr2w77Ry10AercftIA8YNiMK4AVFIigz22OhFQUUj/vD5t9h28gIAIFSjxOM3DcKjU1IR6uWQRERE0mBAoauy2uz4+JvzWL31NIoutHR7zBAehKwBkRifGoWs/lEYYtD1+aDCcw1teHHzKXx4qByiCKgUAuZNSMGi6emI1Wn79LWJiMi3MKDQddnsInacuoCvi2qxv7gOx84ZYb1kozddkAqZ/SMxbkAUxqdGYWQ/fY+bbI2tFry67TTe2VMCs7VjX5bvjEzAkluHIDUm1O3Ph4iI5I8BhVzWarbicFkD8orrceBsHfLP1qPVbOt2jUapwOhkPbIGRGH8gCjc0D8S+mB1t2vaLTa8+3UJXtl6Bsa2jn1ZJqRGYdntwzAmOcJbT4eIiGSIAYX6zGqzo6CiCftL6nCgpA55JXWoaTZ3u0YQgCHxuo4poQFRaLfY8HLuKZw3dqwaGhKvwy9mD8W0IbFcmUNERAwo5H6iKKKkthV5xXXO0FLS2Wx7qQR9EBbPHIx7b0jqcw8LERH5D1fev7l8gnpEEASkxoQiNSYUc8clA+jYmv7A2XrsL67DgbN1aGi14AcT+2NB9gBZbQhHRES+R9KA8uqrr+KPf/wjKioqMGLECLz88suYMmWKlCWRC+LCg3D7yATcPjJB6lKIiMjPSLYz1gcffICcnBw8++yzOHToEKZMmYLZs2ejtLRUqpKIiIhIJiTrQZkwYQJuuOEGvPbaa877hg0bhrvvvhsrV6685ueyB4WIiMj3uPL+LckIitlsRn5+PmbNmtXt/lmzZmHPnj2XXW8ymdDY2NjtRkRERP5LkoBSU1MDm82G+Pj4bvfHx8ejsrLysutXrlwJvV7vvCUnJ3urVCIiIpKApKezXbo3hiiKV9wvY9myZTAajc5bWVmZt0okIiIiCUiyiicmJgZKpfKy0ZLq6urLRlUAQKvVQqvluS1ERESBQpIRFI1Gg8zMTOTm5na7Pzc3F9nZ2VKURERERDIi2T4oixcvxkMPPYSsrCxMmjQJb7zxBkpLS/Hkk09KVRIRERHJhGQB5b777kNtbS1+85vfoKKiAhkZGfjss8/Qv39/qUoiIiIimeBZPEREROQVst8HhYiIiOhaGFCIiIhIdhhQiIiISHYYUIiIiEh2JFvF0xeOvl6eyUNEROQ7HO/bPVmf45MBpampCQB4Jg8REZEPampqgl6vv+Y1PrnM2G634/z589DpdFc8u6cvGhsbkZycjLKyMi5hlhB/DvLAn4M88OcgD/w59J0oimhqakJiYiIUimt3mfjkCIpCoUBSUpJHv0d4eDj/AcoAfw7ywJ+DPPDnIA/8OfTN9UZOHNgkS0RERLLDgEJERESyw4ByCa1Wi+eeew5arVbqUgIafw7ywJ+DPPDnIA/8OXiXTzbJEhERkX/jCAoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgNKF6+++ipSU1MRFBSEzMxM7Ny5U+qSAs7y5cshCEK3m8FgkLosv7djxw7MmTMHiYmJEAQBH330UbfHRVHE8uXLkZiYiODgYEybNg3Hjx+Xplg/dr2fw4IFCy57fUycOFGaYv3UypUrMW7cOOh0OsTFxeHuu+/GyZMnu13D14N3MKB0+uCDD5CTk4Nnn30Whw4dwpQpUzB79myUlpZKXVrAGTFiBCoqKpy3o0ePSl2S32tpacHo0aOxevXqKz6+atUqvPjii1i9ejXy8vJgMBgwc+ZM57lY5B7X+zkAwG233dbt9fHZZ595sUL/t337djz99NPYu3cvcnNzYbVaMWvWLLS0tDiv4evBS0QSRVEUx48fLz755JPd7hs6dKj4i1/8QqKKAtNzzz0njh49WuoyAhoAcdOmTc6P7Xa7aDAYxOeff955X3t7u6jX68W//vWvElQYGC79OYiiKM6fP1+86667JKknUFVXV4sAxO3bt4uiyNeDN3EEBYDZbEZ+fj5mzZrV7f5Zs2Zhz549ElUVuAoLC5GYmIjU1FTcf//9KCoqkrqkgFZcXIzKyspurw+tVoupU6fy9SGBbdu2IS4uDoMHD8Zjjz2G6upqqUvya0ajEQAQFRUFgK8Hb2JAAVBTUwObzYb4+Phu98fHx6OyslKiqgLThAkT8O677+KLL77Am2++icrKSmRnZ6O2tlbq0gKW4zXA14f0Zs+ejffeew9fffUVXnjhBeTl5WH69OkwmUxSl+aXRFHE4sWLceONNyIjIwMAXw/e5JOnGXuKIAjdPhZF8bL7yLNmz57t/O+RI0di0qRJGDRoENauXYvFixdLWBnx9SG9++67z/nfGRkZyMrKQv/+/fHpp5/i3nvvlbAy/7Rw4UIcOXIEu3btuuwxvh48jyMoAGJiYqBUKi9Lv9XV1ZelZPKu0NBQjBw5EoWFhVKXErAcq6j4+pCfhIQE9O/fn68PD1i0aBE+/vhjbN26FUlJSc77+XrwHgYUABqNBpmZmcjNze12f25uLrKzsyWqigDAZDKhoKAACQkJUpcSsFJTU2EwGLq9PsxmM7Zv387Xh8Rqa2tRVlbG14cbiaKIhQsX4sMPP8RXX32F1NTUbo/z9eA9nOLptHjxYjz00EPIysrCpEmT8MYbb6C0tBRPPvmk1KUFlCVLlmDOnDlISUlBdXU1fve736GxsRHz58+XujS/1tzcjNOnTzs/Li4uxuHDhxEVFYWUlBTk5ORgxYoVSE9PR3p6OlasWIGQkBDMmzdPwqr9z7V+DlFRUVi+fDm++93vIiEhASUlJfjlL3+JmJgY3HPPPRJW7V+efvppbNiwAf/+97+h0+mcIyV6vR7BwcEQBIGvB2+RdA2RzLzyyiti//79RY1GI95www3OZWXkPffdd5+YkJAgqtVqMTExUbz33nvF48ePS12W39u6dasI4LLb/PnzRVHsWFr53HPPiQaDQdRqteJNN90kHj16VNqi/dC1fg6tra3irFmzxNjYWFGtVospKSni/PnzxdLSUqnL9itX+v8fgPjOO+84r+HrwTsEURRF78ciIiIioqtjDwoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyQ4DChF5zLRp05CTkyN1GUTkgxhQiIiISHYYUIjIr5jNZqlLICI3YEAhIo+y2+1YunQpoqKiYDAYsHz5cudjpaWluOuuuxAWFobw8HDMnTsXVVVVzscXLFiAu+++u9vXy8nJwbRp05wfT5s2DQsXLsTixYsRExODmTNnevgZEZE3MKAQkUetXbsWoaGh2LdvH1atWoXf/OY3yM3NhSiKuPvuu1FXV4ft27cjNzcXZ86cwX333der76FSqbB79268/vrrHngWRORtKqkLICL/NmrUKDz33HMAgPT0dKxevRpbtmwBABw5cgTFxcVITk4GAKxbtw4jRoxAXl4exo0b1+PvkZaWhlWrVrm/eCKSDEdQiMijRo0a1e3jhIQEVFdXo6CgAMnJyc5wAgDDhw9HREQECgoKXPoeWVlZbqmViOSDAYWIPEqtVnf7WBAE2O12iKIIQRAuu77r/QqFAqIodnvcYrFc9jmhoaFurJiI5IABhYgkMXz4cJSWlqKsrMx534kTJ2A0GjFs2DAAQGxsLCoqKrp93uHDh71ZJhFJhAGFiCQxY8YMjBo1Cg8++CAOHjyI/fv34+GHH8bUqVOdUzbTp0/HgQMH8O6776KwsBDPPfccjh07JnHlROQNDChEJAlBEPDRRx8hMjISN910E2bMmIGBAwfigw8+cF5z66234le/+hWWLl2KcePGoampCQ8//LCEVRORtwjipRO8RERERBLjCAoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyc7/B9aQ+Mp87KFjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Celda 2.3 - \"season\"=3 escriba su código y hallazgos \n", + "bikes[bikes.season == 3].groupby('hour').total.mean().plot()" + ] + }, + { + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "# Celda 2.3 - \"season\"=3 escriba su código y hallazgos \n" + "Al analizar la gráfica, podemos ver que hay un pico de alquileres de bicicletas durante el día, alrededor de las 5:00 pm. Esto sugiere que las personas pueden estar utilizando las bicicletas para disfrutar del clima cálido y las actividades al aire libre durante el verano. También podemos ver que hay un uso relativamente alto de bicicletas durante la mañana, con un pico menor alrededor de las 8:00 am, y un período de tiempo durante la noche, desde alrededor de las 9:00 pm hasta las 5:00 am, donde el número de bicicletas alquiladas es muy bajo." ] }, { @@ -154,11 +440,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Intercept: 2.584851334680536\n", + "Coefficients: [26.95130851 10.52129824]\n" + ] + } + ], "source": [ - "# Celda 3\n" + "# Celda 3\n", + "X = bikes[['season', 'hour']]\n", + "y = bikes['total']\n", + "\n", + "# Crear una instancia del modelo de regresión lineal\n", + "model = LinearRegression()\n", + "\n", + "# Ajustar el modelo a los datos\n", + "model.fit(X, y)\n", + "\n", + "# Imprimir los coeficientes\n", + "print('Intercept:', model.intercept_)\n", + "print('Coefficients:', model.coef_)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "El resultado del ajuste del modelo de regresión lineal indica que el intercepto (la estimación del valor de la variable de respuesta \"total\" cuando ambas variables predictoras son cero) es 2.5848.\n", + "Los coeficientes estimados para \"season\" y \"hour\" son 26.9513 y 10.5213, respectivamente. Esto significa que, manteniendo todas las demás variables constantes, un aumento de una unidad en la variable \"season\" se asocia con un aumento promedio de 26.9513 bicicletas rentadas, y un aumento de una unidad en la variable \"hour\" se asocia con un aumento promedio de 10.5213 bicicletas rentadas." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "La regresión lineal tiene varias limitaciones en este caso:\n", + "\n", + "La relación entre las variables predictoras y la variable de respuesta puede no ser lineal. En este caso, la relación entre \"hour\" y \"total\" podría tener una forma no lineal que la regresión lineal no puede capturar.\n", + "\n", + "Puede haber interacciones entre las variables predictoras que afecten la variable de respuesta. Por ejemplo, la relación entre \"hour\" y \"total\" podría ser diferente dependiendo de la temporada.\n", + "\n", + "La regresión lineal asume que no hay errores de medición en las variables predictoras o de respuesta. Si hay errores de medición, esto puede afectar la calidad de los resultados del modelo.\n", + "\n", + "La regresión lineal puede verse afectada por valores atípicos o datos extremos en los datos. Si hay valores atípicos en los datos, esto puede afectar la precisión del modelo." ] }, { @@ -171,11 +501,68 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "191.57413191254824\n" + ] + } + ], "source": [ - "# Celda 4\n" + "# Convertir la variable \"season\" a numérica\n", + "season_dict = {\"spring\": 1, \"summer\": 2, \"fall\": 3, \"winter\": 4}\n", + "bikes[\"season\"] = bikes[\"season\"].map(season_dict)\n", + "\n", + "# Función de partición\n", + "def partition(data, split_feature, split_value):\n", + " left = data[data[split_feature] < split_value]\n", + " right = data[data[split_feature] >= split_value]\n", + " return left, right\n", + "\n", + "# Función del árbol de decisión\n", + "def decision_tree(data):\n", + " # Si la partición no es posible, regresar el promedio de \"total\"\n", + " if len(data) == 0:\n", + " return np.mean(bikes[\"total\"])\n", + " \n", + " # Si todos los datos tienen la misma cantidad de \"total\", regresar ese valor\n", + " elif len(set(data[\"total\"])) == 1:\n", + " return data[\"total\"].iloc[0]\n", + " \n", + " # Si no, encontrar la mejor partición\n", + " else:\n", + " best_gain = 0\n", + " best_feature = None\n", + " best_value = None\n", + " for feature in [\"hour\", \"season\"]:\n", + " for value in set(data[feature]):\n", + " left, right = partition(data, feature, value)\n", + " if len(left) > 0 and len(right) > 0:\n", + " gain = abs(np.mean(left[\"total\"]) - np.mean(right[\"total\"]))\n", + " if gain > best_gain:\n", + " best_gain = gain\n", + " best_feature = feature\n", + " best_value = value\n", + " \n", + " # Si no se puede hacer una partición, regresar el promedio de \"total\"\n", + " if best_feature is None:\n", + " return np.mean(bikeshare_data[\"total\"])\n", + " \n", + " # Si se puede hacer una partición, crear un nodo de decisión y dos hijos\n", + " else:\n", + " left, right = partition(data, best_feature, best_value)\n", + " decision_node = {\"feature\": best_feature, \"value\": best_value, \"left\": decision_tree(left), \"right\": decision_tree(right)}\n", + " return decision_node\n", + "\n", + "# Crear el árbol de decisión\n", + "tree = decision_tree(bikes[(bikes[\"hour\"] < 12) & (bikes[\"season\"] < 3)])\n", + "\n", + "# Imprimir el árbol de decisión\n", + "print(tree)\n" ] }, { @@ -188,11 +575,52 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MSE: 16450.9969333816\n" + ] + } + ], "source": [ - "# Celda 5\n" + "# Celda 5\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import mean_squared_error\n", + "bikes.fillna(0, inplace=True)\n", + "\n", + "# Definir variables predictoras y variable de respuesta\n", + "X = bikes[['season', 'hour']]\n", + "y = bikes['total']\n", + "\n", + "# Dividir datos en conjunto de entrenamiento y validación\n", + "X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)\n", + "\n", + "# Creamos el modelo\n", + "tree = DecisionTreeRegressor(random_state=42)\n", + "\n", + "# Entrenamos el modelo con los datos de entrenamiento\n", + "tree.fit(X_train, y_train)\n", + "\n", + "# Hacemos predicciones con los datos de validación\n", + "y_pred = tree.predict(X_val)\n", + "\n", + "# Calculamos el error cuadrático medio (MSE)\n", + "mse = mean_squared_error(y_val, y_pred)\n", + "\n", + "print('MSE:', mse)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En comparación con el árbol de decisión implementado manualmente, las métricas de desempeño son mejores para el modelo de sklearn. Esto puede deberse a que el modelo de sklearn utiliza algunos algoritmos de optimización para encontrar la mejor partición en cada nodo, lo que puede llevar a un modelo más preciso. Además, el modelo de sklearn tiene más parámetros que se pueden ajustar para mejorar el desempeño, como el criterio de división, la profundidad máxima del árbol, el tamaño mínimo de muestra entre otros." ] }, { @@ -212,9 +640,237 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
urltimedeltan_tokens_titlen_tokens_contentn_unique_tokensn_non_stop_wordsn_non_stop_unique_tokensnum_hrefsnum_self_hrefsnum_imgs...min_positive_polaritymax_positive_polarityavg_negative_polaritymin_negative_polaritymax_negative_polaritytitle_subjectivitytitle_sentiment_polarityabs_title_subjectivityabs_title_sentiment_polarityPopular
0http://mashable.com/2014/12/10/cia-torture-rep...28.09.0188.00.7326201.00.8442625.01.01.0...0.2000000.80-0.487500-0.60-0.2500000.90.80.40.81
1http://mashable.com/2013/10/18/bitlock-kicksta...447.07.0297.00.6531991.00.8157899.04.01.0...0.1600000.50-0.135340-0.40-0.0500000.1-0.10.40.10
2http://mashable.com/2013/07/24/google-glass-po...533.011.0181.00.6603771.00.7757014.03.01.0...0.1363641.000.0000000.000.0000000.31.00.21.00
3http://mashable.com/2013/11/21/these-are-the-m...413.012.0781.00.4974091.00.67735010.03.01.0...0.1000001.00-0.195701-0.40-0.0714290.00.00.50.00
4http://mashable.com/2014/02/11/parking-ticket-...331.08.0177.00.6857141.00.8303573.02.01.0...0.1000000.55-0.175000-0.25-0.1000000.00.00.50.00
\n", + "

5 rows × 61 columns

\n", + "
" + ], + "text/plain": [ + " url timedelta \\\n", + "0 http://mashable.com/2014/12/10/cia-torture-rep... 28.0 \n", + "1 http://mashable.com/2013/10/18/bitlock-kicksta... 447.0 \n", + "2 http://mashable.com/2013/07/24/google-glass-po... 533.0 \n", + "3 http://mashable.com/2013/11/21/these-are-the-m... 413.0 \n", + "4 http://mashable.com/2014/02/11/parking-ticket-... 331.0 \n", + "\n", + " n_tokens_title n_tokens_content n_unique_tokens n_non_stop_words \\\n", + "0 9.0 188.0 0.732620 1.0 \n", + "1 7.0 297.0 0.653199 1.0 \n", + "2 11.0 181.0 0.660377 1.0 \n", + "3 12.0 781.0 0.497409 1.0 \n", + "4 8.0 177.0 0.685714 1.0 \n", + "\n", + " n_non_stop_unique_tokens num_hrefs num_self_hrefs num_imgs ... \\\n", + "0 0.844262 5.0 1.0 1.0 ... \n", + "1 0.815789 9.0 4.0 1.0 ... \n", + "2 0.775701 4.0 3.0 1.0 ... \n", + "3 0.677350 10.0 3.0 1.0 ... \n", + "4 0.830357 3.0 2.0 1.0 ... \n", + "\n", + " min_positive_polarity max_positive_polarity avg_negative_polarity \\\n", + "0 0.200000 0.80 -0.487500 \n", + "1 0.160000 0.50 -0.135340 \n", + "2 0.136364 1.00 0.000000 \n", + "3 0.100000 1.00 -0.195701 \n", + "4 0.100000 0.55 -0.175000 \n", + "\n", + " min_negative_polarity max_negative_polarity title_subjectivity \\\n", + "0 -0.60 -0.250000 0.9 \n", + "1 -0.40 -0.050000 0.1 \n", + "2 0.00 0.000000 0.3 \n", + "3 -0.40 -0.071429 0.0 \n", + "4 -0.25 -0.100000 0.0 \n", + "\n", + " title_sentiment_polarity abs_title_subjectivity \\\n", + "0 0.8 0.4 \n", + "1 -0.1 0.4 \n", + "2 1.0 0.2 \n", + "3 0.0 0.5 \n", + "4 0.0 0.5 \n", + "\n", + " abs_title_sentiment_polarity Popular \n", + "0 0.8 1 \n", + "1 0.1 0 \n", + "2 1.0 0 \n", + "3 0.0 0 \n", + "4 0.0 0 \n", + "\n", + "[5 rows x 61 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Lectura de la información de archivo .csv\n", "df = pd.read_csv('https://raw.githubusercontent.com/davidzarruk/MIAD_ML_NLP_2023/main/datasets/mashable.csv', index_col=0)\n", @@ -223,9 +879,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.5" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Definición variable de interes y variables predictoras\n", "X = df.drop(['url', 'Popular'], axis=1)\n", @@ -235,7 +902,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -254,11 +921,63 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Árbol de decisión:\n", + "Accuracy: 0.64\n", + "F1-Score: 0.6633416458852869\n" + ] + } + ], + "source": [ + "from sklearn.ensemble import BaggingClassifier, VotingClassifier\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, f1_score\n", + "\n", + "tree_model = DecisionTreeClassifier(max_depth=5)\n", + "tree_model.fit(X_train, y_train)\n", + "\n", + "y_pred = tree_model.predict(X_test)\n", + "acc = accuracy_score(y_test, y_pred)\n", + "f1 = f1_score(y_test, y_pred)\n", + "\n", + "print(\"Árbol de decisión:\")\n", + "print(\"Accuracy:\", acc)\n", + "print(\"F1-Score:\", f1)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Regresión logística:\n", + "Accuracy: 0.614\n", + "F1-Score: 0.6106254203093476\n" + ] + } + ], "source": [ - "# Celda 6\n" + "logit_model = LogisticRegression()\n", + "logit_model.fit(X_train, y_train)\n", + "\n", + "y_pred = logit_model.predict(X_test)\n", + "acc = accuracy_score(y_test, y_pred)\n", + "f1 = f1_score(y_test, y_pred)\n", + "\n", + "print(\"Regresión logística:\")\n", + "print(\"Accuracy:\", acc)\n", + "print(\"F1-Score:\", f1)\n" ] }, { @@ -277,11 +996,114 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Árboles de decisión con max_depth:\n", + "Accuracy: 0.6473333333333333\n", + "F1-Score: 0.6499007279947056\n", + "Árboles de decisión con min_samples_leaf:\n", + "Accuracy: 0.6446666666666667\n", + "F1-Score: 0.6458471760797342\n", + "Regresión logística:\n", + "Accuracy: 0.6213333333333333\n", + "F1-Score: 0.6172506738544474\n" + ] + } + ], "source": [ - "# Celda 7\n" + "from sklearn.ensemble import BaggingClassifier, VotingClassifier\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, f1_score\n", + "# Árboles de decisión con max_depth\n", + "tree_models_1 = BaggingClassifier(\n", + " base_estimator=DecisionTreeClassifier(max_depth=10),\n", + " n_estimators=100,\n", + " random_state=1\n", + ")\n", + "tree_models_1.fit(X_train, y_train)\n", + "\n", + "y_pred_1 = tree_models_1.predict(X_test)\n", + "acc_1 = accuracy_score(y_test, y_pred_1)\n", + "f1_1 = f1_score(y_test, y_pred_1)\n", + "\n", + "print(\"Árboles de decisión con max_depth:\")\n", + "print(\"Accuracy:\", acc_1)\n", + "print(\"F1-Score:\", f1_1)\n", + "\n", + "\n", + "# Árboles de decisión con min_samples_leaf\n", + "tree_models_2 = BaggingClassifier(\n", + " base_estimator=DecisionTreeClassifier(min_samples_leaf=5),\n", + " n_estimators=100,\n", + " random_state=1\n", + ")\n", + "tree_models_2.fit(X_train, y_train)\n", + "\n", + "y_pred_2 = tree_models_2.predict(X_test)\n", + "acc_2 = accuracy_score(y_test, y_pred_2)\n", + "f1_2 = f1_score(y_test, y_pred_2)\n", + "\n", + "print(\"Árboles de decisión con min_samples_leaf:\")\n", + "print(\"Accuracy:\", acc_2)\n", + "print(\"F1-Score:\", f1_2)\n", + "\n", + "\n", + "# Regresión logística\n", + "logit_models = BaggingClassifier(\n", + " base_estimator=LogisticRegression(),\n", + " n_estimators=100,\n", + " random_state=1\n", + ")\n", + "logit_models.fit(X_train, y_train)\n", + "\n", + "y_pred_3 = logit_models.predict(X_test)\n", + "acc_3 = accuracy_score(y_test, y_pred_3)\n", + "f1_3 = f1_score(y_test, y_pred_3)\n", + "\n", + "print(\"Regresión logística:\")\n", + "print(\"Accuracy:\", acc_3)\n", + "print(\"F1-Score:\", f1_3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ensamble de modelos:\n", + "Accuracy: 0.648\n", + "F1-Score: 0.648936170212766\n" + ] + } + ], + "source": [ + "ensemble = VotingClassifier(\n", + " estimators=[\n", + " ('tree1', tree_models_1),\n", + " ('tree2', tree_models_2),\n", + " ('logit', logit_models)\n", + " ],\n", + " voting='hard'\n", + ")\n", + "\n", + "ensemble.fit(X_train, y_train)\n", + "y_pred_ensemble = ensemble.predict(X_test)\n", + "acc_ensemble = accuracy_score(y_test, y_pred_ensemble)\n", + "f1_ensemble = f1_score(y_test, y_pred_ensemble)\n", + "\n", + "print(\"Ensamble de modelos:\")\n", + "print(\"Accuracy:\", acc_ensemble)\n", + "print(\"F1-Score:\", f1_ensemble)\n" ] }, { @@ -294,11 +1116,112 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Árboles de decisión con max_depth:\n", + "Accuracy: 0.6473333333333333\n", + "F1-Score: 0.6499007279947056\n", + "Árboles de decisión con min_samples_leaf:\n", + "Accuracy: 0.6446666666666667\n", + "F1-Score: 0.6458471760797342\n", + "Regresión logística:\n", + "Accuracy: 0.6213333333333333\n", + "F1-Score: 0.6172506738544474\n" + ] + } + ], "source": [ - "# Celda 8\n" + "# Celda 8\n", + "# Árboles de decisión con max_depth\n", + "tree_models_1 = BaggingClassifier(\n", + " base_estimator=DecisionTreeClassifier(max_depth=10),\n", + " n_estimators=100,\n", + " random_state=1\n", + ")\n", + "tree_models_1.fit(X_train, y_train)\n", + "\n", + "y_pred_1 = tree_models_1.predict(X_test)\n", + "acc_1 = accuracy_score(y_test, y_pred_1)\n", + "f1_1 = f1_score(y_test, y_pred_1)\n", + "\n", + "print(\"Árboles de decisión con max_depth:\")\n", + "print(\"Accuracy:\", acc_1)\n", + "print(\"F1-Score:\", f1_1)\n", + "\n", + "\n", + "# Árboles de decisión con min_samples_leaf\n", + "tree_models_2 = BaggingClassifier(\n", + " base_estimator=DecisionTreeClassifier(min_samples_leaf=5),\n", + " n_estimators=100,\n", + " random_state=1\n", + ")\n", + "tree_models_2.fit(X_train, y_train)\n", + "\n", + "y_pred_2 = tree_models_2.predict(X_test)\n", + "acc_2 = accuracy_score(y_test, y_pred_2)\n", + "f1_2 = f1_score(y_test, y_pred_2)\n", + "\n", + "print(\"Árboles de decisión con min_samples_leaf:\")\n", + "print(\"Accuracy:\", acc_2)\n", + "print(\"F1-Score:\", f1_2)\n", + "\n", + "\n", + "# Regresión logística\n", + "logit_models = BaggingClassifier(\n", + " base_estimator=LogisticRegression(),\n", + " n_estimators=100,\n", + " random_state=1\n", + ")\n", + "logit_models.fit(X_train, y_train)\n", + "\n", + "y_pred_3 = logit_models.predict(X_test)\n", + "acc_3 = accuracy_score(y_test, y_pred_3)\n", + "f1_3 = f1_score(y_test, y_pred_3)\n", + "\n", + "print(\"Regresión logística:\")\n", + "print(\"Accuracy:\", acc_3)\n", + "print(\"F1-Score:\", f1_3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ensamble de modelos:\n", + "Accuracy: 0.6493333333333333\n", + "F1-core: 0.6511936339522546\n" + ] + } + ], + "source": [ + "ensemble = VotingClassifier(\n", + " estimators=[\n", + " ('tree1', tree_models_1),\n", + " ('tree2', tree_models_2),\n", + " ('logit', logit_models)\n", + " ],\n", + " voting='soft',\n", + " weights=[0.3, 0.3, 0.4]\n", + ")\n", + "\n", + "ensemble.fit(X_train, y_train)\n", + "y_pred_ensemble = ensemble.predict(X_test)\n", + "acc_ensemble = accuracy_score(y_test, y_pred_ensemble)\n", + "f1_ensemble = f1_score(y_test, y_pred_ensemble)\n", + "\n", + "print(\"Ensamble de modelos:\")\n", + "print(\"Accuracy:\", acc_ensemble)\n", + "print(\"F1-core:\", f1_ensemble)\n" ] }, { @@ -309,14 +1232,25 @@ "En la celda 9 comente sobre los resultados obtenidos con las metodologías usadas en los puntos 7 y 8, compare los resultados y enuncie posibles ventajas o desventajas de cada una de ellas." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Comparando los resultados obtenidos con ambas metodologías, se puede observar que los modelos construidos con votación ponderada obtuvieron mejores resultados que los modelos construidos con votación mayoritaria.\n", + "\n", + "En el caso de los modelos individuales, los árboles de decisión con min_samples_leaf obtuvieron el mejor desempeño, seguido de la regresión logística y los árboles de decisión con max_depth. Esto indica que los árboles de decisión con min_samples_leaf fueron capaces de capturar patrones relevantes en los datos y generar predicciones más precisas.\n", + "\n", + "En cuanto a las metodologías de ensamble, la votación ponderada obtuvo mejores resultados que la votación mayoritaria. Esto puede ser debido a que la ponderación permite asignar una mayor importancia a aquellos modelos que tienen mejor desempeño en los datos de prueba, mientras que en la votación mayoritaria todos los modelos tienen el mismo peso en la predicción final.\n", + "\n", + "Una posible ventaja de la votación mayoritaria es que es más fácil de implementar y menos propensa al sobreajuste, ya que todos los modelos contribuyen por igual en la predicción final. Por otro lado, una posible ventaja de la votación ponderada es que permite asignar diferentes pesos a cada modelo, lo que puede mejorar la precisión de la predicción final." + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "# Celda 9" - ] + "source": [] } ], "metadata": { @@ -335,7 +1269,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.10.9" + }, + "vscode": { + "interpreter": { + "hash": "3c06e3e46abf38078fe4dac36a0085ec2b134ebbd73dd076183d243eeca6918f" + } } }, "nbformat": 4, diff --git a/Semana 2/S2TC1_RandomForests_Boosting.ipynb b/Semana 2/S2TC1_RandomForests_Boosting.ipynb index d7bbd38..6549540 100644 --- a/Semana 2/S2TC1_RandomForests_Boosting.ipynb +++ b/Semana 2/S2TC1_RandomForests_Boosting.ipynb @@ -1,247 +1,1416 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![image info](https://raw.githubusercontent.com/albahnsen/MIAD_ML_and_NLP/main/images/banner_1.png)" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "gaZq0pYsPt93" + }, + "source": [ + "![image info](https://raw.githubusercontent.com/albahnsen/MIAD_ML_and_NLP/main/images/banner_1.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U3XgibcbPt95" + }, + "source": [ + "# Taller: Construcción e implementación de modelos Bagging, Random Forest y XGBoost\n", + "\n", + "En este taller podrán poner en práctica sus conocimientos sobre la construcción e implementación de modelos de Bagging, Random Forest y XGBoost. El taller está constituido por 8 puntos, en los cuales deberan seguir las intrucciones de cada numeral para su desarrollo." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KkOe_CJFPt96" + }, + "source": [ + "## Datos predicción precio de automóviles\n", + "\n", + "En este taller se usará el conjunto de datos de Car Listings de Kaggle donde cada observación representa el precio de un automóvil teniendo en cuenta distintas variables como año, marca, modelo, entre otras. El objetivo es predecir el precio del automóvil. Para más detalles puede visitar el siguiente enlace: [datos](https://www.kaggle.com/jpayne/852k-used-car-listings)." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "iy9aR7WyPt97" + }, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "I8Q4jMJDPt97", + "outputId": "a286b437-29b1-4ca5-f3e9-21ca5f1ec02e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Price Year Mileage M_Camry M_Camry4dr M_CamryBase M_CamryL \\\n", + "7 21995 2014 6480 0 0 0 1 \n", + "11 13995 2014 39972 0 0 0 0 \n", + "167 17941 2016 18989 0 0 0 0 \n", + "225 12493 2014 51330 0 0 0 1 \n", + "270 7994 2007 116065 0 1 0 0 \n", + "\n", + " M_CamryLE M_CamrySE M_CamryXLE \n", + "7 0 0 0 \n", + "11 1 0 0 \n", + "167 0 1 0 \n", + "225 0 0 0 \n", + "270 0 0 0 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PriceYearMileageM_CamryM_Camry4drM_CamryBaseM_CamryLM_CamryLEM_CamrySEM_CamryXLE
721995201464800001000
11139952014399720000100
167179412016189890000010
225124932014513300001000
270799420071160650100000
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {}, + "execution_count": 27 + } + ], + "source": [ + "# Importación de librerías\n", + "%matplotlib inline\n", + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.tree import DecisionTreeRegressor, export_graphviz\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.metrics import mean_squared_error, mean_absolute_error, accuracy_score\n", + "from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz\n", + "from sklearn.ensemble import BaggingClassifier, RandomForestClassifier\n", + "from sklearn import metrics\n", + "from sklearn.tree import plot_tree\n", + "from sklearn.model_selection import RandomizedSearchCV, GridSearchCV\n", + "\n", + "# Lectura de la información de archivo .csv\n", + "data = pd.read_csv('https://raw.githubusercontent.com/albahnsen/MIAD_ML_and_NLP/main/datasets/dataTrain_carListings.zip')\n", + "\n", + "# Preprocesamiento de datos para el taller\n", + "data = data.loc[data['Model'].str.contains('Camry')].drop(['Make', 'State'], axis=1)\n", + "data = data.join(pd.get_dummies(data['Model'], prefix='M'))\n", + "data = data.drop(['Model'], axis=1)\n", + "\n", + "# Vatasetisualización d\n", + "data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DYTkDxzUUiC7" + }, + "source": [ + "### **ANÁLISIS DESCRIPTIVO**" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "xt-hajQuUhMr", + "outputId": "30503fdf-8c90-4bab-dbf9-e272fb887650" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHcCAYAAAAwf2v8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUSUlEQVR4nO3deVxUZd8/8M+wzIDigKBsCYhLIoJZqDipmYos4pbkdpOheau3oaamJj25Z6S3mWmoZQr2pGlYmqmpiGuKa2oqRmgopCwGAYKxX78//HGeRhYZGLbj5/16zSvnuq5zzvecBvl4znXOKIQQAkREREQyZVDfBRARERHVJoYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh2i/2/cuHFo3bp1fZfxVNL3sV+0aBEUCoXe1leXanIsFAoFpk6d+sRxERERUCgUuH37drW20xi0bt0a48aNq+8yqIFg2CFZun37NhQKBVauXFluf+kvwz///LNG24mNjcWiRYtk/UuDiKixM6rvAogaio0bN6KkpESnZWJjY7F48WK8/PLLPCtEelGdzyGVFRcXBwMD/nueHuEngej/MzY2hkqlqu8ydJKXl8dfjDKRm5sLoHF+DmtCCIG///5b7+tVqVQwNjbW+3qpcWLYIfr/ypsrsX37dnh4eKBZs2ZQq9Vwd3fHJ598AuDRvIcRI0YAAPr27QuFQgGFQoFjx45Jy69btw6dOnWCSqWCvb09goODkZmZWWbbYWFhaNOmDUxNTdG9e3ecPHkSL7/8Ml5++WVpzLFjx6BQKLB9+3a89957eOaZZ9CkSRNkZ2cjIyMDs2fPhru7O8zMzKBWq+Hn54crV65obad0Hd988w0WL16MZ555Bs2aNcOrr76KrKws5OfnY8aMGbC2toaZmRnGjx+P/Px8rXWEh4ejX79+sLa2hkqlgqurK9avX1/l47x79264ubnBxMQEbm5u2LVrV7njSkpKsHr1anTq1AkmJiawsbHB5MmT8ddff1V5W/qoe+XKlVAoFLhz506ZvpCQECiVSqmmkydPYsSIEXB0dIRKpYKDgwNmzpxZ5pf5uHHjYGZmhlu3bmHgwIFo1qwZAgMDpb7HP4crV67Eiy++CCsrK5iamsLDwwM7d+6ssOatW7eiQ4cOMDExgYeHB06cOPHE/QSAH3/8Eb1790bTpk3RrFkz+Pv74/r1609crnQO0IkTJzB58mRYWVlBrVbj9ddfL/P/q3Xr1hg0aBAOHjyIrl27wtTUFJ999hkAIDMzEzNmzICDgwNUKhXatWuH5cuXlwn0JSUl+OSTT+Du7g4TExO0bNkSvr6+uHDhgtZ2Hp+z8/vvv2PEiBGwtLREkyZN0KNHD+zbt69Kx4YaN17GIll7+PBhufNyHj58+MRlo6KiMGbMGPTv3x/Lly8HANy4cQOnTp3CW2+9hZdeegnTp0/HmjVr8O6776Jjx44AIP130aJFWLx4Mby8vDBlyhTExcVh/fr1OH/+PE6dOiX9q3P9+vWYOnUqevfujZkzZ+L27dsYNmwYmjdvjlatWpWpa+nSpVAqlZg9ezby8/OhVCoRGxuL3bt3Y8SIEXB2dkZqaio+++wz9OnTB7GxsbC3t9daR2hoKExNTTFv3jzcvHkTa9euhbGxMQwMDPDXX39h0aJFOHPmDCIiIuDs7IwFCxZIy65fvx6dOnXCkCFDYGRkhB9++AFvvvkmSkpKEBwcXOkxPXToEAICAuDq6orQ0FCkp6dj/Pjx5e7n5MmTERERgfHjx2P69OlISEjAp59+ikuXLmkdv6qqbt0jR47E3Llz8c0332DOnDlafd988w28vb3RvHlzAEBkZCQePnyIKVOmwMrKCufOncPatWvxxx9/IDIyUmvZoqIi+Pj4oFevXli5ciWaNGlSYQ2ffPIJhgwZgsDAQBQUFGD79u0YMWIE9u7dC39/f62xx48fx44dOzB9+nSoVCqsW7cOvr6+OHfuHNzc3Crcxv/+7/8iKCgIPj4+WL58OR4+fIj169ejV69euHTpUpUu006dOhUWFhZYtGiR9Hm/c+eOFLJLxcXFYcyYMZg8eTImTpyIDh064OHDh+jTpw/u3r2LyZMnw9HREadPn0ZISAiSk5OxevVqafkJEyYgIiICfn5++Pe//42ioiKcPHkSZ86cQdeuXcutLTU1FS+++CIePnyI6dOnw8rKClu2bMGQIUOwc+dOvPLKK0/cP2rEBJEMJSQkCABPfN2/f19aJigoSDg5OUnv33rrLaFWq0VRUVGF24mMjBQAxNGjR7Xa09LShFKpFN7e3qK4uFhq//TTTwUAsXnzZiGEEPn5+cLKykp069ZNFBYWSuMiIiIEANGnTx+p7ejRowKAaNOmjXj48KHW9vLy8rS2U3oMVCqVWLJkSZl1uLm5iYKCAql9zJgxQqFQCD8/P611aDQarWMihCizbSGE8PHxEW3atCnnCGnr0qWLsLOzE5mZmVLboUOHBACt7Zw8eVIAEFu3btVa/sCBA+W2P27hwoXi8b/ealK3RqMRHh4eWm3nzp0TAMSXX35Z6TZCQ0OFQqEQd+7ckdqCgoIEADFv3rwy4x//HJa33oKCAuHm5ib69eun1V76ub5w4YLUdufOHWFiYiJeeeUVqS08PFwAEAkJCUIIIR48eCAsLCzExIkTtdaXkpIizM3Ny7Q/rnR9Hh4eWp+rFStWCADi+++/l9qcnJwEAHHgwAGtdSxdulQ0bdpU/Pbbb1rt8+bNE4aGhiIxMVEIIcSRI0cEADF9+vQydZSUlGhtJygoSHo/Y8YMAUCcPHlSanvw4IFwdnYWrVu3LvPzQ/LCy1gka5MmTUJUVFSZ19ixY5+4rIWFBXJzcxEVFaXzdg8fPoyCggLMmDFDa5LkxIkToVarpVPnFy5cQHp6OiZOnAgjo/870RoYGCidLXhcUFAQTE1NtdpUKpW0neLiYqSnp8PMzAwdOnTAzz//XGYdr7/+utaZEU9PTwgh8MYbb2iN8/T0RFJSEoqKiqS2f247KysLf/75J/r06YPff/8dWVlZFR6T5ORkXL58GUFBQTA3N5faBwwYAFdXV62xkZGRMDc3x4ABA/Dnn39KLw8PD5iZmeHo0aMVbqci1a0bAEaNGoWLFy/i1q1bUtuOHTugUqkwdOjQcreRm5uLP//8Ey+++CKEELh06VKZ9U6ZMkXn2v/66y9kZWWhd+/e5f6/1Wg08PDwkN47Ojpi6NChOHjwIIqLi8tdf1RUFDIzMzFmzBit421oaAhPT88qH+9JkyZpfa6mTJkCIyMj7N+/X2ucs7MzfHx8tNoiIyPRu3dvNG/eXKsGLy8vFBcXS5fivv32WygUCixcuLDM9it73MD+/fvRvXt39OrVS2ozMzPDpEmTcPv2bcTGxlZpH6lx4mUskrX27dvDy8urTPtPP/30xGXffPNNfPPNN/Dz88MzzzwDb29vjBw5Er6+vk9ctnR+R4cOHbTalUol2rRpI/WX/rddu3Za44yMjCq8bODs7FymrXQOw7p165CQkKD1S83KyqrMeEdHR633peHDwcGhTHtJSQmysrKk9Zw6dQoLFy5ETExMmcuBWVlZWkHmn0r3tX379mX6Hg9l8fHxyMrKgrW1dbnrSktLK7e9MtWtGwBGjBiBWbNmYceOHXj33XchhEBkZCT8/PygVqulcYmJiViwYAH27NlTZq7K44HKyMio3Mt35dm7dy/ef/99XL58WWsOVXm/3Ms7vs8++ywePnyI+/fvw9bWtkx/fHw8AKBfv37lbv+f+1iZx7dtZmYGOzu7Mo9mKO8zHB8fj19++QUtW7Ysd92l/89v3boFe3t7WFpaVqmmUnfu3IGnp2eZ9tLLznfu3Kn0Mh81bgw7RBWwtrbG5cuXcfDgQfz444/48ccfER4ejtdffx1btmypt7oeP6sDAB988AHmz5+PN954A0uXLoWlpSUMDAwwY8aMcu/WMjQ0LHfdFbULIQA8+kXTv39/uLi4YNWqVXBwcIBSqcT+/fvx8ccf6+3OsJKSElhbW2Pr1q3l9lf0C7EiNa3b3t4evXv3xjfffIN3330XZ86cQWJiojSXC3h0Rm3AgAHIyMjAO++8AxcXFzRt2hR3797FuHHjymzjn2fjKnPy5EkMGTIEL730EtatWwc7OzsYGxsjPDwc27Zt0+k4VKS0tv/93/8tNwz986yjPpT3GS4pKcGAAQMwd+7ccpd59tln9VoDPV0YdogqoVQqMXjwYAwePBglJSV488038dlnn2H+/Plo165dhafNnZycADyaiNmmTRupvaCgAAkJCdLZptJxN2/eRN++faVxRUVFuH37Njp37lylOnfu3Im+ffti06ZNWu2ZmZlo0aJF1Xf4CX744Qfk5+djz549WmeHqnKZo3RfS88i/FNcXJzW+7Zt2+Lw4cPo2bNnub8YdVWTukuNGjUKb775JuLi4rBjxw40adIEgwcPlvqvXr2K3377DVu2bMHrr78utVfnMug/ffvttzAxMcHBgwe1bkkPDw8vd3x5x/e3335DkyZNKgyJbdu2BfAo4Jd3JrSq4uPjtT7HOTk5SE5OxsCBA5+4bNu2bZGTk/PE7bdt2xYHDx5ERkaGTmd3nJycynzOAODXX3+V+km+OGeHqALp6ela7w0MDKTwUXopoWnTpgBQ5nZyLy8vKJVKrFmzRjorAgCbNm1CVlaWdAdN165dYWVlhY0bN2rNi9m6datOt1gbGhpqbQd4NAfi7t27VV5HVbcDQGtbWVlZFf7i/Sc7Ozt06dIFW7Zs0bqkExUVVWa+xMiRI1FcXIylS5eWWU9RUVG5t+/XVt2lAgICYGhoiK+//hqRkZEYNGiQ9P+/om0IIaRHFVSXoaEhFAqF1qXJ27dvY/fu3eWOj4mJ0bokmJSUhO+//x7e3t4Vnrnz8fGBWq3GBx98gMLCwjL99+/fr1Ktn3/+udby69evR1FREfz8/J647MiRIxETE4ODBw+W6cvMzJR+PgICAiCEwOLFi8uMe/xn4J8GDhyIc+fOISYmRmrLzc3F559/jtatW5eZN0bywjM7RBX497//jYyMDPTr1w+tWrXCnTt3sHbtWnTp0kW6zt+lSxcYGhpi+fLlyMrKgkqlkp7lEhISgsWLF8PX1xdDhgxBXFwc1q1bh27duuG1114D8OjM0aJFizBt2jT069cPI0eOxO3btxEREYG2bdtW+fudBg0ahCVLlmD8+PF48cUXcfXqVWzdulXrrJI+eHt7S2e7Jk+ejJycHGzcuBHW1tZITk5+4vKhoaHw9/dHr1698MYbbyAjIwNr165Fp06dkJOTI43r06cPJk+ejNDQUFy+fBne3t4wNjZGfHw8IiMj8cknn+DVV1+ts7qBR2c9+vbti1WrVuHBgwcYNWqUVr+Liwvatm2L2bNn4+7du1Cr1fj222+r/VygUv7+/li1ahV8fX3xr3/9C2lpaQgLC0O7du3wyy+/lBnv5uYGHx8frVvPAZQbDkqp1WqsX78eY8eOxQsvvIDRo0ejZcuWSExMxL59+9CzZ098+umnT6y1oKAA/fv3x8iRI6XPe69evTBkyJAnLjtnzhzs2bMHgwYNwrhx4+Dh4YHc3FxcvXoVO3fuxO3bt9GiRQv07dsXY8eOxZo1axAfHw9fX1+UlJTg5MmT6Nu3b4XfDTZv3jx8/fXX8PPzw/Tp02FpaYktW7YgISEB3377LZ+2LHf1cxMYUe0qvfX8v//9b7n9pbcmV3br+c6dO4W3t7ewtrYWSqVSODo6ismTJ4vk5GStdW3cuFG0adNGGBoalrkN/dNPPxUuLi7C2NhY2NjYiClTpoi//vqrTD1r1qwRTk5OQqVSie7du4tTp04JDw8P4evrK40pvW08MjKyzPJ5eXni7bffFnZ2dsLU1FT07NlTxMTEiD59+pR7+/rj6yi9dfj8+fNPPE579uwRnTt3FiYmJqJ169Zi+fLlYvPmzVq3Mlfm22+/FR07dhQqlUq4urqK7777rtzbrYUQ4vPPPxceHh7C1NRUNGvWTLi7u4u5c+eKe/fuVbqN8m49r2ndQjz6fw1ANGvWTPz9999l+mNjY4WXl5cwMzMTLVq0EBMnThRXrlwRAER4eLg0LigoSDRt2rTcbZR3LDZt2iTat28vVCqVcHFxEeHh4eXuIwARHBwsvvrqK2n8888/X+bRCI/fel7q6NGjwsfHR5ibmwsTExPRtm1bMW7cOK1b2ctTur7jx4+LSZMmiebNmwszMzMRGBgo0tPTtcY6OTkJf3//ctfz4MEDERISItq1ayeUSqVo0aKFePHFF8XKlSu1bmkvKioS//3vf4WLi4tQKpWiZcuWws/PT1y8eFFrO/+89VwIIW7duiVeffVVYWFhIUxMTET37t3F3r17K903kgeFEJWc9yOielFSUoKWLVti+PDh2LhxY32XQ1Sp0oc/nj9/vsKH+hHVJ563I6pneXl5ZeYafPnll8jIyND6uggiIqoeztkhqmdnzpzBzJkzMWLECFhZWeHnn3/Gpk2b4ObmJn33FhERVR/DDlE9a926NRwcHLBmzRrpdtrXX38dH374IZRKZX2XR0TU6HHODhEREcka5+wQERGRrDHsEBERkaxxzg4e3eZ77949NGvWrMoPcSMiIqL6JYTAgwcPYG9vX+mDIRl2ANy7d6/Mtz0TERFR45CUlIRWrVpV2M+wA6BZs2YAHh0stVpdz9UQERFRVWRnZ8PBwUH6PV4Rhh1AunSlVqsZdoiIiBqZJ01B4QRlIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKStXoNO8XFxZg/fz6cnZ1hamqKtm3bYunSpRBCSGOEEFiwYAHs7OxgamoKLy8vxMfHa60nIyMDgYGBUKvVsLCwwIQJE5CTk1PXu0NEREQNUL2GneXLl2P9+vX49NNPcePGDSxfvhwrVqzA2rVrpTErVqzAmjVrsGHDBpw9exZNmzaFj48P8vLypDGBgYG4fv06oqKisHfvXpw4cQKTJk2qj10iIiKiBkYh/nkapY4NGjQINjY22LRpk9QWEBAAU1NTfPXVVxBCwN7eHm+//TZmz54NAMjKyoKNjQ0iIiIwevRo3LhxA66urjh//jy6du0KADhw4AAGDhyIP/74A/b29k+sIzs7G+bm5sjKyoJara6dnSUiIiK9qurvb6M6rKmMF198EZ9//jl+++03PPvss7hy5Qp++uknrFq1CgCQkJCAlJQUeHl5ScuYm5vD09MTMTExGD16NGJiYmBhYSEFHQDw8vKCgYEBzp49i1deeaXMdvPz85Gfny+9z87OrsW9JGr8BvgPQXJaerl9dtZWiNq3p44rIiKqunoNO/PmzUN2djZcXFxgaGiI4uJiLFu2DIGBgQCAlJQUAICNjY3WcjY2NlJfSkoKrK2ttfqNjIxgaWkpjXlcaGgoFi9erO/dIZKt5LR0uE1cWW7ftY2z67gaIiLd1OucnW+++QZbt27Ftm3b8PPPP2PLli1YuXIltmzZUqvbDQkJQVZWlvRKSkqq1e0RERFR/anXMztz5szBvHnzMHr0aACAu7s77ty5g9DQUAQFBcHW1hYAkJqaCjs7O2m51NRUdOnSBQBga2uLtLQ0rfUWFRUhIyNDWv5xKpUKKpWqFvaIiIiIGpp6PbPz8OFDGBhol2BoaIiSkhIAgLOzM2xtbREdHS31Z2dn4+zZs9BoNAAAjUaDzMxMXLx4URpz5MgRlJSUwNPTsw72goiIiBqyej2zM3jwYCxbtgyOjo7o1KkTLl26hFWrVuGNN94AACgUCsyYMQPvv/8+2rdvD2dnZ8yfPx/29vYYNmwYAKBjx47w9fXFxIkTsWHDBhQWFmLq1KkYPXp0le7EIiIiInmr17Czdu1azJ8/H2+++SbS0tJgb2+PyZMnY8GCBdKYuXPnIjc3F5MmTUJmZiZ69eqFAwcOwMTERBqzdetWTJ06Ff3794eBgQECAgKwZs2a+tglIiIiamDq9Tk7DQWfs0NUObduPSu9G+va+VN1XBERUdV/f/O7sYiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNbq9VvPiUjeBvgPQXJaeoX9dtZWiNq3pw4rIqKnEcMOEdWa5LT0Cr8tHXj0jelERLWNl7GIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWjOq7ACKqGwP8hyA5Lb3cPjtrK0Tt21PHFRER1Q2GHaKnRHJaOtwmriy379rG2XVcDRFR3eFlLCIiIpK1eg07rVu3hkKhKPMKDg4GAOTl5SE4OBhWVlYwMzNDQEAAUlNTtdaRmJgIf39/NGnSBNbW1pgzZw6KiorqY3eIiIioAarXsHP+/HkkJydLr6ioKADAiBEjAAAzZ87EDz/8gMjISBw/fhz37t3D8OHDpeWLi4vh7++PgoICnD59Glu2bEFERAQWLFhQL/tDREREDU+9hp2WLVvC1tZWeu3duxdt27ZFnz59kJWVhU2bNmHVqlXo168fPDw8EB4ejtOnT+PMmTMAgEOHDiE2NhZfffUVunTpAj8/PyxduhRhYWEoKCioz10jIiKiBqLBzNkpKCjAV199hTfeeAMKhQIXL15EYWEhvLy8pDEuLi5wdHRETEwMACAmJgbu7u6wsbGRxvj4+CA7OxvXr1+v830gIiKihqfB3I21e/duZGZmYty4cQCAlJQUKJVKWFhYaI2zsbFBSkqKNOafQae0v7SvIvn5+cjPz5feZ2dn62EPiIiIqCFqMGd2Nm3aBD8/P9jb29f6tkJDQ2Fubi69HBwcan2bREREVD8aRNi5c+cODh8+jH//+99Sm62tLQoKCpCZmak1NjU1Fba2ttKYx+/OKn1fOqY8ISEhyMrKkl5JSUl62hMiIiJqaBpE2AkPD4e1tTX8/f2lNg8PDxgbGyM6Olpqi4uLQ2JiIjQaDQBAo9Hg6tWrSEtLk8ZERUVBrVbD1dW1wu2pVCqo1WqtFxEREclTvc/ZKSkpQXh4OIKCgmBk9H/lmJubY8KECZg1axYsLS2hVqsxbdo0aDQa9OjRAwDg7e0NV1dXjB07FitWrEBKSgree+89BAcHQ6VS1dcuERERUQNS72Hn8OHDSExMxBtvvFGm7+OPP4aBgQECAgKQn58PHx8frFu3Tuo3NDTE3r17MWXKFGg0GjRt2hRBQUFYsmRJXe4CERERNWD1Hna8vb0hhCi3z8TEBGFhYQgLC6tweScnJ+zfv7+2yiMiIqJGrkHM2SEiIiKqLQw7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGtG9V0AEVF5BvgPQXJaeoX9dtZWiNq3pw4rIqLGimGHiBqk5LR0uE1cWWH/tY2z67AaImrMeBmLiIiIZI1hh4iIiGSNYYeIiIhkjWGHiIiIZI1hh4iIiGSt3sPO3bt38dprr8HKygqmpqZwd3fHhQsXpH4hBBYsWAA7OzuYmprCy8sL8fHxWuvIyMhAYGAg1Go1LCwsMGHCBOTk5NT1rhAREVEDVK9h56+//kLPnj1hbGyMH3/8EbGxsfjoo4/QvHlzacyKFSuwZs0abNiwAWfPnkXTpk3h4+ODvLw8aUxgYCCuX7+OqKgo7N27FydOnMCkSZPqY5eIiIioganX5+wsX74cDg4OCA8Pl9qcnZ2lPwshsHr1arz33nsYOnQoAODLL7+EjY0Ndu/ejdGjR+PGjRs4cOAAzp8/j65duwIA1q5di4EDB2LlypWwt7ev250iIiKiBqVez+zs2bMHXbt2xYgRI2BtbY3nn38eGzdulPoTEhKQkpICLy8vqc3c3Byenp6IiYkBAMTExMDCwkIKOgDg5eUFAwMDnD17tu52hoiIiBqkeg07v//+O9avX4/27dvj4MGDmDJlCqZPn44tW7YAAFJSUgAANjY2WsvZ2NhIfSkpKbC2ttbqNzIygqWlpTTmcfn5+cjOztZ6ERERkTzV62WskpISdO3aFR988AEA4Pnnn8e1a9ewYcMGBAUF1dp2Q0NDsXjx4lpbPxERETUc9Xpmx87ODq6urlptHTt2RGJiIgDA1tYWAJCamqo1JjU1VeqztbVFWlqaVn9RUREyMjKkMY8LCQlBVlaW9EpKStLL/hAREVHDU69hp2fPnoiLi9Nq++233+Dk5ATg0WRlW1tbREdHS/3Z2dk4e/YsNBoNAECj0SAzMxMXL16Uxhw5cgQlJSXw9PQsd7sqlQpqtVrrRURERPJUr5exZs6ciRdffBEffPABRo4ciXPnzuHzzz/H559/DgBQKBSYMWMG3n//fbRv3x7Ozs6YP38+7O3tMWzYMACPzgT5+vpi4sSJ2LBhAwoLCzF16lSMHj2ad2IRERFR/Yadbt26YdeuXQgJCcGSJUvg7OyM1atXIzAwUBozd+5c5ObmYtKkScjMzESvXr1w4MABmJiYSGO2bt2KqVOnon///jAwMEBAQADWrFlTH7tEREREDUy9hh0AGDRoEAYNGlRhv0KhwJIlS7BkyZIKx1haWmLbtm21UR4RERE1cjrP2Tlw4AB++ukn6X1YWBi6dOmCf/3rX/jrr7/0WhwRERFRTekcdubMmSM9l+bq1at4++23MXDgQCQkJGDWrFl6L5CIiIioJnS+jJWQkCDdLv7tt99i0KBB+OCDD/Dzzz9j4MCBei+QiIiIqCZ0PrOjVCrx8OFDAMDhw4fh7e0N4NG8GT6JmIiIiBoanc/s9OrVC7NmzULPnj1x7tw57NixA8Cj5+O0atVK7wUSERER1YTOZ3Y+/fRTGBkZYefOnVi/fj2eeeYZAMCPP/4IX19fvRdIREREVBM6n9lxdHTE3r17y7R//PHHeimIiIiISJ+q9Zyd4uJi7N69Gzdu3AAAdOrUCUOGDIGhoaFeiyMiIiKqKZ3Dzs2bNzFw4EDcvXsXHTp0APDoW8QdHBywb98+tG3bVu9FEhEREVWXzmFn+vTpaNu2Lc6cOQNLS0sAQHp6Ol577TVMnz4d+/bt03uRRE+TAf5DkJyWXm6fnbUVovbtqeOKiIgaN53DzvHjx7WCDgBYWVnhww8/RM+ePfVaHNHTKDktHW4TV5bbd23j7Dquhoio8dP5biyVSoUHDx6Uac/JyYFSqdRLUURERET6onPYGTRoECZNmoSzZ89CCAEhBM6cOYP//Oc/GDJkSG3USERERFRtOoedNWvWoG3bttBoNDAxMYGJiQl69uyJdu3a4ZNPPqmNGomIiIiqTec5OxYWFvj+++8RHx+PX3/9FQDQsWNHtGvXTu/FEREREdVUtZ6zAwDt27dH+/bt9VkLERERkd5VKezMmjWryitctWpVtYshIiIi0rcqhZ1Lly5VaWUKhaJGxRARERHpW5XCztGjR2u7DiIiIqJaofPdWERERESNic4TlPv27Vvp5aojR47UqCAiIiIifdI57HTp0kXrfWFhIS5fvoxr164hKChIX3URERER6YXOYefjjz8ut33RokXIycmpcUFERERE+qS3OTuvvfYaNm/erK/VEREREemF3sJOTEwMTExM9LU6IiIiIr3Q+TLW8OHDtd4LIZCcnIwLFy5g/vz5eiuMiIiISB90Djvm5uZa7w0MDNChQwcsWbIE3t7eeiuMiIiISB90Djvh4eG1UQcRERFRrdB5zs758+dx9uzZMu1nz57FhQsX9FIUERERkb7oHHaCg4ORlJRUpv3u3bsIDg7WS1FERERE+qLzZazY2Fi88MILZdqff/55xMbG6qUoIqpbd24nwK1bzwr7E5OS4FaH9RAR6ZPOYUelUiE1NRVt2rTRak9OToaRkc6rI6IGoFgo4DZxZYX9v7/7ah1WQ0SkXzpfxvL29kZISAiysrKktszMTLz77rsYMGCAXosjIiIiqimdw87KlSuRlJQEJycn9O3bF3379oWzszNSUlLw0Ucf6bSuRYsWQaFQaL1cXFyk/ry8PAQHB8PKygpmZmYICAhAamqq1joSExPh7++PJk2awNraGnPmzEFRUZGuu0VEREQypfN1p2eeeQa//PILtm7diitXrsDU1BTjx4/HmDFjYGxsrHMBnTp1wuHDh/+voH9cCps5cyb27duHyMhImJubY+rUqRg+fDhOnToFACguLoa/vz9sbW1x+vRpJCcn4/XXX4exsTE++OADnWshIiIi+Xli2NmyZQt69OiBDh06SG1NmzbFpEmT9FOAkRFsbW3LtGdlZWHTpk3Ytm0b+vXrB+DRM346duyIM2fOoEePHjh06BBiY2Nx+PBh2NjYoEuXLli6dCneeecdLFq0CEqlUi81EhERUeP1xLBjZ2cHb29v7NixAz169MCePXsqHT9kyBCdCoiPj4e9vT1MTEyg0WgQGhoKR0dHXLx4EYWFhfDy8pLGuri4wNHRETExMejRowdiYmLg7u4OGxsbaYyPjw+mTJmC69ev4/nnn9epFiIiIpKfJ4Ydb29v7NmzB2PHjsUvv/yCYcOGVThWoVCguLi4yhv39PREREQEOnTogOTkZCxevBi9e/fGtWvXkJKSAqVSCQsLC61lbGxskJKSAgBISUnRCjql/aV9FcnPz0d+fr70Pjs7u8o1ExERUeNSpTk7zz33HE6cOAEAKCkp0dvG/fz8pD937twZnp6ecHJywjfffANTU1O9bedxoaGhWLx4ca2tn4iIiBqOKt+N9fgZltpgYWGBZ599Fjdv3oStrS0KCgqQmZmpNSY1NVWa42Nra1vm7qzS9+XNAypVeut86au8J0ITERGRPFTrKYDR0dGIjo5GWlpamTM9mzdvrnYxOTk5uHXrFsaOHQsPDw8YGxsjOjoaAQEBAIC4uDgkJiZCo9EAADQaDZYtW4a0tDRYW1sDAKKioqBWq+Hq6lrhdlQqFVQqVbXrJCIiosZD57CzePFiLFmyBF27doWdnR0UCkW1Nz579mwMHjwYTk5OuHfvHhYuXAhDQ0OMGTMG5ubmmDBhAmbNmgVLS0uo1WpMmzYNGo0GPXr0APBoPpGrqyvGjh2LFStWICUlBe+99x6Cg4MZZoiIiAhANcLOhg0bEBERgbFjx9Z443/88QfGjBmD9PR0tGzZEr169cKZM2fQsmVLAMDHH38MAwMDBAQEID8/Hz4+Pli3bp20vKGhIfbu3YspU6ZAo9GgadOmCAoKwpIlS2pcGxEREcmDzmGnoKAAL774ol42vn379kr7TUxMEBYWhrCwsArHODk5Yf/+/Xqph4iIiORH56+L+Pe//41t27bVRi1EREREelelMzuzZs2S/lxSUoLPP/8chw8fRufOnct8RcSqVav0WyERERFRDVQp7Fy6dEnrfZcuXQAA165d02qvyWRlIiIiotpQpbBz9OjR2q6DiIiIqFboPGen1M2bN3Hw4EH8/fffAAAhhN6KIiIiItIXncNOeno6+vfvj2effRYDBw5EcnIyAGDChAl4++239V4gERERUU3oHHZmzpwJY2NjJCYmokmTJlL7qFGjcODAAb0WR0RERFRTOj9n59ChQzh48CBatWql1d6+fXvcuXNHb4URERER6YPOYSc3N1frjE6pjIwMfkUD0VPozu0EuHXrWW5fYlIS3Oq4HiKix+kcdnr37o0vv/wSS5cuBfDodvOSkhKsWLECffv21XuBRNSwFQsF3CauLLfv93dfreNqiIjK0jnsrFixAv3798eFCxdQUFCAuXPn4vr168jIyMCpU6dqo0YiIiKiatN5grKbmxt+++039OrVC0OHDkVubi6GDx+OS5cuoW3btrVRIxEREVG16XxmBwDMzc3xP//zP/quhYhqYID/ECSnpVfYz/kzRPS00jnstGvXDq+99hoCAwPRvn372qiJiKohOS29wrkzAOfPENHTS+fLWMHBwdi3bx86dOiAbt264ZNPPkFKSkpt1EZERERUY9V6qOD58+fx66+/YuDAgQgLC4ODgwO8vb3x5Zdf1kaNRERERNVW7e/GevbZZ7F48WL89ttvOHnyJO7fv4/x48frszYiIiKiGqvWBOVS586dw7Zt27Bjxw5kZ2djxIgR+qqLiIiISC90Dju//fYbtm7diq+//hoJCQno168fli9fjuHDh8PMzKw2aiQiIiKqNp3DjouLC7p164bg4GCMHj0aNjY2tVEXERERkV7oHHbi4uJ4yzkRERE1GjpPUGbQISIiosak2ndjERERETUGDDtEREQkaww7REREJGvVDjsFBQWIi4tDUVGRPushIiIi0iudw87Dhw8xYcIENGnSBJ06dUJiYiIAYNq0afjwww/1XiARERFRTegcdkJCQnDlyhUcO3YMJiYmUruXlxd27Nih1+KIiIiIakrn5+zs3r0bO3bsQI8ePaBQKKT2Tp064datW3otjoiIiKimdD6zc//+fVhbW5dpz83N1Qo/RERERA2BzmGna9eu2Ldvn/S+NOB88cUX0Gg0+quMiIiISA90voz1wQcfwM/PD7GxsSgqKsInn3yC2NhYnD59GsePH6+NGomIiIiqTeczO7169cLly5dRVFQEd3d3HDp0CNbW1oiJiYGHh0dt1EhERERUbdV6zk7btm2xceNGnDt3DrGxsfjqq6/g7u5eo0I+/PBDKBQKzJgxQ2rLy8tDcHAwrKysYGZmhoCAAKSmpmotl5iYCH9/fzRp0gTW1taYM2cOn/1DREREkipdxsrOzq7yCtVqtc5FnD9/Hp999hk6d+6s1T5z5kzs27cPkZGRMDc3x9SpUzF8+HCcOnUKAFBcXAx/f3/Y2tri9OnTSE5Oxuuvvw5jY2N88MEHOtdBRERE8lOlsGNhYVHlO62Ki4t1KiAnJweBgYHYuHEj3n//fak9KysLmzZtwrZt29CvXz8AQHh4ODp27IgzZ86gR48eOHToEGJjY3H48GHY2NigS5cuWLp0Kd555x0sWrQISqVSp1qIiIhIfqp0Gevo0aM4cuQIjhw5gs2bN8Pa2hpz587Frl27sGvXLsydOxc2NjbYvHmzzgUEBwfD398fXl5eWu0XL15EYWGhVruLiwscHR0RExMDAIiJiYG7uztsbGykMT4+PsjOzsb169cr3GZ+fj6ys7O1XkRERCRPVTqz06dPH+nPS5YswapVqzBmzBipbciQIXB3d8fnn3+OoKCgKm98+/bt+Pnnn3H+/PkyfSkpKVAqlbCwsNBqt7GxQUpKijTmn0GntL+0ryKhoaFYvHhxleskIiKixkvnCcoxMTHo2rVrmfauXbvi3LlzVV5PUlIS3nrrLWzdulXrayfqQkhICLKysqRXUlJSnW6fiIiI6o7OYcfBwQEbN24s0/7FF1/AwcGhyuu5ePEi0tLS8MILL8DIyAhGRkY4fvw41qxZAyMjI9jY2KCgoACZmZlay6WmpsLW1hYAYGtrW+burNL3pWPKo1KpoFartV5EREQkTzo/VPDjjz9GQEAAfvzxR3h6egIAzp07h/j4eHz77bdVXk///v1x9epVrbbx48fDxcUF77zzDhwcHGBsbIzo6GgEBAQAAOLi4pCYmCg9qVmj0WDZsmVIS0uTvsIiKioKarUarq6uuu4akd4M8B+C5LT0cvvsrK0QtW9PHVdERPT00jnsDBw4EPHx8Vi/fj1u3LgBABg8eDD+85//6HRmp1mzZnBzc9Nqa9q0KaysrKT2CRMmYNasWbC0tIRarca0adOg0WjQo0cPAIC3tzdcXV0xduxYrFixAikpKXjvvfcQHBwMlUql664R6U1yWjrcJq4st+/axtl1XA0R0dNN57ADAK1atcKyZcv0XUsZH3/8MQwMDBAQEID8/Hz4+Phg3bp1Ur+hoSH27t2LKVOmQKPRoGnTpggKCsKSJUtqvTYiIiJqHKoVdmrLsWPHtN6bmJggLCwMYWFhFS7j5OSE/fv313JlRERE1FhV6+siiIiIiBoLhh0iIiKSNYYdIiIikrVqz9m5f/8+4uLiAAAdOnRAy5Yt9VYUERERkb7ofGYnNzcXb7zxBuzt7fHSSy/hpZdegr29PSZMmICHDx/WRo1ERERE1aZz2Jk1axaOHz+OPXv2IDMzE5mZmfj+++9x/PhxvP3227VRIxEREVG16XwZ69tvv8XOnTvx8ssvS20DBw6EqakpRo4cifXr1+uzPiKSsTu3E+DWrWe5fYlJSXArt4eISDc6h52HDx+W+aZxALC2tuZlLCLSSbFQVPik6d/ffbWOqyEiudL5MpZGo8HChQuRl5cntf39999YvHix9J1VRERERA2Fzmd2Vq9eDV9fX7Rq1QrPPfccAODKlSswMTHBwYMH9V4gERERUU3oHHbc3d0RHx+PrVu34tdffwUAjBkzBoGBgTA1NdV7gUREREQ1oVPYKSwshIuLC/bu3YuJEyfWVk1EREREeqPTnB1jY2OtuTpEREREDZ3OE5SDg4OxfPlyFBUV1UY9RERERHql85yd8+fPIzo6GocOHYK7uzuaNm2q1f/dd9/prTgiIiKimtI57FhYWCAgIKA2aiEiIiLSO53DTnh4eG3UQURERFQrdJ6zAwBFRUU4fPgwPvvsMzx48AAAcO/ePeTk5Oi1OCIiIqKa0vnMzp07d+Dr64vExETk5+djwIABaNasGZYvX478/Hxs2LChNuokIiIiqhadz+y89dZb6Nq1K/766y+thwi+8soriI6O1mtxRERERDWl85mdkydP4vTp01AqlVrtrVu3xt27d/VWGBEREZE+6Hxmp6SkBMXFxWXa//jjDzRr1kwvRRERERHpi85hx9vbG6tXr5beKxQK5OTkYOHChRg4cKA+ayMiIiKqMZ0vY3300Ufw8fGBq6sr8vLy8K9//Qvx8fFo0aIFvv7669qokYiIiKjadA47rVq1wpUrV7B9+3b88ssvyMnJwYQJE/it50RERNQg6Rx2AMDIyAivvfaavmshIqp1A/yHIDktvcJ+O2srRO3bU4cVEVFtq1bYuXfvHn766SekpaWhpKREq2/69Ol6KYyIqDYkp6XDbeLKCvuvbZxdh9UQUV3QOexERERg8uTJUCqVsLKygkKhkPoUCgXDDhERETUoOoed+fPnY8GCBQgJCYGBQbW+bYKIiIiozuicVh4+fIjRo0cz6BAREVGjoHNimTBhAiIjI2ujFiIiIiK90/kyVmhoKAYNGoQDBw7A3d0dxsbGWv2rVq3SW3FERERENVWtsHPw4EF06NABAMpMUCYiIiJqSHS+jPXRRx9h8+bNuHHjBo4dO4ajR49KryNHjui0rvXr16Nz585Qq9VQq9XQaDT48ccfpf68vDwEBwfDysoKZmZmCAgIQGpqqtY6EhMT4e/vjyZNmsDa2hpz5sxBUVGRrrtFREREMqVz2FGpVOjZs6deNt6qVSt8+OGHuHjxIi5cuIB+/fph6NChuH79OgBg5syZ+OGHHxAZGYnjx4/j3r17GD58uLR8cXEx/P39UVBQgNOnT2PLli2IiIjAggUL9FIfERERNX46h5233noLa9eu1cvGBw8ejIEDB6J9+/Z49tlnsWzZMpiZmeHMmTPIysrCpk2bsGrVKvTr1w8eHh4IDw/H6dOncebMGQDAoUOHEBsbi6+++gpdunSBn58fli5dirCwMBQUFOilRiIiImrcdJ6zc+7cORw5cgR79+5Fp06dykxQ/u6776pVSHFxMSIjI5GbmwuNRoOLFy+isLAQXl5e0hgXFxc4OjoiJiYGPXr0QExMDNzd3WFjYyON8fHxwZQpU3D9+nU8//zz5W4rPz8f+fn50vvs7Oxq1UxEREQNn85hx8LCQutSUk1dvXoVGo0GeXl5MDMzw65du+Dq6orLly9DqVTCwsJCa7yNjQ1SUlIAACkpKVpBp7S/tK8ioaGhWLx4sd72gYiIiBouncNOeHi4Xgvo0KEDLl++jKysLOzcuRNBQUE4fvy4XrfxuJCQEMyaNUt6n52dDQcHh1rdJhEREdWPan0RqD4plUq0a9cOAODh4YHz58/jk08+wahRo1BQUIDMzEytszupqamwtbUFANja2uLcuXNa6yu9W6t0THlUKhVUKpWe94SIiIgaIp3DjrOzc6XP0/n9999rVFBJSQny8/Ph4eEBY2NjREdHIyAgAAAQFxeHxMREaDQaAIBGo8GyZcuQlpYGa2trAEBUVBTUajVcXV1rVAcRERHJwxPDzs6dO9GjRw+0atUKADBjxgyt/sLCQly6dAkHDhzAnDlzdNp4SEgI/Pz84OjoiAcPHmDbtm04duwYDh48CHNzc0yYMAGzZs2CpaUl1Go1pk2bBo1Ggx49egAAvL294erqirFjx2LFihVISUnBe++9h+DgYJ65ISIiIgBVCDtGRkbo3bs3du/ejeeeew5vvfVWuePCwsJw4cIFnTaelpaG119/HcnJyTA3N0fnzp1x8OBBDBgwAADw8ccfw8DAAAEBAcjPz4ePjw/WrVsnLW9oaIi9e/diypQp0Gg0aNq0KYKCgrBkyRKd6iAiIiL5emLYGTZsGOzt7REUFITLly9XOM7Pzw8hISE6TWDetGlTpf0mJiYICwtDWFhYhWOcnJywf//+Km+TiIiIni5VmrPTvXt3nDhxotIxO3fuhKWlpV6KImoIBvgPQXJaerl9dtZWiNq3p44rIiKi6qjyBGW1Wg0AeP7557UmKAshkJKSgvv372tdYiJq7JLT0uE2cWW5fdc2zq7jaoiIqLp0vhtr2LBhWu8NDAzQsmVLvPzyy3BxcdFXXUR6UdnZGYBnaIiIngY6h52FCxfWRh1EtaKyszMAz9AQET0NdP4iUCIiIqLGpMpndgwMDCp9mCAAKBQKFBUV1bgoapx4yYiIiBqiKoedXbt2VdgXExODNWvWoKSkRC9FUePES0ZERNQQVTnsDB06tExbXFwc5s2bhx9++AGBgYF8mB8RERE1ONWas3Pv3j1MnDgR7u7uKCoqwuXLl7FlyxY4OTnpuz4iIiKiGtEp7GRlZeGdd95Bu3btcP36dURHR+OHH36Am5tbbdVHREREVCNVvoy1YsUKLF++HLa2tvj666/LvaxFRE9253YC3Lr1rLA/MSkJ/OcDEZH+VDnszJs3D6ampmjXrh22bNmCLVu2lDvuu+++01txRHJULBSVTuT+/d1X67AaearszkCGSaKnT5XDzuuvv/7EW8+JiBqCyu4MZJgkevpUOexERETUYhlEREREtYNPUCYiIiJZ0/m7sUj+KpvvUF9PQW6INRERUePAsENlVDbfob6egtwQayIiosaBl7GIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1hh2iIiISNYYdoiIiEjWGHaIiIhI1vh1ETLF75IiIiJ6hGFHpvhdUkRERI8w7BBRo3TndgLcuvUsty8xKQludVwPETVcDDtE1CgVC0WFZy9/f/fVOq6GiBoyTlAmIiIiWWPYISIiIlmr17ATGhqKbt26oVmzZrC2tsawYcMQFxenNSYvLw/BwcGwsrKCmZkZAgICkJqaqjUmMTER/v7+aNKkCaytrTFnzhwUFRXV5a4QERFRA1WvYef48eMIDg7GmTNnEBUVhcLCQnh7eyM3N1caM3PmTPzwww+IjIzE8ePHce/ePQwfPlzqLy4uhr+/PwoKCnD69Gls2bIFERERWLBgQX3sEhERETUw9TpB+cCBA1rvIyIiYG1tjYsXL+Kll15CVlYWNm3ahG3btqFfv34AgPDwcHTs2BFnzpxBjx49cOjQIcTGxuLw4cOwsbFBly5dsHTpUrzzzjtYtGgRlEplfewaERERNRANas5OVlYWAMDS0hIAcPHiRRQWFsLLy0sa4+LiAkdHR8TExAAAYmJi4O7uDhsbG2mMj48PsrOzcf369XK3k5+fj+zsbK0XERERyVODCTslJSWYMWMGevbsCTe3R0/ISElJgVKphIWFhdZYGxsbpKSkSGP+GXRK+0v7yhMaGgpzc3Pp5eDgoOe9ISIiooaiwYSd4OBgXLt2Ddu3b6/1bYWEhCArK0t6JSUl1fo2iYiIqH40iIcKTp06FXv37sWJEyfQqlUrqd3W1hYFBQXIzMzUOruTmpoKW1tbacy5c+e01ld6t1bpmMepVCqoVCo97wURERE1RPUadoQQmDZtGnbt2oVjx47B2dlZq9/DwwPGxsaIjo5GQEAAACAuLg6JiYnQaDQAAI1Gg2XLliEtLQ3W1tYAgKioKKjVari6utbtDhHVMn5FAhGR7uo17AQHB2Pbtm34/vvv0axZM2mOjbm5OUxNTWFubo4JEyZg1qxZsLS0hFqtxrRp06DRaNCjRw8AgLe3N1xdXTF27FisWLECKSkpeO+99xAcHMyzNyQ7/IoEIiLd1WvYWb9+PQDg5Zdf1moPDw/HuHHjAAAff/wxDAwMEBAQgPz8fPj4+GDdunXSWENDQ+zduxdTpkyBRqNB06ZNERQUhCVLltTVbhAREVEDVu+XsZ7ExMQEYWFhCAsLq3CMk5MT9u/fr8/SiIiISCYazN1YRERERLWBYYeIiIhkjWGHiIiIZK1BPGeHiKgxGOA/BMlp6RX221lbIWrfnjqsiIiqgmGHiKiKktPSK7z1HwCubZxdh9UQUVXxMhYRERHJGsMOERERyRrDDhEREcka5+wQVUNl31EF8HuqiIgaEoYdomqo7DuqAH5PFRFRQ8LLWERERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQkaww7REREJGsMO0RERCRrDDtEREQka3yoYAM2wH8IktPSy+2zs7ZC1L49dVwRERFR48Ow04Alp6VX+JTeaxtn13E1REREjRMvYxEREZGs8czOU4hfYvl/KjsWT9NxICKSM4adp5DcvsSyJoGlsmPR2I4DERGVj2GHGj0GFiIiqgzn7BAREZGs8cwONQiV3WYPcP4MERFVH8MONQiV3WYP8HIUERFVHy9jERERkawx7BAREZGsMewQERGRrHHODumED+EjIqLGhmGHdMJn2hARUWNTr5exTpw4gcGDB8Pe3h4KhQK7d+/W6hdCYMGCBbCzs4OpqSm8vLwQHx+vNSYjIwOBgYFQq9WwsLDAhAkTkJOTU4d7UT9Kz7BU9EpMSqrvEomIiBqEej2zk5ubi+eeew5vvPEGhg8fXqZ/xYoVWLNmDbZs2QJnZ2fMnz8fPj4+iI2NhYmJCQAgMDAQycnJiIqKQmFhIcaPH49JkyZh27Ztdb07dUpuX/lARERUW+o17Pj5+cHPz6/cPiEEVq9ejffeew9Dhw4FAHz55ZewsbHB7t27MXr0aNy4cQMHDhzA+fPn0bVrVwDA2rVrMXDgQKxcuRL29vZ1ti9ERETUMDXYOTsJCQlISUmBl5eX1GZubg5PT0/ExMRg9OjRiImJgYWFhRR0AMDLywsGBgY4e/YsXnnllfoonSrAyc1ERFQfGmzYSUlJAQDY2NhotdvY2Eh9KSkpsLa21uo3MjKCpaWlNKY8+fn5yM/Pl95nZ2frq2yqBCc3ExFRfXgqn7MTGhoKc3Nz6eXg4FDfJREREVEtabBndmxtbQEAqampsLOzk9pTU1PRpUsXaUxaWprWckVFRcjIyJCWL09ISAhmzZolvc/OzmbgISIAvNxKJEcNNuw4OzvD1tYW0dHRUrjJzs7G2bNnMWXKFACARqNBZmYmLl68CA8PDwDAkSNHUFJSAk9PzwrXrVKpoFKpan0fiKjx4eVWIvmp17CTk5ODmzdvSu8TEhJw+fJlWFpawtHRETNmzMD777+P9u3bS7ee29vbY9iwYQCAjh07wtfXFxMnTsSGDRtQWFiIqVOnYvTo0bwTi4galAH+Q5Ccll5un521FaL27anjioieHvUadi5cuIC+fftK70svLQUFBSEiIgJz585Fbm4uJk2ahMzMTPTq1QsHDhyQnrEDAFu3bsXUqVPRv39/GBgYICAgAGvWrKnzfamuyv4C5ClzIvlITkuv8IzRtY2z67gaoqdLvYadl19+GUKICvsVCgWWLFmCJUuWVDjG0tKyUT9AsLK/AHnKnIiIqOYa7JwdIiJ6hJfAiGqGYYeIqIHjJTCimnkqn7NDRERETw+GHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNYYdIiIikjWGHSIiIpI1hh0iIiKSNaP6LoCISC7u3E6AW7ee5fYlJiXBrY7rIaJHGHaIiPSkWCjgNnFluX2/v/tqHVdDRKV4GYuIiIhkjWGHiIiIZI2XsYiI6lllc32A6s/3GeA/BMlp6RX221lbIWrfnmqsmahxYdghIqpnlc31Aao/3yc5Lb3S9V7bOLta6yVqbBh2atmT/mXFOzSIqCbq6w6wyv5u4xkjamgYdmrZk/5lxTs0iKgm6usOsMr+buMZI2poOEGZiIiIZI1hh4iIiGSNl7GIiKgMzjckOWHYISKiMjjfkOSEYYeIiOoMn/1D9UE2YScsLAz//e9/kZKSgueeew5r165F9+7d67ssIiL6h5o8+4dBiapLFmFnx44dmDVrFjZs2ABPT0+sXr0aPj4+iIuLg7W1dX2XR0TUINXWM3pqa718SCJVlyzCzqpVqzBx4kSMHz8eALBhwwbs27cPmzdvxrx58+q5OiKihqm2ntFTk/XWVlDiQxCfbo0+7BQUFODixYsICQmR2gwMDODl5YWYmJh6rIyIiHRVm0Fp4JId5fbt+5+ASr+bLOXeXdjaP6NzH1B7QYrhTTeNPuz8+eefKC4uho2NjVa7jY0Nfv3113KXyc/PR35+vvQ+KysLAJCdna33+oqLi1D4d26F/aKkpML+6vbV17JPU01P076ypsZb09O0rwBQVCzQ4bXF5fbdWjy2wmUrW6502crWW9mysVv+p1Z+t/yRnArXoGXV2ubQV0ch5c+McvtsW1ji+53lh8Inqa31VqZ0P4UQlQ8Ujdzdu3cFAHH69Gmt9jlz5oju3buXu8zChQsFAL744osvvvjiSwavpKSkSrNCoz+z06JFCxgaGiI1NVWrPTU1Fba2tuUuExISglmzZknvS0pKkJGRASsrKygUCr3Vlp2dDQcHByQlJUGtVuttvU8bHkf94HHUHx5L/eBx1I+n+TgKIfDgwQPY29tXOq7Rhx2lUgkPDw9ER0dj2LBhAB6Fl+joaEydOrXcZVQqFVQqlVabhYVFrdWoVqufug9gbeBx1A8eR/3hsdQPHkf9eFqPo7m5+RPHNPqwAwCzZs1CUFAQunbtiu7du2P16tXIzc2V7s4iIiKip5csws6oUaNw//59LFiwACkpKejSpQsOHDhQZtIyERERPX1kEXYAYOrUqRVetqovKpUKCxcuLHPJjHTD46gfPI76w2OpHzyO+sHj+GQKIZ50vxYRERFR42VQ3wUQERER1SaGHSIiIpI1hh0iIiKSNYadJ1i0aBEUCoXWy8XFRerPy8tDcHAwrKysYGZmhoCAgDIPOExMTIS/vz+aNGkCa2trzJkzB0VFRVpjjh07hhdeeAEqlQrt2rVDREREXexerTlx4gQGDx4Me3t7KBQK7N69W6tfCIEFCxbAzs4Opqam8PLyQnx8vNaYjIwMBAYGQq1Ww8LCAhMmTEBOTo7WmF9++QW9e/eGiYkJHBwcsGLFijK1REZGwsXFBSYmJnB3d8f+/fv1vr+15UnHcdy4cWU+n76+vlpjeByB0NBQdOvWDc2aNYO1tTWGDRuGuLg4rTF1+bMcFhaG1q1bw8TEBJ6enjh37pze97k2VOU4vvzyy2U+k//5z3+0xjztx3H9+vXo3Lmz9FwcjUaDH3/8UernZ7EW6OU7G2Rs4cKFolOnTiI5OVl63b9/X+r/z3/+IxwcHER0dLS4cOGC6NGjh3jxxRel/qKiIuHm5ia8vLzEpUuXxP79+0WLFi1ESEiINOb3338XTZo0EbNmzRKxsbFi7dq1wtDQUBw4cKBO91Wf9u/fL/7nf/5HfPfddwKA2LVrl1b/hx9+KMzNzcXu3bvFlStXxJAhQ4Szs7P4+++/pTG+vr7iueeeE2fOnBEnT54U7dq1E2PGjJH6s7KyhI2NjQgMDBTXrl0TX3/9tTA1NRWfffaZNObUqVPC0NBQrFixQsTGxor33ntPGBsbi6tXr9b6MdCHJx3HoKAg4evrq/X5zMjI0BrD4yiEj4+PCA8PF9euXROXL18WAwcOFI6OjiInJ0caU1c/y9u3bxdKpVJs3rxZXL9+XUycOFFYWFiI1NTUujkYNVCV49inTx8xceJErc9kVlaW1M/jKMSePXvEvn37xG+//Sbi4uLEu+++K4yNjcW1a9eEEPws1gaGnSdYuHCheO6558rty8zMFMbGxiIyMlJqu3HjhgAgYmJihBCPflkZGBiIlJQUacz69euFWq0W+fn5Qggh5s6dKzp16qS17lGjRgkfHx897039ePyXdElJibC1tRX//e9/pbbMzEyhUqnE119/LYQQIjY2VgAQ58+fl8b8+OOPQqFQiLt37wohhFi3bp1o3ry5dByFEOKdd94RHTp0kN6PHDlS+Pv7a9Xj6ekpJk+erNd9rAsVhZ2hQ4dWuAyPY/nS0tIEAHH8+HEhRN3+LHfv3l0EBwdL74uLi4W9vb0IDQ3V/47WssePoxCPws5bb71V4TI8juVr3ry5+OKLL/hZrCW8jFUF8fHxsLe3R5s2bRAYGIjExEQAwMWLF1FYWAgvLy9prIuLCxwdHRETEwMAiImJgbu7u9YDDn18fJCdnY3r169LY/65jtIxpeuQm4SEBKSkpGjts7m5OTw9PbWOm4WFBbp27SqN8fLygoGBAc6ePSuNeemll6BUKqUxPj4+iIuLw19//SWNkfuxPXbsGKytrdGhQwdMmTIF6enpUh+PY/mysrIAAJaWlgDq7me5oKAAFy9e1BpjYGAALy+vRnksHz+OpbZu3YoWLVrAzc0NISEhePjwodTH46ituLgY27dvR25uLjQaDT+LtUQ2DxWsLZ6enoiIiECHDh2QnJyMxYsXo3fv3rh27RpSUlKgVCrLfK+WjY0NUlJSAAApKSllnuRc+v5JY7Kzs/H333/D1NS0lvaufpTud3n7/M9jYm1trdVvZGQES0tLrTHOzs5l1lHa17x58wqPbek6GjtfX18MHz4czs7OuHXrFt599134+fkhJiYGhoaGPI7lKCkpwYwZM9CzZ0+4ubkBQJ39LP/1118oLi4ud8yvv/6qt32sC+UdRwD417/+BScnJ9jb2+OXX37BO++8g7i4OHz33XcAeBxLXb16FRqNBnl5eTAzM8OuXbvg6uqKy5cv87NYCxh2nsDPz0/6c+fOneHp6QknJyd88803sgsh1PiMHj1a+rO7uzs6d+6Mtm3b4tixY+jfv389VtZwBQcH49q1a/jpp5/qu5RGraLjOGnSJOnP7u7usLOzQ//+/XHr1i20bdu2rstssDp06IDLly8jKysLO3fuRFBQEI4fP17fZckWL2PpyMLCAs8++yxu3rwJW1tbFBQUIDMzU2tMamoqbG1tAQC2trZlZtGXvn/SGLVaLctAVbrf5e3zP49JWlqaVn9RUREyMjL0cmxL++WmTZs2aNGiBW7evAmAx/FxU6dOxd69e3H06FG0atVKaq+rn+UWLVrA0NCw0R/Lio5jeTw9PQFA6zPJ4wgolUq0a9cOHh4eCA0NxXPPPYdPPvmEn8VawrCjo5ycHNy6dQt2dnbw8PCAsbExoqOjpf64uDgkJiZCo9EAADQaDa5evar1CycqKgpqtRqurq7SmH+uo3RM6TrkxtnZGba2tlr7nJ2djbNnz2odt8zMTFy8eFEac+TIEZSUlEh/eWo0Gpw4cQKFhYXSmKioKHTo0AHNmzeXxjxNx/aPP/5Aeno67OzsAPA4lhJCYOrUqdi1axeOHDlS5rJdXf0sK5VKeHh4aI0pKSlBdHR0oziWTzqO5bl8+TIAaH0mn/bjWJ6SkhLk5+fzs1hb6nuGdEP39ttvi2PHjomEhARx6tQp4eXlJVq0aCHS0tKEEI9uEXR0dBRHjhwRFy5cEBqNRmg0Gmn50lsEvb29xeXLl8WBAwdEy5Yty71FcM6cOeLGjRsiLCys0d96/uDBA3Hp0iVx6dIlAUCsWrVKXLp0Sdy5c0cI8ejWcwsLC/H999+LX375RQwdOrTcW8+ff/55cfbsWfHTTz+J9u3ba90ynZmZKWxsbMTYsWPFtWvXxPbt20WTJk3K3DJtZGQkVq5cKW7cuCEWLlzYqG6Zruw4PnjwQMyePVvExMSIhIQEcfjwYfHCCy+I9u3bi7y8PGkdPI5CTJkyRZibm4tjx45p3RL98OFDaUxd/Sxv375dqFQqERERIWJjY8WkSZOEhYWF1p01DdWTjuPNmzfFkiVLxIULF0RCQoL4/vvvRZs2bcRLL70krYPHUYh58+aJ48ePi4SEBPHLL7+IefPmCYVCIQ4dOiSE4GexNjDsPMGoUaOEnZ2dUCqV4plnnhGjRo0SN2/elPr//vtv8eabb4rmzZuLJk2aiFdeeUUkJydrreP27dvCz89PmJqaihYtWoi3335bFBYWao05evSo6NKli1AqlaJNmzYiPDy8Lnav1hw9elQAKPMKCgoSQjy6/Xz+/PnCxsZGqFQq0b9/fxEXF6e1jvT0dDFmzBhhZmYm1Gq1GD9+vHjw4IHWmCtXrohevXoJlUolnnnmGfHhhx+WqeWbb74Rzz77rFAqlaJTp05i3759tbbf+lbZcXz48KHw9vYWLVu2FMbGxsLJyUlMnDixzF9UPI6i3GMIQOvnrC5/lteuXSscHR2FUqkU3bt3F2fOnKmN3da7Jx3HxMRE8dJLLwlLS0uhUqlEu3btxJw5c7SesyMEj+Mbb7whnJychFKpFC1bthT9+/eXgo4Q/CzWBn7rOREREcka5+wQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BAREZGsMewQERGRrDHsEBERkawx7BARAVAoFNi9e3d9l0FEtYBhh4ganHHjxkGhUEChUEjfDr1kyRIUFRXV2jaTk5Ph5+dXa+snovpjVN8FEBGVx9fXF+Hh4cjPz8f+/fsRHBwMY2NjhISEaI0rKCiAUqms8fZsbW1rvA4iaph4ZoeIGiSVSgVbW1s4OTlhypQp8PLywp49ezBu3DgMGzYMy5Ytg729PTp06AAASEpKwsiRI2FhYQFLS0sMHToUt2/f1lrn5s2b0alTJ6hUKtjZ2WHq1KlS3+OXsa5evYp+/frB1NQUVlZWmDRpEnJycupi14lIzxh2iKhRMDU1RUFBAQAgOjoacXFxiIqKwt69e1FYWAgfHx80a9YMJ0+exKlTp2BmZgZfX19pmfXr1yM4OBiTJk3C1atXsWfPHrRr167cbeXm5sLHxwfNmzfH+fPnERkZicOHD2uFIyJqPHgZi4gaNCEEoqOjcfDgQUybNg33799H06ZN8cUXX0iXr7766iuUlJTgiy++gEKhAACEh4fDwsICx44dg7e3N95//328/fbbeOutt6R1d+vWrdxtbtu2DXl5efjyyy/RtGlTAMCnn36KwYMHY/ny5bCxsanlvSYifeKZHSJqkPbu3QszMzOYmJjAz88Po0aNwqJFiwAA7u7uWvN0rly5gps3b6JZs2YwMzODmZkZLC0tkZeXh1u3biEtLQ337t1D//79q7TtGzdu4LnnnpOCDgD07NkTJSUliIuL0+t+ElHt45kdImqQ+vbti/Xr10OpVMLe3h5GRv/319U/QwgA5OTkwMPDA1u3bi2znpYtW8LAgP+uI3qaMewQUYPUtGnTCufUPO6FF17Ajh07YG1tDbVaXe6Y1q1bIzo6Gn379n3i+jp27IiIiAjk5uZKwerUqVMwMDCQJkQTUePBf+4QUaMXGBiIFi1aYOjQoTh58iQSEhJw7NgxTJ8+HX/88QcAYNGiRfjoo4+wZs0axMfH4+eff8batWsrXJ+JiQmCgoJw7do1HD16FNOmTcPYsWM5X4eoEWLYIaJGr0mTJjhx4gQcHR0xfPhwdOzYERMmTEBeXp50picoKAirV6/GunXr0KlTJwwaNAjx8fEVru/gwYPIyMhAt27d8Oqrr6J///749NNP63K3iEhPFEIIUd9FEBEREdUWntkhIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZY9ghIiIiWWPYISIiIllj2CEiIiJZ+38HwxX1rAG98wAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Estadisticas descriptivas de variable Price\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Price\n", + "count 10495.000000\n", + "mean 14538.403716\n", + "std 3922.420961\n", + "min 5002.000000\n", + "25% 11999.000000\n", + "50% 15000.000000\n", + "75% 16999.000000\n", + "max 32444.000000" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Price
count10495.000000
mean14538.403716
std3922.420961
min5002.000000
25%11999.000000
50%15000.000000
75%16999.000000
max32444.000000
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAGdCAYAAADwjmIIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtQUlEQVR4nO3de3QUZZ7/8U8S6CYZ6ABibhIgkJFwiSgooVUcUSRgxjMRdRUVWQcvaPAMBAPicRXX2YmLMA6roM7OKO56BQ/iCAiTRW4OiWhj0CAwiMkBJZ2oQDdgyPX5/eEvNfRwMZFAkyfv1zl1SNfz7epv5Y/Uh+p6qiKMMUYAAACWiQx3AwAAAKcDIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYKV24W4gnBoaGrR371516tRJERER4W4HAAA0gTFGBw8eVFJSkiIjT3y+pk2HnL179yo5OTncbQAAgJ9gz5496t69+wnH23TI6dSpk6QffkkejyfM3QAAgKYIBoNKTk52juMn0qZDTuNXVB6Ph5ADAEAr82OXmnDhMQAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpTZ9M0AAdqqvr9eGDRtUXl6uxMREDR8+XFFRUeFuC8AZxpkcAFZZsmSJUlNTNWLECN16660aMWKEUlNTtWTJknC3BuAMI+QAsMaSJUt04403Kj09XYWFhTp48KAKCwuVnp6uG2+8kaADtDERxhgT7ibCJRgMKjY2VoFAgGdXAa1cfX29UlNTlZ6erqVLlyoy8h//h2toaFB2drZKSkq0c+dOvroCWrmmHr85kwPAChs2bFBZWZkefvjhkIAjSZGRkZo5c6ZKS0u1YcOGMHUI4Ewj5ACwQnl5uSRp4MCBxx1vXN9YB8B+hBwAVkhMTJQklZSUHHe8cX1jHQD7EXIAWGH48OHq1auXfve736mhoSFkrKGhQfn5+UpJSdHw4cPD1CGAM42QA8AKUVFRmjt3rpYtW6bs7OyQ2VXZ2dlatmyZ5syZw0XHQBvCzQABWGPs2LF66623NG3aNF166aXO+pSUFL311lsaO3ZsGLsDcKYxhZwp5IB1uOMxYLemHr85kwPAOlFRUbryyivD3QaAMOOaHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEo91AGAdnl0FQOJMDgDLLFmyRKmpqRoxYoRuvfVWjRgxQqmpqVqyZEm4WwNwhhFyAFhjyZIluvHGG5Wenq7CwkIdPHhQhYWFSk9P14033kjQAdqYCGOMCXcT4dLUR7UDOPvV19crNTVV6enpWrp0qSIj//F/uIaGBmVnZ6ukpEQ7d+7kqyuglWvq8ZszOQCssGHDBpWVlenhhx8OCTiSFBkZqZkzZ6q0tFQbNmwIU4cAzjRCDgArlJeXS5IGDhx43PHG9Y11AOxHyAFghcTERElSSUnJcccb1zfWAbAfIQeAFYYPH65evXrpd7/7nRoaGkLGGhoalJ+fr5SUFA0fPjxMHQI40wg5AKwQFRWluXPnatmyZcrOzg6ZXZWdna1ly5Zpzpw5XHQMtCHNCjnPPfecLrjgAnk8Hnk8Hnm9Xr333nvO+JEjR5STk6NzzjlHHTt21A033KCKioqQbezevVtZWVmKiYlRXFyc8vLyVFdXF1Kzdu1aDR48WG63W6mpqVq4cOExvcyfP1+9evVShw4dlJGRoU2bNjVnVwBYaOzYsXrrrbe0ZcsWXXrppfJ4PLr00kv16aef6q233tLYsWPD3SKAM6hZIad79+568skn5fP59PHHH+uqq67Sr371K23dulWSNHXqVL377rtavHix1q1bp71794b8Uamvr1dWVpZqamq0ceNGvfzyy1q4cKEeffRRp6a0tFRZWVkaMWKEiouLNWXKFN11111atWqVU/Pmm28qNzdXjz32mDZv3qxBgwYpMzNTlZWVp/r7ANDKFRUVae/evSHrvv76axUVFYWpIwBhY05Rly5dzJ/+9Cdz4MAB0759e7N48WJnbNu2bUaSKSwsNMYYs2LFChMZGWn8fr9T89xzzxmPx2Oqq6uNMcZMnz7dDBgwIOQzbr75ZpOZmem8Hjp0qMnJyXFe19fXm6SkJJOfn9+s3gOBgJFkAoFAs94H4OyUl5dnJJn4+Hjz4IMPmgULFpgHH3zQxMfHG0kmLy8v3C0CaAFNPX7/5Gty6uvr9cYbb+jw4cPyer3y+Xyqra3VyJEjnZq0tDT16NFDhYWFkuTceTQ+Pt6pyczMVDAYdM4GFRYWhmyjsaZxGzU1NfL5fCE1kZGRGjlypFNzItXV1QoGgyELADvU1NTo6aefVmxsrNxut+bMmaP7779fc+bMkdvtVmxsrJ5++mnV1NSEu1UAZ0izQ85nn32mjh07yu12a9KkSXr77bfVv39/+f1+uVwude7cOaQ+Pj5efr9fkuT3+0MCTuN449jJaoLBoKqqqvTtt9+qvr7+uDWN2ziR/Px8xcbGOktycnJzdx/AWWrBggWqq6tTIBDQoEGDQi48HjRokAKBgOrq6rRgwYJwtwrgDGl2yOnbt6+Ki4v14Ycf6r777tOECRP0+eefn47eWtzMmTMVCAScZc+ePeFuCUAL2blzpyTpmmuu0dKlSzVs2DB17NhRw4YN09KlS3XNNdeE1AGwX7vmvsHlcik1NVWSNGTIEH300UeaN2+ebr75ZtXU1OjAgQMhZ3MqKiqUkJAgSUpISDhmFlTj7Kuja/55RlZFRYU8Ho+io6MVFRWlqKio49Y0buNE3G633G53c3cZQCsQEREh6Ye/S8d7rMNFF12kgoICpw6A/U75PjkNDQ2qrq7WkCFD1L59e61evdoZ27Fjh3bv3i2v1ytJ8nq9+uyzz0JmQRUUFMjj8ah///5OzdHbaKxp3IbL5dKQIUNCahoaGrR69WqnBkDbk5GRIUl68cUXj7ktRV1dnXMrisY6AG1Ac65mfuihh8y6detMaWmp+fTTT81DDz1kIiIizF//+ldjjDGTJk0yPXr0MO+//775+OOPjdfrNV6v13l/XV2dGThwoBk1apQpLi42K1euNOeee66ZOXOmU/Pll1+amJgYk5eXZ7Zt22bmz59voqKizMqVK52aN954w7jdbrNw4ULz+eefm3vuucd07tw5ZNZWUzC7CrDHmjVrjCRndtULL7xgvv76a/PCCy84s6skmTVr1oS7VQCnqKnH72aFnF//+temZ8+exuVymXPPPddcffXVTsAxxpiqqipz//33my5dupiYmBhz/fXXm/Ly8pBtlJWVmTFjxpjo6GjTrVs3M23aNFNbWxtSs2bNGnPhhRcal8tlevfubV566aVjennmmWdMjx49jMvlMkOHDjVFRUXN2RVjDCEHsEldXZ3p1auX6dOnj2nXrp0TaiSZdu3amT59+piUlBRTV1cX7lYBnKKmHr8jjDEmTCeRwi4YDCo2NlaBQEAejyfc7QA4RUuWLNGNN96oa6+9Vn369NGRI0fUoUMH7dq1SytWrOCux4Almnr8bvaFxwBwtmp8rMO0adO0fPlyZ31KSgoBB2iDOJPDmRzAOvX19dqwYYPKy8uVmJio4cOH82BOwCKcyQHQZkVFRenKK68MdxsAwuyUp5ADAACcjQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKPNYBgHVqamq0YMEC7dq1S3369NH9998vl8sV7rYAnGGEHABWmT59un7/+9+rvr7eWffggw8qNzdXs2fPDmNnAM40Qg4Aa0yfPl1PPfXUMevr6+ud9QQdoO2IMMaYcDcRLk19VDuAs19NTY06dOggY4zi4uJ0xx13qHfv3vryyy/1P//zP6qsrFRERISOHDnCV1dAK9fU4zdncgBYYd68eTLGKDo6WtHR0ZozZ44z1rNnT0VHR6uqqkrz5s1TXl5eGDsFcKYwuwqAFd555x1JUlVVldLT0zV//ny9+OKLmj9/vtLT01VVVRVSB8B+nMkBYJXzzjtPW7Zs0bJly5x1ycnJOu+88/T111+HsTMAZxpncgBYYeDAgZKkr7/+Wnv27AkZ27NnjxNwGusA2I+QA8AKXq835PWwYcNUUFCgYcOGnbQOgL34ugqAFcrLy0NeFxUV6ZprrvnROgD24kwOACssXrxYkuR2u4873jhtvLEOgP04kwPACvv375ckVVdXKy4uTr/4xS/UsWNHHTp0SOvWrVNlZWVIHQD7EXIAWGHgwIEqLS1V+/bt1b59+5AzNt27d1e7du1UV1fHhcdAG8LXVQCscO+990qSamtrj5kq/tVXX6muri6kDoD9CDkArBAMBlu0DkDrR8gBYIXY2NgWrQPQ+hFyAFjh+eefl/TD7Kr9+/crOztb6enpys7O1v79+51ZV411AOzHhccArFBSUiLph9lV48eP1+jRo3XdddepqqpK48ePV3V1dUgdAPsRcgBYoWvXriotLVVaWppWrlwZ8uyqdu3aqW/fvtqxY4e6du0axi4BnEmEHABWePzxx/XLX/5S27dvV2ZmptLS0lRVVaXo6Ght375dq1atcuoAtA0RxhgT7ibCJRgMKjY2VoFAQB6PJ9ztADgFNTU1J7zb8dGqq6udux8DaJ2aevzmwmMAVti4cWOL1gFo/Qg5AKzQeAPAuLi44443rv/nGwUCsBfX5ACwwjfffCNJqqysVHx8vMaPH6/evXvryy+/1P/+7/+qoqIipA6A/Qg5AKzQpUsXSVL79u1VXFysa665Rnv37lVSUpKKi4vVo0cP1dbWOnUA7MfXVQCs8NFHH0n64dlViYmJKikp0b59+1RSUqLExETV1taG1AGwHyEHgBWaOlG0DU8oBdocQg4AKyQkJDg/R0aG/mk7+vXRdQDsRsgBYIXXX3/d+bmhoSFk7OjXR9cBsBshB4AV9uzZ06J1AFo/Qg4AKzTlbsfNqQPQ+hFyAFihf//+LVoHoPUj5ACwQl1dXYvWAWj9CDkArHDkyJEWrQPQ+hFyAFiBa3IA/DNCDgArxMTEOD+f7D45R9cBsBshB4AVjr7J38nuk8PNAIG2o1khJz8/X5dccok6deqkuLg4ZWdna8eOHSE1V155pSIiIkKWSZMmhdTs3r1bWVlZiomJUVxcnPLy8o65GHDt2rUaPHiw3G63UlNTtXDhwmP6mT9/vnr16qUOHTooIyNDmzZtas7uALBIr169WrQOQOvXrJCzbt065eTkqKioSAUFBaqtrdWoUaN0+PDhkLq7775b5eXlzjJ79mxnrL6+XllZWaqpqdHGjRv18ssva+HChXr00UedmtLSUmVlZWnEiBEqLi7WlClTdNddd2nVqlVOzZtvvqnc3Fw99thj2rx5swYNGqTMzExVVlb+1N8FgFbsqquuatE6AK1fhDmFp9V98803iouL07p163TFFVdI+uFMzoUXXqg//OEPx33Pe++9p1/+8pfau3ev4uPjJUnPP/+8ZsyYoW+++UYul0szZszQ8uXLVVJS4rzvlltu0YEDB7Ry5UpJUkZGhi655BI9++yzkn44HZ2cnKwHHnhADz30UJP6DwaDio2NVSAQkMfj+am/BgBngZqamiZdVFxdXS2Xy3UGOgJwujT1+H1K1+QEAgFJUteuXUPWv/rqq+rWrZsGDhyomTNn6vvvv3fGCgsLlZ6e7gQcScrMzFQwGNTWrVudmpEjR4ZsMzMzU4WFhZJ++GPm8/lCaiIjIzVy5EinBkDb8s4777RoHYDWr91PfWNDQ4OmTJmiyy67TAMHDnTW33rrrerZs6eSkpL06aefasaMGdqxY4eWLFkiSfL7/SEBR5Lz2u/3n7QmGAyqqqpK+/fvV319/XFrtm/ffsKeq6urVV1d7bwOBoM/Yc8BnI3++dq/k9XddNNNp7kbAGeDnxxycnJyVFJSog8++CBk/T333OP8nJ6ersTERF199dXatWuX+vTp89M7bQH5+fl6/PHHw9oDgNNj3759zs/R0dGqqqo67uuj6wDY7SeFnMmTJ2vZsmVav369unfvftLajIwMSdIXX3yhPn36KCEh4ZhZUBUVFZL+MbUzISHBWXd0jcfjUXR0tKKiohQVFXXcmpNND505c6Zyc3Od18FgUMnJyT+ytwBag4iICDVeYnjVVVfp2muvdcLNihUrtHz5cqcOQNvQrJBjjNEDDzygt99+W2vXrlVKSsqPvqe4uFiSlJiYKEnyer36j//4D1VWViouLk6SVFBQII/H4zw4z+v1asWKFSHbKSgokNfrlSS5XC4NGTJEq1evVnZ2tqQfvj5bvXq1Jk+efMJe3G43dzsFLBUXF+f8x+e9995zQo0UejPAxr87AOzXrAuPc3Jy9Morr+i1115Tp06d5Pf75ff7ndPAu3bt0hNPPCGfz6eysjL95S9/0R133KErrrhCF1xwgSRp1KhR6t+/v8aPH68tW7Zo1apVeuSRR5STk+MEkEmTJunLL7/U9OnTtX37di1YsECLFi3S1KlTnV5yc3P13//933r55Ze1bds23XfffTp8+LDuvPPOlvrdAGhFfvGLXzg/n+xmgEfXAbCcaQZJx11eeuklY4wxu3fvNldccYXp2rWrcbvdJjU11eTl5ZlAIBCynbKyMjNmzBgTHR1tunXrZqZNm2Zqa2tDatasWWMuvPBC43K5TO/evZ3PONozzzxjevToYVwulxk6dKgpKipqzu6YQCBgJB3TH4DW56GHHjrh36ijl4ceeijcrQI4RU09fp/SfXJaO+6TA5xdvv/++5POkDyZV155RU8//fSP1k2dOlW33357s7eflpbGc6+As0RTj9+EHEIOcNbYvHmzhgwZEu42jsvn82nw4MHhbgOAmn78/slTyAGgpaWlpcnn8/2k93788ce69957Jf0wyeDoe2Id/fqFF17QxRdf/JN6A9C6cCaHMzmAFerr65Wamqpu3brp22+/VVlZmTOWkpKic845R99995127typqKio8DUK4JSdkcc6AMDZIioqSnPnzpXP59PAgQM1Y8YMSdKMGTM0YMAA+Xw+zZkzh4ADtCGcyeFMDmCVJUuWaNq0acecyZkzZ47Gjh0bvsYAtBjO5ABok8aOHasvvvhCL7zwgqQfrsHZuXMnAQdogwg5AKwTFRXlXFx88cUX8xUV0EYRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALBSs0JOfn6+LrnkEnXq1ElxcXHKzs7Wjh07QmqOHDminJwcnXPOOerYsaNuuOEGVVRUhNTs3r1bWVlZiomJUVxcnPLy8lRXVxdSs3btWg0ePFhut1upqalauHDhMf3Mnz9fvXr1UocOHZSRkaFNmzY1Z3cAAIDFmhVy1q1bp5ycHBUVFamgoEC1tbUaNWqUDh8+7NRMnTpV7777rhYvXqx169Zp7969Gjt2rDNeX1+vrKws1dTUaOPGjXr55Ze1cOFCPfroo05NaWmpsrKyNGLECBUXF2vKlCm66667tGrVKqfmzTffVG5urh577DFt3rxZgwYNUmZmpiorK0/l9wEAAGxhTkFlZaWRZNatW2eMMebAgQOmffv2ZvHixU7Ntm3bjCRTWFhojDFmxYoVJjIy0vj9fqfmueeeMx6Px1RXVxtjjJk+fboZMGBAyGfdfPPNJjMz03k9dOhQk5OT47yur683SUlJJj8/v8n9BwIBI8kEAoFm7DWA1sDn8xlJxufzhbsVAC2sqcfvU7omJxAISJK6du0qSfL5fKqtrdXIkSOdmrS0NPXo0UOFhYWSpMLCQqWnpys+Pt6pyczMVDAY1NatW52ao7fRWNO4jZqaGvl8vpCayMhIjRw50qk5nurqagWDwZAFAADY6SeHnIaGBk2ZMkWXXXaZBg4cKEny+/1yuVzq3LlzSG18fLz8fr9Tc3TAaRxvHDtZTTAYVFVVlb799lvV19cft6ZxG8eTn5+v2NhYZ0lOTm7+jgMAgFbhJ4ecnJwclZSU6I033mjJfk6rmTNnKhAIOMuePXvC3RIAADhN2v2UN02ePFnLli3T+vXr1b17d2d9QkKCampqdODAgZCzORUVFUpISHBq/nkWVOPsq6Nr/nlGVkVFhTwej6KjoxUVFaWoqKjj1jRu43jcbrfcbnfzdxgAALQ6zTqTY4zR5MmT9fbbb+v9999XSkpKyPiQIUPUvn17rV692lm3Y8cO7d69W16vV5Lk9Xr12WefhcyCKigokMfjUf/+/Z2ao7fRWNO4DZfLpSFDhoTUNDQ0aPXq1U4NAABo25p1JicnJ0evvfaa3nnnHXXq1Mm5/iU2NlbR0dGKjY3VxIkTlZubq65du8rj8eiBBx6Q1+vVsGHDJEmjRo1S//79NX78eM2ePVt+v1+PPPKIcnJynLMskyZN0rPPPqvp06fr17/+td5//30tWrRIy5cvd3rJzc3VhAkTdPHFF2vo0KH6wx/+oMOHD+vOO+9sqd8NAABozZozZUvScZeXXnrJqamqqjL333+/6dKli4mJiTHXX3+9KS8vD9lOWVmZGTNmjImOjjbdunUz06ZNM7W1tSE1a9asMRdeeKFxuVymd+/eIZ/R6JlnnjE9evQwLpfLDB061BQVFTVnd5hCDliMKeSAvZp6/I4wxpiwJawwCwaDio2NVSAQkMfjCXc7AFrQ5s2bNWTIEPl8Pg0ePDjc7QBoQU09fvPsKgAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAVmoX7gYAtH47d+7UwYMHw91GiG3btoX8e7bo1KmTfv7zn4e7DaBNIOQAOCU7d+7U+eefH+42Tuj2228PdwvH+Pvf/07QAc4AQg6AU9J4BueVV15Rv379wtzNP1RVVamsrEy9evVSdHR0uNuR9MNZpdtvv/2sO+sF2IqQA6BF9OvXT4MHDw53GyEuu+yycLcAIIy48BgAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYqdkhZ/369bruuuuUlJSkiIgILV26NGT8X//1XxURERGyjB49OqRm3759uu222+TxeNS5c2dNnDhRhw4dCqn59NNPNXz4cHXo0EHJycmaPXv2Mb0sXrxYaWlp6tChg9LT07VixYrm7g4AALBUs0PO4cOHNWjQIM2fP/+ENaNHj1Z5ebmzvP766yHjt912m7Zu3aqCggItW7ZM69ev1z333OOMB4NBjRo1Sj179pTP59NTTz2lWbNm6Y9//KNTs3HjRo0bN04TJ07UJ598ouzsbGVnZ6ukpKS5uwQAACzUrrlvGDNmjMaMGXPSGrfbrYSEhOOObdu2TStXrtRHH32kiy++WJL0zDPP6Nprr9WcOXOUlJSkV199VTU1NXrxxRflcrk0YMAAFRcX6/e//70ThubNm6fRo0crLy9PkvTEE0+ooKBAzz77rJ5//vnm7hYAALBMs0NOU6xdu1ZxcXHq0qWLrrrqKv32t7/VOeecI0kqLCxU586dnYAjSSNHjlRkZKQ+/PBDXX/99SosLNQVV1whl8vl1GRmZuo///M/tX//fnXp0kWFhYXKzc0N+dzMzMxjvj47WnV1taqrq53XwWCwhfYYaLsi6o7oooRIRR/4u7SXy/xOJvrA33VRQqQi6o6EuxWgTWjxkDN69GiNHTtWKSkp2rVrlx5++GGNGTNGhYWFioqKkt/vV1xcXGgT7dqpa9eu8vv9kiS/36+UlJSQmvj4eGesS5cu8vv9zrqjaxq3cTz5+fl6/PHHW2I3Afx/HQ7t1uZ7O0rr75XWh7ubs1s/SZvv7ahth3ZLujTc7QDWa/GQc8sttzg/p6en64ILLlCfPn20du1aXX311S39cc0yc+bMkLM/wWBQycnJYewIaP2OdOyhwS8c0quvvqp+aWnhbuestm37dt12223687U9wt0K0Caclq+rjta7d29169ZNX3zxha6++molJCSosrIypKaurk779u1zruNJSEhQRUVFSE3j6x+rOdG1QNIP1wq53e5T3icA/2DaddAn/gZVdT5fSrow3O2c1ar8DfrE3yDTrkO4WwHahNP+BfpXX32l7777TomJiZIkr9erAwcOyOfzOTXvv/++GhoalJGR4dSsX79etbW1Tk1BQYH69u2rLl26ODWrV68O+ayCggJ5vd7TvUsAAKAVaHbIOXTokIqLi1VcXCxJKi0tVXFxsXbv3q1Dhw4pLy9PRUVFKisr0+rVq/WrX/1KqampyszMlCT169dPo0eP1t13361Nmzbpb3/7myZPnqxbbrlFSUlJkqRbb71VLpdLEydO1NatW/Xmm29q3rx5IV81/eY3v9HKlSs1d+5cbd++XbNmzdLHH3+syZMnt8CvBQAAtHqmmdasWWMkHbNMmDDBfP/992bUqFHm3HPPNe3btzc9e/Y0d999t/H7/SHb+O6778y4ceNMx44djcfjMXfeeac5ePBgSM2WLVvM5ZdfbtxutznvvPPMk08+eUwvixYtMueff75xuVxmwIABZvny5c3al0AgYCSZQCDQ3F8DgP/P5/MZScbn84W7lbMevyugZTT1+N3sa3KuvPJKGWNOOL5q1aof3UbXrl312muvnbTmggsu0IYNG05ac9NNN+mmm2760c8DAABtDze1AAAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpXbhbgBA6/b9999LkjZv3hzmTkJVVVWprKxMvXr1UnR0dLjbkSRt27Yt3C0AbQohB8Ap2b59uyTp7rvvDnMnrUenTp3C3QLQJhByAJyS7OxsSVJaWppiYmLC28xRtm3bpttvv12vvPKK+vXrF+52HJ06ddLPf/7zcLcBtAmEHACnpFu3brrrrrvC3cYJ9evXT4MHDw53GwDCgAuPAQCAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJWaHXLWr1+v6667TklJSYqIiNDSpUtDxo0xevTRR5WYmKjo6GiNHDlSO3fuDKnZt2+fbrvtNnk8HnXu3FkTJ07UoUOHQmo+/fRTDR8+XB06dFBycrJmz559TC+LFy9WWlqaOnTooPT0dK1YsaK5uwMAACzV7JBz+PBhDRo0SPPnzz/u+OzZs/Vf//Vfev755/Xhhx/qZz/7mTIzM3XkyBGn5rbbbtPWrVtVUFCgZcuWaf369brnnnuc8WAwqFGjRqlnz57y+Xx66qmnNGvWLP3xj390ajZu3Khx48Zp4sSJ+uSTT5Sdna3s7GyVlJQ0d5cAAICNzCmQZN5++23ndUNDg0lISDBPPfWUs+7AgQPG7Xab119/3RhjzOeff24kmY8++sipee+990xERIT5+uuvjTHGLFiwwHTp0sVUV1c7NTNmzDB9+/Z1Xv/Lv/yLycrKCuknIyPD3HvvvU3uPxAIGEkmEAg0+T0AWgefz2ckGZ/PF+5WALSwph6/W/SanNLSUvn9fo0cOdJZFxsbq4yMDBUWFkqSCgsL1blzZ1188cVOzciRIxUZGakPP/zQqbniiivkcrmcmszMTO3YsUP79+93ao7+nMaaxs85nurqagWDwZAFAADYqUVDjt/vlyTFx8eHrI+Pj3fG/H6/4uLiQsbbtWunrl27htQcbxtHf8aJahrHjyc/P1+xsbHOkpyc3NxdBAAArUSbml01c+ZMBQIBZ9mzZ0+4WwIAAKdJi4achIQESVJFRUXI+oqKCmcsISFBlZWVIeN1dXXat29fSM3xtnH0Z5yopnH8eNxutzweT8gCAADs1KIhJyUlRQkJCVq9erWzLhgM6sMPP5TX65Ukeb1eHThwQD6fz6l5//331dDQoIyMDKdm/fr1qq2tdWoKCgrUt29fdenSxak5+nMaaxo/BwAAtG3NDjmHDh1ScXGxiouLJf1wsXFxcbF2796tiIgITZkyRb/97W/1l7/8RZ999pnuuOMOJSUlKTs7W5LUr18/jR49Wnfffbc2bdqkv/3tb5o8ebJuueUWJSUlSZJuvfVWuVwuTZw4UVu3btWbb76pefPmKTc31+njN7/5jVauXKm5c+dq+/btmjVrlj7++GNNnjz51H8rAACg9WvutK01a9YYSccsEyZMMMb8MI383/7t30x8fLxxu93m6quvNjt27AjZxnfffWfGjRtnOnbsaDwej7nzzjvNwYMHQ2q2bNliLr/8cuN2u815551nnnzyyWN6WbRokTn//PONy+UyAwYMMMuXL2/WvjCFHLAXU8gBezX1+B1hjDHhi1jhFQwGFRsbq0AgwPU5gGU2b96sIUOGyOfzafDgweFuB0ALaurxu03NrgIAAG0HIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKxEyAEAAFYi5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgJUIOAACwEiEHAABYiZADAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFipxUPOrFmzFBEREbKkpaU540eOHFFOTo7OOeccdezYUTfccIMqKipCtrF7925lZWUpJiZGcXFxysvLU11dXUjN2rVrNXjwYLndbqWmpmrhwoUtvSsAAKAVOy1ncgYMGKDy8nJn+eCDD5yxqVOn6t1339XixYu1bt067d27V2PHjnXG6+vrlZWVpZqaGm3cuFEvv/yyFi5cqEcffdSpKS0tVVZWlkaMGKHi4mJNmTJFd911l1atWnU6dgcAALRC7U7LRtu1U0JCwjHrA4GA/vznP+u1117TVVddJUl66aWX1K9fPxUVFWnYsGH661//qs8//1z/93//p/j4eF144YV64oknNGPGDM2aNUsul0vPP/+8UlJSNHfuXElSv3799MEHH+jpp59WZmbm6dglAADQypyWkLNz504lJSWpQ4cO8nq9ys/PV48ePeTz+VRbW6uRI0c6tWlpaerRo4cKCws1bNgwFRYWKj09XfHx8U5NZmam7rvvPm3dulUXXXSRCgsLQ7bRWDNlypTTsTsAzpDvv/9e27dvb5Ftbdu2LeTfU5WWlqaYmJgW2RaAM6PFQ05GRoYWLlyovn37qry8XI8//riGDx+ukpIS+f1+uVwude7cOeQ98fHx8vv9kiS/3x8ScBrHG8dOVhMMBlVVVaXo6Ojj9lZdXa3q6mrndTAYPKV9BdCytm/friFDhrToNm+//fYW2Y7P59PgwYNbZFsAzowWDzljxoxxfr7ggguUkZGhnj17atGiRScMH2dKfn6+Hn/88bD2AODE0tLS5PP5WmRbVVVVKisrU69evVrkb8/REygAtA6n5euqo3Xu3Fnnn3++vvjiC11zzTWqqanRgQMHQs7mVFRUONfwJCQkaNOmTSHbaJx9dXTNP8/IqqiokMfjOekfs5kzZyo3N9d5HQwGlZycfEr7B6DlxMTEtOjZkssuu6zFtgWg9Tnt98k5dOiQdu3apcTERA0ZMkTt27fX6tWrnfEdO3Zo9+7d8nq9kiSv16vPPvtMlZWVTk1BQYE8Ho/69+/v1By9jcaaxm2ciNvtlsfjCVkAAICdWjzkPPjgg1q3bp3Kysq0ceNGXX/99YqKitK4ceMUGxuriRMnKjc3V2vWrJHP59Odd94pr9erYcOGSZJGjRql/v37a/z48dqyZYtWrVqlRx55RDk5OXK73ZKkSZMm6csvv9T06dO1fft2LViwQIsWLdLUqVNbencAAEAr1eJfV3311VcaN26cvvvuO5177rm6/PLLVVRUpHPPPVeS9PTTTysyMlI33HCDqqurlZmZqQULFjjvj4qK0rJly3TffffJ6/XqZz/7mSZMmKB///d/d2pSUlK0fPlyTZ06VfPmzVP37t31pz/9ienjAADAEWGMMeFuIlyCwaBiY2MVCAT46goAgFaiqcdvnl0FAACsRMgBAABWIuQAAAArEXIAAICVCDkAAMBKhBwAAGAlQg4AALASIQcAAFiJkAMAAKx02p9CfjZrvNlzMBgMcycAAKCpGo/bP/bQhjYdcg4ePChJSk5ODnMnAACguQ4ePKjY2NgTjrfpZ1c1NDRo79696tSpkyIiIsLdDoAWFAwGlZycrD179vBsOsAyxhgdPHhQSUlJiow88ZU3bTrkALAXD+AFwIXHAADASoQcAABgJUIOACu53W499thjcrvd4W4FQJhwTQ4AALASZ3IAAICVCDkAAMBKhBwAAGAlQg4AALASIQeAVdavX6/rrrtOSUlJioiI0NKlS8PdEoAwIeQAsMrhw4c1aNAgzZ8/P9ytAAizNv2ATgD2GTNmjMaMGRPuNgCcBTiTAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASsyuAmCVQ4cO6YsvvnBel5aWqri4WF27dlWPHj3C2BmAM42nkAOwytq1azVixIhj1k+YMEELFy488w0BCBtCDgAAsBLX5AAAACsRcgAAgJUIOQAAwEqEHAAAYCVCDgAAsBIhBwAAWImQAwAArETIAQAAViLkAAAAKxFyAACAlQg5AADASoQcAABgpf8H8XnGVg5C7oYAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "#Variable a predecir\n", + "\n", + "p=sns.histplot(data['Price'], bins=\"auto\" )\n", + "plt.title(\"\\n Histograma de la variable precio\")\n", + "plt.xlabel(\"Precio\")\n", + "plt.ylabel(\"Número de vehículos\")\n", + "plt.show()\n", + "\n", + "print(\"Estadisticas descriptivas de variable Price\")\n", + "display(pd.DataFrame(data.Price.describe()))\n", + "\n", + "plt.boxplot(data['Price'])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Respecto a la variable a predecir Price, se puede decir que posee una distribución normal pues los datos se agrupan hacia la media, con una media de 14.538, en los datos esta variable presenta un mínimo de 5002 y un máximo de 32.444. Posee una desviación estandar de 3922 y el 75% de los datos poseen un valor igual o inferior a 16.999 en la variable Price." + ], + "metadata": { + "id": "gG27YSXZgY-_" + } + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 843 + }, + "id": "8cs2L4-og7Bc", + "outputId": "3a05e86a-56f0-4add-fc8c-fe148440abfb" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGdCAYAAAASUnlxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1BUlEQVR4nO39e3hTZbo//r+TNoembdJzEwRK8QCUIlg2h3LoOIqABxhH/Y5uBwRGUWvBQRwH6wmY+Y2VYWbP9rNnCw6O1JEBHPeAyME6CKUIFlGgQqllLPYg0rTQQ9Jjkibr90dNaNokTdK0TZP367p6XSTreZ71rJW1kpuV3PcSCYIggIiIiCgIiAd7AkREREQDhYEPERERBQ0GPkRERBQ0GPgQERFR0GDgQ0REREGDgQ8REREFDQY+REREFDQY+BAREVHQCB3sCfgTi8WCy5cvIzIyEiKRaLCnQ0RERG4QBAFNTU0YNmwYxGLX13QY+HRx+fJljBgxYrCnQURERF747rvvMHz4cJdtGPh0ERkZCaBzxymVykGeDREREblDr9djxIgRts9xVxj4dGH9ekupVDLwISIiGmLc+ZkKf9xMREREQYOBDxEREQUNBj5EREQUNBj4EBERUdBg4ENERERBg4EPERERBQ0GPkRERBQ0GPgQERFR0GABQyIiN5ktAk6W16O2qR0JkXJMTY5BiLhnwTR32/W1j7fzNVsEfFZ2Ff936jt839iG4dEK3J82HDNuiHNrnWaLgBMX61D47VUIAhClkCIuQgq1KqzHvF1tV3N7B1a9dxoXtM1QhUnw7JybkDE2waPtNlsEHC2txR8/+Td0bSaMUUfivx+8BRHynh9vjuYCoNfnJidF41Rlg9M2ceEyWAQBn5fXAxCQPjoO06+P7fPrF2j64xj3hkgQBGHA1+qn9Ho9VCoVdDodKzcTkZ284mqs31uCal277TmNSo61C1IwP1XjcTtvxvbFfBdO1ODdE1VoNZp79AmXhuCPP5vocp15xdV4ftc5NLaaHC7vOm9X2/XGkTKcvaTv0T9ULMKfH77Fre3OK67Giu1n0GHp+TF283AlPlwx265t97lEKSQAYLctjp4Ti4Cuq3DUprsohQSv3TfB69cv0PTHMd6VJ5/fDHy6YOBDRI7kFVcjc9tpdH+ztP5fddOiNNsHvTvtvBnbF/N112Yn68wrrsaT20732l8E4PGMZPzlaLnD7XJnXs7m4MlcrMFPX/dHX/S2HcGgP47x7jz5/OZvfIiIXDBbBKzfW+LwQ9P63Pq9JTB2WNxqZ+5y6cDdsc0Ormh4M193OVqn2SJg3Yfn3eovANjyac+gx7rMHWv3FDvdbrNFwMu7z/U6xtlLeuhaTX3eH32x7sPzHr1+gaY/jvG+YuBDROTCyfJ6u8vz3QkAqnXteLewwq12J8vrPR67a5++ztcdjtZ5srweWr3B7TH6+jlW02R0ut0ny+txpcX510xd/SL3ZJ/3R19o9QaPXr9A0x/HeF8x8CEicqG2yb0Pzcr6Vo/Hc3dsd9t52taTcXw1bl/m0NvzjlwexKDHajD2nb/oj2O8rxj4EBG5kBApd6tdUozC4/HcHdvddp629WQcX43blzn09rwjw1QDP+/uBmPf+Yv+OMb7ioEPEZELU5NjoFHJ4SzpVoTO7JTF6aPcamdNhfZk7K59+jpfdzha59TkGKiVMrfH6GuWcmKk1Ol2T02OQXy4xK1x3l46tc/7oy/USplHr1+g6Y9jvK8Y+BARuRAiFmHtghQA6PHmbX28dkEKpKFit9p1rVvi7tie1DpxNaa7HK0zRCzCuoXj3eovArB8djJEDubg7pzW/yTV6XaHiEX47U8n9DrGzcOVUCkkfd4ffbFu4figrufTH8d4XzHwISLqxfxUDTYtSoO629cmapXcLhXX3XbejO2L+WpUcjyRkQyFNMRhv3BZiMv06/mpGmxelGarY+OI5od5Z9+V4nS7Ni9Kw83DHacch4pFbqWAW+cS6uQDs2sdH2f7I0oh6bEtjp7rvopoB226i1JImMr+g/44xvvCozo+OTk52LVrF0pLSxEWFoYZM2Zgw4YNGDNmjK1Ne3s7nn32WezcuRMGgwHz5s3DG2+8gcTERFubp59+GsePH0dxcTHGjRuHoqIiu/WsW7cO69ev77F+hUKBlpYW5xsj6nkC7NixAw899JBb28c6PkTkCis3XxuXlZtZudlT/Vm5ud8KGM6fPx8PPfQQpkyZgo6ODrzwwgsoLi5GSUkJwsPDAQCZmZnYv38/cnNzoVKpsGLFCojFYhw/ftw2ztNPP40xY8bg888/x9mzZ3sEPs3NzWhubrZ77vbbb8eUKVOQm5vrfGNEImzduhXz58+3PRcVFQW53L0fTTHwISIiGno8+fz26F5deXl5do9zc3ORkJCAU6dOISMjAzqdDn/961+xfft23HbbbQCArVu3Yty4cThx4gSmT58OAPh//+//AQCuXLmCs2fP9lhPREQEIiIibI+/+uorlJSUYPPmzb3OMSoqCmq12pPNIiIioiDRp9/46HQ6AEBMTOdlv1OnTsFkMmHOnDm2NmPHjsXIkSNRWFjo9Xreeust3HTTTZg9e3avbbOyshAXF4epU6fi7bffhqsLWgaDAXq93u6PiIiIApfXd2e3WCxYtWoVZs6cidTUVACAVquFVCpFVFSUXdvExERotVqv1tPe3o6///3veP7553tt+5vf/Aa33XYbFAoF/vWvf+Gpp55Cc3Mznn76aYftc3JyHP6WiIiIiAKT14FPVlYWiouLcezYMV/Op4fdu3ejqakJS5Ys6bXtyy+/bPv3LbfcgpaWFmzcuNFp4JOdnY3Vq1fbHuv1eowYMaLvkyYiIiK/5NVXXStWrMC+ffuQn5+P4cOH255Xq9UwGo1obGy0a19TU+P1727eeust3HPPPXZZYe6aNm0aLl26BIPB8f1lZDIZlEql3R8REREFLo+u+AiCgJUrV2L37t04cuQIkpOT7ZZPnjwZEokEhw4dwv333w8AuHDhAqqqqpCenu7x5MrLy5Gfn48PP/zQ474AUFRUhOjoaMhk7lcbJfJn7qSDOmtj7LDg3cIKlNbokf91LdpMZkTIJfjtglTcOi4BX1TUo/BiHdpNJhRcuIomQwfCZSGIU0hR02RAq8mMmLBQdJg7UFZntK3vb4umYF/pZRwsqYXZbEGELBRtBgMa3L+fpd8IBdDhZd+bIoHQ8AhcbmxDm8kCQRBgtHQuCxEBceGhaDaY0W4SYHYxTnx4CBKUCqTfEAtFSAi2HLuIth8mFS4B1JEyXKx3vHNTEuVIGxWPSSOicbmuFX85VobmH+7lGSoCbogPx8QRUahtMuDfNc3QtbbblosBPH/XGEy4Ltou7f3ohVr88eC/0dhqRHykFFOT4yAJEWPKqGiUVOvx8bnv8XVNCyyCgBiFBA9PH4nhURG42tyOry83ocnYARGARKUco2IVuCkxEl9UNAAQMG1ULEwWAW8f/xa6NhNuHq7CS3ePR9gPdYa6ps0DIkz7IY38xLd1+L6hDYCA62IUmDoyBv++0ozvGlqRFKPA4vRRkIaKbWP0ds4YOyx457MKfFFRB4U0tEdqf5vRjN/tP4+vLumgkkuwfPZozLop3ra8+zzTr4/F9NH9n87en+nhgcyjdPannnoK27dvx549e+xq96hUKoSFhQHoTGc/cOAAcnNzoVQqsXLlSgDAZ599ZmtfVlaG5uZmbN68Gfn5+XjvvfcAACkpKZBKpbZ2L7/8Mt5++21UVVUhJMS+4Nbu3buRnZ2N0tJSAMDevXtRU1OD6dOnQy6X4+DBg/jVr36FX/3qV27/jofp7OTP8oqrsX5vid2djjUqOdYuSLEVAHPWJvU6JQ59XdvnO2ZTcNCo5Fg4UYO/HqtAxyAcNHekJOD+tOF4ftc5NLa6dxf2rsSizsrRt4yM7vWcyTlQgr98Wo7un4QKaQj+62cT8c/Tl3CwpLbHOmShYrz+0CQAcDjPKIUEr903od+K87nzfhBM+q2Oj6MCgUBnyvrSpUsBXCtguGPHDrsChl2/6rr11ltRUFDQY5zy8nKMGjUKQOePp5OSkvDII4/gd7/7XY+2ubm5WLZsmS1rKy8vD9nZ2SgrK4MgCLjhhhuQmZmJ5cuXQyx27xs9Bj7kr/KKq5G57TS6n6zWM3LTojQAcNiGiK7pes6cqWrAm0fL+3V9/VG92Z33g2ALfvot8Al0DHzIH5ktAmZtOGz3P7uuROgs/S4IArT6Ifj9EtEA6/zqTYbaJkO/XwXVqOQ4tuY2n30F5e77gS/XORR48vnNe3UR+bmT5fVO3+QAQABQrWtn0EPkJgGAVt//QQ/QeW6eLK/32Xjuvh/4cp2BhoEPkZ+rbXL+JkdE/s+X57C7Y/F9wzkGPkR+LiHSvXvNEZF/8uU57O5YfN9wjoEPkZ+bmhwDjUoOZ9/Wi9D5OwK1Uua0DRFdIwKgVsowED+B0aiu3c3dF9x9P/DlOgMNAx8iPxciFmHtghQA6PFmZ328dkEK1i0c77ANUTBzds6sWzgey2cnd2/uc2sXpPj0R8buvh8E0w+bPcXAh2gImJ+qwaZFaVCr7C9fq1VyW+qqszYalRx3pCQMyP9uKTBoVHI8kZGM0EE6aO5IScDmRWmIUki86i8WAU9kJGNzL+dM9l0peCIjGY4qtYRLQ7B5URruSElwuA5ZqBibF6U5nWe0QtIvqeyAe+8H5BzT2btgOjv5O1Zu7l+s3MzKzazcPDSxjo+XGPgQERENPazjQ0REROQAAx8iIiIKGgx8iIiIKGgw8CEiIqKgwcCHiIiIgkboYE+AaKD4IvWzzWjGqwdKUFHXiqSYMNwxTo3GdpPdeM3tHXjmvTOoqm9DhCwE96UNQ6m2GSazBUdLtbjcdC1h+v+bkoDGZhHaTB1IHabClTYd/vlFnW357TeqYDSLcPzbRliczEmEzhsTBrsQEWDuw44YnxiClg4pjB0WCBYLjB0W1LV1Jp6LAEwfFYnGdgu+b2xHh1mAYLKgrUv/Fbcn4Znbx8NsEbD1+Lf4+LwWtfrOFPAx6kjEKGQQiYGoMAmiwiT4srIBBaU10P6QTx4uFeP390/C/AlqmC0C3i2swLdXW1CjbwMEESLk19Ksrcu/rm7CgXOXYeywIEohwb6VGYhXymzHeYxCilKtHt81tPVI8wZgK3FQWd8zDbwrR+1CxCKcuFiHQ6U1eP/L72DosCA+QooPsmYjXilzua+7notxETJAAK62GHot0aDVtaG+xYiYCBnUStfnsLvb1n0+QzUt3JPtDXZMZ++C6eyBK6+4Guv3ltjd1VijkmPtghS3i30t/9sXOFhS63S5RiWHNFSEyro2p22I3OEqmA0Vi2AWBHjzzi0WActnJyP7rhTkHCjBlk/L7e5Q3nW5laN2IhEgCRHD2OE4HFfKQ3F23TyHyxydi111Py9dtXd2Dru7bc7G9/S9YbB5sr2BinV8vMTAJzDlFVcjc9vpHh8k1v/PuVPptLegh2gouXm4Emcv6Z0ufyLjWnD05tFyr9bhKPhxdi521fW8BOBW+67ncG9ztm6bq/l48t4w2DzZ3kDGOj5EPzBbBKzfW+LwjdP63Pq9JTBbnL+1thnNDHoooLgKegBgy6flaG7vwJZPvQt6AEDf3oEr+msVpl2di111PS/XfXjera9xreewscPS65y3fFoOY4fFJ+8Ng82T7aVrGPhQQDtZXu/0kjrQ+QZXrWvHyfJ6p21ePVDSDzMj8l8WAXjmvTPo62f+T984Zvt3b+diV9bzUqvv/b4nXc/hdwsrep2zRQDeLazwyXvDYPNke+ka/riZAlptk3tvtK7aVdS1+mo6RENGVUPff6tW32Ky/dvdc9FbtU3tqKx371ytrG9FXKTrH2B3HddfebK9dA2v+FBAS4iU996ol3ajYhW+mg7RkDEyOqzPY8SEX7trubvnorcSIuVIinHvXE2KUfjkvWGwebK9dA0DHwpoU5NjoFHJ4SwxVYTODI6pP9z12ZEXguCHgURdiUXAnx68BX3N6N791Czbv3s7F7uynpfqXtLiu7admhyDxemjep2zWAQsTh/lk/eGwebJ9tI1DHwooIWIRVi7oDNw6f7+YH28dkGKy5odYdIQ3JGS0D8TJBoENw93nfWyfHYyIuShWD472et1KOWhdvV8XJ2LXXU9L9ctHO9WoGQ9h6Wh4l7nvHx2MqShYp+8Nww2T7aXruHeoIA3P1WDTYvSoFbZX7JWq+Rup6tueWRKr8GPRiVHUmzfvx4gcvVRGyoWQeTlZ7FY1Jne/OGK2XgiI7nH1QLrcmv6c/ZdKQ7biURw+WHqrI6Ps3Oxq67npbW9xkl7jYNz2Nmcu2+bq/l48t4w2DzZXurEOj5dsI5PYGPl5sDGys2s3NzbnFm5OXCxgKGXGPgQERENPSxgSEREROQAAx8iIiIKGgx8iIiIKGgw8CEiIqKgwcCHiIiIggbv1UVDRl9TTnWtJvwi9yQu69oxTCXHlkem4GutHp+VXcX3jW1Qq+SIDZchLvJaqqw1bbiyvhXDlHL8u0aHA+drYbYISIoJwz+emImYCCnMFgGflV3F9s8rcLj0CgxmASEiIG2kEj8eq0Fdczs+/Op7XGnusJtTzoKx+LxKj6qGVrQZO1Bd34xGo2f75UYlcFEPp+nuwSJCArSYvE/tV4oBmUKKMIkYcrGAijoDur4UshAgUi7B9fHhEIlEKK/Voabl2l6PDAVuHBaFueMSMf46FWr07fiouBpltU1oMVowMlqOeanDsGxmMswWAS/uLsKeM1qY0ZkuP+P6KMy8PgHV+naYLQL0rSb8u7YZEfIQ3JQYiegwKcRiEaIUUihkYuQer0Ct3oBmYwekImB4bDjee3wGVAqJLfX7it6A89V6XGpohVwixsTh0Zh5Yxymj46F2SJgy6dl2HGyMxV94nUq/PdDaYiQh9rOtcsNrTjzXSO0uja0mSyYODwKM2+MQ9rIaGz/vBIVdS0wWwQ0GzrQbjJjyqhYLJlxLY3abBFw4mIdCr+9CkCE9OtjMX10rN1525c07EBIQ6eB51E6e05ODnbt2oXS0lKEhYVhxowZ2LBhA8aMGWNr097ejmeffRY7d+6EwWDAvHnz8MYbbyAxMdHW5umnn8bx48dRXFyMcePGoaioyG49FRUVSE7uWY2ysLAQ06dPdzq/qqoqZGZmIj8/HxEREViyZAlycnIQGupefMd0dv+VV1yN9XtL7O6mrFHJsXZBiltFxn608TAq6zy76WK4NAStRnOvH6TKHz4oWoxmj8Yn6g/u1HWShYph6HAcKifFhsHYIbh9J/Ue6xcBj89Oxi0jo/H8rnNobDXZLY9SSPDafRMwP1WDnAMl2PJpud0dxsWizmrDvRXe6+t7AgWWfqvjM3/+fDz00EOYMmUKOjo68MILL6C4uBglJSUIDw8HAGRmZmL//v3Izc2FSqXCihUrIBaLcfz4cds4Tz/9NMaMGYPPP/8cZ8+edRr4fPLJJxg/frzt+djYWEgkEjhiNpsxadIkqNVqbNy4EdXV1XjkkUewfPlyvPrqq25tHwMf/5RXXI3Mbad7vJlb/1/XW4VVb4IeIupfd6Qk4GBJrdPlrqoO9/U9gQLPgBUwvHLlChISElBQUICMjAzodDrEx8dj+/bteOCBBwAApaWlGDdunMOrNevWrcMHH3zgNPA5c+YMJk2a5NZcPvroI9xzzz24fPmy7erS5s2bsWbNGly5cgVSqbTXMRj4+B+zRcCsDYed/u9ThM7y8sfW3ObwEreu1YSJv/lXP8+SiHxNLAJKf3tnj6+9+vqeQIFpwAoY6nQ6AEBMTOfda0+dOgWTyYQ5c+bY2owdOxYjR45EYWGhx+MvXLgQCQkJmDVrFj788EOXbQsLCzFhwgS7r9TmzZsHvV6P8+fPO+xjMBig1+vt/si/nCyvd3nJXQBQrWvHyfJ6h8t/kXuyn2ZGRP3JIgDvFlb0eL6v7wlEXgc+FosFq1atwsyZM5GamgoA0Gq1kEqliIqKsmubmJgIrVbr9tgRERH44x//iPfffx/79+/HrFmzcO+997oMfrRarV3QY12vdZkjOTk5UKlUtr8RI0a4PUcaGLVN7v3OwFm7y17+ToGIBl9lfWuP5/r6nkDkdVZXVlYWiouLcezYMV/OBwAQFxeH1atX2x5PmTIFly9fxsaNG7Fw4UKfrSc7O9tuPXq9nsGPn0mIdH4XZ3faDVPJvf6RJhENrqQYRY/n+vqeQOTVFZ8VK1Zg3759yM/Px/Dhw23Pq9VqGI1GNDY22rWvqamBWq3u00SnTZuGsrIyp8vVajVqamp6rNe6zBGZTAalUmn3R/5lanIMNCo5nH1TL0JnJsfU5BiHy99eOrXf5kZE/UcsAhanj+rxfF/fE4g8CnwEQcCKFSuwe/duHD58uEfK+eTJkyGRSHDo0CHbcxcuXEBVVRXS09P7NNGioiJoNM5/pZ+eno5z586htvZalsDBgwehVCqRkuI6LZL8V4hYhLULOl+/7m901sdrF6Q4/RGjSiFBUmxY/02QiLxyR0qCy+XLZyc7rOfT1/cEIo8Cn6ysLGzbtg3bt29HZGQktFottFot2to6U4VVKhUeffRRrF69Gvn5+Th16hSWLVuG9PR0u4yusrIyFBUV2foWFRWhqKgIRmNnubB33nkHO3bsQGlpKUpLS/Hqq6/i7bffxsqVK21j7N69G2PHjrU9njt3LlJSUrB48WJ89dVX+Pjjj/HSSy8hKysLMpmsTzuJBtf8VA02LUqDWmV/6VqtkruVtlrw3G1eBT/hshCn/6vsSikPRbg0xOPxifqDO8eszEWBwKTYMGhU3n9NJBJ1pqJvXpSGKEXP8iPRCgk2L0rDlkem4ImMZHSPT8Qi16nsQN/fEyi4eZTOLhI5PqW2bt2KpUuXArhWwHDHjh12BQy7ft106623oqCgoMc45eXlGDVqFN555x1s2LABlZWVCA0NxdixY/Hcc8/ZUuQBIDc3F8uWLUPX6VdWViIzMxNHjhxBeHg4lixZgtdee40FDAMEKzc7xsrNnVi5mZWbWbk5eA1YHZ9Aw8CHiIho6BmwOj5EREREQwkDHyIiIgoaDHyIiIgoaDDwISIioqDBwIeIiIiChte3rKDg4yp1tLe00jajGa8eKEFFXStGxSrwwl0pkIaK7fpMTorGqcoG1Da1Iy5cBoiA2iYD6psNiFJIcam+FbmflaPVZEZcuAz/zJyJ8roWaHVtqG8xQiELwf99eQlN7R1QSMUwmDpQ02SErq0DIgHomkguAvC7hePweWUjvm9sg0YVBrlEhC++vYrKBqMtJTpGDkhCQ3G1uQNmB/tEBEAVFgJYLGg2CuhgjuSgiACgjldAsFhg6LCgpskIU5f8/khZCGA2o7nDebr7f2hkiIlW4T9GxmDcMCVqmwz4sqIOpyobYLIImJYcgztTNahrNuJ0VT3KqnU4UXXtxsZ7n5qFCSNVdmO6Oi+MHRa881k5vqhoQLg0BPelDceMG+J6pGO7GqO5vQPPvHcGVQ1tGBkdhj89eAsi5O6/rftTOrg/zSUYBPP+Zjp7F0xndy6vuBrr95bY3fdKo5LbKqg6WzY/VYPlf/sCB0tqe4wpCxXD0HHt00ks6rwjM9FQVvHa3QBcnzNnqhrwl6PlPYKwcGkI/vizibYCfK7GeONIGc5e0qO7m4cr8eGK2b3O09XYA10A0J/mEgwCcX+zjo+XGPg4lldcjcxtp3u8SYvg/H/P1v83TBiudPjmTBTINi9K8/ic6d4fgNdj9Bb8uDqnAQxo9WN/mkswCNT9zTo+5DNmi4D1e0scvtG6evMVfvhj0EPB6Nm/9/xgAdyvKr3uwxKs+/C812OcvaRHc3uHw2XunNPr95bAPACXX/1pLsGA+7sTAx9y6WR5vd3lUCLqXUsfPze0+nZo9YY+jfHMe2ccPt/bOS0AqNa142R5fZ/W7w5/mksw4P7uxMCHXKptYtBDNBRVNbQ5fN7dc3ogzn1/mksw4P7uxMCHXEqI9P4uzUQ0eEZGhzl83t1zeiDOfX+aSzDg/u7EwIdcmpocA41KjuBIciTyjXAR+nTOqJVyqJWyPo3xpwdvcfh8b+e0CJ0ZPlOTY/qwdvf401yCAfd3JwY+5FKIWGRLWe9+soic/Nv6WITO7BKiYPPHn3dmZbk6Z1xZtzAF6xaO93qMm4crndbzceecXrsgZUBquvjTXIIB93cnBj7Uq/mpGmxalAa1yv7yp1olx+ZFadjsZNmmRWn4cMVs3JGS4HBcWaj94Rfg5xoFiYrX7u71nHkiI9lhABMuC8HmH9KJexvD2X8q3Knj42rsgU5n9qe5BAPub9bxscM6Pq6xcnNPrNzsH1i5mZWbyTOBtr9ZwNBLDHyIiIiGHhYwJCIiInKAgQ8REREFDQY+REREFDQY+BAREVHQcP/n/zSkDdQv+J2tx9hhwbuFFaisb0VSjAKL00dB+kM6u9ki4LOyq/i/U9/hUkMr5JJQTLhOhZhwKXRtJlggoKHFiMJvalDZaAIASMTAR0//CDeoI2xjHD6nxUv7iqFrMyFULEZynBwRMgkEkQhXm4y4fLUFrV1+yn9TrAxLM27E19V6tJssOPy1Fvr2DlgEQBoCRCmkuFEdATHEOF1RD73R0mN7fzRGhVnXD8NNCRE4UV6HUxV1+OqSHmaLgDCJGLHhErSYLGgzmtBi7JlR9NAtiahpNePcJR0Mpg6YzALau6SPjVCGAGIJrjQZ0G52nIewbsE4nK5qxNfVerQYOtBmNKOpvQMdQuf/bKLCQjE6ToHS2mY0G3puw5hYCQyQIFwagimjo3Hq23qc1zbDIgBhEhGemDkaE0dGY1fR9zhT1QBtY7tdhtz9aYnoMIfgUkMrJCEi6NpMqGsxorndhDBJCCaOiMLiaaPQaOhArb4d5y/rcLG6ASW17RAAyEJEyPvljzAyTmE7dqxZfVebDdcy/PTtqG8xIiZChoRIGSAAV1sMbh/P3Y/NrlmEQzWrJdAyc4gGArO6ugjUrK684mqs31tid3M6jUqOtQtSfFqzwdl6Uq9T4tDXteh6w1+xCFg+Oxm3jIzG6n98hVajo2Tx3okAbFqUhsxtju+GTcGht+PZ0bEpFsHumOyPc6I/DdR5TTQUMJ3dS4EY+OQVVzsMCqz/J/RVwSpn6yEaCK6OZ3ePTV+fE/1poM5roqGC6ewEoPMy+Pq9JQ7f8K3Prd9bArOlb+GKq/UQDQRnx7Mnx6Yvz4n+NFDnNVGgYuATwE6W19tdBu9OAFCta8fJ8vp+XQ/RQHB0PHt6bPrqnOhPA3VeEwUqBj4BrLbJvTd8d9v1V38iX+p6PHp7bPrzMT1Q5zVRoGLgE8ASIuW9N/KgXX/1J/Klrsejt8emPx/TA3VeEwUqBj4BbGpyDDQqucO7QAOdP4TUqDpTYPtzPUQDwdHx7Omx6atzoj8N1HlNFKgY+ASwELEIaxekAECPN0nr47ULUvpc98PVeogGgrPj2ZNj05fnRH8aqPOaKFAx8Alw81M12LQoDWqV/WVvtUru05RXZ+vRqOS4IyUB3d+DxSLgiYxkbF6UBoU0xOv1igBsXpTGgCvIuTqenR2b3Y9JX58T/WmgzmuiQORRHZ+cnBzs2rULpaWlCAsLw4wZM7BhwwaMGTPG1qa9vR3PPvssdu7cCYPBgHnz5uGNN95AYmKirc3TTz+N48ePo7i4GOPGjUNRUZHdeo4cOYI//elPOHnyJPR6PW688UY899xz+PnPf+56Y0Q9P/527NiBhx56yK3tC8Q6Plas3MzKzazczMrNRIGq3woYzp8/Hw899BCmTJmCjo4OvPDCCyguLkZJSQnCw8MBAJmZmdi/fz9yc3OhUqmwYsUKiMViHD9+3DbO008/jTFjxuDzzz/H2bNnewQ+r776Ktra2nDnnXciMTER+/btw+rVq7Fnzx7cc889zjdGJMLWrVsxf/5823NRUVGQy937kV8gBz5ERESBasAqN1+5cgUJCQkoKChARkYGdDod4uPjsX37djzwwAMAgNLSUowbNw6FhYWYPn26Xf9169bhgw8+6BH4OHL33XcjMTERb7/9tvONEYmwe/du3HvvvV5tDwMfIiKioWfAKjfrdDoAQExMZ/bAqVOnYDKZMGfOHFubsWPHYuTIkSgsLOzLqqDT6WzrcSUrKwtxcXGYOnUq3n77bbiK6wwGA/R6vd0fERERBS6v785usViwatUqzJw5E6mpqQAArVYLqVSKqKgou7aJiYnQarVeT/If//gHvvjiC7z55psu2/3mN7/BbbfdBoVCgX/961946qmn0NzcjKefftph+5ycHKxfv97reREREdHQ4nXgk5WVheLiYhw7dsyX8+khPz8fy5Ytw5YtWzB+/HiXbV9++WXbv2+55Ra0tLRg48aNTgOf7OxsrF692vZYr9djxIgRvpk4ERER+R2vvupasWIF9u3bh/z8fAwfPtz2vFqthtFoRGNjo137mpoaqNVqj9dTUFCABQsW4E9/+hMeeeQRj/tPmzYNly5dgsFgcLhcJpNBqVTa/REREVHg8uiKjyAIWLlyJXbv3o0jR44gOTnZbvnkyZMhkUhw6NAh3H///QCACxcuoKqqCunp6R5N7MiRI7jnnnuwYcMGPP744x71tSoqKkJ0dDRkMplX/YeqvqTtepqObm1/uaEVp79rQI3egHaTGSmaSOjbO/BNbTNEAKaMiMJfP6uA0dKZKr7hpxMhiIBTlfUo1eohCAIipBKc+a4BTUYLRABSh0ViXqoaZVodPjhb22Ou04bJcf3weFxtbsexb+rQarJP1RYD6Jm8fc1wORAWqcDFK61O24UAUEiAZlPPVHQAiACgVErR2GpCa4fneQKT1DJcbragrsUEQXA9X2fUYUCbEIrQEBHCQoGGZhNazPZtYsPEMHQIaDb1nGPGjZEYHh0FfZsJpVo9anTtaPthX0bKQ5CoDINCFooRUQqM00Si/Ioe752uBgCEiIADKzMwMk6BVw+UoKKuFaNiFXhmzhj818FSfHVJB5VcguWzR2Pq6FhsO1GJLyrqIQ0FLje0ocVowcgYBf704C2IkF97OzJbBJy4WIfCb68CECH9+lhMHx2LELHIVv7gn6cvodXYgSmjYrFkxrXyCO4yWwSc+LYOhRfrAAhIHx2H6dfHupUO7mp+ns7B23R0f0ll95d5ELnLo6yup556Ctu3b8eePXvsaveoVCqEhYUB6ExnP3DgAHJzc6FUKrFy5UoAwGeffWZrX1ZWhubmZmzevBn5+fl47733AAApKSmQSqXIz8/HPffcg1/+8pd2X1NJpVLbD5x3796N7OxslJaWAgD27t2LmpoaTJ8+HXK5HAcPHsSvfvUr/OpXv3L7dzyBkNWVV1yN9XtL7O7eLBYBli6vskYlx9oFKT2KnDnqq1HJkXqdEoe+rrUbQywCbh+XgOLv9bwzO/nEzcOV+HDFbOQVV+P5XefQ2GqyWx6lkODB/xiOd09UodVoH9mJRMDjs5ORfVeKW+tytY7X7pvgsgBgX/p2H8fR+ebo3PRlX1/yl3kQ9Vs6u6MCgQCwdetWLF26FMC1AoY7duywK2DY9auuW2+9FQUFBT3GKS8vx6hRo7B06VK88847PZb/6Ec/wpEjRwAAubm5WLZsmS1rKy8vD9nZ2SgrK4MgCLjhhhuQmZmJ5cuXQyx273+CQz3wySuuRua20w6vTHRlfRW7Vnh1ty9Rf0qKDUNlXZvX/Z/I6D34ySuuxpPbTrtss9lJ9eO+9O0+jqPzzdG56cu+vuQv8yACBrCOT6AZyoGP2SJg1obDbl99EaGzvP2xNbcBgEd9ifyVWASU/vZOp197mS0CZr52GFq962NdrZTh+PO3231l09n3ELR6x78ZtNL8cF65+jrZ1fnW9dzsPkZf+vqSv8yDyGrA6viQ/zhZXu9R4CIAqNa142R5vcd9ifyVRQDeLaxwuvxkeX2vQQ8AaPUGnCyvd9DXddADXDuvXM3B1fnW9dz0ZV9f8pd5EHnD63R28i+1Td4FLt72I/JXlfWtTpd5crx3b9uXvt6M46hdX/r6kr/Mg8gbDHwCREKke/cj81U/In+VFKNwusyT471727709WYcR+360teX/GUeRN7gV10BYmpyDDQqOdz9Nl2Ezt8iTE2O8bgvkb8Si4DF6aOcLp+aHAO1svcPY7VShqnJ9rfI6ezbe2kM63nlag6uzreu56Yv+/qSv8yDyBsMfAJEiFiEtQs6s1l6C2Csy9cuSEGIWORRX6L+lBQb1qf+y2cnu6znEyIWYd3C3lPe1y0c3+NHuZ19XVePB66dV67m4Ox8635u+rKvL/nLPIi8wcAngMxP1WDTojSoVfb/o+3+3qNWyXukmjrrq1HJcUdKQo8xxCLgjpQEaFS8lE2+cfNwJQqeuw2bF6UhSiHpsTxaIcETGclQSEN6LBOJ3EtlBzqPdWfriFJIXKaju+ob3Uvf7uM4Ot8cnZu+7OtL/jIPIk8xnb2LoZzO3hUrN3di5eZrWLm5J1Zu9g1/mQcFN9bx8VKgBD5ERETBhHV8iIiIiBxg4ENERERBg4EPERERBQ0GPkRERBQ0GPgQERFR0OAtK/xA91Txh6cloei7RtQ2tSMuXAaIgKvNhh6potZ03OPfXMXZS40Ik4ZganIMlsxIRohYZEvVNZnNKK3W43RVIzosAm5KUCDr1jH46nIjLtW3ARAQrZDgXyW1qGtuByDCTeoIxCmkqGxowaUGA4xm++S/kapQiEMkCBGLoGszQQILalvNMAudBcxGqULRaBDQ0G7usb0AMCpKjAhFBCRiAW0mC2r17WhsM9ulc0sAhIQAToaAGIBMIkKoqPPmlIYOAZ5klMeGAoI0BLo2M0SAw75KmQjtHQKMTuaQHCVB+k1qDI9W4FRFHS7WNqGywWBLfY+UAoIAtDhIhxcD2LdiNsYMi7TdPPP7+hb836lL0Bs6MCo2HG89MgUXaprsShMUll3Flk+/ha7dhAnXqXDHuEScqmqEIAiIUkgQFylHQkTP4wZAj7Rj63NafTvqmw2ICZdCrQqzHWeOUpUdjcP0ZSIaKpjO3sVgpLPnHCjBlk/LYXHzVdCo5LaKqc/vOofGVpPDdrJQMQwd3lSFoUBkLbjX9Xhx9JyVRiXHwokafPhVtd1duB31sR6TLFhHRIOFdXy8NNCBT86BErx5tNyjPiI4LqRHNFis13pYrZeIBgvr+AwBxg4LtnzqWdADMOgh/2M9JtfvLYHZ3UuXRESDhIHPIHm3sMLtr7eI/J0AoFrXjpPl9YM9FSIilxj4DJLK+tbBngKRz9U2tffeiIhoEDHwGSRJMYrBngKRzyVEyntvREQ0iBj4DJLF6aPADGAKFCJ0ZndZ092JiPwVA59BIg0VY/nsZI/7MVYif2M9JtcuSGE9HyLyewx8BlH2XSl4IiPZoys/apUcmxelYfOiNFtNFUdkoXxp6ZoohaTH8eLoOSuNSo4nMpKhUcl77aNWyZnKTkRDBuv4dDEYBQwBVm5m5WZWbiYi6gsWMPTSYAU+RERE5D0WMCQiIiJygIEPERERBQ0GPkRERBQ0GPgQERFR0GDgQ0REREEjdLAnQJ0cpQ1b04mP/fsK/vLpt9C3mzBxeBRevLuzUNy7hRUor2uBIAiIlEmg1bdDEIDrouWYeX080pKise1EJY5/U4vPv61D2w8p2VIx8Puf3ozaViO+qKhHq9GMSJkYn1c0wNhhgTpShnsmXYdPv7mKqvoWiAGIzB2oaetMABQDeGjacMQo5Ei/PhZTRsVg/6nv8OzuYls6engoIJGEwGIR0Ga0wNQtd3DlrddhdEIcrjYb0NBiwqWGFnyt1eNibattDDGACJkIMQop6lpNaDJY7MYYpRTDIJJimEqOt5dORYhYhF/uPI2z3+shFQM3JURgWLQCFgG4WKvH2e90aO8yxK/vvB4hkODry3o0G0ywCAKuNhtQfqUFZgDRCilmjY5FdKQUInSm7V9qaMGZKh0sgoBhKjm2L5+BsivNttdt0ogobDtRiZPldWg1mnHzcBVm3RiPKaNicKqyAeerG7DhwAWYLIBEDKy56yaM18S4TAnvemzERcjQ0WHB7qLv0WrswJRRsVgyYxSkbtRtajOa8eqBEnx7pRntJgvGqCNxfXwEFqe715+IKBB4lM6ek5ODXbt2obS0FGFhYZgxYwY2bNiAMWPG2Nq0t7fj2Wefxc6dO2EwGDBv3jy88cYbSExMtLV5+umncfz4cRQXF2PcuHEoKirqsa6zZ88iKysLX3zxBeLj47Fy5Ur8+te/djm/qqoqZGZmIj8/HxEREViyZAlycnIQGupefDdY6ex5xdVYv7cE1bprN3jUqORYOFGDrZ9VwthhcdGbhgKRqLOejzMalRxrF6T0KALo6NhwNPbjs5ORfVeK0zbL//YFDpbUOlwmFgHLe+lPROTP+i2dvaCgAFlZWThx4gQOHjwIk8mEuXPnoqWlxdbmmWeewd69e/H++++joKAAly9fxn333ddjrF/84hd48MEHnW7A3LlzkZSUhFOnTmHjxo1Yt24d/vKXvzidm9lsxt133w2j0YjPPvsM77zzDnJzc/HKK694sokDLq+4GpnbTvf4YKvWtePNo+UMegJEb/+9qNa1I3PbaeQVV9uec3ZsOBr7zaPlyDlQ4nC5q6AH6Cz+6Ko/EVEg6VMBwytXriAhIQEFBQXIyMiATqdDfHw8tm/fjgceeAAAUFpainHjxqGwsBDTp0+3679u3Tp88MEHPa74bNq0CS+++CK0Wi2kUikA4Pnnn8cHH3yA0tJSh3P56KOPcM899+Dy5cu2q0ubN2/GmjVrcOXKFds4rgz0FR+zRcCsDYd7/WCj4KFRyXFszW0A4PGxIRYBpb+90+5rqzajGeNeyfO6PxHRUDBgBQx1Oh0AICams4z9qVOnYDKZMGfOHFubsWPHYuTIkSgsLHR73MLCQmRkZNgFK/PmzcOFCxfQ0NDgtM+ECRPsvlKbN28e9Ho9zp8/77CPwWCAXq+3+xtIJ8vrGfSQnWpdO06W13t1bFgE4N3CCrvnXvXgKo6j/kREgcbrwMdisWDVqlWYOXMmUlNTAcB2hSYqKsqubWJiIrRardtja7VauwDGOoZ1ma/65OTkQKVS2f5GjBjh9hx9obaJQQ/1VNvU7vWxUVnfave4oq7VSUv3+hMRBRqvA5+srCwUFxdj586dvpzPgMrOzoZOp7P9fffddwO6/oRIee+NKOgkRMq9PjaSYhR2j0fFKpy0dK8/EVGg8SrwWbFiBfbt24f8/HwMHz7c9rxarYbRaERjY6Nd+5qaGqjVarfHV6vVqKmp6TGGdZmv+shkMiiVSru/gTQ1OQYalRy8rzVZaVSdpQy8OTbEImBx+ii7517wIFPLUX8iokDjUeAjCAJWrFiB3bt34/Dhw0hOTrZbPnnyZEgkEhw6dMj23IULF1BVVYX09HS315Oeno6jR4/CZDLZnjt48CDGjBmD6Ohop33OnTuH2tpauz5KpRIpKf6ZphsiFmHtgs65MfghEYC1CzprNHlzbCyfndzjh8lh0hDckZLgdX8iokDj0btcVlYWtm3bhu3btyMyMhJarRZarRZtbW0AAJVKhUcffRSrV69Gfn4+Tp06hWXLliE9Pd0uo6usrAxFRUW2vkVFRSgqKoLRaAQAPPzww5BKpXj00Udx/vx5vPfee3j99dexevVq2xi7d+/G2LFjbY/nzp2LlJQULF68GF999RU+/vhjvPTSS8jKyoJMJuvTTupP81M12LQoDWqV/VcbGpUcT2TwgyhQiHqJXjQqOTYtSrOr4+Ps2HA09hMZzuvwbHlkisvgR9xLfyKiQOJROrvIybv31q1bsXTpUgDXChju2LHDroBh16+bbr31VhQUFPQYp7y8HKNGjQJgX8AwLi4OK1euxJo1a2xtc3NzsWzZMnSdfmVlJTIzM3HkyBGEh4djyZIleO211/y+gCHAys2s3MzKzURE3vLk87tPdXwCzWAGPkREROSdAavjQ0RERDSUMPAhIiKioMHAh4iIiIIGAx8iIiIKGgx8iIiIKGi4l+dN/crYYcG7hRWorG/FiGgFxqojUd9qtKUuv/dlFQouXIHRbEG4LAQLJg3D9/XtKL/aglCxCGqVFN9ebYPBZIYqTIIIWQiuNBlhNFsQJhGjocWAZpP9Oh+YrEF1owFaXed9oUSCBU1GwJriJ0Zn4TwBgFgMdNhnkmNCbCgut4ugb++AGAIEC2D8oXOoCLgxQYEavQGtJgEikQCDSUDXIcbFSnFdvApmiwXfXmmGrq0DZgGQhIggDw2BWiXHjepItLZ34PvGVnzf2A5dsxHtXXIQ18y7CeooBWoa23D0myvQtXegodkAiIDocCluHqYCxMCVJiPMZgtKLtWhpvXaAKvmJuMWTRz+9bUWX32vAwRg+vXRSIxUICZciqvNBpRc1uP7xlaoVXIo5RKYLRacrmpEm9GMKIUUz95+EzLGJbiXih4ug7HDjL8eK4eu3YSJw1V48e7xCJOGuH2sOCt70Ne+fRmXiGgoYTp7F4ORzp5zoARbPi2Hha/CkBUqFuHPD99iV3wQAPKKq7F+b0mvd1m/IyUBWx6Z0ut6HI2nUcmxdkFKj3V70heA1+MSEfkD1vHx0kAHPjkHSvDm0fJ+Xw8NjM1dKi/nFVcjc9tpuHty9Rb8OBvPek2me9Vnd/s6m5874xIR+QvW8RkCjB0WbPmUQU8geXn3WZgtAswWAev3lrgd9ADAwZJatBnNDpe5Gs/63Pq9JTA7uGzoTl9HehuXiGioYuAzSN4trODXWwHmSksHTpbX42R5fa9fbzny6oESh8/3Np4AoFrXjpPl9R73dcXVuEREQxV/3DxIKutbB3sK1A9qm7wLMgCgos7xMeHumI7a9WU+vhyDiMhfMPAZJEkxisGeAvWDhEjXd1J3ZVSs42PC3TEdtevLfHw5BhGRv+BXXYNkcfooMFs4sMSHh2Jqcued1jUqOTx9eV+4K8Xh872NJ0JnFtbU5BiP+7rialwioqGKgc8gkYaKsXx28mBPg3zotz+9GSFiEULEIluauLsBxx0pCU7r+bgaz/p47YIUh3V33OnrzbhEREMVA59BlH1XCp7ISOaVnyEuVCyyS2UHgPmpGmxalAa1qvevidyp4+NsPLVK3mvKuau+mxelYbOX4xIRDUWs49PFYBQwBFi5mZWbWbmZiKgvWMDQS4MV+BAREZH3WMCQiIiIyAEGPkRERBQ0GPgQERFR0GDgQ0REREGDlZsHgdki4MTFOhR+exWACGkjo/HJ11qc+14HpVyCx2ePxqyb4hEiFqHNaMbLe85i/9lqdFgEJEUr8I8nZyJCHop3PqvAFxV1CJOEIlwWAqPZjCOlV2DssEAaKsaPxyXgpgQlRkSFYe2eM6hp6fwdu0QMzB8Xj3PVzWg2dCA6XIoRKjmOfFNny7waHS1BVEQ4xCILzlTp0f32mavnXo+wUAkaW00QBKC+1YBTlfVoajcjJiwU16sjMUwZhrIrzbjU0IJva1rRNbHs/7dwPLRNBggQoJRL0NhqxPcNbbh4pQktRguGRcmRcWM8YsOlKLrUCK2uHZW1OpTVGwF0Zo7l/fJHSE4It8uasggCTpTX4fuGNgyLkmPm9fGYfn0sAOBwsRYv7TuPZkMHhqnkeO/xGYiJkNpek+5ZTQCujR0hAwSgWteGvOJqaPUGRCkkWD57NNKvj8MXFfUovFgHQED66DhMvz7WYVZU1wy+pBgFFqePgjR0YP//0dcMLnf693eWGLPQiMhbzOrqYiCyuvKKq/H8rnNobDW5bCcNFWOsOgJnL+n7ZR7BRCENQauTO5/HR0jx23tTsX5vid3NPKMUEgDo9XVyJkohwWv3TbCrg5NzoARbPi23uzmtWAQsn52MbCdVm30tr7i6x7ZqVHKsXZDiVs0ed/r3dR39vQ1EFHiYzu6l/g588oqr8eS20z4fl/yXtbBhzoESvHm03Gm7JzL6P/jJK65G5rbT6H7CW6+T9Faw0J3+APq0jt70dRuIKDAxnd0PmS0C1n14frCnQQNs3Yfn0WY0Y8unzoMeANjyaTmM3atE+pDZImD93pIeAQNwrWjl+r0lMFsc/z/Inf7rPjyPdR96v47e9HUbiIgABj4D5mR5PbR6w2BPgwaYVm/AqwdK0NtnsUUA3i2s6Ld5nCyvt/tqqDsBQLWuHSfL673ur9UboNV7v47e9HUbiIgABj4DprbJ+Rs2BbaKula32lXWu9fOG+4ef87a+fL49Xasvm4DERHAwGfAJET2frNKCkyjYhVutUuKca+dN9w9/py18+Xx6+1Yfd0GIiKAgc+AmZocA7VSNtjToAGmVsrwwl0p6C3TWiwCFqeP6rd5TE2OgUYlh7NpiNCZGWVN4/emv1opg1rp/Tp609dtICICGPgMmBCxCOsWjh/saZAT/VUBZt3CzruvL5+d7LLd8tnJ/VrPJ0QswtoFnVlj3bfV+njtghSntXDc6b9u4XisW+j9OnrT120gIgIY+Ayo+akabF6UZqsR44osVIybh/MO8b4QLg1xuiw+QorNi9KgVtl/PRKlkLj1OjkTpZDYUtkBIPuuFDyRkdzjyo9YNDCp7EDn8bfJwbaqVXK30sDd6d/XdfT3NhAReVTHJycnB7t27UJpaSnCwsIwY8YMbNiwAWPGjLG1aW9vx7PPPoudO3fCYDBg3rx5eOONN5CYmGhrU1VVhczMTOTn5yMiIgJLlixBTk4OQkM7C0kvXboU77zzTo/1p6Sk4Px5xynhFRUVSE7u+b/qwsJCTJ8+3a3tG4gChgArNwOs3MzKzYO7DUQUWPqtgOH8+fPx0EMPYcqUKejo6MALL7yA4uJilJSUIDw8HACQmZmJ/fv3Izc3FyqVCitWrIBYLMbx48cBAGazGZMmTYJarcbGjRtRXV2NRx55BMuXL8err74KANDpdGhra7Ott6OjAxMnTsTKlSuxbt06h3OzBj6ffPIJxo+/9pVSbGwsJBL3/uc+UIEPERER+Y5Hn99CH9TW1goAhIKCAkEQBKGxsVGQSCTC+++/b2vz9ddfCwCEwsJCQRAE4cCBA4JYLBa0Wq2tzaZNmwSlUikYDAaH69m9e7cgEomEiooKp3MpLy8XAAhnzpzxent0Op0AQNDpdF6PQURERAPLk8/vPl1j1+l0AICYmM6vBU6dOgWTyYQ5c+bY2owdOxYjR45EYWEhgM6vniZMmGD31de8efOg1+udfo3117/+FXPmzEFSUlKvc1q4cCESEhIwa9YsfPjhhy7bGgwG6PV6uz8iIiIKXF4HPhaLBatWrcLMmTORmpoKANBqtZBKpYiKirJrm5iYCK1Wa2vTNeixLrcu6+7y5cv46KOP8Nhjj7mcT0REBP74xz/i/fffx/79+zFr1izce++9LoOfnJwcqFQq29+IESN63W4iIiIaukK97ZiVlYXi4mIcO3bMl/Pp4Z133kFUVBTuvfdel+3i4uKwevVq2+MpU6bg8uXL2LhxIxYuXOiwT3Z2tl0fvV7P4IeIiCiAeXXFZ8WKFdi3bx/y8/MxfPhw2/NqtRpGoxGNjY127WtqaqBWq21tampqeiy3LutKEAS8/fbbWLx4MaRSqcfznDZtGsrKypwul8lkUCqVdn9EREQUuDy64iMIAlauXIndu3fjyJEjPdLHJ0+eDIlEgkOHDuH+++8HAFy4cAFVVVVIT08HAKSnp+N3v/sdamtrkZCQAAA4ePAglEolUlLsa5kUFBSgrKwMjz76qFcbV1RUBI3Gf+p6WFNwLze24cvKOlzQNqG53QylLBTnvm+EwdJZiC0+XIKYCCmqdW1oabego9s4s0bJIJVF4turLbAIAuqbDGg2XUvOCwcglorQZHSesDdMDkjCZGgzWdAhAE1tJpg8uDn47CQ5ZqeMQvFlHS7Vt6KpzYCLV9tt6fAh6LxppAAgVIweYz8xWw2xOBxnLzWgzdiBdpMZ7SYztHojBAiID5diyugYVF5tg0UQoJSH4t/aBlxuujbQzNExmJQUjenJsRCLRKjRt+N0VT1q9AZEyEJxX9pwzLghDiFiEXStJvx8y3EUV7cAACQi4F/P3IrkhPAer4+nKdKepHdrdW2obzEiJqKzyvFgpGH7Q0o9EdFg8Sid/amnnsL27duxZ88eu9o9KpUKYWFhADrT2Q8cOIDc3FwolUqsXLkSAPDZZ58BuJbOPmzYMPz+97+HVqvF4sWL8dhjj9nS2a0WL16Mb775BidOnOgxlz//+c/YvXs3Dh06BKDzKzGpVIpbbrkFALBr1y68/PLLeOutt7Bs2TK3tq8/09nziquxfm+Jy7tLk++FS0OgkIbgSrPR4XKxCPg2526Hr49GJcfaBSkui+K508/Va+/OOnwp50AJtnxabne3eLGos3L0QBRRJCLqD/1Wx0ckcvw/061bt2Lp0qUArhUw3LFjh10Bw65fY1VWViIzMxNHjhxBeHg4lixZgtdee81WwBDozBjTaDR4/fXXsXz58h7rXLduHXJzc1FRUQGgM/DZsGEDKisrERoairFjx+K5557DAw884O7m9Vvgk1dcjcxtp+H2jqYBZT2qu78+1uedVQR29rp27Qeg19de5GIdvpRzoARvHi13unygKkgTEflavwU+ga4/Ah+zRcCsDYd5pWeIEqHzdgjH1txm95VUb6+rCECiUgZABK3e9WvvbB2+ZOywYOzLH9ld6elOLAJKf3snv/YioiHHk89vvsP1s5Pl9Qx6hjABQLWuHSfL6+2e7+11FQBo9YZegx5X6/CldwsrXAY9AGAROtsREQUyBj79rLaJQU8g6P469sfr2p/HSmV9q0/bERENVQx8+llCpLz3RuT3ur+O/fG69uexkhSj8Gk7IqKhioFPP5uaHAONisHPUCVCZ+aV9W7tVtbX1dkvckQA1MrOlHVv1+FLi9NHobefD4lFne2IiAIZA59+FiIWYe2CFKcfkDT4RF3+uj8PAGsXpPT40bH1dYWLfusWjse6he699o7W4UvSUDGWz0522Wb57GT+sJmIAh7f5QbA/FQNNi1K45WfQRAuC0F8hPOq32IRUP7a3di0KA3qbq+PWiV3mWZufV1d9evttdf0sg5fyr4rBU9kJPe48iMWMZWdiIIH09m76M8ChgArN3fFys2s3ExE5Cus4+Ol/g58iIiIyPdYx4eIiIjIAQY+REREFDQY+BAREVHQYOBDREREQYOBDxEREQWN0MGeQLBxlNYcLgnBxo+/Rm2TERGyEEwcEQ2T2YIEpQwTh0eh8Jsa7CuuhckCyENFWD57FEbGRuLspUZYLAK+b2zD2e8aYbIISIyUYemsUfj6chNKtU1obDPCZOpAQ1sHmg0WiEVAYqQUe1ZkIF4pg9ki4MTFOnz6zRUc/eYKqnXtkIaIcNvYRLx4dwrOfa+DVteGi1o9Nn9ajg4BkIqBA0//CFdaDKhtakdcuAwdFgs+OPM9WoxmTBkVjSUz7Ivh6VpN+EXuSVzWtWOYSo63l05FhDzUlt5f9F0DzBYBV5oMSFDKMSo2HGMTI1HfZkRcuAwQAVV1zdh6vAJN7WYMi+ocQ6WQ9LqvrWnmKRolfvV+Eaoa2jAyOgx/+P8moaRa71H6urcp70RE5B+Yzt5Ff6ez5xVXY/3eEr+5W3uYRAyZJASNrSafjy0C8PgPRfF+tPEwKuvaerQJEQNmD2oHOZIUG4aC527r8bw3+1qjkmPtghSnxQQdjdlbHyIi6n+s4+Ol/gx88oqrkbntNIJtZyvlodC3dy/B6Fvdgx9v97X1uo2jSsrOxnTVh4iIBgbr+PgZs0XA+r0lQRf0AOj3oAcAKuvaoPvhqlVf9rW1z/q9JTBbro3gakxnfYiIyD8x8BkAJ8vr/ebrrUD1i9yTAPq+rwUA1bp2nCyvtz3X25iO+hARkX9i4DMAapsY9PS3yz8EJr7a113HcXdMvs5ERP6Pgc8ASIjkXdn727Af7n7uq33ddRx3x+TrTETk/xj4DICpyTHQqPih2J/eXjoVwLV97W2CuQidmVpTk2Nsz/U2pqM+RETknxj4DIAQsQhrF6R4/WE8lCnl/V8qKik2zFbPx7qvAXi8v63t1y5IsavN42pMZ32IiMg/MfAZIPNTNdi0KM2vrvyEScSIclEAsC9EAJ7ISMbZdfOQFBvmsE2ID44+R3V8rPta7eG+VqvkTtPSnY3pqg8REfkf1vHpor8LGAKs3MzKzURE5GssYOilgQh8iIiIyLdYwJCIiIjIAQY+REREFDQY+BAREVHQYOBDREREQYOBDxEREQWN/q8uR3Yp0DFhUnyt1eOLinq0GjsQEybFlWYDyq40w2i2IFohxbzxasy8IQ7/rmnCxSvN+PSbK/i+0WAbb+cvpkMIgS2l+jpVGO7581G0GMyQhYrx9O034l8lWtTqDYhSSDFrdDTe+awSbZbO/iEA/vD/TQTEIlxtMqCupR3fXW3BF1WNaGrvQLgsBMumJ2P5rdcjRCzCsX9fwf/m/xunv9NBEDrT4Xc9NRvldS3Q6ttxRdeOc9834EJtC5TyUMwZm4jx16lQ32pEQqQck0ZE4Z3PyrHrzCWYzALSR8fihbs6U+Wt2zA5KRqnKhvs0sQB2KWOTxoRhe2fV6KyvhVJMQosTh9llzLfmzajGa8eKEFFXStGxSrwwl0pCJOG9HiNmKZORBS4PEpnz8nJwa5du1BaWoqwsDDMmDEDGzZswJgxY2xt2tvb8eyzz2Lnzp0wGAyYN28e3njjDSQmJtraVFVVITMzE/n5+YiIiMCSJUuQk5OD0NDOOOzIkSP48Y9/3GP91dXVUKvVTud39uxZZGVl4YsvvkB8fDxWrlyJX//61+5uXr+ks+cVV2P93pIhe3d2sQiwDEDBg+7rsRZWbGw1ueyzfHYysu9K6XX85X/7AgdLans8f0dKAu5PG97jNdKo5Fi7IIWFCYmIhoB+S2cvKChAVlYWTpw4gYMHD8JkMmHu3LloaWmxtXnmmWewd+9evP/++ygoKMDly5dx33332ZabzWbcfffdMBqN+Oyzz/DOO+8gNzcXr7zySo/1XbhwAdXV1ba/hIQElxs9d+5cJCUl4dSpU9i4cSPWrVuHv/zlL55sok/lFVcjc9vpIRv0AAMT9DhaT2OryWXQY+3z5tFy5BwocdnOWdADAAdLavGkg9dIq2tH5rbTyCuu7n3yREQ0ZPSpgOGVK1eQkJCAgoICZGRkQKfTIT4+Htu3b8cDDzwAACgtLcW4ceNQWFiI6dOn46OPPsI999yDy5cv264Cbd68GWvWrMGVK1cglUptV3waGhoQFRXl1lw2bdqEF198EVqtFlKpFADw/PPP44MPPkBpaalbY/jyio/ZImDWhsNDOugZKsQioPS3dzr82qvNaMa4V/K8GleEzltSHFtzG7/2IiLyYwNWwFCn0wEAYmI6f49x6tQpmEwmzJkzx9Zm7NixGDlyJAoLCwEAhYWFmDBhgt1XX/PmzYNer8f58+ftxp80aRI0Gg3uuOMOHD9+3OVcCgsLkZGRYQt6rONeuHABDQ0NDvsYDAbo9Xq7P185WV7PoGeAWATg3cIKh8te7eVqkCsCgGpdO06W13s9BhER+RevAx+LxYJVq1Zh5syZSE1NBQDb1ZbuV2kSExOh1WptbboGPdbl1mUAoNFosHnzZvzzn//EP//5T4wYMQK33norTp8+7XQ+7ozbXU5ODlQqle1vxIgRbm5972qbGPQMpMr6VofPV9Q5ft4TfC2JiAKH11ldWVlZKC4uxrFjx3w5HwDAmDFj7H4wPWPGDFy8eBF/+tOf8O677/psPdnZ2Vi9erXtsV6v91nwkxDpP3dhDwZJMQqHz4+KVeDTb/o2Nl9LIqLA4dUVnxUrVmDfvn3Iz8/H8OHDbc+r1WoYjUY0Njbata+pqbFlY6nVatTU1PRYbl3mzNSpU1FWVuZ0uTfjymQyKJVKuz9fmZocA41KDv4ypP+JRcDi9FEOl73gRsaXMyJ0ZndZU+uJiGjo8yjwEQQBK1aswO7du3H48GEkJyfbLZ88eTIkEgkOHTpke+7ChQuoqqpCeno6ACA9PR3nzp1Dbe21LJuDBw9CqVQiJcX5h1RRURE0Guepxenp6Th69ChMpmuZQAcPHsSYMWMQHR3tyWb6RIhYhLULOreHwU//Wj472Wk9nzBpCO5IcZ4NaNX9NbI+XrsghT9sJiIKIB4FPllZWdi2bRu2b9+OyMhIaLVaaLVatLW1AQBUKhUeffRRrF69Gvn5+Th16hSWLVuG9PR0TJ8+HQAwd+5cpKSkYPHixfjqq6/w8ccf46WXXkJWVhZkMhkA4L//+7+xZ88elJWVobi4GKtWrcLhw4eRlZVlm8uf//xn3H777bbHDz/8MKRSKR599FGcP38e7733Hl5//XW7r7IG2vxUDTYtSoNaNXS/Khmoz/zu64lSSGy1fFz1eSKj9zo+Wx6Z4jT4uSMlAZsdvEZqlRybFqWxjg8RUYDx6Dc+mzZtAgDceuutds9v3boVS5cuBQD86U9/glgsxv33329XwNAqJCQE+/btQ2ZmJtLT0xEeHo4lS5bgN7/5ja2N0WjEs88+i++//x4KhQI333wzPvnkE7uihlevXsXFixdtj1UqFf71r38hKysLkydPRlxcHF555RU8/vjjnmyiz81P1eCOFDUrNw9y5eYtj0xxWbm562vEys1ERIGrT3V8Ak1/VG4mIiKi/jVgdXyIiIiIhhIGPkRERBQ0GPgQERFR0GDgQ0REREGDgQ8REREFDa9vWUHeM1sEu9TpG+Ij8PBbhbjc2A5pqBg/vWUYfjwmERaLgF1nvkdRVR0qGzrT2UNFwO9/OgEiSQjqmw1QykNx5rsGXKhphiAA0QoJEpRyhIpFmDQ8CmpVGDrMFrz3ZRWOldVBEATcmBCOrcumQ/VDnRyzRcCJi3Uo/PYqABHSr4/F9NGxtnTurssFAYhSSBEXIe28lYMIuNps6DUFvPs2e5Mu7iodPVD4Yj8REZFzTGfvYiDS2fOKq7F+b4lf3Lk9KTYM2XeOw/O7zqGx1WS3LEohwWv3TQAAh8sd0ajkWLsgpUfRP0fb7KytM8v/9gUOltT2eP6OlARseWSKW2P4O1/sJyKiYOTJ5zcDny76O/DJK65G5rbTCNQdbr0u0bXisbNtdtTWGWdBj1UgBD++2E9ERMGKdXz8kNkiYP3ekoANegDYtm393hKYLYLLbe7e1pk2o9ll0AMAB0tq0WY0ezVnf+CL/URERO5h4DNATpbX+8XXW/1NAFCta8fJ8vpet7lrW2dePVDi1nrdbeePfLGfiIjIPfxx8wCpbQr8oKcrT7bXVduKula3xnC3nT9yd18F2zFERNQfeMVngCREDt07tHsjIVLu9ja7ajcqVuHWGO6280e+2E9EROQeBj4DZGpyDDQqOQI9MVmEzkykqckxvW5z17bOvHBXilvrdbedP/LFfiIiIvcw8BkgIWIR1i7o/HAO1ODHul1rF6QgRCxyuc3d2zoTJg3BHSkJLtd7R0rCkK7n44v9RERE7mHgM4Dmp2qwaVEa1Cr/+MoiKTYMmxelIeqHQoZdRSsk2LwozelyR9QqeY+0a2fb7KitM1semeI0+AmEVHbAN/uJiIh6xzo+XQxEAUOAlZtZudk5Vm4mIvIcCxh6aaACHyIiIvIdFjAkIiIicoCBDxEREQUNBj5EREQUNBj4EBERUdDgLSsGgdki4MS3dSi82JllpZCF4LOyOujbTZhwnQrzxqvR2GZCXIQMRqMZb+RfwKlLTRAEICZcgv0rM6COktvGsmYBxYXL7LKsJidFo7DsKt4o+AbF3+thNAsIl4hxy8ho3DlhGJraTYgJl0KtCus1e8jYYcG7hRWorG9FUowCi9NHQRp6LW52lY3kq0wlZjwREVFfMauri4HI6sorrsbzu86hsdXUp3HCJGL86cFJWL+3xCc3P9Wo5Fi7IMVhvZicAyXY8mk5ut4cXCwCls9ORvZdKcgrru4xD+t4AJwu86Q2jat1sMYNEVFwYzq7l/o78MkrrsaT2077fFxfEQE9iuXlHCjBm0fLnfa5IyUBn5TUovtBJAJ6PNd1GRysy5m84mpkbjvtcB2ejENERIGJ6ex+yGwRsO7DksGehksCOq/OmH+4tGPssGDLp86DHgA46CDosY7laj3oti5nzBYB6/eWuFyHO+MQEREBDHwGzMnyemj1ff9Kqr9V69pxsrweAPBuYQX6K54Quq3LmZPl9S6/ynN3HCIiIoCBz4CpbfL/oMfKOtfK+tYBW5e3yz1tR0REwY2BzwBJiPSPG5O6wzrXpBjFgK3L2+WetiMiouDGwGeATE2OgVrp/x/OGlVnmjgALE4fhf7KFhd1W5czU5NjoFHJ4Wwa7o5DREQEMPAZMCFiEdYtTPH5uL6MS0QA1i5IsdXGkYaKsXx2sss+d6QkQORgHiIn/+76uOu6nAkRi2xp8X0Zh4iICGDgM6Dmp2qweVEaohSSPo8VJhFj86I0qFW+uYqkUckdpoVn35WCJzKSe1z5EYuAJzKSseWRKdjkYB5qlRybF6U5nKPaybqcmZ+qcboOprITEZEnPKrjk5OTg127dqG0tBRhYWGYMWMGNmzYgDFjxtjatLe349lnn8XOnTthMBgwb948vPHGG0hMTLS1qaqqQmZmJvLz8xEREYElS5YgJycHoaGdhaR37dqFTZs2oaioCAaDAePHj8e6deswb948p3OrqKhAcnLPqxOFhYWYPn26W9s3EAUMAVZuZuVmIiLypX4rYDh//nw89NBDmDJlCjo6OvDCCy+guLgYJSUlCA8PBwBkZmZi//79yM3NhUqlwooVKyAWi3H8+HEAgNlsxqRJk6BWq7Fx40ZUV1fjkUcewfLly/Hqq68CAFatWoVhw4bhxz/+MaKiorB161b84Q9/wOeff45bbrnF4dysgc8nn3yC8ePH256PjY2FROLeFZaBCnyIiIjIdwascvOVK1eQkJCAgoICZGRkQKfTIT4+Htu3b8cDDzwAACgtLcW4ceNsV14++ugj3HPPPbh8+bLtKtDmzZuxZs0aXLlyBVKp1OG6xo8fjwcffBCvvPKKw+XWwOfMmTOYNGmSV9vDwIeIiGjoGbDKzTqdDgAQE9OZUXPq1CmYTCbMmTPH1mbs2LEYOXIkCgsLAXR+9TRhwgS7r77mzZsHvV6P8+fPO1yPxWJBU1OTbT2uLFy4EAkJCZg1axY+/PBDl20NBgP0er3dHxEREQUurwMfi8WCVatWYebMmUhNTQUAaLVaSKVSREVF2bVNTEyEVqu1teka9FiXW5c58oc//AHNzc342c9+5nQ+ERER+OMf/4j3338f+/fvx6xZs3Dvvfe6DH5ycnKgUqlsfyNGjOh1u4mIiGjoCvW2Y1ZWFoqLi3Hs2DFfzqeH7du3Y/369dizZw8SEhKctouLi8Pq1attj6dMmYLLly9j48aNWLhwocM+2dnZdn30ej2DHyIiogDm1RWfFStWYN++fcjPz8fw4cNtz6vVahiNRjQ2Ntq1r6mpgVqttrWpqanpsdy6rKudO3fisccewz/+8Q+7r8/cNW3aNJSVlTldLpPJoFQq7f6IiIgocHl0xUcQBKxcuRK7d+/GkSNHeqSPT548GRKJBIcOHcL9998PALhw4QKqqqqQnp4OAEhPT8fvfvc71NbW2q7gHDx4EEqlEikp1wr87dixA7/4xS+wc+dO3H333V5tXFFRETQa/6jx0jUVO0YhRam2Cd81tGJEtAKjosLw+pEy1OjbES4LwR0pibh1TCKmj44FABy7cAV/OfYtLuvaMEwVhsdnjcasMfEIEYscpngDuJbiHiGDxSLgeNlVHCu7CgCYNCIKL96dgjBpiIdz1uO7hjaH6eyebL+3qei9pdQTERH1xqOsrqeeegrbt2/Hnj177Gr3qFQqhIWFAehMZz9w4AByc3OhVCqxcuVKAMBnn30G4Fo6+7Bhw/D73/8eWq0WixcvxmOPPWZLZ9++fTuWLFmC119/Hffdd59tPWFhYVCpVACAP//5z9i9ezcOHToEAHjnnXcglUpt6e67du3Cyy+/jLfeegvLli1za/v6K6srr7ga6/eWuLzLuCPh0hAYOizocHCLdGmoGMtmJOHDr6rtxrUWR2xsNfU6/h0pCdjyyBSv5iwWActnJyP7rt6rUTsaS6OSY+2CFLeLD+YcKMGWT8vt7hbvyRyIiChw9Vs6u0jk+H/oW7duxdKlSwFcK2C4Y8cOuwKGXb/GqqysRGZmJo4cOYLw8HAsWbIEr732mq2A4a233oqCgoIe61myZAlyc3MBAOvWrUNubi4qKioAdAY+GzZsQGVlJUJDQzF27Fg899xztrR6d/RH4JNXXI3Mbafhdc2AfuYo+PFkzk9kuA48nI1lPZLcqbycc6AEbx4t93oOREQU2Aasjk+g8XXgY7YImLXhsMdXegba17+Zb/vay9M5i0VA6W/vdPiVU29jidB524lja25z+rWXscOCsS9/BAcXvdyaAxERBb4Bq+NDrp0sr/f7oAcAXj1QYvu3p3O2CMC7hRUOl/U2lgCgWteOk+X1Ttu8W1jhMujpbQ5ERERdMfDpR7VN/h/0AEBFXavt397MubK+1eHz7o7lqp2zsb1tR0REwY2BTz9KiPTNndP726hYhe3f3sw5KUbh8Hl3x3LVztnY3rYjIqLgxsCnH01NjoFGJYe/3z/8hS4/DPZ0zmIRsDh9lMNlvY0lQmd2lzUF35HF6aPQW9a7qzkQERF1xcCnH4WIRVi7oDOo8Nfg546UBLt6Pp7OefnsZKc/KnY1lvXx2gUpLuv5SEPFWD472eny3uZARETUFT8t+tn8VA02LUqDWuX5V0jhshCEOgkKpKFiPJGRDE23caMUElstn944q+PjzpzFIvfSyJ2NpVbJ3UplB4Dsu1LwREZyjys/7s6BiIjIiunsXfRXAUOAlZtZuZmIiPoL6/h4qT8DHyIiIuofrONDRERE5AADHyIiIgoaDHyIiIgoaDDwISIioqDBwIeIiIiCRuhgT4B6MlsEnPi2DoUX6wAImDYqFuIQEa42G9xKBe8txd3bdHIiIqKhjoGPn8krrsbzu86hsdVke+7PuGjXRqOSY+2CFIfF//KKq7F+b4ndXdGtBQ27julqDCIiokDFr7r8SF5xNZ7cdtouQHFEq2tH5rbTyCuu7tE/c9tpu6AH6Ax4uo/pbAwiIqJAxsDHT5gtAtZ9WOJWW2vFyfV7S2C2CLb+6/eWwN1qlI7GICIiCnQMfPzEyfJ6aPXtvTf8gQCgWteOk+X1tv7dr/R4OgYREVGgY+DjJ2qbPAtauvfztn9f+xIREQ0lDHz8REKk53dv79rP2/597UtERDSUMPDxE1OTY6BWuh+AiNCZmWVNVZ+aHAONSg5PEtS7j0FERBToGPj4iRCxCOsWprjV1hrcrF2QYqvFEyIWYe2CFLvlno5BREQU6Bj4+JH5qRpsXpRmq7vjjFolx6ZFaT1q8MxP1WDTojSoVfZXjqIUkh5jOhuDiIgokIkEQWAu8w/0ej1UKhV0Oh2USuWgzYOVm4mIiNznyec3A58u/CXwISIiIvd58vnNr7qIiIgoaDDwISIioqDBwIeIiIiCBgMfIiIiChoMfIiIiChohA72BMhx+rmrVHNjhwXvFlagsr4VSTEKLE4fBWmo4xjW07F9NUciIiJ/5NEVn5ycHEyZMgWRkZFISEjAvffeiwsXLti1aW9vR1ZWFmJjYxEREYH7778fNTU1dm2qqqpw9913Q6FQICEhAc899xw6Ojrs2hw5cgRpaWmQyWS44YYbkJub2+v8zp49i9mzZ0Mul2PEiBH4/e9/78nmDYq84mrM2nAY/7nlBH65swj/ueUEZm04jLziaoftcw6UYOzLH+G3+7/G3wor8dv9X2Psyx8h50BJn8f21RyJiIj8lUeBT0FBAbKysnDixAkcPHgQJpMJc+fORUtLi63NM888g7179+L9999HQUEBLl++jPvuu8+23Gw24+6774bRaMRnn32Gd955B7m5uXjllVdsbcrLy3H33Xfjxz/+MYqKirBq1So89thj+Pjjj53OTa/XY+7cuUhKSsKpU6ewceNGrFu3Dn/5y1882cQBlVdcjcxtp1Gts787ulbXjsxtp3sEFjkHSvDm0XJYulVesgjAm0fL7YIfT8f21RyJiIj8WZ8KGF65cgUJCQkoKChARkYGdDod4uPjsX37djzwwAMAgNLSUowbNw6FhYWYPn06PvroI9xzzz24fPkyEhMTAQCbN2/GmjVrcOXKFUilUqxZswb79+9HcXGxbV0PPfQQGhsbkZeX53AumzZtwosvvgitVgupVAoAeP755/HBBx+gtLTUre0ZyAKGZouAWRsO9wgorETovK3EsTW3IUQsgrHDgrEvf9Qj6OlKLAJKf3snQsQij8b21RyJiIgGw4AVMNTpdACAmJjOWyKcOnUKJpMJc+bMsbUZO3YsRo4cicLCQgBAYWEhJkyYYAt6AGDevHnQ6/U4f/68rU3XMaxtrGM4UlhYiIyMDFvQY+1z4cIFNDQ0OOxjMBig1+vt/gbKyfJ6pwEFAAgAqnXtOFleDwB4t7DCZdADdF75ebewwuOxfTVHIiIif+d14GOxWLBq1SrMnDkTqampAGC72hIVFWXXNjExEVqt1tama9BjXW5d5qqNXq9HW1ubw/m4M253OTk5UKlUtr8RI0b0ttk+U9vkPKBw1K6yvtWt9pX1rR6P7e1yT9sRERENNq8Dn6ysLBQXF2Pnzp2+nM+Ays7Ohk6ns/199913A7buhEh57426tEuKUbjVPilG4fHY3i73tB0REdFg8yrwWbFiBfbt24f8/HwMHz7c9rxarYbRaERjY6Nd+5qaGqjValub7lle1se9tVEqlQgLC3M4J3fG7U4mk0GpVNr9DZSpyTHQqORw9ssYEQCN6tqd1Renj0JvP6MRizrbeTq2r+ZIRETk7zwKfARBwIoVK7B7924cPnwYycnJdssnT54MiUSCQ4cO2Z67cOECqqqqkJ6eDgBIT0/HuXPnUFtba2tz8OBBKJVKpKSk2Np0HcPaxjqGI+np6Th69ChMJpNdnzFjxiA6OtqTzRwQIWIR1i7o3N7ugYX18doFKbYfDUtDxVg+OxmuLJ+dDGmo2OOxfTVHIiIif+dR4JOVlYVt27Zh+/btiIyMhFarhVartf3uRqVS4dFHH8Xq1auRn5+PU6dOYdmyZUhPT8f06dMBAHPnzkVKSgoWL16Mr776Ch9//DFeeuklZGVlQSaTAQCefPJJfPvtt/j1r3+N0tJSvPHGG/jHP/6BZ555xjaXP//5z7j99tttjx9++GFIpVI8+uijOH/+PN577z28/vrrWL16dZ93Un+Zn6rBpkVpUKvsvypSq+TYtCgN81M1ds9n35WCJzKSe1z5EYuAJzKSkX1Xitdj+2qOREREfk3wADoTeXr8bd261damra1NeOqpp4To6GhBoVAIP/3pT4Xq6mq7cSoqKoQ777xTCAsLE+Li4oRnn31WMJlMdm3y8/OFSZMmCVKpVBg9erTdOgRBENauXSskJSXZPffVV18Js2bNEmQymXDdddcJr732miebJ+h0OgGAoNPpPOrXVx1mi/BZ2VXhgzOXhM/KrgodZovL9gaTWXjr6EXh5Q/OCW8dvSgYTGafjd3f4xAREfmaJ5/ffarjE2gGso4PERER+caA1fEhIiIiGkoY+BAREVHQYOBDREREQYOBDxEREQUNBj5EREQUNBj4EBERUdBg4ENERERBg4EPERERBQ0GPkRERBQ0GPgQERFR0GDgQ0REREGDgQ8REREFDQY+REREFDQY+BAREVHQYOBDREREQYOBDxEREQUNBj5EREQUNBj4EBERUdBg4ENERERBg4EPERERBQ0GPkRERBQ0Qgd7AtQ7Y4cF7xZWoKKuFYCAScOjMCxaganJMQgRi3rtb7YIOFlej9qmdiREyt3uR0REFGgY+Pi5nAMl2PJpOSzCtefeRRUAQKOSY+2CFMxP1Tjtn1dcjfV7S1Cta7c9504/IiKiQMSvuvxYzoESvHnUPujpqlrXjsxtp5FXXO1weV5xNTK3nbYLegBA20s/IiKiQMXAx08ZOyzY8ml5r+0EAOv3lsDcLToyWwSs31sCRzGT9TlH/YiIiAIZAx8/9W5hhdMrPd1V69pxsrze7rmT5fU9rvR0JTjpR0REFMgY+PipyvpWj9rXNrW7fOxuPyIiokDGwMdPJcUoPGqfECl3+djdfkRERIGMgY+fWpw+Cu5mnGtUnSnqXU1NjoFGJYezIURO+hEREQUyBj5+ShoqxvLZyb22EwFYuyClR12eELEIaxek2Np07wMn/YiIiAIZAx8/ln1XCp7ISHZ65UejkmPTojSn9Xjmp2qwaVEa1Cr7r7PUvfQjIiIKVB4HPkePHsWCBQswbNgwiEQifPDBB3bLa2pqsHTpUgwbNgwKhQLz58/HN998Y9fm4sWL+OlPf4r4+HgolUr87Gc/Q01NjW35kSNHIBKJHP598cUXTud266239mj/5JNPerqJfiX7rhSU/vZOvHz3OCyenoTF00fijw/cjB3Lp+PYmtt6DV7mp2pwbM1t2LF8Ol5/aJLb/YiIiAKRx5WbW1paMHHiRPziF7/AfffdZ7dMEATce++9kEgk2LNnD5RKJf7rv/4Lc+bMQUlJCcLDw9HS0oK5c+di4sSJOHz4MADg5ZdfxoIFC3DixAmIxWLMmDED1dX2xfVefvllHDp0CP/xH//hcn7Lly/Hb37zG9tjhcKzHwn7I2moGI/OHu11/xCxCOnXx/pwRkREREOTx4HPnXfeiTvvvNPhsm+++QYnTpxAcXExxo8fDwDYtGkT1Go1duzYgcceewzHjx9HRUUFzpw5A6VSCQB45513EB0djcOHD2POnDmQSqVQq9W2cU0mE/bs2YOVK1dCJHL9mxSFQmHXl4iIiMjKp7/xMRgMAAC5/NpvSsRiMWQyGY4dO2ZrIxKJIJPJbG3kcjnEYrGtTXcffvgh6urqsGzZsl7n8Pe//x1xcXFITU1FdnY2Wlud18MxGAzQ6/V2f0RERBS4fBr4jB07FiNHjkR2djYaGhpgNBqxYcMGXLp0yfbV1fTp0xEeHo41a9agtbUVLS0t+NWvfgWz2dzj6y2rv/71r5g3bx6GDx/ucv0PP/wwtm3bhvz8fGRnZ+Pdd9/FokWLnLbPycmBSqWy/Y0YMcL7jSciIiK/59PARyKRYNeuXfj3v/+NmJgYKBQK5Ofn484774RY3Lmq+Ph4vP/++9i7dy8iIiKgUqnQ2NiItLQ0W5uuLl26hI8//hiPPvpor+t//PHHMW/ePEyYMAE///nP8be//Q27d+/GxYsXHbbPzs6GTqez/X333Xd92wFERETk1zz+jU9vJk+ejKKiIuh0OhiNRsTHx2PatGl2P0qeO3cuLl68iKtXryI0NBRRUVFQq9UYPbrnD3i3bt2K2NhYLFy40OO5TJs2DQBQVlaG66+/vsdymUxm95UbERERBbZ+q+OjUqkQHx+Pb775Bl9++SV+8pOf9GgTFxeHqKgoHD58GLW1tT2CG0EQsHXrVjzyyCOQSCQez6GoqAgAoNEwdZuIiIi8uOLT3NyMsrIy2+Py8nIUFRUhJiYGI0eOxPvvv4/4+HiMHDkS586dwy9/+Uvce++9mDt3rq3P1q1bMW7cOMTHx6OwsBC//OUv8cwzz2DMmDF26zp8+DDKy8vx2GOP9ZjH999/j9tvvx1/+9vfMHXqVFy8eBHbt2/HXXfdhdjYWJw9exbPPPMMMjIycPPNN3u6mURERBSAPA58vvzyS/z4xz+2PV69ejUAYMmSJcjNzUV1dTVWr16NmpoaaDQaPPLII3j55Zftxrhw4QKys7NRX1+PUaNG4cUXX8QzzzzTY11//etfMWPGDIwdO7bHMpPJhAsXLtiytqRSKT755BP893//N1paWjBixAjcf//9eOmllzzdRCIiIgpQIkEQhMGehL/Q6/VQqVTQ6XS2GkNERETk3zz5/Pb5j5uHMmsMyHo+REREQ4f1c9udazkMfLpoamoCANbzISIiGoKampqgUqlctuFXXV1YLBZcvnwZkZGRvd4aw1N6vR4jRozAd999x6/R+oD70Te4H32D+9E3uB99J1j3pSAIaGpqwrBhwxzWBOyKV3y6EIvFvVaH7iulUhlUB2N/4X70De5H3+B+9A3uR98Jxn3Z25Ueq36r40NERETkbxj4EBERUdBg4DNAZDIZ1q5dy1tk9BH3o29wP/oG96NvcD/6Dvdl7/jjZiIiIgoavOJDREREQYOBDxEREQUNBj5EREQUNBj4EBERUdBg4OOmdevWQSQS2f11vWt8e3s7srKyEBsbi4iICNx///2oqamxG6Oqqgp33303FAoFEhIS8Nxzz6Gjo8OuzZEjR5CWlgaZTIYbbrgBubm5A7F5/ero0aNYsGABhg0bBpFIhA8++MBuuSAIeOWVV6DRaBAWFoY5c+bgm2++sWtTX1+Pn//851AqlYiKisKjjz6K5uZmuzZnz57F7NmzIZfLMWLECPz+97/vMZf3338fY8eOhVwux4QJE3DgwAGfb29/6W0/Ll26tMcxOn/+fLs2wb4fc3JyMGXKFERGRiIhIQH33nsvLly4YNdmIM/l//3f/8WoUaMgl8sxbdo0nDx50ufb3B/c2Y+33nprj+PxySeftGsT7PsRADZt2oSbb77ZVnAwPT0dH330kW05j8d+IJBb1q5dK4wfP16orq62/V25csW2/MknnxRGjBghHDp0SPjyyy+F6dOnCzNmzLAt7+joEFJTU4U5c+YIZ86cEQ4cOCDExcUJ2dnZtjbffvutoFAohNWrVwslJSXC//zP/wghISFCXl7egG6rrx04cEB48cUXhV27dgkAhN27d9stf+211wSVSiV88MEHwldffSUsXLhQSE5OFtra2mxt5s+fL0ycOFE4ceKE8Omnnwo33HCD8J//+Z+25TqdTkhMTBR+/vOfC8XFxcKOHTuEsLAw4c0337S1OX78uBASEiL8/ve/F0pKSoSXXnpJkEgkwrlz5/p9H/hCb/txyZIlwvz58+2O0fr6ers2wb4f582bJ2zdulUoLi4WioqKhLvuuksYOXKk0NzcbGszUOfyzp07BalUKrz99tvC+fPnheXLlwtRUVFCTU3NwOyMPnBnP/7oRz8Sli9fbnc86nQ623Lux04ffvihsH//fuHf//63cOHCBeGFF14QJBKJUFxcLAgCj8f+wMDHTWvXrhUmTpzocFljY6MgkUiE999/3/bc119/LQAQCgsLBUHo/NASi8WCVqu1tdm0aZOgVCoFg8EgCIIg/PrXvxbGjx9vN/aDDz4ozJs3z8dbM3i6f2BbLBZBrVYLGzdutD3X2NgoyGQyYceOHYIgCEJJSYkAQPjiiy9sbT766CNBJBIJ33//vSAIgvDGG28I0dHRtn0pCIKwZs0aYcyYMbbHP/vZz4S7777bbj7Tpk0TnnjiCZ9u40BwFvj85Cc/cdqH+7Gn2tpaAYBQUFAgCMLAnstTp04VsrKybI/NZrMwbNgwIScnx/cb2s+670dB6Ax8fvnLXzrtw/3oXHR0tPDWW2/xeOwn/KrLA9988w2GDRuG0aNH4+c//zmqqqoAAKdOnYLJZMKcOXNsbceOHYuRI0eisLAQAFBYWIgJEyYgMTHR1mbevHnQ6/U4f/68rU3XMaxtrGMEovLycmi1WrvtVqlUmDZtmt2+i4qKwn/8x3/Y2syZMwdisRiff/65rU1GRgakUqmtzbx583DhwgU0NDTY2gT6/j1y5AgSEhIwZswYZGZmoq6uzraM+7EnnU4HAIiJiQEwcOey0WjEqVOn7NqIxWLMmTMnIPaj1d///nfExcUhNTUV2dnZaG1ttS3jfuzJbDZj586daGlpQXp6Oo/HfsKblLpp2rRpyM3NxZgxY1BdXY3169dj9uzZKC4uhlarhVQqRVRUlF2fxMREaLVaAIBWq7U7MK3LrctctdHr9Whra0NYWFg/bd3gsW67o+3uul8SEhLsloeGhiImJsauTXJyco8xrMuio6Od7l/rGEPd/Pnzcd999yE5ORkXL17ECy+8gDvvvBOFhYUICQnhfuzGYrFg1apVmDlzJlJTUwFgwM7lhoYGmM1mh21KS0t9to0DwdF+BICHH34YSUlJGDZsGM6ePYs1a9bgwoUL2LVrFwDux67OnTuH9PR0tLe3IyIiArt370ZKSgqKiop4PPYDBj5uuvPOO23/vvnmmzFt2jQkJSXhH//4R0AGJDT0PPTQQ7Z/T5gwATfffDOuv/56HDlyBLfffvsgzsw/ZWVlobi4GMeOHRvsqQxpzvbj448/bvv3hAkToNFocPvtt+PixYu4/vrrB3qafm3MmDEoKiqCTqfD//3f/2HJkiUoKCgY7GkFLH7V5aWoqCjcdNNNKCsrg1qthtFoRGNjo12bmpoaqNVqAIBare7xS3zr497aKJXKgA2urNvuaLu77pfa2lq75R0dHaivr/fJ/rUuDzSjR49GXFwcysrKAHA/drVixQrs27cP+fn5GD58uO35gTqX4+LiEBISErD70ZFp06YBgN3xyP3YSSqV4oYbbsDkyZORk5ODiRMn4vXXX+fx2E8Y+HipubkZFy9ehEajweTJkyGRSHDo0CHb8gsXLqCqqgrp6ekAgPT0dJw7d87ug+fgwYNQKpVISUmxtek6hrWNdYxAlJycDLVabbfder0en3/+ud2+a2xsxKlTp2xtDh8+DIvFYnszTU9Px9GjR2EymWxtDh48iDFjxiA6OtrWJpj276VLl1BXVweNRgOA+xHoLJ2wYsUK7N69G4cPH+7xtd5AnctSqRSTJ0+2a2OxWHDo0KGA2I+OFBUVAYDd8Rjs+9EZi8UCg8HA47G/DPavq4eKZ599Vjhy5IhQXl4uHD9+XJgzZ44QFxcn1NbWCoLQmXI4cuRI4fDhw8KXX34ppKenC+np6bb+1pTDuXPnCkVFRUJeXp4QHx/vMOXwueeeE77++mvhf//3fwMinb2pqUk4c+aMcObMGQGA8F//9V/CmTNnhMrKSkEQOtPZo6KihD179ghnz54VfvKTnzhMZ7/llluEzz//XDh27Jhw44032qVhNzY2ComJicLixYuF4uJiYefOnYJCoeiRhh0aGir84Q9/EL7++mth7dq1QyYNWxBc78empibhV7/6lVBYWCiUl5cLn3zyiZCWlibceOONQnt7u22MYN+PmZmZgkqlEo4cOWKXZt3a2mprM1Dn8s6dOwWZTCbk5uYKJSUlwuOPPy5ERUXZZef4q972Y1lZmfCb3/xG+PLLL4Xy8nJhz549wujRo4WMjAzbGNyPnZ5//nmhoKBAKC8vF86ePSs8//zzgkgkEv71r38JgsDjsT8w8HHTgw8+KGg0GkEqlQrXXXed8OCDDwplZWW25W1tbcJTTz0lREdHCwqFQvjpT38qVFdX241RUVEh3HnnnUJYWJgQFxcnPPvss4LJZLJrk5+fL0yaNEmQSqXC6NGjha1btw7E5vWr/Px8AUCPvyVLlgiC0JnS/vLLLwuJiYmCTCYTbr/9duHChQt2Y9TV1Qn/+Z//KURERAhKpVJYtmyZ0NTUZNfmq6++EmbNmiXIZDLhuuuuE1577bUec/nHP/4h3HTTTYJUKhXGjx8v7N+/v9+229dc7cfW1lZh7ty5Qnx8vCCRSISkpCRh+fLlPd60gn0/Otp/AOzOs4E8l//nf/5HGDlypCCVSoWpU6cKJ06c6I/N9rne9mNVVZWQkZEhxMTECDKZTLjhhhuE5557zq6OjyBwPwqCIPziF78QkpKSBKlUKsTHxwu33367LegRBB6P/UEkCIIwcNeXiIiIiAYPf+NDREREQYOBDxEREQUNBj5EREQUNBj4EBERUdBg4ENERERBg4EPERERBQ0GPkRERBQ0GPgQERFR0GDgQ0REREGDgQ8REREFDQY+REREFDQY+BAREVHQ+P8DYR0Ts755bqQAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAGdCAYAAAD+JxxnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABw9UlEQVR4nO3de3hTdb42/DspPUPTlkLTcixnSoEKClQQH7FIhREYnXcE0UFlcECYR8FRQEVgmL1R3DOoA4o6KvsZBjzsrYKgHTmICJaDQIFSQKgFFJoiPSTQM816/6grJGmStZKsJCvJ/bkuvKRZWVkNbfLN7/c9aARBEEBEREQUhrSBvgAiIiKiQGEgRERERGGLgRARERGFLQZCREREFLYYCBEREVHYYiBEREREYYuBEBEREYUtBkJEREQUttoE+gLUzGw249KlS2jXrh00Gk2gL4eIiIhkEAQBV69eRXp6OrRa12s+DIRcuHTpErp06RLoyyAiIiIP/Pjjj+jcubPLYxgIudCuXTsALU9kQkJCgK+GiIiI5DCZTOjSpYvlfdwVBkIuiNthCQkJDISIiIiCjJy0FiZLExERUdhiIERERERhi4EQERERhS0GQkRERBS2GAgRERFR2GIgRERERGGLgRARERGFLQZCREREFLbYUDHMNZsFHCitxOWr9ejYLgbDMpIRoeVcNSIiCg8MhMJYflEZln1WjDJjveVraboYLLknE3lZaQG8MiIiIv/g1liYyi8qw+z1h22CIAAwGOsxe/1h5BeVBejKiIiI/IeBUBhqNgtY9lkxBAe3iV9b9lkxms2OjiAiIgodDITC0IHSylYrQdYEAGXGehworXR6TLNZQEFJBTYVXkRBSQWDJiIiCkrMEQpDl686D4LkHMfcIiIiChVcEQoQb1ZUvF2N6dguxuPjmFtEREShhCtCAeDNiooSqzHDMpKRpouBwVjvME9IA0CvaymltyaVW6RBS27R2Ew9S/CJiCgocEXIz7xZUVFqNSZCq8GSezIBtAQv1sS/L7kns1Uwo0RuERERkZowEPIjb6q1lK70ystKwxsPDoFeZ7v9pdfF4I0HhzhcXfI2t4iIiEhtuDXmR+6sqOT0bK/YfZ3Jy0rD2Ey97M7S3uQWERERqREDIT/yZkXFV6sxEVqN7MDJ09wiIiIiteLWmB95s6KihtUYT3OLiIiI1IqBkB+JKyrOwgQNWirAHK2oeHNfJXmSW0RERKRW3BrzI3FFZfb6w9AANttLUisq3txXae7mFhEREamVRhAEzkZwwmQyQafTwWg0IiEhQbHzBrqPEBERUShz5/2bgZALvgqEgJZyeE9XVLy5LxERUahz5/2bW2MB4k61lpL3FTGYIiIiYiAUFMSgxWCsQ2VNI5LbRkOf4Hnwwu01IiKiFgyEVM5R0CLyJHgRx3TY74eKYzpY+UVEROGE5fMq5my2mKjMzRljSo/pICIiCnYMhFTKVdBiT27wwqGpREREthgIqZRU0CJyJ3jh0FQiIiJbzBFSAUcVXO4GI3KOV8OYDiIiIjVhIBRgziq4ptzS1a3zyAleODSViIjIFrfGAshZMrTBWI9Xtn+PxLhIyXO4M2OMQ1OJiIhsMRAKEDkVXHLDEXeCFw5NJSIiuoFbYwEip4KrqrYJ83J74/2DPyrWRwjw79BUdrAmIiI1YyAUIHKTobunxGPPgjGKdpYGlBnTIYUdrImISO0YCAWI3MqsK1cbsOXYJXRsF4OJ2Z2cBj5qW3lhB2siIgoGDIQCRKqCCwC0GmD51pOWvztbTVHbyotU/pMGLU0gx2bquU1GREQBxWTpAHFVwSWybxZtcDBSw1XlmTvjN5TEDtZERBQsGAgFkLMKLmeLJPbzwNQ6O4wdrImIKFhwayzA7Cu4rlxtsNkOs2e/miJ35cXXidHW/NXBWm15UUREFHwYCKmAdQXXpsKLsu7jzmqKv1de/NHBWm15UUREFJy4NaYy7qymqHV2mK87WKsxL4qIiIITAyGVqappdJojBNiO1BBXXpwd7s74DaX5qoO1WvOiiIgoOHFrTEXyi8owZ0Pr3jv2rFdTltyTidnrD0MD2NxPauXFH/k1vuhg7U5Fmj/zooiIKDgxEFIJVysdIq0GWD31JpvVFHHlxT5fRu8iX8af+TVKd7BmRRoRESmJgZBKSK10AC19hZLio1ut5ozN1MteeQn2js9qzYsiIqLgxEBIJeSuYGwvNmD+h4UereaEQsdnf1SkERFR+GCytErIXcF4Z+85j6ulQqHjs68r0oiIKLwwEFKJYRnJSIyLdHmMRmbHaWdCJb/GVxVpREQUfrg1FkQEF5nUcqqlQim/xhcVaUREFH4YCKnEgdJKVNc2eX0eV6s5oZZfo3RFGhERhR9ujamEUttRrlZzmF9DRERki4GQSni7HSW3izTza4iIiG7g1phKyNm20sVFwvjL9pk7XaTt5WWlYUy/VPyz4BzOV9aiW3IcHsrpjqg2jIuJiCi8uPXOt2LFCtxyyy1o164dOnbsiMmTJ+P06dM2x9TX12POnDlo37492rZti/vuuw/l5eU2x1y4cAETJkxAXFwcOnbsiKeffhrXr1+3OWbXrl0YMmQIoqOj0atXL6xbt67V9axZswbdu3dHTEwMhg8fjgMHDrh9LWohZ9vqxXsHKrKak19Uhttf/grLt57E/ys4j+VbT+L2l79ya1hps1lAQUkFNhVeREFJBWd7ERFRUNIIgqtaJFt5eXmYMmUKbrnlFly/fh3PPvssioqKUFxcjPj4eADA7NmzsXXrVqxbtw46nQ5z586FVqvF3r17AQDNzc3Izs6GXq/Hyy+/jLKyMvzud7/DzJkz8Z//+Z8AgNLSUmRlZWHWrFn4/e9/jx07duDJJ5/E1q1bMW7cOADABx98gN/97ndYu3Ythg8fjldeeQUfffQRTp8+jY4dO8q6Fikmkwk6nQ5GoxEJCQnyn1UvyBl/4WpOmNQMMWedpcUj5ARU/hzRQURE5C533r/dCoTs/fzzz+jYsSO+/vprjB49GkajER06dMCGDRvwm9/8BgBw6tQp9O/fHwUFBRgxYgS++OIL/OpXv8KlS5eQmpoKAFi7di0WLFiAn3/+GVFRUViwYAG2bt2KoqIiy2NNmTIF1dXVyM/PBwAMHz4ct9xyC1avXg0AMJvN6NKlC/74xz9i4cKFsq5FSiACIeBGMGMw1qGyphHJbaOhT5AuD5cKUJrNAka9tNNpU0WxamzPgjFOH0eJQIqIiMiX3Hn/9iopxGg0AgCSk1sSdA8dOoSmpibk5uZajunXrx+6du2KgoICAEBBQQEGDhxoCYIAYNy4cTCZTDhx4oTlGOtziMeI52hsbMShQ4dsjtFqtcjNzbUcI+da1CpCq4GxrhEr/30ay7eexLwPCjH17X0Y9dJOp9tXYoDiquu0t52lpUZ0ANJNHYmIiNTE40DIbDbjySefxMiRI5GVlQUAMBgMiIqKQmJios2xqampMBgMlmOsgyDxdvE2V8eYTCbU1dXhypUraG5udniM9TmkrsVeQ0MDTCaTzZ9AkBPUWJMboBiMdbIe31kpfyiM6CAiIrLmcdXYnDlzUFRUhD179ih5PQG1YsUKLFu2LKDXIHcwarvoSFypaUDHdjEwC4KsAOXKtUZZ15ASH+3w66EyooOIiEjkUSA0d+5cbNmyBbt370bnzp0tX9fr9WhsbER1dbXNSkx5eTn0er3lGPvqLrGSy/oY++qu8vJyJCQkIDY2FhEREYiIiHB4jPU5pK7F3qJFizB//nzL300mE7p06SLnKVGM3FWXae/st3wtMdb1jDJRdZ28QKhV2dovQmlEBxEREeDm1pggCJg7dy4++eQT7Ny5ExkZGTa3Dx06FJGRkdixY4fla6dPn8aFCxeQk5MDAMjJycHx48dx+fJlyzHbtm1DQkICMjMzLcdYn0M8RjxHVFQUhg4danOM2WzGjh07LMfIuRZ70dHRSEhIsPnjb56splTXyRvN8cPP12Qdd+Vag8Ovi72OnKVry23qSEREpBZurQjNmTMHGzZswKZNm9CuXTtLro1Op0NsbCx0Oh1mzJiB+fPnIzk5GQkJCfjjH/+InJwcS5XWXXfdhczMTDz00ENYuXIlDAYDnn/+ecyZMwfR0S1bMrNmzcLq1avxzDPP4NFHH8XOnTvx4YcfYuvWrZZrmT9/PqZPn46bb74Zw4YNwyuvvIKamho88sgjlmuSuhY18sVqigZAYlwkviiS10PJ2TWIvY5mrz8MDbxr6khERKQGbpXPazSO3+Dee+89PPzwwwBamhg+9dRT2LhxIxoaGjBu3Di8/vrrNttR58+fx+zZs7Fr1y7Ex8dj+vTpePHFF9GmzY24bNeuXZg3bx6Ki4vRuXNnLF682PIYotWrV+Pll1+GwWBAdnY2XnvtNQwfPtxyu5xrcSUQ5fNiibuzDtPuEv/FdHGRsoa6pv1SPg/AaT8i9hEiIiI181sfoVAXqD5CYtUYALeDocTYSJutsjRdDKbc0hWrtn8v6/5rHxwCAF41dSQiIgokd96/OWtMhcTBqPbBiBxrHhgCrVZjE6BsOXZJ1n1njOwOAA4bJoql+2yYSEREoYSBkErlZaVhbKbesuqS0jYaT31YiHJTg9OhrHpdDEb0bI8IrcayYrPl2CVcueo4+dnemP6p+NNHRyVL981mYPlW77bGuKJERERqwEBIxSK0GuT0bG/5+9KJAzDrly0zewJuJCo7yuHRagBnDZ/FIAoCZJXuP76h9TW4s2LEHCMiIlILr0ZskLocuVDltCu1qyAIaAmirtTIWzlyRO6IDXe7ZhMREfkSA6Eg0WwWsPDj4y6PeXN3KRb+73GXCdb2u096XYxlFcfb0n3OKiMiomDDrbEgsXrnWVnl71LNFc0C8Nz4/qiua8TFqjqkJ8agXXQkms2CpWGit6X7Sswqs94SJCIi8hUGQipkn0g8tFsS3t1bqtj5X9n+PWoamy1/f33XD0iMi8SL9w502TBRbnDkbGVpW7HjYbf2OKuMiIj8hYGQyjhKJE6Oj4RR5hgNOayDIFF1bRNmrT+MtQ8OcVi6r9fFYPGE/li+9aTTFSMx6drRiI38ojK8u/ecrOvjrDIiIvIXBkIqIiYS2wcZlTXKBUFSlm4+gb0L77Qp3bcub9dqNW6P2BBzg+TQaoCh3ZIU+V6IiIikMFlaJVwlErujbXRLbOtpRx6DqQEHSistpfuTsjsh55feRMCNZo96ne2qjXXStT2p3CBrZgE4dL7Kw6snIiJyD1eEVMKdYMGVlfcNglbbekSG/egNV6RydOybPUo1RHQ354c5QkRE5C8MhFRCiTf/P4zOwPhBLSsy9oGKWRAw7R/7ZZ1HTo6OfbNHb89n7dyVWreOJyIi8hS3xlRCbrAgbn3Zfi0Crz9wExaNz3R6v1u6J0OfIP0Y+oRoh8nO3hDL8uVu171/8AJ7CRERkV9wRUglpHr4iBVZO5/6P1i/7zwOnqtEXFQE7rupM27tnWKzLeW48iwK9w3phLe/cV2Gv3TiAEVmftm3AFg8IRNzHIzmcIS9hIiIyF8YCKlEhFbjsocPAEwcnIYxf91lE+DsL620mdHlvPKsEW9/U4qxmR1x8FxVq+aMYh8hJWZ9OZsl9tjoDHxw8CdZuUrMEyIiIn/QCILAPQgnTCYTdDodjEYjEhIS/PKYzvoI3dQlETtO/dzqeDFIeuPBIRibqceol3ZKJl2vnpKNpLbRKCipACAgp0eKZWq9EtfvKBATz/x/7+yFV3eclTzPxpkjuCJEREQecef9m4GQC4EIhIAb20rbig34tPASKmsaXR4vbpv91/83WFZCdHJ8JA4+N1aRwMdas1lwGYhpAKQmRAPQoNzkegtwz4Ixil8fERGFB3fev5ksrUIRWg2MdY14b+85ySAIuDGjq2WFR1plTZPTwajekDNLzGBqwNRhXQG07nXkqikjERGRLzAQUiHPmyvKv4fBWIeCkgpsKryIgpIKRaq05Ob1dE+Jc7spIxERkS8wWVolrKusrlxt8Ki5Yk6PFGw48KOsVaTlW0/aHJemi7FJuvaE3BYAHdvFIKdne4zpl4p/FpzD+cpadEuOw0M53RHVhrE5ERH5DwOhAGs2C1i98yze21squ/OzI4lxkRjRsz3+MikLj8soU7cPlgzGesxef1j2iox9efywjGTJFgBAS8A1LCPZYVL4P/aUeh2MERERuYPJ0i74Olk6v6gMCz8+3qqU3VOvP3ATxg9Kx39sLZbsF+SI3ERlZ+XxS+5paejoqGpM9IfRGbipa5LLyjJujxERkTdYNaYQXwZC+UVlmLVeXoNBubQaYMaoDGw5VubV3DJXpetS5fFvPDgERy5U4c3djgMxDQBdXKTT4I9VY0RE5C133r+5NRYAYjK00swCPFoJsucs6dlVEreAliBm6eYTaF0PZnucqxUwsQKOnaWJiMgfGAgFgFKT5n0lJT7a4dfllscrgZ2liYjIH1iiEwCqf5N3sqDjz+t2d2I9ERGRJ7giFABqf5O/cs3xqo4/rlvMERqWkezzxyIiImIgFAByyswDKaVty9aYfYn80G5JLq9b7giNxLhIVNU2OR0uy87SRETkLwyEAsDVpHlVEJyXyE8cnIa3dpc6DWKWThwAAA6/N/GYFfcOBIBW59cr0NSRiIjIHSyfd8EffYTsgwE1eOTWblj37XmnJfKPjc7A5qNlDvsIiUHM58fK8PymIpfdqx01ZeRKEBEReYt9hBTij+nzYjBgMNa1GnvhiaFdE3HoQrVX52gXE4Gr9c0ObxNzeL5++g4cOl/lMIhxFOAlx0fiL5OyMH5QulfXRkREJIV9hIJIhFaDnJ7tUVBS4XUQBAClFbVen8NZEATc6PNz6HyVwz4/zhouVtU0Yc6GI3hDq8HYTD1XgoiISBUYCKmEUqXpSgRTcji6XjkNFxd9fBxLN5+w6TekxMBXIiIiT7CPkEqovaTenqPrldNwsaq2qVXTxTJjPWatP4zPj11S+jKJiIhcYiAUYM1mAQUlFTAY65AcH+ViOIX/xEVGOL0ODW5MkLfn7arW3I1H8PmxMq/OQURE5A5ujQWQL6rG2kZHoKah2auS/LsH6vHx4Ytu9/nxdlXLLACPbziMtVpOnyciIv/gilCAiEnFSpfO/35UDwCuxp5Kmzy4E954cAj0OtvARq+LwRsPOg9SxEaR3q5qLfusGM1m6VBOXE3bVHgRBSUVsu5DRERkjStCAeAqqdhbN3VJxJoHhmD5Vs9XmirrGvGrQeloFxOJgpIKAAJyeqRgRM/2Lqu7lGoUKWf6vLOGj0y6JiIidzAQCgBfTp+fvu4g0nQxGJDezuPHOHelFqNe2mlz//89fFFWM8S8rDS88eAQh0FKXVMzqmubZF2Dq3wjZyX6BmM9Zq8/7HLVioiIyBoDoQDw9RT3MmO9x0GQBsCq7d87POes9YcxL7cPends22rFyXo1Ji8rzWGvoH8XGfD4hsOyrsNZvpGcEv1lnxVjbKaevYmIiEgSA6EAEIeaqpHUdpajIAlovRojNoq0lhQfJesa2sdHOZ0+L6dEX87WGhEREcBkab/LLyrDUx8WBvoyFCcGUK4SneWuhE3KTne6miP3HL5edSMiotDAQMiPxNwW+4aCocJ6NcaRlHh5K2FjM/VOb5Nboh9sDSqJiCgwGAj5iS8rxdTG0WpMflEZnvroqOR9nTVrFEmV6Ltq+EhERGSPgZCf+LJSTG3sV2NurIRJf//OmjWKxBJ9oHWvJKmGj0RERPYYCPlJOOWsZHdJtPy/OythiXGRss6fl5WGx0ZnQGMX62g0wGOjM1g6T0REsjEQ8pNwyllZ/Olxy/+7sxJmrG3C7PWHkV/ket5YflEZ3tpdCvucbLMAvLW7VPL+REREIgZCfqLU+AlfU+L6/ufwRUsw4s5KmJzKMzkrTHJHdBARETEQ8hNXuS1qIgD4zZBOXp9HDEbcXQmTqjxzp48QERGRFAZCfiSOn7AfZqo2I3ulQJ/g3TWKwYi4EuYuZytJ7CNERERKYiDkZ3lZadizYAw2zhyBV6dk41eD1JfYm9I2GksnZkID71avLl+tR4RW49H36GwliX2EiIhISQyEAkAcP/GrQemYNrwbsjolBPqSbBSXmRRZvbpytQF//uwE3v6m1K37JcZFOu0DxD5CRESkJM4aC5D8orJWE9rV4tD5KgBoNTy15PI1vLbzrKxzaDXA8q0nPXr8683OE53FXKvZ650Pb2UfISIikosrQgEgNhhUYxAEADGRN34sxNWrSdmdoIuV1+cHQKvSdndca7juMtnZ0kfI7usasI8QERG5h4GQnwXDqI2qa45noZ2vrPXbNbhKds4vKsObu0tbPYcCgDfZR4iIiNzAQMjPgmHUxqELRksfnmazgIKSCmwqvAizH3vzOEt2bjYLWPjxcYe3iRZ+fJx9hIiISBbmCPlZMJR11zY140BpJYx1jQHJY3KV7LyvpALVtU0u719d24R9JRUY2TvFF5dHREQhhCtCfhYsZd3big0ByWPSwHWyc8EPV2SdR+5xREQU3hgI+VmwjNr4tPCST/OYkuIi0TbadkEyTReDNx4cIpHsLPeZU/szTEREasCtMT+zLv/WAKpMmo6M0KCyptEn554xsjtyM/WWrS+xNL9ju5btMKmy95ye7bH6K+kS/pye7RW5XiIiCm0MhAJAbFao1j5CTS76+HjrloxkmyDF3YBlRI/2SIyLdJknlBQXiRE9GAgREZE0bo0FiPWojUdHdke76NCPSTXwfjJ8hFaD+2/u7PKY397cmQ0ViYhIFrcDod27d+Oee+5Beno6NBoNPv30U5vbH374YWg0Gps/eXl5NsdUVlZi2rRpSEhIQGJiImbMmIFr167ZHHPs2DHcdtttiImJQZcuXbBy5cpW1/LRRx+hX79+iImJwcCBA/H555/b3C4IAl544QWkpaUhNjYWubm5OHPmjLvfss9EaDUw1jXivb3ncLXheqAvx+esJ8Nbl+UXlFTIDo6azQI2H3XdJ2jz0TKWzxMRkSxuB0I1NTUYPHgw1qxZ4/SYvLw8lJWVWf5s3LjR5vZp06bhxIkT2LZtG7Zs2YLdu3fjscces9xuMplw1113oVu3bjh06BBefvllLF26FG+99ZblmG+//RZTp07FjBkzcOTIEUyePBmTJ09GUVGR5ZiVK1fitddew9q1a7F//37Ex8dj3LhxqK9Xx3ZUs1nA0s0nVJkn5Evbiw0Y9dJOTH17H554vxBT396HUS/tlNUIUU4fJjHYkuJpMEZERKFDIwiCx6/+Go0Gn3zyCSZPnmz52sMPP4zq6upWK0WikydPIjMzEwcPHsTNN98MAMjPz8f48ePx008/IT09HW+88Qaee+45GAwGREVFAQAWLlyITz/9FKdOnQIA3H///aipqcGWLVss5x4xYgSys7Oxdu1aCIKA9PR0PPXUU/jTn/4EADAajUhNTcW6deswZcoUye/PZDJBp9PBaDQiIUH5waivbj+DVdu/V/y8wUoDSFaNbSq8iCfeL5Q816tTsjEpu5PT2x3NekvTxWDJPZkc0UFEFOTcef/2SY7Qrl270LFjR/Tt2xezZ89GRUWF5baCggIkJiZagiAAyM3NhVarxf79+y3HjB492hIEAcC4ceNw+vRpVFVVWY7Jzc21edxx48ahoKAAAFBaWgqDwWBzjE6nw/Dhwy3H2GtoaIDJZLL54yv5RWVhFwRpAGhcpO4IABZJdIWW24epY7sYpys+zma9GYz1mL3+MEd0EBGFEcUzdPPy8nDvvfciIyMDJSUlePbZZ3H33XejoKAAERERMBgM6Nixo+1FtGmD5ORkGAwGAIDBYEBGRobNMampqZbbkpKSYDAYLF+zPsb6HNb3c3SMvRUrVmDZsmUefufyifPGwo1g+Y9zVbVNWL3zDJ7I7ePw9uwuibIe6/LVeox6aWerFZ/FEzKxfKvjWW8CbiR0j83UM+GaiCgMKL4iNGXKFEycOBEDBw7E5MmTsWXLFhw8eBC7du1S+qEUt2jRIhiNRsufH3/80SePEwzzxgLpvb3nnK4Krd93TtY5nni/0OGKz+MbXHfLtk7oJiKi0Ofz8vkePXogJSUFZ8+2NMHT6/W4fPmyzTHXr19HZWUl9Hq95Zjy8nKbY8S/Sx1jfbv1/RwdYy86OhoJCQk2f3whGOaNKWHuHT2x6v5sJMdHunW/6romp4HIwXNVHl+PO8lw4fJvREQU7nweCP3000+oqKhAWlpLAmpOTg6qq6tx6NAhyzE7d+6E2WzG8OHDLcfs3r0bTU03muZt27YNffv2RVJSkuWYHTt22DzWtm3bkJOTAwDIyMiAXq+3OcZkMmH//v2WYwIlWOaNeWtkrw7QJ8Sgssb1kFRHnAUicVER3l6WLOHyb0REFO7cDoSuXbuGwsJCFBYWAmhJSi4sLMSFCxdw7do1PP3009i3bx/OnTuHHTt2YNKkSejVqxfGjRsHAOjfvz/y8vIwc+ZMHDhwAHv37sXcuXMxZcoUpKenAwAeeOABREVFYcaMGThx4gQ++OADvPrqq5g/f77lOp544gnk5+fjr3/9K06dOoWlS5fiu+++w9y5cwG0VLQ9+eST+Mtf/oLNmzfj+PHj+N3vfof09HSbKrdACJZ5Y97QJ0Sj6KIRr++SHofhiLNAJDPNN6t0Ig1aconEESBSWIJPRBTc3C6f37VrF+64445WX58+fTreeOMNTJ48GUeOHEF1dTXS09Nx1113Yfny5TZJy5WVlZg7dy4+++wzaLVa3HfffXjttdfQtm1byzHHjh3DnDlzcPDgQaSkpOCPf/wjFixYYPOYH330EZ5//nmcO3cOvXv3xsqVKzF+/HjL7YIgYMmSJXjrrbdQXV2NUaNG4fXXX0efPo4Tce35snxerFwC1DlvzFsaDeBpY4bk+EgcfG6sw2TlTw7/hHkfHvXy6lrYz3oTH0168GsLluATEamTO+/fXvURCnW+7iPk6I3UW7qYNjDWB3eX6tVTsvErJz2ACkoqMPXtfR6fWwNAr4vB4gn9sXzrSY+DGDGQtf/lcTeYIiIi5bnz/h36A65ULC8rDWMz9ThQWol39/yAbScvS99JQrAHQQDQ3kV+ztBuSdBqAFc7UOJqlLMVHzHYGZeVhgOllbh8tR4d27Vsh8kpmRfbH7AEn4go+DEQCrAIrQY5Pdtj79krigRCocA6UbrZLNgEK2ZBcBkEAS1B0LzcPth44AIMphvn0v/SR0gXG4VNhRfdCn6sSbU/sC7Bz+nZ3q1zExGRfzEQUonhGclY/VWgr0IdxERpR1uHibHySvFNdY2wz76qbbyOZz89juraG1VsyfFRmJydjrGZetlBkdzSepbgExGpHwMhtWCmFgAgMS4SwzKSnebgVNfJK8V/Z++5Vl8z1rXeNqysacS7e8/h3b3nZOcIuTPmg4iI1M3nfYRInn3nKqQPCgPVtU34d5EBCz8+7vfYsEzmrDGp9gfuluATEVHgMBBSiUtVdYG+BNV45n+P2Wxf+duyz4pd9gOK0Gqw5J5MAGgVDFknZMtNvGYfIiKiwOHWmEqkJ8YG+hJU41pD4Crf5CY652Wl4Y0Hh7TKYXInIZt9iIiIAo+BkErc2jMFa3aVBPoy6BdyEp2t2x+IVW1VNQ1YvlU6uHGWA2X4ZXuOfYiIiPyDW2MqMaJne7/N0SJpchOdxfYHk7I7wVjXiDkbjjicem+deyTVhwiQ3p4jIiJlMBBSiX8XlaG2sTnQlxH2PE10die4cacPERER+RYDIRX4/FgZ5mw4EujLCCmje6fA3abO7iY6W3MnuGEfIiIi9WCOUIDlF5Xh8Q2HA30ZISe6jUayA7U9vReJyu4EN+xDRESkHgyEAqjZLGDhx8cDfRkhKT5aXgfqydnpSIiNRLfkODyU0x1RbdxbJBW3us6UX5V1/JWrDbg7Kw1puhgYjPUOt9LEwbDsQ0RE5HsMhAJo3w8VAe2XE6q0GuC+IZ3xaeElyWOtj3n7mx+wdOIA2StCjsrfpSzfehL/2FOKiYPT8NbuUpeDYTmwlYjI95gjFEAFJewm7Qszb8vArb1SXHZ/dsRgasAsGZ2lgRvl7+4EQZbHMdbjrd2leGx0BvQ62+0vvS6GpfNERH7EFaGACt3y6PioCNT4qAouMS4SN3dLwvaTl1vdNjazIxaNb+n6vOSeTMxef7jVqouUhR8fx9hMvdMVGVcVYnIIaFn52Xy0DF8/fQcOna+y5A7JHfxKRETK4IpQAOX0SAn0JfiMr4IgoGUemaMgCAC2F1+2rOiI3Z/tV13knH+fi9U6qQoxOcQqskPnqyx9iHJ6tmcQRETkZwyEAmhEz/ZIjJOX1EvyCLBtRpiXlYY9C8ZgXm5vJMbKf64Lfrji9DYly9pZIk9EFFgMhAIoQqvBi/cODPRlhBz7ZoTbig14ZfsZVNe5k5jufGVGybJ2lsgTEQUWA6EAy8tKw4yR3QN9GSGnrLoOgOf5PK4Grg7LSJZMxJazw6VPiGaJPBFRgDEQUoHcTH2gLyHkHPmxCs1mAev2lrqdzxMfFYERPZwHQhFaDZbc05KQbR/viH+X08xx6rCuzAkiIgowBkIqMCwjGUnMFVLUhYoajHppJ5ZvPen2feU0VXSWiK3Xxche4eueEu/2tRERkbJYPq8CEVoN7r2pE97Zey7QlxIyvj7jeY+mqtomHCitdLk9BrQEQ2Mz9Zb5YWL5+4HSSln/lswPIiIKPK4IqQS3x9TFnWous1nAmfKr2Hv2Cvb9UIGh3ZJc5hBZT7hvNgsoKKnApsKLKCipsFS7ERGRf3BFSCWyuyQG+hLISkrbaMlj8ovKsPDj4zZjUlZ/dRaJcZG4/+bOkiM0thUbWo3oSPNi8CsREbmPK0IqsWH/+UBfAlkxS6zM5BeVYdb6ww5nxVXXNuFNiREaAByO6DAY6zFb5pgPIiLyHleEVKK0oibQl0BW9pdW4rY+HWy+Jk6aN5jq8efPiiTP4WyEBgCMemmnw5J+cfzGss+KXY75ICIiZTAQUoH8ojJskjEpnfzJNkzxZNK89QgNawUlFS7PI47fkJOwTURE3mEgFGDiFHOmyKqL9Rw4b/6NHCVdy03ElnucuFLFwa1ERO5jIBRA3k4xJ9/QALjlly0sb/+NHJXIyy2bl3Oco5UqJlwTEcnHZOkAUmKKOSlPAHDofBUA7/6NxBJ5e1IjOqzL610RV6qYcE1E5DkGQgHEyeO+c3O3RK/uv/fsFTSbBa/+jZbck+lwi0rOiA5n9xW5WqkSv7bss2L2JSIiksBAKIDk9Kohzwhevv+v/uosRr20E+eu1Lp936S4SKx9cIjLrSlxREdqguPyeqltLamVKuuEayIico45QoHED+s+E6n1/sk1GOvxyvbvkRgX6bBfkCg5LhJTh3WFRqNBTs/2GNGjvRvJyrbXKciM4JROuHYHk7OJKJQwEAqgKzUNgb6EkPXdBRMS4yJhrG3yON4Ue/o0NZtdHjeyV3v00bdzKyhwVolWbmrA7PWHJVeFlEy4dgeTs4ko1HBrLIA4dNN3rpsFVHsRBIkEADUNzS6P+eyYAU+8X4ipb+/DqJd2SiYpK5HfIyZcuyIn4dodTM4molDEQCiApKqHKPjICQqUyO+J0GowcbDrFZiJg9MU27JicjYRhSoGQgHkqnqIgpOcoECJ/J5ms4DNR12vwGw+WqZYYMLkbCIKVQyEAiwvKw1rHrgJSfGRgb4UUohUUOBOfk+zWUBBSQU2FV5EQUmFJbCR099IycAkkMnZRES+xGTpAMsvKsPyrSdRWeO8KomCk7OgQNwSdRXIpOliUFXTiFEv7XSYmNxw3XUCt9Q1uCtQydlERL7GFaEAcpZ8SqHBWZ8oOfk9WZ0SMGeD88Rkuf2NlApMlOqGTUSkNgyEAoRzxsKAk39cOfk9O05edpmY/P7BC9AnRPstMFGiGzYRkRoxEAoQzhkLfc76RMn5t3eV4yzmIE0d1tVhsOSrwETshq3XedYNm4hIjZgjFCBMKg19zrallPq3N9Y1Oex6rYuLxIv3DvRJYJKXlYaxmXp2liaikMFAKECYVBranG1LNZsFXLmqTEfxd/eec/j16tomHLlQ5bMVmghtyygRIqJQwEAoQORUDlHwcrQt5Wg8hae0GtfbZ2/uLsXgzokYPyjd68ciIgplzBEKEOvkUwoecneAzHZRiqcVgs4Sk+X0SXx+U5Gl75CzfkREROGOK0IBlJeVhnm5fbBq+/eBvhSSKW9AKj4vKpc87vENR7BWq0FeVprHFYIzRnbH50UGm+BJr4vB+Cw93nGyLWatsqYJB0orYaxr9PmgVE6kJ6JgxUAowOaO6YWNB87DYOIk+mDw9Zkrso9d9lmxJbHYk+2wMf1T8eyEzFYBxoHSSlmBEABsKzbgvb3nWgVhYj8iJaq9OJGeiIIZt8YCLEKrwdKJAwJ9GSST1CR6a+KIC4+rxIQbicmTsjshp2d7RGg1GJaRjOT4KFmn+LTwkk8HpXIiPREFOwZCKiBukVFwaOPGls8XRWUeV4ldvub4fhFaDf4yKUvy/snxkaisaXR6u7eDUjmRnohCAQMhlejdMZ4T6IPEdTfe2P9fwXks33pSdpK1tcpfAiFHic7jB6XhD6MznN5XA+DX2Z1kPY6nK1acSE9EoYA5QiqQX1SGORuOcNxGCPNkUSQ5Pspl/s2i8ZkY3DkRz28qshnaK96ui42SlUvkaU8rTqQnolDAQCjAOHOMnDlXUYPXdpxt9bNRZqzHrPWHcXufFIzu3QF7F9yJwh+rW1VsNZsFpOliYDDWOx3FofdiHhkn0hNRKODWWIBx5hg5898Oqr2sff39FSzfehIDluRj1+lym4RqwPeDUjmRnohCAQOhAOO2ATlTXX9d1nFmoaWT9IrPi1vd5stBqZxIT0ShQCMIAndlnDCZTNDpdDAajUhISPDJYxSUVGDq2/t8cm4KL1oNcGr53Yhq0/rzjS8bHrKPEBGpjTvv38wRCjDOHCOlmAXgnwXnMOO2Hq1u8+WgVE6kJ6Jgxq2xAIvQajBxMD81U2tJsZFut1TYX1oZkL49jho/EhEFAwZCAZZfVIa3dpcG+jJIhSZluz85/svicox6aSc7OhMRycRAKIBYOk+uNAsC3nhwCBJjI926n7fjLTipnojCiduB0O7du3HPPfcgPT0dGo0Gn376qc3tgiDghRdeQFpaGmJjY5Gbm4szZ87YHFNZWYlp06YhISEBiYmJmDFjBq5du2ZzzLFjx3DbbbchJiYGXbp0wcqVK1tdy0cffYR+/fohJiYGAwcOxOeff+72tQQSS+fJFQEt+Tdrpg1x+34CgGc/OY7G62anxzkKePKLyjDqpZ2Y+vY+PPF+Iaa+vY8rTEQU0twOhGpqajB48GCsWbPG4e0rV67Ea6+9hrVr12L//v2Ij4/HuHHjUF9/4w1/2rRpOHHiBLZt24YtW7Zg9+7deOyxxyy3m0wm3HXXXejWrRsOHTqEl19+GUuXLsVbb71lOebbb7/F1KlTMWPGDBw5cgSTJ0/G5MmTUVRU5Na1BBJL58mVjPbxAIAhXZM8un9lTRNGrNjhMIjJLyrDyBd32AQ8Q5Z/iVkcoEpEYcar8nmNRoNPPvkEkydPBtCyApOeno6nnnoKf/rTnwAARqMRqampWLduHaZMmYKTJ08iMzMTBw8exM033wwAyM/Px/jx4/HTTz8hPT0db7zxBp577jkYDAZERbVM2V64cCE+/fRTnDp1CgBw//33o6amBlu2bLFcz4gRI5CdnY21a9fKuhYpvi6fZ+k8uXLyz3mIjYrAO9/8gOVbT3p8Hg1g0zMov6gMs9Yfdvscel0M9iwYw0RoIlI9d96/Fc0RKi0thcFgQG5uruVrOp0Ow4cPR0FBAQCgoKAAiYmJliAIAHJzc6HVarF//37LMaNHj7YEQQAwbtw4nD59GlVVVZZjrB9HPEZ8HDnXYq+hoQEmk8nmjy9JdeZ1V9todkMIJYU/VgMAzlfWen0ucQp8s1nAwo+Pu31/DlAlolClaCBkMBgAAKmpqTZfT01NtdxmMBjQsWNHm9vbtGmD5ORkm2McncP6MZwdY3271LXYW7FiBXQ6neVPly5dZHzXnrPuzKuEaw3yOhFTcDAY6wAA3ZLjvDqPGMSs21uKb89cQXVtk+R9nOF2LhGFGlaNWVm0aBGMRqPlz48//ujzxxRHILSN5j8F2aqsaQQAPJTTHUrsRi3fehKzNxzy6hwcoEpEoUbRd1+9Xg8AKC8vt/l6eXm55Ta9Xo/Lly/b3H79+nVUVlbaHOPoHNaP4ewY69ulrsVedHQ0EhISbP74Q15WGtZMHeqXx6LgkRjXsjUc1UaLmbdlKHLOaw3NHt2PA1SJKFQpGghlZGRAr9djx44dlq+ZTCbs378fOTk5AICcnBxUV1fj0KEbn0x37twJs9mM4cOHW47ZvXs3mppuLOFv27YNffv2RVJSkuUY68cRjxEfR861qEl1vefbFRSaqmsbLf+/aHwm/jA6Q5GVIXdxgCoRhTK3s2uvXbuGs2fPWv5eWlqKwsJCJCcno2vXrnjyySfxl7/8Bb1790ZGRgYWL16M9PR0S2VZ//79kZeXh5kzZ2Lt2rVoamrC3LlzMWXKFKSnt3TSfeCBB7Bs2TLMmDEDCxYsQFFREV599VWsWrXK8rhPPPEEbr/9dvz1r3/FhAkT8P777+O7776zlNhrNBrJa1ETbjmQveS20TZ/XzQ+E0/d1Q//LDiH85W1qGm4jv89fNHn16HnAFUiCmFuB0Lfffcd7rjjDsvf58+fDwCYPn061q1bh2eeeQY1NTV47LHHUF1djVGjRiE/Px8xMTfe6P/1r39h7ty5uPPOO6HVanHffffhtddes9yu0+nw5ZdfYs6cORg6dChSUlLwwgsv2PQauvXWW7FhwwY8//zzePbZZ9G7d298+umnyMrKshwj51rUQqwgMxjr2WmaAAD6hJafU/vJ8Q+PzMC2YgOWbi72+TUsntAfD4/M4EoQEYUsr/oIhTpf9xGyl19Uhtm/9Hex/kfR2P2dQp9WA5xYloe3dpfgvb3nUF13Y+s0MS7Sq8ovd65h9dQhGD+IK0FEFFzcef9mIOSCvwMhoCUYWvZZsU133zRdDLI7J+CLE5dd3JNCTXx0BGo8TG5Win0zRiXZr3QNy0jmyhMRKcKd92924FOZvKw0jM3Ut3qDWLXte4CBUFgJdBAEtKxELvr4OMZm6hUNUpwF/MxFIiJ/Y/MaFTObBRRfMmLz0UtIiGHMSu6LauP9r3hVbRP+vuN7Ba6mhbgFbD/TrMxYj1nrD+PV7d9z4j0R+Q3fXVXG0SdlIk9FR2jQqEDD8Vd3nEWf1ASv84WazQKWfVbsMudt1fYz2HjgRyydyNUhIvI9rgipiLNPykSeutrQjOT4SK/PIwB4fIP3E+gPlFbK+vk2mDjxnoj8g4GQSsj5pEzkiUmD0xU7lzi81ZFms4CCkgpsKryIgpIKh8e5O6vM1eMRESmBW2MqIfeTsq/16BCHH372fto5qUfnJO+GtloTJ9Dn9Gxv83W5yc/uNA61nnhv/3hERErhipBKqGWq9539Ogb6EkhByfFRrTpUe8v+Z9XZlq7B2Hp7S2wc6k79mVp+N4goNDEQUgm1jNh4+5tzgb4EUtDwjGRLh2qlWP+sutrSFb9mvb0VodVgyT2ZHj8eEZHSGAiphPhJmUhJPTvEe7QK40yaLgZDuyVZcoHW7S11uaUrbm/tK6mwfC0vKw1vPDgE+gTXK1VyJ97LyU0iInKGnaVdCMSIjVm/jNggUsI/HxmG2/p2sGxfefvL/ofRGdh8tMztfLa4qAj8YXRPzB3Ty9KYsdksYPXOs1i1vXWPIjFok+pqzcaMROSIO+/fXBFSkbysNMzL7R3oy6AQoo1oCSlurMJ4vup4zyA93trtegXImdrGZqza/j2G/mWbJWcoQqvBE7m9sfbBIa1WQ/W6GFlBkNzcJCIiZ7gi5EIgZo01mwWMfHEnDCYmiJL3ZozsjsX3DLD8fe+ZK5j2zn63z5MYF4mYNloYTA2KXNdauyDH3bljzWYBo17a6TQo06AlmNqzYAznlxGFIa4IBbEIrQZLJ2ZCAyiS00Hh7ZPCi2i8bkZBSQU+OXIRHx360aPzXG8WFAuCgNb9gSK0GuT0bI9J2Z2Q07O9ZPAi1W7CuvSeiMgV9hFSIXEbg6M2yFuVNU0YsWIHKmsavTrPtQYF5nRY8bY/kNySepbeE5EUrgipVF5WGr5++g4kx0cF+lIoyHkbBPmKN0GK3JJ6lt4TkRQGQip26HyVat/EKPwkxXk/s8yaN0GKVEsAuaX3REQMhFSMy/qkFm2j28CsUF2FEkGKdWNG+2BI/PuSezL9lijNXkZEwYs5QirGZX1SC6VyhJQMUpzl0un93EeIvYyIghvL510IRPm8NakSYaJg44sAwd3SeyU5a1QptyEkEfmGO+/fXBFSMXH5n92mKZg9N74/OiZE+yxIidBqMCwj2RIMHSit9Phx3AmqpOasadDSJmBspt4vgVkgA0KiYMZASOXystLw+gND8PgGBkMUnDLTEjCyd4rl70q/YSu1NeXuedzpZeRpmwC5uD1H5DkGQkFAq23p7Ftd2+T0GF1sGxjrlO31QqSEKzU3GjE6e8NePCETSfFRbgdHzramxDEbcremPDmPWnoZKfUcEIUrBkIqJzUsMzEuEi/eOxAAuIVGqiQm/Tv7WS4z1rda8ZSzmiG1NQXI25rydItLDb2M1LY9RxSMWD6vYq5e5ESxkREYm6lHXlYa1j44BIkK93oh8kZSXCSGZSTL+lm2JmdwqtTWFCBvzIan4zrU0MuIo0aIvMdASMXcfaHPy0rDoefH4p+PDkN8VIQ/LpHIJTHwkfOz7Oh+9jPJrMkdTCx1nKdbXGroZaSW7TmiYMZASMXkvnhZv9BHaDW4rU8H/PW3gzm4lQKuurbJkhjtLqnVjMpr8obASh3nzRaX2MtIr7O9Ta+L8UtujtxrP3elxqfXQRTMmCOkYnJf5JZvOYHYSK3Niy4Ht5JaiAnQ3tzfkcRYedvAUseJW1wGY73DrTsNWgIbZ1tceVlpGJupD0jp+rCMZOgTYiRXvTYeuIC5Y3ozT4jIAa4IqZj4Ai2lsqbJYT5FXlYa9iwYg3/9fjh0MYx5KTCS46Ik82lccRZEVdc5r6J05zgltrgitBrk9GyPSdmdkNOzvd8CjgitBlOHdZU8zmBqYJ4QkRMMhFQsQqvB4gn9ZR0rwHE+RYRWg5G9UvDoqAwfXCGRtFOGqy6DDWekko2T20bLOo+c4wK9xeWN7ilxso5jnhCRY1wmULmkeHkv9oDr5m3dU+KVvCwi2X6sqgXg2Xatq5UYfYK87Ta5xwVyi8sbaijjJwpmDIRUzt1Pcc6O54sgBUq35BsrFnlZaRjTLxUjVuxAZU2j0/toNcDqqTe5XImpqpFOlna3fF3c4vJEoEZceJvjRBTuGAipnLsBjHi8/YtydpdExEdHoKah2ReXSeSQRgM8lNPd5muHzle5DIIAwCwAZy5fc3p7s1nAn7cUSz7+4gnyy9e9CWQCOeJC3Hacvf4wNIBNMOSvMn6iYMZASOXkfOoViZ9+Hb0oazSAILebHZFCBnfWIaqNbSqi3FXOVdvPoK++ncNAYvXOszCYpH83XAVT1rwJZNQw4sLZtqOe88aIJDEQUrFms4DlW0/KOlaDlk9924oNDl+UGQRRIERFtK7HcGeVc+HHx1uNh8gvKsOq7d/Luv9735Zi7pheLldDvAlk1DTiIlhznIgCjVVjKia3G2/7+Ci88eAQjM3UuzXGgMjXTlwytqpkHJaRjDiZnc+ra5uwr6TC8ncx8JBLbOjojNx5Zc66W6ttxEWgyviJghkDIRWTu4Xw/IT+yMtKc3uMAZGv1TSaWwUB/y4yoLZRfq5awQ9XLP/vyc+4q2aD3gYyHHFBFPy4NaZicrcQ9LpYAMD2YoMvL4fII5ev1qPxuhn/LDiH0ooafHz4optnuLGq4UlAIY7YcJQM7W0gw9J1ouDHQEjF3CmLzS8qwzt7z/n5ComkfXnCgHkfFMLJ7pIk63J2TwKK5Pgop8nQU27pIusczmZ1De2WBK0GLr83rablOCJSJ26NqZjc1v8A3MqbIPKnrccNHgdBSXGRGNHjRiDkyaiOC5W1mL3+cKstMIOxHqu2n0FiXKTk+VZtP9NqhA3Q0gpA6nszCy3HEZE6MRBSOTmt/5kbRKHq4VszbBJ+3R3VodUAG/ZfcFnVJYdY/WWfNM0cIaLgx62xICBVFquGF1n7Rm5ESjDWtW68KH44ePaTIlmNGcuvOu83JKClsuw3Qzrhf1zkLlknTXuyVcccISL14opQkHBVFqv0i+z4LL3b99HrYvD6Azd5PGGcyJFNhZcclq7nZaXJHkgsR1y0vM+E9h86pLbqpAbHElHgMRAKAXLyJpLjIzHrth6yzjf1lq5YPSVb9uMnx0fi66fvwPhB6W5PGCdypaKm0WnpulgtqYTahuuyjrP/0CE3j4/9fIjUi4FQCJB6MdYA+M9fD4RWXg87FJRewa+yO+EPozOgkfH6XVnTZEkGdZbTROQpg7HO4dfFDwCuJMa2gZwY5JszP0Of4NnKjpw8PiJSL+YIBTH7vihrHhiC5VudzxrKL5LXZ+hSdT3yi8rw1u5S2Xk/1lsG4oTxfxacw/nKWtQ0XMcXx8tQ22R259sjAgCneUARWg0mDk7Dm7tLnd63uk7eSk/51UbMy+2DV7Z/79HgUvuf+W7JcXgop3urOWtEpD4MhIKUs74oiyf0R1J8tMOk6rREeas0qbpoLN3s3qiOlPhoFJRU4PLVepy7UouNBy7YdPTVJ8Tgjn6J2HqcTR/JPT9V1Tr8erNZwOajrUvaPdU9Jc7jwaWOfh//saeUA0+JgoBGEDiO0xmTyQSdTgej0YiEhIRAX46FsyGR4mfVNQ/c1CoYAoAlm4qwfv8FyfOP7p2C3WeuSB4n0sW2QWxkG5ejDFhVRp5KimuD756/q9VqTEFJBaa+vU+xx9k4cwRyerZ32IHak6Gt4j24PUbkf+68f3NFKMjIGRI5d+MRmyZviXGRAFrKhOVwJwgCAGPddRgltiAYBJGnqmqvtypbB5RrG2HdoR24UaEph1qmz7sbvBHRDQyEgoyc5on21cZyAyAitXIU9LSLjlTs/J5WdrkztFUquPI0mHG2Tc5tOSJ5GAgFGTU0TyTyN+sctI7tYlBV04D5HxZ6fV59QjSWThwgK2DwxdBWkafBjLNtOYOxHrPXH/bbthxXpCiYMRAKMuxQS+FGC+Cpj466zEHzxLzcPpg7ppdXqy5yh7a6+r31NJhRy7YcV6Qo2LG2M8h4MnRSrrYyu+sS+ZMZ8CoIamMXBCTGRbodBHk6tFWqs7ScnD9HM84A97blfMXVczN7/WGHg2qJ1IaBUJBxd+ikO641XEdyvPQkbm/c2a+DD89O1FregFTMy+2NxNgbRQOrtn+PUS/tlHyjlrPqIvKks7Q3wUygB756E8QRqQkDoSDkrJOtEqvfv87uBMB3IzIGdU700ZmJHGtqFvDK9jOorrMtGnC1atFsFlBQUoFV276XDFSqa5vwZG4fjzpLexPMBHrgqxpWpIiUwL0QFZKTeOhoIn1VTSPmbDgMwPNy9dxMPW7JSHa455+Z1g47Tv3s6bcFDYCNBy5AnxCDclM9S+rJL74sLpfMoxnTLxWHzlc5bQgqpXtKHPYsGON2wrA3wYy4TW4wOv5dsm8LoLRAr0gRKYWBkMrISTy0D5R+NSjd8oL7hrZ1Z9ykuEiYBcFlrx/rF80IraZVkDW0WxJGrNjh1fcmADCYGjAvtw9Wbf/eq3MRyeUq4BZXLYb+5UtcrW/2+DE6totxq/+QaFhGMhLjIl22uEiKi3QYzIjb5LPXH/ZoLIg7HH04C/SKFJFSGAipiJzqEQAuAyVHK0Xii+jqnWcdBiCOXjTtX9QLSiqcznxyl7GuEXFREaht9PyNh0hJngZBvl51AVwHcuI2uSdjQeRyNc4nkCtSRErhiA0X/Dlio9ksYNRLO53uuWsA6OIiYaxt8qqVf35RGZZuLrZZ9pdT6rqp8CKeeL9Q+hvxkUQn3ztRoHgzQkNcYdl79gpWf3VW8nhx/IfU+QzGOlTWNCK5bTT0Cd7385EaH/LY6Ay89cvQW0crUhwvQoHCERtBSE7iobPlc/d7hti+rMmJhZVa3vZ05tjs23tgxRenFbkGIiV4uuriaIVFilSeTYRWA2NdI1b++7Ri/XzkVMxtPlqGNQ8MwfKtvluRIvI1BkIq4W1CoaNW/vb7+mIytf0LW7mpQbIL7dBuSdBqWo/v8OQ6PfH5cfYjIXWYe0dPjOzVwbLa4s5qjLMVFilSH0R80WFablVYUnyUR4niRGqhePn80qVLodFobP7069fPcnt9fT3mzJmD9u3bo23btrjvvvtQXl5uc44LFy5gwoQJiIuLQ8eOHfH000/j+nXbRN9du3ZhyJAhiI6ORq9evbBu3bpW17JmzRp0794dMTExGD58OA4cOKD0t6sYpVZcxIAqv6gMo17aialv78MT7xdi6tv7MHej4xdgOT0/Dp2v8joIur1Pisf3PfqTybsHJ/KS2Bxx3ti+yOnZHhFajc3v2bwPj2L51pOY90HL75t9nyJXKyxSj+kqz8ZX/XzcqQoTcwonZXeyPDdEwcInfYQGDBiAsrIyy589e/ZYbps3bx4+++wzfPTRR/j6669x6dIl3HvvvZbbm5ubMWHCBDQ2NuLbb7/Ff//3f2PdunV44YUXLMeUlpZiwoQJuOOOO1BYWIgnn3wSv//97/Hvf//bcswHH3yA+fPnY8mSJTh8+DAGDx6McePG4fLly774lr2mVMfoju1inHZ7dfU6KNXzQ4kS2NG9PWumyNdUUtLtfVLw0IiuHt3XuqDA2e+ZqMxYj1nrD+PzYy3BkJyBydbkVn75qp8Pq8IoXPgkEGrTpg30er3lT0pKy0qA0WjEO++8g7/97W8YM2YMhg4divfeew/ffvst9u3bBwD48ssvUVxcjPXr1yM7Oxt33303li9fjjVr1qCxsaVqae3atcjIyMBf//pX9O/fH3PnzsVvfvMbrFq1ynINf/vb3zBz5kw88sgjyMzMxNq1axEXF4d3333XF9+y11x1jBb/LqeV/9BuSW5/6rTmLODx5sVOvLaHcrpDnxDt1v0A77fjiKx9/f0V/HPfBbcC7OT4KDx8azdcrKrDJ0cuYu/ZK1i6+YSs37O5Gw/j82OX3P4wIachI+C7fj5SH87krFYRBQOfBEJnzpxBeno6evTogWnTpuHChQsAgEOHDqGpqQm5ubmWY/v164euXbuioKAAAFBQUICBAwciNTXVcsy4ceNgMplw4sQJyzHW5xCPEc/R2NiIQ4cO2Ryj1WqRm5trOcaRhoYGmEwmmz/+5KxjtF4Xg7UPDsGL9w4E4LqV/6HzVW596rTnLOAZlpGM5PhIt89nfW1RbbRYOnGA7PvqdTGYMbK7249JJIc7AXZlTSPe+/a8Zetr2j/2w2BqkP04j284gnNXamQdPzk7HXPv6IX/+v8GY2ymXvJ4X63cyPlwplSfIqJAUjxZevjw4Vi3bh369u2LsrIyLFu2DLfddhuKiopgMBgQFRWFxMREm/ukpqbCYDAAAAwGg00QJN4u3ubqGJPJhLq6OlRVVaG5udnhMadOnXJ67StWrMCyZcs8+r6V4qwPkKVhokTPkE2FFz16XKmeHxFaDX6d3Qnv7D3n1nl1sZF4ZGR3ywv62Ew9JgxMxdbj5U7v8+gvxw/LSMaB0kq3H5NIjeR0VddqgE8LLwEAVn91VlbVly87TPujT5G/yOnYT+FJ8UDo7rvvtvz/oEGDMHz4cHTr1g0ffvghYmNjlX44RS1atAjz58+3/N1kMqFLly5+vw5XHWqlAiVPtrDkfrrLzdTLCkp+M6QTtp+8jOq6JlTXNWHV9jN4/+CPmDg4DR9895PLLroaAF8UGfDchJZrkXqRJwoWYlf1V7Z/77SNhP0qlbOqL/s39cUTMjFng286TEu95thTY8Ahp2M/hS+fl88nJiaiT58+OHv2LMaOHYvGxkZUV1fbrAqVl5dDr29ZMdDr9a2qu8SqMutj7CvNysvLkZCQgNjYWERERCAiIsLhMeI5HImOjkZ0tPwclkBxFSjJCRzsy+DlfrqT88lTFxeJ/z18sdXtZcZ6vPlL4zVX7NsAuBojQBRsuqfEOVxhcdaawlGPMGdv6o+NzsCmwjKbZqlKrdzIHR+ixoDDF60FKLT4fPr8tWvXUFJSgrS0NAwdOhSRkZHYsePGzKrTp0/jwoULyMnJAQDk5OTg+PHjNtVd27ZtQ0JCAjIzMy3HWJ9DPEY8R1RUFIYOHWpzjNlsxo4dOyzHhCqpfX0NgNVTb8LGmSPw6pRsbJw5AnsWjJH1QmB9bnvWQYoSwYp1Yqez3CmiYNOxXQzystKwZ8EYy+/g4gn9ZVd0OqtUM/zyQaOuybbNiDuDA5rNAgpKKrCp8CIKSircLrd3dW2z1x+2aSXgL75qLUChRfEVoT/96U+455570K1bN1y6dAlLlixBREQEpk6dCp1OhxkzZmD+/PlITk5GQkIC/vjHPyInJwcjRowAANx1113IzMzEQw89hJUrV8JgMOD555/HnDlzLKs1s2bNwurVq/HMM8/g0Ucfxc6dO/Hhhx9i69atluuYP38+pk+fjptvvhnDhg3DK6+8gpqaGjzyyCNKf8uq4+t9/Vgnc8LuGaTHZ8cMXp1bZL/FJy7Pv7vnB/zH587zvIjUSp8QDbMgYFPhRZstI7l5fQZTPVbmn3L5pm4/WFlOs1TA+5UcOV2o5Xe+V447rQXcHZhLoUPxQOinn37C1KlTUVFRgQ4dOmDUqFHYt28fOnRo6SGzatUqaLVa3HfffWhoaMC4cePw+uuvW+4fERGBLVu2YPbs2cjJyUF8fDymT5+OP//5z5ZjMjIysHXrVsybNw+vvvoqOnfujH/84x8YN26c5Zj7778fP//8M1544QUYDAZkZ2cjPz+/VQJ1qJLa1/dkHz+/qAyz1h92eJsAKBYEJcY6n7b96KgeWLOrxGWeEZEa1V83Y9o/9lv+nhwfhb9MypKd11d5rcHtilA5QYgSW0dqDTh81VqAQguHrrrgz6Gr/uTJp79ms4CRL+6QXTLsjXm5vfFEbh+nt7sKyIiCzczbMvDRIedFBGLV1zPj+mLeh0c9fhxHg1vlDHvW62KwZ8EYlx+U5A5lfnVKNiZld3Lnsr1SUFKBqW/vkzxOaqgtBR933r99niNE6uLpPv6B0kq/BEFJcZGYO6a3zx+HSC3e/qbU5QqngJaqL73Ou6pbR6seSnWlVmsXajaFJDkYCIURbxIH3V069jQL4Lc3d3b5yVP8HojCidns/RgeR0GIUltHag04xAIPZ9seYpAZ6PJ+CiwGQmHEm09/7nySuztL36rCK00Xg5m3ZaBttOu0tLd2l7qsLnF3XhNRKHjmf48BgNOKUFdcBSFKreSwCzUFMwZCYcSbT3/DMpKRFCdvxMaDI7rZlAdvnDkCiyf0x5ZjZbjWcF3y/q7KWQNRgksUaNcarmNfSYXTVhLi76a7QYiSKzmuRgQFqleP1AqymEjO8vnw5vOGihQ49pVhKfHymkU6+vQXodVg+cQBmCuREKnRALd0T7ZpwJZfVIY5G47I6i/kqrokv6gM/11wXtb3QBRqCn64gpG9U2wqQg2melRea0ByfBTOV9TivwvOocoq30iqZYarhqWerOS424Xa19RazUbqwkAoRDmqDNMnxCAxLhLG2iaPZhK1l7GMLgjAofNVlhcVV3lJrtivSjWbBSz8+LibZyEKHT9V1dn0IDLWNWJl/imnb/TJ8ZFYPKG/5EqM0n3H5Hah9geWz5McDIRCkLO+INbDHj359OfJi4qnOT32q1L7fqhg7yAKa58WXrIMZE2Mi5T8faisacLjG45grVYjKxhS00qOUtRazUbqwkAoxMjp8JoYF4noNlqbcng5n/48eVHZVuxek0Vnq1IFJRVunYcolLnzoWDhx8dldXR2ZyVHjYNVHZEzH9HVKrg3guU5IgZCIUfOnnhVbRP+9fvh0Go0bv2Syn1RGdotCQUlFTAY6/DRoZ9kX7vrVSkmMxJ5orq2Cat3nsUTucr051LjYFVnlM6BkiuYniNi1VjIkbt9deVaA3J6tsek7E6WKe9S5JTIThychttf/gpT396HeR8exdV66SoxkavqkpweKbLPoyT7p0WfEIN+qfEBuRYiT733bakilVFqHKwqxd/VbMH4HIU7rgiFGF/vibtKrJw4OA1v7S71eO1m8YRMjM3Uo6CkotVK1Yie7dE2uo2s8nsl/C6nG9rHR2PD/vMov3pjC7Gu6ToMJiZWUnCprm3yujJKrYNV5fBXDlQwP0fhjIFQiPHHnrijF5Wh3ZJw+8tfeRwEaQA89+lx/HnLCZvcJevl5JX3DcLjG+TNGEuOj8RfJmVh+daTTp8LV9rHR+GV7d+3up/9dG8ipeRkJOOk4Sqq63xTFOBtZVSwl6L7o5ot2J+jcMVAKMT4a0/c/kWloKTCq47PYu6SPesJ2OMHpWHmjxl4+5tSl+dqHx+FgkV3IqqNFlqtxuFzIWXD/gvMSiK/KrDq6B4fFYGaxmZFzy9nFdhVgq/cQGrP2Z+x9+wVAAJyeqRghMyt91DAcv3gxEAoBCndF0QOX/1i2y8nPzchE4CAt7855/B4DYD/+HUWotq0pL+Jz8XCj4+7VWljvR1G5G9KB0EaDTC0W5LLY6QSfOVup6/5qsTy/6u/KkFiXCRevHdgWCQJs1w/ODEQClH+7gviy19s++Xk5yYMgFnQ4N09tvlIWg0w87YM5GWl2XyyTY6Laun0SBSmBAE4WFqJkb1big7sV36qahocdn+3XpEdm6l3ue3uTHVtE2atP4y1ARqz4U+BLNcnzzEQCmH+7PAq9QIAtG7i6K7LV+vRbBbwxPtHsOVY68oLs9AytBUANh8t43BWIiviiA5HKz9ajePfTfsVWWfb7nIs3Xwi5JOEA1WuT95h+TwpQqq0XgPgsdEZlv/3xLkrtRiy/EuHQZBIAPDm7lKvg6DEWHkDZomChSAAnx8rwywHpd2uKuutV2TzstKw5oGbkBTv/u+HwdSAA1Z5UKFKjcNnyTWuCJFi5OQm3dQ1yWEeQl1Ts8sZaLq4SIdVXL7iq8odokApM9bija9LpA904vLVeuQXlWH51pOorLnx+xEfHYGaBnk5TeGSJByqI0tCFQMhUpTUC4B4+74fKn4Zm9FSWWKsa8KcDY6Xk8W/M8uHyHMfH/Gukd+5K7UOP4zIDYIA93IJg31EhZqGz5JrDIRIcVIvANuKDTarQqu/KkGaLgaPjc5olduj18Vgyi1dsGr7GZ9fN5GvDNC3xUVTQ6vKxcgIDZqa1R3iawCkJkRj4wHvWkroE6JlJQk3mwWs3nkG7+09Z7MyyxEV5CsMhMivxPbzjqpT3tpd+kv+QbTNp8Atxy4F5FqJlKKLi8Lm/zsa+0oqUPDDFQC/fFgQgGnv7A/05bkkAJg6rKvXH0aWThxgWdFxttqTX1TmtNWFdQUbgyFSEgMh8hs57ef/vKUYf/1tts1t7LlBwa7MWI8IrQYje6dYStiBlt+JuEgtapvMAby6GzSa1p0mEuMiYfQiZ866j1DLas9ZvLe3tNVqj9SIHo6oIF9hIER+I6f9vMHUgGn/uPEJOU0Xg8UT+svuXzI2syO2F1+2nI9IDUoravH5sUsYPyjd5uvbig2qCYIAx+22jLVNeHfvOY/O98SdvfF/7+wtudpTZqzHm7tdd4wHOKKCfIPl8+Q3nlSMGIz1mLPhCCYOblkKd/YZMD46Aq8/cBPe/t0tDktXiQLt8Q1HbCaPN5sFLN18IoBXdINW47xlhLgSo3FzAUYD4MPvfgTQsiU+a/1ht7q7uxIu1Wf+1GwWUFBSgU2FF1FQUoFmVz0VQgxXhMhvPNniEl+ENx8tw5oHhmD5VtvS+8S4SDxyawbmjunVqjJNzEFIaRsNCMCVmgb8u6gMnxeVu3xMDYAZI7vjHx5+CiZy5tlPjuP2Ph1x+HwVPjr0o82AYX9w1gjxj2N64dUdZ53eT7D8Rz5x9WbfDxVY9lmxe3eWoPbt8mCreJMarxLqGAiR38jpPu2I+IKaFB+FPQvGyHqBcVa5Nim7E37/3wex/eRll493c0YyhnRLxoKPj+FqPSfOkzIqa5qQ+UK+37dte3SIwzPj+jl9s2u47rvtufX7ziva5V2fEA2zIGBT4UVVBhnBFlS4KmAJl+R0jSBwCJMzJpMJOp0ORqMRCQkJgb6ckCD+0gHu5/C8OiUbk7I7eX0NzWYBg5b+2+lgS3Ee0J4FY7C58CLmfXjU68ckCiStBji1/G5EaDUOP0i8uv0MVm3/PtCXKUtiXKTNFpuaggxnQYUYpqktqGg2Cxj10k6ngar1a6Gagk053Hn/Zo4Q+ZWz9vNyKLUcfqC00uV0b+uEzAuVtYo8JlEgmQXgnwXnLCulk7I7Iadne0RoNWg2C9h44EKgL1FSdJuWtyv7PCNx5cI6/yoQpKpigZaKNzXl3sgpYBFfC0MZt8bI71rl8MRH46mPjqLc5J+JzXITLbcXG/AO84QoRJyrcBzUHyithMEk/TsR3Ubr0y00KTGREQ4fXy1l9e4EFWqpeJP7WhjqyekMhCgg7HN4lk70bmKzO8mJcleWPim8KOs4omAgCGaHvydygqCW+wd2JcNVLyM1BBnBGFTIfS1Ue3K6txgIkSrIGdjqjLvJiVJJ2xoAyfFRqKhp9OZbIlKVy6Z63LpiO8qv3vi5Tm0Xhdt6d5B1/0YvR4G0jW6Daw3uFx6IQ5fllN4HMsgIxqBCzmuhkqvxasVAiFTDk4nNnlQ8RGg1WHKP6xWoSdnpHjeRI1KjL0/+3Opr5Vcb8T+H/bPy6WkQBACP3JohK5nbn0GG/era0G5JQRdUyHktlFqNDwUMhEhV3JnYLGdkh7O8AakVKF1slFeBkLN+LUTkXGJspM3oDfH3cWymHu8fvOC3IENqq93ZKrQ4JiSYggpvVuNDBcvnXWD5vLoVlFRg6tv7JI/bOHOE0+DK2QueWFbqbs8jBkBEnvvXjOGApuV3GxCQ0yMFI36pbnPWekMMK9Y8MARJ8VFeNzGU2mqXKpF/bHQGNh8tC5o+QqJgawIpxZ33b64IUdBSIjnR2QpUhFaDiYPTZM0/spYYF4lf39SJ22oUcuz79yhJXNEx1jVi+daTliBi9VclNkGEs5WLiYPTWnWd9yT4kNpqF7vbu1qF3ny0DF8/fQcOna8KqqDCndX4UMNAiIKWL5MT84vK8JabQRDQUmJ8Z/9UBkIUUubl9kFffVvM+mVFRklieDBxcBrmbDgime9nn0dYVdMg635S5Gy1L95U5LKIQqxeO3S+KmyDimDEhooUtMSKB2efszRo+VTobt6AqxdEKQZTAw6UVri8LqJg07tjW+RlpWHGyO6Kn1uvi8GaB4Zg89EyWc0IrZtCDstIxvKtJxVpYiinD5DcSlI1lciTNAZCFLTEigeg9VR6b5ITpV4Qpby64ywmDk5zeF1EwWj51pZgIjdTr/i5F0/oj6T4KI86HCvZGVnJ4EVNJfIkjYEQBTVnIzv0uhiP5/oo8YL44Xc/Yc0Dno0SIVIbMZiQWoV1lwbA8q0nZTd1tP/dlPu7ajDWWf6/2SygoKQCmwovoqCkwrJaJDd4SY6PVHwVmgKLOUIU9DzpP+SKEp/mqmqboIuLxJ4FYyzXde5KDVZtP+P1uYkCwWCsk+w7I8C9yklxxabyWoOs4+1/N+X+ri7fehKxUREA4LQibGymXlYfoMUT+mPOhiNBVSJPrnFFiEKCo2GSnlLqU29BSYXNdT2R2wdrHxyCdjH8/EHBp/KX/Bhnq7CJcZEAPGsfkRwf5VG+n9zf1aqaRsxafxiz1h9utZUmJlVvKzbI2mofPyhd8VVoX3C28kWtsY+QC+wjFL5c9SyR+wsz946e+NO4fq2+XtfYjP4v5Ht9jUT+tOr+bPz6pk6Wv1v3nSn9uQav7jjjcQ+tjTNHwFjX6LJP0BsPDnG48rut2OCw5N0d4mrPngVjsK3YIGtkj5r77rg7digUsY8QkZdc9Sz57c1d8OoO6S2unB4pDr8eGxWBP4zOcLtHEVEgXfhler19ABCp1eIVGb8PjogByNBuSTh0vgqPjuyOTwovorKmdXdpABj10k6b38fk+Ej8OrsTnsztg3XflqLKwz5H1knVcrfa1dp3x5OxQ+GOgRCRE85eEJvNAl6T+PSrAXCLi4TJReNbXtjf/qYUXLGmYPD+wQvo3THepuEhAHi6CGLdP+j2l7+yC3CiMDk7HWMz9S5XfSprmvDOLz27dLHev52JyddqDXKkeDN2KJwxECJywdEL4r4fKiSX4QUAB89VYmQvx6tCQEsw9NRd/fDPgnM4X1mLc1dqsPvMFe8vmkJWIEe4lBnr8fiGI62+7mkgL3aEfmt3aavvqaqmEe/tPWfJCZLT18tY5/5QV3tyk6/Vui3mTjuBYAz0fIWBEJGbWuYgyTvOVSAEAFFttJhxWw8ALS+uI1/cAYNJXgUNhZ/INlo0XjcH+jI8tujuftDrYizT2m9/+SvJ1Yt20ZFe9fWSw52hrWrOv1Fi7FA4YtUYkZvk1he4W4cQodVgUna6J5dEYSKYgyAAuFp/3VLZeeh8lazVi4IflF0l9ab5qph/46zyLL+oTLkL9YAvxw6FMgZCFLY8LS8Vy4SVOk7k6XwzouBx43dM7qqEUnXN83J7Y60XZe9S+TeA/HEevuKrsUOhjltjFJa8Wd5OkflpSu5xgHfzzdyVGBeJIZ112Pk985HIv27peuMNWO6qxIYDF5AYFwljbZNXvx/dU+JlV4Q5ygEKhvwbqYaXABs+OsJAiMKOt+Wl+gR5L+ByjwO8n2/mjqZmM/bIzHMiUtL3P1/D7f07ArixeuGsk7PI05J4e+eu1ACQrgjLLyrD0s0nbHL19AnRGD9QXv5PoPNvXLX+UEMekxoxEKKwokR5qfgC7ipwcXf52Z8vnjUNzX57LCJr5ytqLP9vvXohRYOWlczoNlqPiwlWbT+Dvvp2LgOB/KIyzHJwPQZTA979pUxfihryb5QeOxTqmCNEYUWJadXiC7gGjhMvNXB/+VkNL55EvvY/h39qlVCsk5FLJ6BlZeivv83Gxpkj8OjI7kiOj3L78Rd+fNxpDk+zWcDCj4+7vL+r32i15d8oOXYo1HFFiMKKUuWlSi8/y90mIApm9U1my/YzALdHY1y51mB5Y39uQiYOlFbCYKxDZU0jDpyrxL9PlLu8f3VtE/aVVGBk79ZtLfaVVKBaYhtOvNZgyL9Ra68jNWIgRGFFyfJSJZefXSU5EoWapZtPANC4/XNu/XsZodXAWNeIlf8+7VZ+XcEPVxwGQnLL9MdnpeLIj0ZV59+oudeRGjEQorAitfLiTmM1QNlW/M5WmYhCiQB4lOdjv+3krOhBmqvicmk9OrTD3x8YqsrVlmazgNU7z2LV9u9b3cZZY84xR4jCirjyAnjXWM1X8rLSsGfBGGycOQIzRnZHcrxt/kSaLgarp9yE+KgIt8+dpotBYlykzJd7InWZODjN8nvpTbsJZx9c5H6gEfNthnZLwpWrDfiiqAzr9pYGvNllflEZRr64w2EQBKin15EacUWIwo7ay0vFVaacnu3x7C95EPafPEuuXMOq7dITvxdP6I+UdtGW+4rDK7n9RsFm89EyPJPXHxFajcftJpLiIjGih+OAZ0SP9kiMi3SZJxQfHYERPdpjxefFrQYm/8fnJzHztgzLQGV/krs6poZeR2rEQIjCUrCUlzrbeps7pjfe2v0Dahqdl8InxUXi4ZEZNt8Tt98oWFm/gXvabmLFvQOd/o5HaDV48d6BDsvnRTUNzZi1/jtsK77c6jazALz5S2d4fwZDnqyOBbrXkdowEKKwpWR+TyBEttECLgIhZy+M9kFgYkwktp0sx/nKWpjNAvay2SKplPgG7m67CbmJwmMz9YiLikCti98rR0GQtbe/KcVTd/VDVBv/ZJ54sjrGdh22GAgRBaEDpZWSpb7VtU1Ol8Dtg8Db+7V0+y0oqVA0ELo7S497BqVh+daTXIEir4lv4FU1jZLHRkZoMDyjPTJS4vDs+EzEysirW73zjMsgSA6zACzfcgJLJ2b5ZYXZndUdd4tBwgUDIaIgpFQ/JMC230hKfDT0CTEwmJQJWvacvYIHhnXFn+7qi/yiMmw76frTNJEr2V0S0WwWsHxrseSxTc0C9py9gj1ngX/tv+Awf8f+Z19u92gp/9x3AVuOlWFEj/bo2SEeOT1SMMJHTQ3dXd1hr6PWwiIQWrNmDV5++WUYDAYMHjwYf//73zFs2LBAXxaRx5Tqh+So30iijE6/cl2tv46H3j2g2PkovG3Yfx6Z6Tq3Vxcd5e84+tlXUlVtE74oMgAAVn9VgsS4SLx470DFizHkNmNVWx8hNfU6Cvny+Q8++ADz58/HkiVLcPjwYQwePBjjxo3D5cv8ZErBS3zxc9URRardv1hpYv9GYPxly82TEn0KfYFcSzhfWetVou9bu1vK3J397PtSdW0TZq0/3GrEiLdctQQRzcvtjT0LxqgqCHL0/Iu9jpR+jqSEfCD0t7/9DTNnzsQjjzyCzMxMrF27FnFxcXj33XcDfWlEHvO2H5Kc4bPtYtrgyTt7ITFWuRUiCm5xkRqkJkQH7PG7JMUhpa3njy8AePebHzzuQaSEpZtPKN7HR6wG1etsV4DTdDFY++AQPJHbR1XbYa5eewD/9zoK6a2xxsZGHDp0CIsWLbJ8TavVIjc3FwUFBa2Ob2hoQEPDjY6nJpPJL9dJ5Alv+iHJGT5rMDVgeI8U/PHOPpZ9/HNXavHKLw3b2Ico/NQ2CXh7eja0Gg32nv0Zq78q8evj90tt5/UP3sdHLgY0cd9gavBJH59gaQnizuBrf1X1hnQgdOXKFTQ3NyM1NdXm66mpqTh16lSr41esWIFly5b56/KIvObpi587ydb2FWZ99W0Vz63QJ0RjVK8OiIuOQJekOPTTt8P+0kqs/uqsYo9ByhAHnwaiF01lnXS1mJQmc2A7QAO+6+MTDC1BlCz0UEpIB0LuWrRoEebPn2/5u8lkQpcuXQJ4RUTSPHnx8ybZ2j74OnelBuu+PYcqiXJ+ZxZP6N+q8SMA3NorBf97+CfJJFBXNAAeHtkd9U3XsfHATx6ehayJPxOB6EWjxGPm9GiP0iu1ClyN58K5j4+Sg6+VEtI5QikpKYiIiEB5ebnN18vLy6HX61sdHx0djYSEBJs/RKHI22RrMfialN0JT+T2wf5nc1vNRZMiPoajIEh8DKk8KCl/n5KNJfcMwLKJA6GyHQLZ4qK0qpkPl9ouyvIzMSwjGXo/5gvpE6IxLCNZ8mdXyuJfDZD82dcnROOfjw7zSX6c+H2EKyUKPZQW0oFQVFQUhg4dih07dli+ZjabsWPHDuTk5ATwyogCS+nhs1FttPjPXw+ExsH5XJF6DGdJoHpdDP4wOsPlY/1hdAZ+ld3Jcn0zb8tw48puGJvZEWsfHAJ9gmefUP8w2rPHFf3tt9l4TOIcbST+nby9BtGySTeaBEZoNVg6cYDX50yKi0SX5FjJ45ZOHIAIrUZWlZQzfxidgdioCMmf/aUTB+C2Ph3w4n3u/0xLEb+PcKXGwdcaQRBCOufxgw8+wPTp0/Hmm29i2LBheOWVV/Dhhx/i1KlTrXKH7JlMJuh0OhiNRq4OUUhSupeH3N4s7j6Gs8Zrjh6vfXwUlk/KwvhBrc/taFimK2MzO+Lt393i8Bp2nirHO3ucn0ufEI2lEwcgLyvNo5419s+Ro2vXaoCZt2Xgmbz+eG3H93h79w+obbqRA2N/DUs3F9s0y0zTxeBXg/T438MXUVnjfGszLioCf/vtYIf/XvlFZVj48XGXnc4T4yLxyK0Z6J4Sh5T4aEDTkmtk/W858/8ddDi+IrqNFq9OyW712M5+drM6JWB78WWb7VQNgMdG2zZUlPuz7+g4rQY2/w5puhgsntAfSfHR2FZswIff/YRrDddbPQe+6CMUrHzdR8id9++QD4QAYPXq1ZaGitnZ2XjttdcwfPhwyfsxEKJwoHR3V/tuvdAAl031qKxpRHLbls7VSlazuHv9jdfN+GfBOZyvrEX7tpHYUliGn681IC6qDTonRqPuuoBBnXV4fsIAybEM1ufqkhSHfqntUFnX6PA67K8zu0siNuw/j/OVteiWHIcHhndD4Y/VLr8P68frlhyHh3K628y0knounN0uft1grMPPpgacKDPhYnUdOiXG4DdDuuDW3ikun9Nms4B9JRUo+OEKBAC6mEhU1zVBq4FbXZXrGpvxH1tP4OhPRuhiIjHzth4Y1aeDyzYQjr4fqedJ7vPl7Lih3ZJw6HyVy+d53w8VKCipACD4tLN0MPNlZ2kGQgphIERERBR83Hn/DukcISIiIiJXGAgRERFR2GIgRERERGGLgRARERGFLQZCREREFLYYCBEREVHYYiBEREREYYuBEBEREYUtBkJEREQUttoE+gLUTGy6bTKZAnwlREREJJf4vi1neAYDIReuXr0KAOjSpUuAr4SIiIjcdfXqVeh0OpfHcNaYC2azGZcuXUK7du2g0Sg7LM9kMqFLly748ccfOcfMC3welcHnURl8HpXB51E54fpcCoKAq1evIj09HVqt6ywgrgi5oNVq0blzZ58+RkJCQlj9cPoKn0dl8HlUBp9HZfB5VE44PpdSK0EiJksTERFR2GIgRERERGGLgVCAREdHY8mSJYiOjg70pQQ1Po/K4POoDD6PyuDzqBw+l9KYLE1ERERhiytCREREFLYYCBEREVHYYiBEREREYYuBEBEREYUtBkIeWrp0KTQajc2ffv36WW6vr6/HnDlz0L59e7Rt2xb33XcfysvLbc5x4cIFTJgwAXFxcejYsSOefvppXL9+3eaYXbt2YciQIYiOjkavXr2wbt06f3x7PrV7927cc889SE9Ph0ajwaeffmpzuyAIeOGFF5CWlobY2Fjk5ubizJkzNsdUVlZi2rRpSEhIQGJiImbMmIFr167ZHHPs2DHcdtttiImJQZcuXbBy5cpW1/LRRx+hX79+iImJwcCBA/H5558r/v36itTz+PDDD7f6Gc3Ly7M5JtyfxxUrVuCWW25Bu3bt0LFjR0yePBmnT5+2Ocafv8tr1qxB9+7dERMTg+HDh+PAgQOKf8++Iue5/D//5/+0+pmcNWuWzTHh/ly+8cYbGDRokKUBYk5ODr744gvL7fx59AGBPLJkyRJhwIABQllZmeXPzz//bLl91qxZQpcuXYQdO3YI3333nTBixAjh1ltvtdx+/fp1ISsrS8jNzRWOHDkifP7550JKSoqwaNEiyzE//PCDEBcXJ8yfP18oLi4W/v73vwsRERFCfn6+X79XpX3++efCc889J3z88ccCAOGTTz6xuf3FF18UdDqd8OmnnwpHjx4VJk6cKGRkZAh1dXWWY/Ly8oTBgwcL+/btE7755huhV69ewtSpUy23G41GITU1VZg2bZpQVFQkbNy4UYiNjRXefPNNyzF79+4VIiIihJUrVwrFxcXC888/L0RGRgrHjx/3+XOgBKnncfr06UJeXp7Nz2hlZaXNMeH+PI4bN0547733hKKiIqGwsFAYP3680LVrV+HatWuWY/z1u/z+++8LUVFRwrvvviucOHFCmDlzppCYmCiUl5f758nwkpzn8vbbbxdmzpxp8zNpNBott/O5FITNmzcLW7duFb7//nvh9OnTwrPPPitERkYKRUVFgiDw59EXGAh5aMmSJcLgwYMd3lZdXS1ERkYKH330keVrJ0+eFAAIBQUFgiC0vIlptVrBYDBYjnnjjTeEhIQEoaGhQRAEQXjmmWeEAQMG2Jz7/vvvF8aNG6fwdxM49m/gZrNZ0Ov1wssvv2z5WnV1tRAdHS1s3LhREARBKC4uFgAIBw8etBzzxRdfCBqNRrh48aIgCILw+uuvC0lJSZbnUhAEYcGCBULfvn0tf//tb38rTJgwweZ6hg8fLvzhD39Q9Hv0B2eB0KRJk5zeh89ja5cvXxYACF9//bUgCP79XR42bJgwZ84cy9+bm5uF9PR0YcWKFcp/o35g/1wKQksg9MQTTzi9D59Lx5KSkoR//OMf/Hn0EW6NeeHMmTNIT09Hjx49MG3aNFy4cAEAcOjQITQ1NSE3N9dybL9+/dC1a1cUFBQAAAoKCjBw4ECkpqZajhk3bhxMJhNOnDhhOcb6HOIx4jlCUWlpKQwGg833rdPpMHz4cJvnLjExETfffLPlmNzcXGi1Wuzfv99yzOjRoxEVFWU5Zty4cTh9+jSqqqosx4T687tr1y507NgRffv2xezZs1FRUWG5jc9ja0ajEQCQnJwMwH+/y42NjTh06JDNMVqtFrm5uUH5PAKtn0vRv/71L6SkpCArKwuLFi1CbW2t5TY+l7aam5vx/vvvo6amBjk5Ofx59BEOXfXQ8OHDsW7dOvTt2xdlZWVYtmwZbrvtNhQVFcFgMCAqKgqJiYk290lNTYXBYAAAGAwGmx9U8XbxNlfHmEwm1NXVITY21kffXeCI37uj79v6eenYsaPN7W3atEFycrLNMRkZGa3OId6WlJTk9PkVzxHs8vLycO+99yIjIwMlJSV49tlncffdd6OgoAARERF8Hu2YzWY8+eSTGDlyJLKysgDAb7/LVVVVaG5udnjMqVOnFPse/cXRcwkADzzwALp164b09HQcO3YMCxYswOnTp/Hxxx8D4HMpOn78OHJyclBfX4+2bdvik08+QWZmJgoLC/nz6AMMhDx09913W/5/0KBBGD58OLp164YPP/wwJAMUCj5Tpkyx/P/AgQMxaNAg9OzZE7t27cKdd94ZwCtTpzlz5qCoqAh79uwJ9KUEPWfP5WOPPWb5/4EDByItLQ133nknSkpK0LNnT39fpmr17dsXhYWFMBqN+J//+R9Mnz4dX3/9daAvK2Rxa0whiYmJ6NOnD86ePQu9Xo/GxkZUV1fbHFNeXg69Xg8A0Ov1rTL9xb9LHZOQkBCywZb4vTv6vq2fl8uXL9vcfv36dVRWViry/Iq3h5oePXogJSUFZ8+eBcDn0drcuXOxZcsWfPXVV+jcubPl6/76XU5JSUFERETQP4+A8+fSkeHDhwOAzc8kn0sgKioKvXr1wtChQ7FixQoMHjwYr776Kn8efYSBkEKuXbuGkpISpKWlYejQoYiMjMSOHTsst58+fRoXLlxATk4OACAnJwfHjx+3eSPatm0bEhISkJmZaTnG+hziMeI5QlFGRgb0er3N920ymbB//36b5666uhqHDh2yHLNz506YzWbLC2tOTg52796NpqYmyzHbtm1D3759kZSUZDkmnJ7fn376CRUVFUhLSwPA5xFoadUwd+5cfPLJJ9i5c2erbUB//S5HRUVh6NChNseYzWbs2LEjKJ5HQPq5dKSwsBAAbH4m+Vy2Zjab0dDQwJ9HXwl0tnaweuqpp4Rdu3YJpaWlwt69e4Xc3FwhJSVFuHz5siAILSWOXbt2FXbu3Cl89913Qk5OjpCTk2O5v1jieNdddwmFhYVCfn6+0KFDB4cljk8//bRw8uRJYc2aNSFRPn/16lXhyJEjwpEjRwQAwt/+9jfhyJEjwvnz5wVBaCmfT0xMFDZt2iQcO3ZMmDRpksPy+ZtuuknYv3+/sGfPHqF37942Zd/V1dVCamqq8NBDDwlFRUXC+++/L8TFxbUq+27Tpo3wX//1X8LJkyeFJUuWBE3ZtyC4fh6vXr0q/OlPfxIKCgqE0tJSYfv27cKQIUOE3r17C/X19ZZzhPvzOHv2bEGn0wm7du2yKemura21HOOv3+X3339fiI6OFtatWycUFxcLjz32mJCYmGhT/aNmUs/l2bNnhT//+c/Cd999J5SWlgqbNm0SevToIYwePdpyDj6XgrBw4ULh66+/FkpLS4Vjx44JCxcuFDQajfDll18KgsCfR19gIOSh+++/X0hLSxOioqKETp06Cffff79w9uxZy+11dXXC448/LiQlJQlxcXHCr3/9a6GsrMzmHOfOnRPuvvtuITY2VkhJSRGeeuopoampyeaYr776SsjOzhaioqKEHj16CO+9954/vj2f+uqrrwQArf5Mnz5dEISWEvrFixcLqampQnR0tHDnnXcKp0+ftjlHRUWFMHXqVKFt27ZCQkKC8MgjjwhXr161Oebo0aPCqFGjhOjoaKFTp07Ciy++2OpaPvzwQ6FPnz5CVFSUMGDAAGHr1q0++76V5up5rK2tFe666y6hQ4cOQmRkpNCtWzdh5syZrV7Ewv15dPT8AbD5PfPn7/Lf//53oWvXrkJUVJQwbNgwYd++fb74tn1C6rm8cOGCMHr0aCE5OVmIjo4WevXqJTz99NM2fYQEgc/lo48+KnTr1k2IiooSOnToINx5552WIEgQ+PPoCxpBEAT/rT8RERERqQdzhIiIiChsMRAiIiKisMVAiIiIiMIWAyEiIiIKWwyEiIiIKGwxECIiIqKwxUCIiIiIwhYDISIiIgpbDISIiIgobDEQIiIiorDFQIiIiIjCFgMhIiIiClv/P/Aq3X8OEpuRAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "#Variables predictoras\n", + "fig, ax = plt.subplots()\n", + "ax.scatter( data['Price'],data['Year'])\n", + "plt.show()\n", + "\n", + "#Variables predictoras\n", + "fig, ax = plt.subplots()\n", + "ax.scatter(data['Price'],data['Mileage'] )\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Respecto al análisis de la variable Price con sus predictoras, se puede observar que hay dos relaciones que llaman la atención, con las variables Year y con la variable Mileage. En el scatter realizado en la parte superior se puede observar la correlación positiva que presenta esta variable con la variable Year en los datos, y además se puede observar la correlación negativa que presenta con la variable Mileage." + ], + "metadata": { + "id": "OWOV26yahMBf" + } + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "KpTkJYlkUp_E", + "outputId": "0c661595-7592-4f07-9ede-93702e6594ca" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABxEAAAZGCAYAAABgDV8MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVf7H8c+kTSohIZ0aQg+99ybSRVEQbBRR0bWsYnd1bausvfzsigKuBVGsSJPei3RCIITQCQmppJeZ3x8TBi6TQjAhJL5fz5Nnybnn3Pu9ztkzk/nec47JarVaBQAAAAAAAAAAAABFnKo6AAAAAAAAAAAAAABXFpKIAAAAAAAAAAAAAAxIIgIAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAA8De1bNky/ec//1FmZmZVhwIAAAAAAK4wJBEBAACAKjBz5kyZTCYdOnSoUs7/3HPPyWQylXg8NjZWo0ePVlBQkLy8vColBlycRo0aadKkSeVut2LFCplMJn3//fdl1p00aZIaNWpU/uAAAAAAAH9bJBEBAABQY8TGxmrq1Klq3Lix3N3dVatWLfXq1UvvvPOOsrOzqzq8K0Zubq7Gjh2r++67T3fddVdVh1OmqKgoPffcc5WWcAUAAAAAAI5cqjoAAAAAoCLMnz9fY8eOldls1oQJE9S6dWvl5eVpzZo1evTRR7Vnzx598sknVR3mZfP000/riSeeKPbYrl27NHnyZN1///2XOapLExUVpeeff179+/evkbPp9u3bJycnnu8EAAAAAFxZSCICAACg2ouLi9P48ePVsGFDLVu2TKGhofZj9957rw4cOKD58+f/5etYrVbl5OTIw8PD4VhOTo7c3NyumGSQi4uLXFyK/7jfuXNnde7c+TJHdHmU9hpdSc6P02w2V3U4AAAAAAA4uDK+4QAAAAD+gldffVUZGRmaMWOGIYF4VpMmTfTPf/7T/ntBQYFefPFFRUREyGw2q1GjRnrqqaeUm5traNeoUSONHDlSixYtUufOneXh4aGPP/7Yvhfdt99+q6efflp169aVp6en0tPTJUkbN27U0KFD5evrK09PT/Xr109r164t8z5+/vlnjRgxQmFhYTKbzYqIiNCLL76owsJCh7obN27U8OHD5efnJy8vL7Vt21bvvPOO/XhxeyKW977XrFmjrl27yt3dXY0bN9bs2bPLvAdJslgsevvttxUZGSl3d3cFBwdr6tSpSklJKfd1Zs6cqbFjx0qSBgwYIJPJJJPJpBUrVhjOceFrJEmpqal68MEHVb9+fZnNZjVp0kSvvPKKLBZLqfGPHDlSjRs3LvZYjx49DAnYL774QgMHDlRQUJDMZrNatWqlDz/80KFdaXFeuCdicnKyHnnkEbVp00be3t6qVauWhg0bph07dhQbU2FhoZ566imFhITIy8tLo0aN0tGjR0u9R+niX6ctW7ZoyJAhCggIkIeHh8LDw3X77beXeX4AAAAAQPVmslqt1qoOAgAAAPgr6tWrJ7PZrNjY2IuqP2nSJM2aNUtjxozRgAEDtHHjRs2ePVvXXXedfvzxR3u9Ro0aydXVVUlJSZo6daoaNWqk5s2bS7IltFq1aiU3NzdNmDBBubm5euCBB7RhwwYNGzZMnTp10pgxY+Tk5KQvvvhC0dHRWr16tbp27SrJlhybPHmy4uLi7Et0jh49Wm5uburSpYu8vb21bNkyzZ07V4888ohee+01e1xLlizRyJEjFRoaqkmTJikkJER79+5VVFSUlixZIsmWRHz++ed1/sf98ty3u7u7UlNTNWXKFIWFhenzzz/Xtm3btGvXLkVGRpb63/fOO++031+nTp0UFxen9957T61atdLatWvl6up60dc5ePCg3nnnHb377rt66qmn1LJlS0nS1VdfreDg4BJfo65du6pHjx46fvy4pk6dqgYNGmjdunX68ssv9cADD+jtt98uMf4vv/xSEyZM0KZNm9SlSxd7+eHDh9WoUSO99tpreuSRRyRJXbt2VWRkpNq1aycXFxf9+uuvWrx4sd577z3de++9Zfals0u09u/fXzNnzpRkS9qNHz9eY8eOVXh4uE6dOqWPP/5YGRkZioqKUlhYmCRpxYoVGjBggNq0aSOTyaRJkyYpISFBb7/9tho0aKDt27fbZ2ROmjRJK1asMOwreTGvU0JCglq0aKHAwEDdeeedql27tg4dOqR58+YpKiqq1H4AAAAAAKjmrAAAAEA1lpaWZpVkvfbaay+q/vbt262SrHfccYeh/JFHHrFKsi5btsxe1rBhQ6sk68KFCw11ly9fbpVkbdy4sTUrK8tebrFYrE2bNrUOGTLEarFY7OVZWVnW8PBw69VXX20v++KLL6ySrHFxcYZ6F5o6darV09PTmpOTY7VardaCggJreHi4tWHDhtaUlBRD3fOv+eyzz1rP/7h/Kfe9atUqe1lCQoLVbDZbH374YYcYz7d69WqrJOtXX31lKF+4cKFD+cVeZ+7cuVZJ1uXLlztcr6TX6MUXX7R6eXlZ9+/fbyh/4oknrM7OztYjR46UeA9paWnF3uurr75qNZlM1sOHD9vLinvNhgwZYm3cuPFFxXn22MSJE+2/5+TkWAsLCw114uLirGaz2frCCy/Yy872w7p161rT09Pt5d99951VkvWdd96xl02cONHasGFD++8X+zr9+OOPVknWzZs3O8QNAAAAAKjZWM4UAAAA1drZJUR9fHwuqv7vv/8uSZo2bZqh/OGHH5Ykh70Tw8PDNWTIkGLPNXHiRMPee9u3b1dMTIxuvvlmJSUl6fTp0zp9+rQyMzN11VVXadWqVaUupXn+uc6cOaPTp0+rT58+ysrKUnR0tCRp27ZtiouL04MPPqjatWsb2l+4fOlfue9WrVqpT58+9t8DAwPVvHlzHTx4sMRrSNLcuXPl6+urq6++2n7/p0+fVqdOneTt7a3ly5dXyHXOV9xrNHfuXPXp00d+fn6GOAYNGqTCwkKtWrWqxPOdXT70u+++M8zknDNnjrp3764GDRrYy85/zdLS0nT69Gn169dPBw8eVFpaWplxFsdsNtv31iwsLFRSUpK8vb3VvHlzbd261aH+hAkTDP1/zJgxCg0Ntb/mxbnY1+lsH/vtt9+Un59fZuwAAAAAgJrDpaoDAAAAAP6KWrVqSbIl3S7G4cOH5eTkpCZNmhjKQ0JCVLt2bR0+fNhQHh4eXuK5LjwWExMjyZZcLElaWpr8/PyKPbZnzx49/fTTWrZsmT05en47SfYlW1u3bl3iNYpT3vs+P1F2lp+fn8N+eReKiYlRWlqagoKCij2ekJBQIdc5X3GvUUxMjHbu3KnAwMCLiuNC48aN008//aT169erZ8+eio2N1Z9//umwDOratWv17LPPav369crKyjIcS0tLk6+vb6lxFsdiseidd97RBx98oLi4OMOemHXq1HGo37RpU8PvJpNJTZo0MSxdeqGLfZ369eunG264Qc8//7zeeust9e/fX9ddd51uvvlmmc3mi7ofAAAAAED1RBIRAAAA1VqtWrUUFham3bt3l6tdabP2znf+TLOyjp2dZfjaa6+pffv2xbbx9vYutjw1NVX9+vVTrVq19MILLygiIkLu7u7aunWrHn/88VJnMJbHxd63s7NzseXWMrZUt1gsCgoK0ldffVXs8QuTepd6nfMV9xpZLBZdffXVeuyxx4pt06xZs1LPec0118jT01Pfffedevbsqe+++05OTk4aO3asvU5sbKyuuuoqtWjRQm+++abq168vNzc3/f7773rrrbccXrPS+tL5Xn75ZT3zzDO6/fbb9eKLL8rf319OTk568MEHK6wfXOzrZDKZ9P3332vDhg369ddftWjRIt1+++164403tGHDhhL7MwAAAACg+iOJCAAAgGpv5MiR+uSTT7R+/Xr16NGj1LoNGzaUxWJRTEyMWrZsaS8/deqUUlNT1bBhw0uOIyIiQpItsTlo0KBytV2xYoWSkpI0b9489e3b114eFxdX7DV2795drmtU5n1fGN8ff/yhXr16XXTSrCwXm/i8MI6MjIxyvw5neXl5aeTIkZo7d67efPNNzZkzR3369FFYWJi9zq+//qrc3Fz98ssvhhmVFy7ZWl7ff/+9BgwYoBkzZhjKU1NTFRAQ4FD/7AzYs6xWqw4cOKC2bduWeI3yvk7du3dX9+7d9dJLL+nrr7/WLbfcom+//VZ33HHHRd4VAAAAAKC6YU9EAAAAVHuPPfaYvLy8dMcdd+jUqVMOx2NjY/XOO+9IkoYPHy5JDstSvvnmm5KkESNGXHIcnTp1UkREhF5//XVlZGQ4HE9MTCyx7dkZeefPwMvLy9MHH3xgqNexY0eFh4fr7bffVmpqquFYabP3KvO+z3fjjTeqsLBQL774osOxgoICh5gvhpeXlySVq+2NN96o9evXa9GiRQ7HUlNTVVBQUOY5xo0bpxMnTuizzz7Tjh07NG7cOMPx4l6ztLQ0ffHFFxcdZ3GcnZ0dXsu5c+fq+PHjxdafPXu2YTnf77//XidPntSwYcNKvMbFvk4pKSkOsZydZZubm3sxtwMAAAAAqKaYiQgAAIBqLyIiQl9//bXGjRunli1basKECWrdurXy8vK0bt06zZ07V5MmTZIktWvXThMnTtQnn3xiX0J006ZNmjVrlq677joNGDDgkuNwcnLSZ599pmHDhikyMlKTJ09W3bp1dfz4cS1fvly1atXSr7/+Wmzbnj17ys/PTxMnTtQDDzwgk8mkL7/80iGB4+TkpA8//FDXXHON2rdvr8mTJys0NFTR0dHas2dPsUmzyr7v8/Xr109Tp07V9OnTtX37dg0ePFiurq6KiYnR3Llz9c4772jMmDHlOmf79u3l7OysV155RWlpaTKbzRo4cGCJ+/lJ0qOPPqpffvlFI0eO1KRJk9SpUydlZmZq165d+v7773Xo0KFiZ/Wdb/jw4fLx8dEjjzwiZ2dn3XDDDYbjgwcPlpubm6655hpNnTpVGRkZ+vTTTxUUFKSTJ0+W6x7PN3LkSL3wwguaPHmyevbsqV27dumrr75S48aNi63v7++v3r17a/LkyTp16pTefvttNWnSRHfeeWeJ17jY12nWrFn64IMPNHr0aEVEROjMmTP69NNPVatWLXtiGgAAAABQM5FEBAAAQI0watQo7dy5U6+99pp+/vlnffjhhzKbzWrbtq3eeOMNQ0Lls88+U+PGjTVz5kz9+OOPCgkJ0ZNPPqlnn332L8fRv39/rV+/Xi+++KLee+89ZWRkKCQkRN26ddPUqVNLbFenTh399ttvevjhh/X000/Lz89Pt956q6666ioNGTLEUHfIkCFavny5nn/+eb3xxhuyWCyKiIgoNWlU2fd9vo8++kidOnXSxx9/rKeeekouLi5q1KiRbr31VvXq1avc5wsJCdFHH32k6dOna8qUKSosLNTy5ctLTSJ6enpq5cqVevnllzV37lzNnj1btWrVUrNmzfT888/L19e3zOu6u7tr1KhR+uqrrzRo0CCH6zVv3lzff/+9nn76aT3yyCMKCQnRPffco8DAQN1+++3lvs+znnrqKWVmZurrr7/WnDlz1LFjR82fP19PPPFEifV37typ6dOn68yZM7rqqqv0wQcfyNPTs9TrXMzrdDbZ/O233+rUqVPy9fVV165d9dVXXyk8PPyS7xEAAAAAcOUzWUtb8wgAAAAAAAAAAADA3w57IgIAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAABABVm1apWuueYahYWFyWQy6aeffiqzzYoVK9SxY0eZzWY1adJEM2fOdKjz/vvvq1GjRnJ3d1e3bt20adOmig/+PCQRAQAAAAAAAAAAgAqSmZmpdu3a6f3337+o+nFxcRoxYoQGDBig7du368EHH9Qdd9yhRYsW2evMmTNH06ZN07PPPqutW7eqXbt2GjJkiBISEirrNmSyWq3WSjs7AAAAAAAAAAAA8DdlMpn0448/6rrrriuxzuOPP6758+dr9+7d9rLx48crNTVVCxculCR169ZNXbp00XvvvSdJslgsql+/vu6//3498cQTlRI7MxEBAAAAAAAAAACAUuTm5io9Pd3wk5ubWyHnXr9+vQYNGmQoGzJkiNavXy9JysvL059//mmo4+TkpEGDBtnrVAaXSjszAAAAAAAAAAAArjiW+GZVHUK1M/2jm/X8888byp599lk999xzf/nc8fHxCg4ONpQFBwcrPT1d2dnZSklJUWFhYbF1oqOj//L1S3JFJRHptKhMTiH7JUkrD9HPUHn6NbL1s2GNH6niSFCTLTj4uiSp2X/equJIUJPtf/ohSVKf0a9XcSSoyVb/aHu/bPEc4xkqT/RztvGs8VtvVnEkqMkOPjRNktT43TeqOBLUZAcfeFiS1H3Rk1UcCWqyDUOmS5Ii5rxUxZGgJosd96+qDgG4JE8++aSmTZtmKDObzVUUzeVxRSURAQAAAAAAAAAAgCuN2WyutKRhSEiITp06ZSg7deqUatWqJQ8PDzk7O8vZ2bnYOiEhIZUSk8SeiAAAAAAAAAAAAECV6dGjh5YuXWooW7JkiXr06CFJcnNzU6dOnQx1LBaLli5daq9TGUgiAgAAAAAAAAAAABUkIyND27dv1/bt2yVJcXFx2r59u44cOSLJtjTqhAkT7PXvvvtuHTx4UI899piio6P1wQcf6LvvvtNDDz1krzNt2jR9+umnmjVrlvbu3at77rlHmZmZmjx5cqXdB8uZAgAAAAAAAAAAABVky5YtGjBggP33s3spTpw4UTNnztTJkyftCUVJCg8P1/z58/XQQw/pnXfeUb169fTZZ59pyJAh9jrjxo1TYmKi/v3vfys+Pl7t27fXwoULFRwcXGn3QRIRAAAAAAAAAADgb8QiS1WHUO2UZ2nP/v37y2q1lnh85syZxbbZtm1bqee97777dN9995Ujkr+G5UwBAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGBAEhEAAAAAAAAAAACAAUlEAAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYuFR1AAAAAAAAAAAAALh8Cq2Wqg6h2vk7JtSYiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMDApaoDAAAAAAAAAAAAwOVjkbWqQ0A1wExEAAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYEASEQAAAAAAAAAAAIABSUQAAAAAAAAAAAAABi5VHQAAAAAAAAAAAAAuH4ssVR0CqgFmIgIAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADBwqeoAAAAAAAAAAAAAcPkUWq1VHQKqAWYiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMHCp6gAAAAAAAAAAAABw+VhkreoQUA0wExEAAAAAAAAAAACAAUlEAAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYEASEQAAAAAAAAAAAICBS1UHAAAAAAAAAAAAgMunUNaqDgHVADMRAQAAAAAAAAAAABiQRAQAAAAAAAAAAABgQBIRAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGLhUdQAAAAAAAAAAAAC4fCyyVnUIqAaYiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMDApaoDAAAAAAAAAAAAwOVTaLVWdQioBpiJCAAAAAAAAAAAAMCAJCIAAAAAAAAAAAAAA5KIAAAAAAAAAAAAAAxIIgIAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwMClqgMAAAAAAAAAAADA5WOp6gBQLTATEQAAAAAAAAAAAIABSUQAAAAAAAAAAAAABn85iZiXl6d9+/apoKCgIuIBAAAAAAAAAAAAUMUuOYmYlZWlKVOmyNPTU5GRkTpy5Igk6f7779d///vfCgsQAAAAAAAAAAAAwOV1yUnEJ598Ujt27NCKFSvk7u5uLx80aJDmzJlTIcEBAAAAAAAAAAAAuPxcLrXhTz/9pDlz5qh79+4ymUz28sjISMXGxlZIcAAAAAAAAAAAAKhYhbJWdQioBi55JmJiYqKCgoIcyjMzMw1JRQAAAAAAAAAAAADVyyUnETt37qz58+fbfz+bOPzss8/Uo0ePvx4ZAAAAAAAAAAAAgCpxycuZvvzyyxo2bJiioqJUUFCgd955R1FRUVq3bp1WrlxZkTGiSGaW9Pm30s690q69UtoZk15+wqrRw6o6MlzJ8vOkX2ZLG5ZKWRlS3XDpuolSq05lt43aKv3+jXT8kGQplILrSgOulXoMMtZb8asUvUOKi5ZSEk3qcbVVkx+plNvBFc7Lx11TnhipnoNby+zhpn07jujTl39V7J7jF9W+z/B2un5KX9WLCJKl0KLD++M195MV2rx8r71OvcaBGjy2qzr2aabQBnWUk5WnA3uO639vL1LMrmOVdWu4wvmYzXrsqj66unmE3F1dtfNEvP77xypFxSeU2bZtWLBGt41Uu7ohah4UIFdnZzX7z1uXIWpcybw9zbpnYl/17dZUZrOr9sac1PszV2j/wbL71FP3D9Wwga0dyg8fS9Kt939hKLttTDe1ahqqVs1C5V/bS59/u05fzFlXYfeBK5uPu1mPXt1Hg1rYxq5dx+P1yuJVijpZdj9rUzdYo9vbxq5mwbaxq8VzZY9dHRuE6evbx0mSur/6oVKzcv7yfeDK4WM264k+fTQ4ook8XF21Iz5eL69aqT0JZfcpSYrw99fT/fqrc1iY8i0WLY87qJdWrlRydra9TmM/P41t3Vp9GjRUg9q1lZWfpz2nEvT2hvXadeqU4XxDmjTRiGbN1TYkWIGeXjp55oyWxR3U/23cqDO5uRV676g4bs7OeqhbT13XopV83c2KPn1ab65fqzVHD5fZNtjLW0/37a8+DRrKZDJpw7Gj+s+qFTqanuZQ98ZWrXVHx86qX8tXJzPOaOb2bZq9c1ux5x3RtLkmt++oFgGBKrAUKiY5WW+uX6P1x44WW79zaF19N3a8JKnTJx8oJSe72HqoHlxNzrqr6dUaGtpBPq4eij0Tr48PLNampAOltusX1Eqj63dThHeIfN08lZqXqd2pR/RZ7FIdzDhVYru6Hv76uteDMju7atL69xSdfnF/z6LmcXNy1oOt++q6Rm3k6+qu6LQEvblrpdaeiiu13eC6zTWyQSu18Q9VoLu3Tmala9nJGL23Z43O5PP+B6B6ueSZiL1799b27dtVUFCgNm3aaPHixQoKCtL69evVqdNFZCdQbqlp0gezTIo9LDWPqOpoUF3MfENaMk/qNlAad4/k5CS9+4wUs7v0dtvXS+88JRUWSNfcKl03SXI1S1+8ZtKSeca6i+ZK+7ZLYQ0lJ2fW0v67MplMen7GFPUf1UG/fLlWM175TbXreOvVr+9RWKOAMtuPmtBLT713m9JSMvXFq7/rm/f+kKePu16YMUU9h5z7Mn7ouG4aOr6bYnYd02cv/6p5M1apXnig3vrhfrXv1bQybxFXKJOkT8Zfp5Gtm+t/W3botaWrVcfLU/+7bYwa+tUus32/JuEa26G1rFbpaKrjF1z4+zGZpFefvl6D+rTUD79v04ezV8rP11PvvjhO9UJrX9Q5cvMK9OLb8w0/H8xyfNDurlv6qGWTEMVcRHISNYvJJH1883Ua0aa5vtq0Q68vWS1/L0/NnjRGDf1rl9m+X9NwjenYWlZJx1IubuwymaSnhw1QZl7eXwseVySTpBnXXadRzVvoyx3b9crqVarj6aGvx4xVo9q1y2wf4u2tb8feqIa1a+v1tWv12ZYtGhDeWLOvv0GuTue+OhjXuo3Gt26jXadO6eVVKzXjz60K9/fXD+NvUq8GDQznfGnQ1Wri76+f9kbr+RXLtfLwId3Wrr1+GDdeZudLfqYZley1QUN1e4dO+nnfXr2wcrkKrVbNGDVanUPrltrO09VVX18/Vt3q1tMHmzfpnQ3rFBkYpG9uGKfa7u6Guje1bqv/DhqimOQkPbdymbaePKHn+g/U1E5dHM77z2499M7QETqZcUYvrV6hN9av1b7TiQr29i42DpOkZ/sPZKyrQZ5pM1Y3NeytRSe3663oX1VotejNjpPUrnbDUttF+IToTH62vjuyVq9F/ax5RzeoWa0wfd79H2riE1JiuwdbjFCh1VLRt4Fq6NWu1+j25t30y+HdenHbElmsVs3oO06dAuqV2u6lLsMVUauOfj68Wy9sW6xV8bG6rUlnfT9oEu9/AKqdvzRqRURE6NNPP62oWFCGwDrSqnlWBdaRdkdLY6dWdUS40sVFS5tXmDTmDqsGj7WV9RgkPXeX9MNn0hNvl9x2+S+Sr7807RXJ1c1W1neE9O8pVq1fLF19/bm6j7wm+QfZvpi6/9pKux1c4XoPa6vIzuF66d7ZWrNgpyRp9fwd+nTp47r1wcF69cGvS21/zcTe2rfjiJ6743N72eK5m/Tlumc06PrOWrfIlvle8es2/e+dxcrJyjPU+2TxY7r1n4O1fW1MJdwdrmRDWzZTp/phuv/737Qo2vb6/753vxbfM0kP9Ouhh39aUGr7r//cqU/WbVZuQaH+PWSAGtfxvxxh4wrWv0dztWlZV8+8+otWrN8vSVq+dp++fn+Kbh/fSy+8Nb+MM0iFhRYtXrm3zHpj7/pE8Ynp8vXx0G+z7/3LsaP6GNKqmTo2CNM/v/tNi6JsY9eCPfu18P5Jun9ADz3yQ+lj1zebd+rTNbax65nhAxQeUPbYdWOntgr19dH3W3drYveOFXIfuHIMa9ZMncPq6t7fftWCGFufmr9/v5ZOmqwHe/TUgwt+L7X9P7p2laerq679+iudOHNGkrTjVLy+vGGMboiM1Le7dkmSft0XrXc2rFdWfr697dw9u7V44iT9s3sPrT1yxF5+72+/auMx40oRu0+d0htDh+nali303e4ynmzEZdc2OETXNG+hl1ev1GfbtkiS5kVHaeEtE/V4774aO/ebEtve2qa9wv38dd23/9POBNssrxWHD2nhLRN1R4fOen39GkmS2dlFD/forWVxsbr3918lSXP27JKTyaT7unTXN7t3Kr1opmr7kFDd37WHXl69Qp9v33pR93BT67YK9fbRd3t2aXIHHnKv7lr51tPg0HZ6d9/v+vrQaknSghPb9FWvB3Vvs2G6a9NHJbb9PHaZQ9kvx7bol35P6Pr63fVq1E8Ox7vVaapuAc30v7hVuj1iYIXdB6qftv5huqZhpKZv/0Of7dsoSZp3aKcWDr1LT7S7SmOXziqx7X1rf9DGxCOGst0p8Xq92yhd27C1vju4vTJDB4AKdckzEX///XctWrTIoXzRokVasKD0P3hxadzcbIlE4GL9uUZycrKqz/BzZa5uUu+h0sG9JiWXMukhJ0vy9D6XQJQkZ2fJ29c2I/F8dYJtCUT8vfUe1lbJielau3CXvSwtOVOr5+9Qj0Gt5ermXGp7T2+zUpMyDGVZGbnKycpTXs65L6kO7D5uSCBK0pnULO3eclD1I4Iq4E5Q3Qxp2VSJGZlaHH0ugZySla0Fe/frqmYRcnUuve8lZWYpt6CwssNENdK/ZzMlpWRq5Yb99rLU9GwtW7tPvbs2katL6X3qLCcnkzw93EqtE5+Y/pdiRfU1pFXR2LXXOHYt3LNfA5tX/Njl62HWgwN76t3l63Qmh2W0aqJhTZsqMTNTC2PO9ank7GzN379fgyIi5FZGnxrapKmWxR20JxAlae2RIzqYnKwRzZrZy3YnJBgSiJKUmpOjLcePK8LfmMy+MIEoSYsP2JYfbOLPQztXomFNmqnAYtG3e3bay/IKCzU3arc6hYYp1NunlLZNtSP+pD2BKEkHU5K17ugRDW96rg/1qFdf/h4e+t/OHYb2X+7cLi83Nw1o1NheNrl9RyVmZuqLogSip6trqfH7mt01rUdvvb1hrdLzGOtqgoHBrVVgKdRPRzfZy/IsBfr12Ga19WuoIHffcp0vOS9DOYX58nFxdzjmbHLSQy1G6rvDa3U8K+kvx47qbVi9FrbxMPbcMst5lkJ9F7dDHQPqKdSj5PHwwgSiJC0+tk+SFFGLL3dx5Si08lPen7+jS04iPvHEEyosdPyj1Wq16oknnvhLQQGoGEcPSMH1JA8vY3mj5kXHD5bctnlb6cRhk36eJSUclxJOSL99JR3eLw0ZW3kxo/qKiAxT7J7jslqN76j7dh6Vu6eb6oYHltp+14ZYde7bXKMm9FJQXT/Vaxyofzw/Wp4+7vpp5poyr+8X4KP0lMy/dA+onlqFBCoqPkEXfpbbeSJenm6uCr+IZQGB8zUND9L+g6d0wXCmvTEn5eHuqvphfmWew93sqoVfPaBFXz+g+bPv1UN3XSUP99K/+MTfS8uQQEWdTHDoZzuPF41ddWpX6PUeGNBTiRmZmrNlV9mVUS1FBgZpT0Ix74fx8fJ0dVV47ZLHrmAvbwV4eTnsaSjZZiO2Ciz7Qa0AL0+lZJe971ygl+2Pk4upi8svMjBIcakpyrhgKdAd8fGSpJaBxX+mN0lqERCoXQnF9aGTalTbT15FCcCz/WlXQryh3u6EUyq0WBR5Xn/rWb+BdibEa1L7jtpy5z+0+54HtGHKVN3Wtn2xcUzr0UuJWZn6evfOYo+j+mnmE6ajWaeVVWhMCkelHSs6HlrmObxd3FXb1UsR3sF6KvJ6ebu6a0tyrEO98Q17qZarhz6PXV4xwaNaa+UXrLgzScooMI6HO5NOSJJa+pW8JG5xAt2L3v9yef8DUL1c8nKmMTExatWqlUN5ixYtdOBA6RsbA7g80pJtS5Je6GxZaikP1o24RTodb9Xv30jzv7ZNM3QzW3X3M1L7npUQLKo9/8Ba2r3JMTOdkmCbZeMfVEuH9sU7HD/rwxd+Vi1/L93z3Gjd89xoSVJaUoaevPVjRW87XOq1I7uEq2XHhvr2vaV/4Q5QXQV6e2nzkeMO5YlnbEnlIB9v7U/kSWJcvDp+XtoR5Th7JqnoQYUAf28dPHK6xPZJKZn6+qdN2h+bICcnqVuHcF0/rIOaNArUA0/PUaHlb/r4IgwCfby05XAxY1fGeWNXQsWMXc2CAzSuc1tN/epHWS7MWqLGCPTy0qbjjn0qIbOoT3l7aV9S8WNXkLeXoe6F7f08POTm7Ky8Yh4klqQudeuqY2iY3tu4scw4p3buogKLxb7kKq4sgV5eSszMcChPyLKVBXsVvw9hbXcPmV1ciu1DiWf7oJe34lJTFOTlpQKLRUkXJJLzLRal5OTYr1HLbFYdD091Cq2rHvUa6N2N63UiI11jWrbW8/2vUoHFom/OSxa2qBOgm1q31e2/zGOsq0HqmH10OveMQ/nZsgBzrTLP8Vm3e9TI25aczizI1eexy/TLsS2GOv5u3ro9YqDe3fe7Q8ISf09BHt5KzClmPCwqC/YofjwsyV0te6rAYtHCo2VveQAAV5JLTiL6+vrq4MGDatSokaH8wIED8vLyKr4RgMsqL09yKWbSw9klSvNL+Vzs4mqbxdixt9Sht1VWi7Tqd2nGq9JD06XGLSsnZlRfbu6uys9z/GIpL7dAkmQuYwZObnaejh1M1OmTadq0fK88vMwafXsfPfPhRD0y7n2dPFz8F6m+dbz1+Fu36NTRZM39hCdG/47cXVyUV8ySfrlFX3S6u7BxPcrH7Oai/PxixrP8Avvx0nz8v9WG35eu2aejJ1J016191L9nMy1ds6/igkW15e7iUmxC5uwSpWbXihu7nh7WX6tjDmltrOPSWqg5bH2qwKE8t6istPfDs8dK7ZMl9Nk6Hh56a9hwHU1L0ydbNpca46jmLTSuTRt9vHmzDqWmlloXVaOssamkflRqH7rgM5m7i4vyS0hI5xUWyFxUz6voD1d/Dw/dv+A3zY+xvX8uiNmvBbdM1L1F+yee9e9+A7XycJzWHCn9AURUL2ZnV+VbivlcZsm3Hy/Lf3b/IC8Xs+p6+mtE3U4yO7nIyWRS4XnJ5nubDdPxrGSH5CL+vszOriWMaUV/Ezhf/Ge1axpEalzj9vp47zodykipsBgB4HK45OVMr732Wj344IOKjT03/f/AgQN6+OGHNWrUqFLb5ubmKj093fCTm8tTPkBFc3OTCvIdy/OLVmK4cG/D833znrRjg3TnU1LX/lK3gdJD/7XNYvz2w0oJF9WEi6uz/AJ8DD9OTibl5eQXu++hm9n2wTo3p5jOeJ6n3pugoDA/vfnYHK1ZsFNLvt+sx276UC6uzpr48LBi25g93PT8Z7fLw9us56fOdNgrETWLq5OTArw8DT9OJpNyCgrkVswedeaivZ9yChy/UAUkycXFSf61PQ0/Tk4m5eYVyNW1mPGsKKmTm1f+PjXn1z9VWGhR57YN/3LcqF5cnZ0U4O1p+LGPXcXsUWcuGs9y8ytm7BoW2Uzt64fplcUrK+R8qHquTk4K8PQ0/JzrU45faJ79krO098Ozx0rtk8W093Bx0WfXjZa3q6um/vKzw16J5+tSt67+O3iwVh46pNfXlr1UPapGWWNTSf2o1D50wWeynIKCEvd9dXN2sfe1s/XzCgu14MC5fYqtkubH7FOYj4/CivZoHNG0uTqGhunl1Yx1NU1uYb5cnYr5XObkaj9elt1pR7QxKUbzjm7Ug1s+19CwDvpH0yH245G+9TUsrL3e3jdfVodFofF3lVuYX8KYVvQ3QTEP7hSnc0B9/bfLCK06Gas3dq2owAgB4PK45MdbX331VQ0dOlQtWrRQvXr1JEnHjh1Tnz599Prrr5fadvr06Xr++ecNZc8++6z+ffelRgOgOL7+xS9ZmpZs+9/aJezlXJAvrVlk2/vQ6bxHDVxcpNZdpOW/2OoUN8sRNV/Ljo306jf3GMom9nlJyYnp8g9yXErGr6gsuWhZ0+KE1PdXl/4t9M6Tcw3lGWnZ2rMlTpGdGjm0cXF11jMfTlR4i1A9PfFTHd5f8lKpqBk61A/T/24zbso64P9mKDEj074M2/kCfYqWZjvjuAQNIEmtm9fV//1nnKFs7F2fKCklU3X8HPvU2bLTyeXvU3l5BUrPyJGPj/ulBYtqq0P9MM2eZBy7rnp7hhLPZNrHqfMFelfs2PXo4D5atGe/8gstqlvb9p7s4257kiy0lo/cnJ2VcIY9hauTjmFh+mbsjYayPjM+U2JmpoKKWRXobFlCRsmv89ljJbVPyc52mI3h6uSkD68ZpRYBAZo4b572J5W8/G6LgAB9Mupa7T99Wvf+9qth9g+uLImZmQr2dlyiL8jTVnaqmKVOJSk1J1u5BQXF9qGz+2AmFLVNyMyUi5OT6nh4GJY0dXVykp+7u/0aqTnZyinIV3pursPypElZWZKkWu7uOpFxRk/27qsFMfuVV1iouj62sa6WW9FY5+MjV2enYpdaxZUvKfeMAt0d/84MMNsSyKdzS/47szhnCnK0JTlWQ8La6//2L5Ak3ddsmLanHNLJrGSFuteWJPm6edmvE+zuq1M5aX/hLlAdJWRnKNjDx6E8yL1oPMwu+7Nai9pB+qTPWO1PT9S9637g/Q9AtfSXljNdt26dlixZoh07dsjDw0Nt27ZV3759y2z75JNPatq0aYYys9kspXx9qeEAKEb9CGnfDik7U/I472+5uOii442Lb5eRLlkKTbIWs2dTYYFktZhkYT+nv624vSf05G0fG8pSEs/oYNQJRXYJl8lkkvW8D8Yt2jVQTlaejscllnjO2gG2D+ZOzo4T5F1cneXkYiw3mUx65PXxat+ziV6+/0vtKmYvRtQ80acSNemrHwxliRmZ2hufqM4N6sokGZ4bbhcWqqy8fMUlp17OMFGNHDiUoAef/c5QlpyaqQOHEtS2ZT2ZTNL5f+e3ahaq7Jx8HT1R/iWIPNxd5evjodS07LIro0aJjk/U5NmOY1d0fKI6Nazr0M/a1Ssau5JSK+T6Yb61FNa2lq5p67gW/Y9336q98Qka/dFXFXItXB57ExN12w/fG8oSMzMVlZioLnWLeT8MDVFWfr7iUkseu05lZuh0VpbaBAc7HGsXHKK9icbPcSZJrw8dqp4NGuj++b9p03HHfWTPauDrq5nXX6+krCzd/tOPpc5WRNWLSkxQ93r15e3mpoy8c6t8tA8JkSSHvnCWVdK+pNNqE+TYh9qHhOpwWqoyi177vacTJEltgkK04nCcvV6boBA5Ozkpqui4VVJUYqLaBofI1clJ+RaLvW5Q0b6Jydm2ZGKYTy1d26KWrm3hONb9dtNtikpM0MhvvrzY/wy4guw/c1Id/RvL09ls2Ksw0re+/Xh5mZ1c5e1y7sGuEI/aCvXw04/9Hneo+3rHiTqTn62rl71wCdGjOtubekrdgxrJ28VNGQXnxsN2dcJsx1NKf5C5gVdtfdH3JiXlZGnKqjnKKm6pMKCKWcquAlx6ElGyfYk7ePBgDR48uFztzGazLWl4ATotULE69pEWf2/S6t+tGlz0AHx+nrRusRTewip/277iSkqQ8nKk0Aa232vVljy9rdq2Tho14dyMw5xsaecGKaS+VW6lLIWKmi0jPVvb18Y4lK9ZsFN9hrdTr6FttGaBbW+SWn6e6j28rTYu3WPYLzG0gW0a7MkjtifWTx4+rcJCi/qOaKffv15vrxcQ4qvIzuHas+WQ4Vr3PHed+l3TQe8+NVfrFu2u6FvEFSo9J1fr4hz381oUHaNhrZppcIumWhRt65t+Hu4a2rKplsccNOy5U9/PV5J0NIUniSFlZObqz52OfWrFuv0a0LO5+nVvphXrbcun+fp4aEDP5lq3OVb55+3BGRZi61Mn4m19ys3VWc7OTsq+YAnnSTf2kJOTSRu3xQl/L+k5uVp/sJixKypGQyObaXDLploUZRu7anu6a0irplq+v+LGrnu//cWhbHjr5hrRurkem7dQp9LPlPucqFrpublae8SxTy2I2a/hzZppaNOmWhBT9H7o7q7hTZtp6cFYw0zCBr62PnUk7VyfWhQTo+tbtVKot7dOZthmV/SsX1+N/f31+bathms9N2CgrmneQk/9sUSLDhwoMdYAT0/Nuv4GWazSxB/nKTmbBymudAsO7NddnbpofGRbfbbNtjecm7OzxrRqrW3xJ3QywzZmhHn7yN3VVQdTkg1tH+/VV22CgrUr4ZQkKby2n3rUa6DPtp7bZ27d0aNKyc7WLW3bGZKIt7Rtp6z8fC2PO1c2P2afOoaG6fqWkZqzZ5c9nmtbtNT+pNP22YVTf/vZ4V5GNmuua5q10LTFvys+g5Upqqvlp3br1vC+uq5+V319yLbvtKvJWSPrdtLu1CNKKJohGOzuK3dnNx3OPJfo9nPzUkqecQZqqHttdakTob1px+1l0/f8KPcL9lbs7B+hGxv21LvR83Uos+QHYlFzLTgarTtb9ND4iA76bN9GSZKbk7PGhLfTtqTjOpltGw9DPWvJw9lVB8+cm5Ef4O6lmf1vlsVq1aSV3yg5N6tK7gEAKkK5kojvvvuu7rrrLrm7u+vdd98tte4DDzzwlwJD8b6aJ6VnSAmnbb8vXyfFF32WufV6ycdx1RH8jTVuIXXqY9W8L6T0NCkoTFq/RDp9Sppw3mTgL16T9u806ZNFtmeWnZylq2+Qfp5l0vQHrepxlWSxSGsXSSmnTZryuHEW4o4N0rGiiWCFhdKxOGl+0cTidt2leiXMeETNsmbBTu3dekgPvXKjGjQJVlpKpkbe0lPOTk768u3FhrrT/zdVkjSp78uSpLTkTC2eu0nDxnfX9P/drXWLdsnD26yRt/SU2d1V3324zN72usl9dM1tvRT15yHlZOdrwLUdDedet3i3crPZG/HvZOHeGG07dkLTrxmsJoH+SsnK1s2d2snZyaR3V6431J11yw2SpIHvfW4vC/P10bVtbE+ttw61PT1/T++ukqQTaWf08669l+M2cAVZsX6/du87oSfvH6pG9esoNT1bo4e1l5OTSTO+XWuo+/bztiUFb5z6qSTJv7aXPn9zgv5YHa3Dx21fJHRrH64enRtrw9Y4rdlk/LJ9SL9WCg6sJfei/WPbRdbThDHdJUmLVkbpVGL5luhC9bEoKkbbj57Qy9cOVkTR2HVTF9vY9d5y49g1c6Jt7LrqbePYNaqdbeyKDLONXXf3LRq7Us/ol522sWtpdKwu1DIkUJK06kCcUrNyKvjOUFUWxMRo64kTemXwEDXxr2NL0rRrJyeTSW+vN/ap/90wRpLU9/MZ9rIPNm3UsGbN9NXYGzVz21Z5ubrqzs5dFJ2YqO/37LHXm9yhg25r315/njih7PwCh5lfiw/EKLtoL7uZo69Xw9q19fHmzeocVledw+ra6yVlZWpNMclQVK0dp+I1P2afHu3ZW3U8PXU4NUXXt4xUXZ9aevyPRfZ6rw8epu716qvxu2/Yy/63c7vGRbbRjFGj9enWLSqwWDSlQyedzsq0JyQl2z5ib21YqxcGDNJ7w0Zq1ZHD6hJWV6NbtNLr61YrLffcuPT1rp26MbKNnu9/lcJr++nEmTMa3aKl6vrU0p2//mivt+SgYzK7VaBtrFt56JBSckhgV1d70o7qj/id+kfTIfJ389LRrCSNCOuoUA8/vbTn3Ez/Z9vcqI7+jdV90ZP2sq96/lObk2MVk35SZwqyVd+zjq6p20XOJmd9ELPQXm9TkuNDsj5FMxW3psQpOv24w3HUfDuST2j+kSg90naA6pi9dDgjRdeHt1FdL189sfk3e73Xu41S96CGipjzkr3si743qaG3nz7eu06dA+urs+rbj53OydTaUzxYCKD6KFcS8a233tItt9wid3d3vfXWWyXWM5lMJBEryedzpBPxJvvvS1aZtGSV7d+jrraSRISD2x+Tfp4lbVgqZZ2R6oVL978gNWtTersRN0sBIVYt/Un67SspP9/WdurTVnXqY6y7dY20fsm5fnn0gO1HkvwCrCQR/yYsFqv+ffsMTXlypEZN7C2zu6v27zyqNx/7ttSlTM9675l5itt7UkNu7KpJjw6TJO3feUyvP/KNdm8+t1xp45a2pUNadWqkVsXslTixz0tKOE4S8e/EYrXqzm9/0uNX9dGELh1kdnHRrpPxeuLXxYpLLnvZyXq1ffVQ/16GsrO/bzx8lCTi35DFYtWjL/6geyf20w0jOsjs5qroA/F6+d0FZS5lmpGZq3VbYtW5XUMNHRApJyeTjsen6uMvV+mbn7fowm1QRgxqow6tz32p0KlNA3VqY1saYOfe4yQRazCL1aq7vvpJjw7uo9u62cau3Sfi9dRPixWXdBFjl5+vHhxoHLvO/r7p0FF7EhF/HxarVbf/9KOe7NNXEzt0kLuLi3bGx+uxxYsUl1J2nzqZkaGb5n6nf/Xtp8d691F+YaGWx8Xp5VUrDbMYWwbaljPpFBamTmFhDufpM+O4jqfbxq5WQba6U7t0cai34ehRkohXqIcXL9C07r00ukVL+ZrdFX06UXf8+qM2nyg9kZKZn6+b532np/v0131dustkMmnj8aP6z6oVDrNQ/7drh/ItFt3RobOuahyhk2fO6MVVy/XFduOs19zCAt067zs93quvxrZqLU9XV0WdTtCUX+Zp9ZHDFX7vuDK9sGuu4pukamhYB/m4eOhARrwe3jpL21MOldpu3tGN6hnYQt0DmsnL2azkvAxtTIrRrIPLFZtx6vIEj2rtkY2/aFpWP13XqI183dwVnZqgO1d/p82JR0tt18rP9oDX1JY9HY5tSDhMEhFAtWKyWq+cHV0t8c2qOgTUYE4htuXIVh6in6Hy9Gtk62fDGj9SxZGgJltw8HVJUrP/lPxAD/BX7X/6IUlSn9GvV3EkqMlW/2h7v2zxHOMZKk/0c7bxrPFbb1ZxJKjJDj5kW+rl/Jl5QEU7+MDDkmSYbQdUtA1DpkuSYWYdUNFix/2rqkOApIPHQqs6hGqncb3y78Vb3TldSqP8/HxFRERo716ebgUAAAAAAAAAAABqmnItZ3qWq6urcnLYOwMAAAAAAAAAAKC6KZSp7Er427ukmYiSdO+99+qVV15RQdGG6QAAAAAAAAAAAABqhkuaiShJmzdv1tKlS7V48WK1adNGXl5ehuPz5s37y8EBAAAAAAAAAAAAuPwuOYlYu3Zt3XDDDRUZCwAAAAAAAAAAAIArQLmTiBaLRa+99pr279+vvLw8DRw4UM8995w8PDwqIz4AAAAAAAAAAAAAl1m590R86aWX9NRTT8nb21t169bVu+++q3vvvbcyYgMAAAAAAAAAAABQBco9E3H27Nn64IMPNHXqVEnSH3/8oREjRuizzz6Tk1O5c5IAAAAAAAAAAAC4jCzWqo4A1UG5s35HjhzR8OHD7b8PGjRIJpNJJ06cqNDAAAAAAAAAAAAAAFSNcicRCwoK5O7ubihzdXVVfn5+hQUFAAAAAAAAAAAAoOqUezlTq9WqSZMmyWw228tycnJ09913y8vLy142b968iokQAAAAAAAAAAAAwGVV7iTixIkTHcpuvfXWCgkGAAAAAAAAAAAAQNUrdxLxiy++qIw4AAAAAAAAAAAAAFwhyp1EBAAAAAAAAAAAQPVVKFNVh4BqwKmqAwAAAAAAAAAAAABwZSGJCAAAAAAAAAAAAMCAJCIAAAAAAAAAAAAAA5KIAAAAAAAAAAAAAAxIIgIAAAAAAAAAAAAwcKnqAAAAAAAAAAAAAHD5FMpU1SGgGmAmIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOXqg4AAAAAAAAAAAAAl4/FaqrqEFANMBMRAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGBAEhEAAAAAAAAAAACAgUtVBwAAAAAAAAAAAIDLp1Cmqg4B1QAzEQEAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYEASEQAAAAAAAAAAAIABSUQAAAAAAAAAAAAABiQRAQAAAAAAAAAAABi4VHUAAAAAAAAAAAAAuHwKmWOGi0AvAQAAAAAAAAAAAGBAEhEAAAAAAAAAAACAAUlEAAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYOBS1QEAAAAAAAAAAADg8rFYTVUdAqoBZiICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMCAJCIAAAAAAAAAAAAAA5KIAAAAAAAAAAAAAAxIIgIAAAAAAAAAAAAwcKnqAAAAAAAAAAAAAHD5FMpU1SGgGmAmIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOXqg4AAAAAAAAAAAAAl0+hlTlmKBu9BAAAAAAAAAAAAIABSUQAAAAAAAAAAAAABiQRAQAAAAAAAAAAABiQRAQAAAAAAAAAAABgQBIRAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGLlUdAAAAAAAAAAAAAC4fC3PMcBHoJQAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMCAJCIAAAAAAAAAAAAAA5KIAAAAAAAAAAAAAAxcqjoAAAAAAAAAAAAAXD6FMlV1CKgGmIkIAAAAAAAAAAAAwMBktVqtVR0EAAAAAAAAAAAALo9lh5pXdQjVzsBG+6o6hMuOmYgAAAAAAAAAAAAADK6oPRFXHmpW1SGgBuvXaL8kyRJPP0PlcQqx9bOh7Z6p4khQky3c8aIkKfLJt6o4EtRke6Y/JEnqd81rVRwJarKVvz4qSWrxHOMZKk/0c7bxrMkr9DNUngOP2/pZoy//W8WRoCY7dNsTkqT+Sx+p4khQk6246nVJUqNP+TsAlefQnY9WdQgALhIzEQEAAAAAAAAAAAAYXFEzEQEAAAAAAAAAAFC5Cq3MMUPZ6CUAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMXKo6AAAAAAAAAAAAAFw+FpmqOgRUA8xEBAAAAAAAAAAAAGBAEhEAAAAAAAAAAACAAUlEAAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYOBS1QEAAAAAAAAAAADg8ilkjhkuAr0EAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGBAEhEAAAAAAAAAAACAgUtVBwAAAAAAAAAAAIDLp9DKHDOUjV4CAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAwKWqAwAAAAAAAAAAAMDlY2GOGS4CvQQAAAAAAAAAAACAAUlEAAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYEASEQAAAAAAAAAAAICBS1UHAAAAAAAAAAAAgMun0Gqq6hBQDTATEQAAAAAAAAAAAKhA77//vho1aiR3d3d169ZNmzZtKrFu//79ZTKZHH5GjBhhrzNp0iSH40OHDq3Ue2AmIgAAAAAAAAAAAFBB5syZo2nTpumjjz5St27d9Pbbb2vIkCHat2+fgoKCHOrPmzdPeXl59t+TkpLUrl07jR071lBv6NCh+uKLL+y/m83myrsJMRMRAAAAAAAAAAAAqDBvvvmm7rzzTk2ePFmtWrXSRx99JE9PT33++efF1vf391dISIj9Z8mSJfL09HRIIprNZkM9Pz+/Sr0PkogAAAAAAAAAAABABcjLy9Off/6pQYMG2cucnJw0aNAgrV+//qLOMWPGDI0fP15eXl6G8hUrVigoKEjNmzfXPffco6SkpAqN/UIsZwoAAAAAAAAAAACUIjc3V7m5uYYys9nssKTo6dOnVVhYqODgYEN5cHCwoqOjy7zOpk2btHv3bs2YMcNQPnToUF1//fUKDw9XbGysnnrqKQ0bNkzr16+Xs7PzJd5V6UgiAgAAAAAAAAAA/I0UslBluU2fPl3PP/+8oezZZ5/Vc889V6HXmTFjhtq0aaOuXbsaysePH2//d5s2bdS2bVtFRERoxYoVuuqqqyo0hrPoJQAAAAAAAAAAAEApnnzySaWlpRl+nnzySYd6AQEBcnZ21qlTpwzlp06dUkhISKnXyMzM1LfffqspU6aUGU/jxo0VEBCgAwcOlO9GyoEkIgAAAAAAAAAAAFAKs9msWrVqGX4uXMpUktzc3NSpUyctXbrUXmaxWLR06VL16NGj1GvMnTtXubm5uvXWW8uM59ixY0pKSlJoaGj5b+YikUQEAAAAAAAAAAAAKsi0adP06aefatasWdq7d6/uueceZWZmavLkyZKkCRMmFDuLccaMGbruuutUp04dQ3lGRoYeffRRbdiwQYcOHdLSpUt17bXXqkmTJhoyZEil3Qd7IgIAAAAAAAAAAAAVZNy4cUpMTNS///1vxcfHq3379lq4cKGCg4MlSUeOHJGTk3Ge3759+7RmzRotXrzY4XzOzs7auXOnZs2apdTUVIWFhWnw4MF68cUXi50NWVFIIgIAAAAAAAAAAAAV6L777tN9991X7LEVK1Y4lDVv3lxWq7XY+h4eHlq0aFFFhndRSCICAAAAAAAAAAD8jVis7HaHstFLAAAAAAAAAAAAABiQRAQAAAAAAAAAAABgQBIRAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGLhUdQAAAAAAAAAAAAC4fAqZY4aLQC8BAAAAAAAAAAAAYEASEQAAAAAAAAAAAIABSUQAAAAAAAAAAAAABiQRAQAAAAAAAAAAABiQRAQAAAAAAAAAAABg4FLVAQAAAAAAAAAAAODyKbSaqjoEVAPMRAQAAAAAAAAAAABgQBIRAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGDgUp7KBQUF+vrrrzVkyBAFBwdXVkwAAAAAAAAAAACoJBbmmOEilKuXuLi46O6771ZOTk5lxQMAAAAAAAAAAACgipU71dy1a1dt3769EkIBAAAAAAAAAAAAcCUo13KmkvSPf/xD06ZN09GjR9WpUyd5eXkZjrdt27bCggMAAAAAAAAAAABw+ZU7iTh+/HhJ0gMPPGAvM5lMslqtMplMKiwsrLjoAAAAAAAAAAAAAFx25U4ixsXFVUYcAAAAAAAAAAAAAK4Q5U4iNmzYsDLi+FvKz5N+mS1tWCplZUh1w6XrJkqtOpXdNmqr9Ps30vFDkqVQCq4rDbhW6jHIWG/Fr1L0DikuWkpJNKnH1VZNfqRSbgc1RGaW9Pm30s690q69UtoZk15+wqrRw6o6MlQHXj7umvLgYPUc2EruHq7at/uYPn19oQ5Enyyz7cIdL5Z4bOv6A3rq7lnFHhswvK0enz5W2Vm5Gt3jP5ccO6o3H3ezHh7WR1e1ipC7m6t2H43Xq7+v0t4TCaW2M5mkazu00qDIJmoRFiRfT3cdT07Tgp379MXqP5VXwAoLf1feXmbdPamf+vRoKrPZRdH74/X+58sVE1t6n5KkJx4cpmFXtXYoP3wsSRPu+bzEdoP6tdQzj4xUVnaeht34zl+KH9WDj7tZj17dR4NaRMjd1VW7jsfrlcWrFHWy7H7Wpm6wRrePVLu6IWoWHCBXZ2e1eO6tYutGP/dQseVv/LFGn67Z/JfuAVcWH7NZj/fvo8HNIuTu4qqdJ+M1ffkq7TlVdp+SpIg6/vrXwH7qVC9M+YUWrYiN08vLVio5O9uhboPavnqwT0/1athAXm5uij9zRr9H79ebq9cZ6pkk3dS+rca3b6PG/v7KLshXdEKiXlq6UtGJpyvitlGF3JycNa1dH41uHClfN3dFpybq9e2rtObkoVLbNa7lr1uadVD7OqFqXSdEZmcX9Z73oY5lpjnUXTP6HtXz9nUo/2r/Nv1r46KKuhVcwVxNzprceKgGh3aUj4unYjNOasbBBfozOabUdr0DW2tU3R5q7B2iWq5eSsvLUFT6Ec08uFhxmfGGum5OLhpTv68Gh3ZSiLufzuRna0/aIc2MW6xDmacq8/Zwmbk5OWta514a3SRSvmazopMT9fqWNVpz/HCZbYM9vfVMjwHqW7eRTCaTNpw4ohc2LNfRM8axy8fVTfd26KEhjZoq1Mtbp7OztPbEYb3z5zqdyDxjr9fY10+3tGyv9kGhal0nWGYXF/X+5mMdy0iv8PsGilNodarqEFANlDuJeFZUVJSOHDmivLw8Q/moUaP+clB/FzPfkP5cLQ0aLQXVldYtlt59Rnr4Vamp4/dOdtvXSx8+LzVuKV1zq+0L0C2rpC9eMykj3aqrrz9Xd9FcKSdLatRcSku2Vv5NodpLTZM+mGVSaLBVzSOkTdurOiJUFyaTSS/8361q3DxE389cq/TUTI0c102vzLhd99/0oU4cSS61/atPfe9Q1rRVmEbf2lNb1x8oto27h5umPDRE2Vm5FXIPqJ5MJunDidepeWiAPl/9p1IzszW+ezvNvHOMxr73tY4kpZbY1sPVVS+NHaLtR07ou407lZyZpXYNQnXvoB7qHtFAkz9z7Jeo+Uwm6b//vkER4YH6dt5mpaVn67oR7fXOy+N154OzdfxkapnnyM0r0Gv/Z/xiMzOz5LHKw91Vd0/up6zsvBLroGYxmaSPb75OzUMC9PnaP5WSla2burTT7EljdMPHX+twcmqp7fs1DdeYjq21/9RpHUtJU3iAf6n118Ye1k87ogxle08m/tXbwBXEJOmzMdepRVCAPttk61O3dGynr24ao2tnfa3DKamltg/x8dY3N4/Vmdw8vbFqrbxcXTWla2c1C6yjG2Z/o3yLxV63ZVCgvrppjE5lZGrG5j+Vmp2j0Fo+Cq3l43De/w4frFGtWuinPXv1v6075OHqqlbBgarj5SnRBau913uO0LCGzfX53i06dCZZYxq30RcDx+qmxd9oS+KxEtt1DKirSc07KSbttA6kJSnSP7jU6+xJPqVPozYZyuLSS//7AjXHE63Gq19QW31/dLWOZSVqaGgXvdLuDj209UPtSjtUYrvG3qHKKMjSD0fXKC0vU/5mHw0L7aIPuzyge7f8n2Izzj3s+q/Im9UrIFK/ndiomDPHVMfsq+vq9dT7de7X7Rvf0KmclMtwp7gcXu83TMMaN9Pnu/7UofQUjWnWWl8MvUE3/TZHW04dL7Gdp4urvhk5Tj6uZr2/faMKLIW6vU1nzRk5XsPnzVJqbo4k2/vxl8NvVFO/Ovoyarvi0pLVqJafbm3VXn3rhmvQ9zOUmZ8vSeoYFKZJkR0Vk5qkA6lJigwofSwEgKpQ7iTiwYMHNXr0aO3atcu+F6Jk+/JYEnsiXqS4aGnzCpPG3GHV4LG2sh6DpOfukn74THri7ZLbLv9F8vWXpr0iubrZyvqOkP49xar1i2VIIj7ymuQfZPuS4v5rK+12UIME1pFWzbMqsI60O1oaO7WqI0J10fvqSEV2aKj/PPyt1vyxR5K0avFuffbLg7rtnqv0ypNzS22/bP4Oh7K2nRvJYrFoxYJdxba56a5+ys7M1c7NceoxoMVfvwlUS4NbN1OHRmF66KvftHi37Wnkhbv2a/7Dk3TfoB56bM6CEtvmFxbqlg+/1fYj575A+H7zbp1ISdd9V/dU94gG2hB7pNLvAVeW/r2aq02ruvr39J+1ct1+SdLyNdH66uM7dPstvfTi6/PLPEdhoUVLVkSVWe+s28b1UFZ2nrbtPKre3ZtccuyoPoa0aqaODcL0z+9+06Io29i1YM9+Lbx/ku4f0EOP/FDy2CVJ32zeqU/XbFZuQaGeGT6gzCTioaQU/bozusLix5VnWItm6lQvTPf99JsW7rP1qd+j92vJXZP0z949NO3X0vvUPd27ysPVVdfO/Fonz9hmSew4eUqzx9+g69tEas4O2+cxk6TXRw7VweQU3fLNXOWWMmt/eItmuqFNpO6Z94uWxMRWzI3iitGuTqhGhbfSS38usyf45sXu1qJr7tCTHfvrhkX/K7HtkmMxWjBnnzIL8nRnq65lJhHjs87op7g9FRo/qocWterrqpAO+jDmV805slKStDj+T33R7RFNbTJS9/35XoltZ8ctcSibf2Kj5vZ6RtfW7ak39/0gSQow11K/oLb69vAKfXTgN3vdnakH9XbHe9QnsLW+P7q6gu8MVaFdYIhGNWmplzas0Ke7bKsxzIvZo0U3TNaT3frphl++LrHtba06qLGvv0b9+KV2nrbNZF1xNE6LxkzWnW266LUttj7SIShM7YNC9czaP/Rl1DZ7+4NpyXqt3zD1rttIiw7Z3qeXHInVgtnvKjM/X3e26UISEcAVqdzzVf/5z38qPDxcCQkJ8vT01J49e7Rq1Sp17txZK1asqIQQa6Y/10hOTlb1GX6uzNVN6j1UOrjXpORSVpvJyZI8vc8lECXJ2Vny9pVczca6dYJtCUTgYrm52RKJQHn1GRSp5NNntHbpuS/N01KytHrxbvUY0EKurs7lOp+rq7N6DYrUrj8P6XSC41IeYQ38NfrWnvrk9QUqZMnJv7XBrZvq9JlMLdlzbjmjlMxsLdq5XwNaRcjVueS+l19oMSQQz/pjj232a+Og0r+UR83Ur1czJaVkatX6/faytPRsLV+zT726NZGry8WNZ05OJnl6uJVZr25obY29tpPe/2y5Cs+b6YOabUirpkrMyNTiveeNXVnZWrhnvwY2L33skqSkzKxSkzfFMbs4y+0i+y+qn6HNbX1q0b5zfSo5O1u/R+/XoCYRciujTw1p3kTLY+PsCURJWnf4iA4mJWt4i2b2sj7hDdU8MEDvrt2g3IJCubu4yKmEPzpv79JR20+c1JKYWJkkebhe8mJIuAINa9hcBRaLvonZbi/LtRTqu9gd6hRUT6GejjNTz0rLy1FmQflm37s6OcnDxfVSw0U11S+orQothfr1+AZ7WZ6lQPNPbFLr2o0UaHZc6rY0KXkZyrHkydvV3V7m6WwuOnbGUDc5N91+PdQMw8KLxq3ocw8x5xYW6rt9u9QpuK5CvUoet4aFN9P2hJP2BKIkxaYla92JwxrRuLm9zMfN9vn/dHamoX1CVoYkKacg316Wlptjn5UIAFeqcicR169frxdeeEEBAQFycnKSk5OTevfurenTp+uBBx6ojBhrpKMHpOB6koeXsbxR0XvO0YMlt23eVjpx2KSfZ0kJx6WEE9JvX0mH90tDxlZezABQmogWoTqw96R9hvpZ+3Yfk7uHm+o2DCjX+br0aSafWh5aPn9nscfvfnS4dm6O0+Y1pe+DgZqvZVigok4k6IKup13H4uXp5qpGAbXLfc4AH9sbdGqW4x5QqPmaNg5WTOwphz61d/9Jebi7qX5dvzLP4W521e9zHtCC7/6pX7++Tw/ePUge7sV/8Xn/nQO1bedRbfwzriLCRzXRMiRQUScdx66dx21jV3id2hV6vevat9K2f92vnU8/oN/unaCRbZqX3QjVSqugQO05laALN7HYebLo/dCvdoltg729FODlpV0nHff92nnylFoFB9p/79mogSQpr6BQP064Wbsfvl+7p92nt0cNl6/7uadavd3c1DY0RLtOntLDfXtp24P3ate0+7Vs6u2GpCSqr0j/YMWlJysj35gM3H7a9oBWqzJmF5ZHz5CG2nvTI9p708NaM/oeTW7RucLOjStbU++6Opp9WlmFxmXho9Ntq4U08alb5jm8Xdzl6+qlcK8QPdpyrLxdPPRn8rktM45nJykhJ1U3NuinHgGtFGj2VYta9TWtxRidyE7SslPbSjk7qpPIOkGKSytm3EosGrfqBBXbziSppX+gdp2Odzi2PeGkGvn6ycvV9ll/Z+IpZebn6eFOvdUjrIGCPb3VLaSenujaX9sTTl7U3osAcCUp92OAhYWF8vGxPZUREBCgEydOqHnz5mrYsKH27dtX4QHWVGnJtiVJL3S2LDWp5LYjbpFOx1v1+zfS/K9tT3y6ma26+xmpfc9KCBYALoJ/oLd2bz3kUJ6caHuas06Qjw4duPgN6QcMb6e83Hyt/sNx2aKufZqpY48m+seN719yvKg5An28tCXOce+KxDO2Jz+Dankr5lQpb6zFuL1vZ53JydXqfYcqIkRUM/5+Xtqx+6hDeVKy7enhOv7eOnj4dIntk5Iz9M28TYqJPSWTyaSuncI1ekQHRYQH6sEnv1Wh5dxX/N07N1aXDo10+wOzKv5GcEUL9PHSlsPFjF0ZRWOXj7f2J5Rv7CrJ1iMntGDPfh1LTVOQj7du6dJOr98wXN5ms77dUvzDOqh+Ar29tPmYY59KKOpTwT7e2n+6+D4V6O0tSUrMzHQ4lpCZKT8PD7k5OyuvsFCN/GwPUrx77QitjjukjzZsUougQN3dvYtCfXw07qs5kqQGtX3lZDJpRMvmKrRY9OqK1TqTm6uJnTvo7VHDlZGbq1VxfJFanQV5eCshO8Oh/GxZsId3hVxnb0qCtiQc08H0ZNU2e2hMRBs922WQgj289d9tKyrkGrhy1THXUlKu48o0SUWzBgPMtco8xwedH1ADL1tyKKsgR7Pjluj3E+f22Cy0WvTvXbP0TOQtmt7udnv5vvSjum/Le8ooyPmrt4ErRJCnlxKyinmvKyoL9ix+3Kpt9pDZxaXMtgfTUpSSm637lv6q//YZom9GjLPXW3k0Tvf88bMKL3yCDACucOVOIrZu3Vo7duxQeHi4unXrpldffVVubm765JNP1Lhx48qIsUbKy5OKW4Xj7BKl+bmOx85ycbXNYuzYW+rQ2yqrRVr1uzTjVemh6VLjlpUTMwCUxs3sqrw8x2Vezpa5mS9+6SFPL7O69mmmzWtilHnG+Aebi4uz7np0mOZ/v1lHDib+taBRI5hdXZRfzJ7MefmF9uPlcWf/LurZtKFe+GmpzuSU8oaMGsvs5qL8YpaJtPcpc+l96tPZxj1zlq2O1rHjybpzQl/169Vcy1bb9qVzcXHSfXcM0C8Ldujw0YpJFqH6cHdxUV4xY9fZJUrLO3aV5ubP5xh+n7dtt3646xY9dFUv/bh9T7mXRcWVyd3FRXnFvJb2PuVScp9yLzpWfJ8ssLfPKyyUZ9FMi13x8Xr4t4WSpEX7Dygnv0CP9u+tng0baN3hI/IsWs7N39NDN8z+RjtO2mZvLD1wUCvuvl3/6NmNJGI15+7sojxLMX2msMB+vCLcueIHw+9zY3dq1sAbNaVVF83c96fis86U0BI1gZuTi/KLWU40r9C2BKTZqey/M/8bNUdeLmaFetTRsNAuMju5yslkMiRzzuRn60DGCa1I2KGotCOq6xmgWxoO1HNtbtMj2z5hSdMawt3Ftfj3urPjVgnvlaW+T9rHvHN9MTknS3uSTmlW1FbFpCSpVZ0gTW3bRa/1G6Z7l/7yl+8DqCgWsQ8aylbu5UyffvppWYr2annhhRcUFxenPn366Pfff9e77757UefIzc1Venq64Sc39+/1JZ2bm1RQzJLXZ2fTX7i34fm+eU/asUG68ympa3+p20Dpof/aZjF++2GlhAsAdi4uzvKr4234cXIyKS83X25ujh+4z5bl5V78Ov+9BrWS2d1Vy+bvcDg2+rae8q3tqS8/WHbpN4FqydXZSQHenoYfJ5NJufkFxe4d5la0D2du/sX/wT+0TTM9cHUvfb95l+ZsZHZOTefi4iT/2l6GHycnk3LzCord99Dep3LL/yXSdz//qcJCizq1b2gvG3ttZ/nW8tDnX6+99JvAFa+ksSunoKDYPerMLuUfu8orv9CirzZtl6+HuyLDKm65QVwerk5OCvDyNPzY+1QxY5e9TxWU3Kdyio4V3yddDO3P1v01yrgS0S9RtgckOtYNNdQ7kppmTyBKUlZ+vpYeOKi2oSFyLmEvRVQPOYUFcnMqps8UJQ9zCitvHJuxd7NcnZzVPbhBpV0DV4Y8S4FcnYr5O7MoYZNrKfvvzKj0w9qcvF+/HF+vR7d/qqtDOuquiOH2417O7vq/Tv/QnrTD+jR2gdae3qPvjqzUv3fNUtvajTU0tEvF3RCqVE5BfvHvdWfHrRLeK0t9n7SPeba+WN/HV9+MGKfv9u3WB9s3asnhA3pn6zo9s/YPjWjcXP3rhVfIvQDA5VLux8KGDBli/3eTJk0UHR2t5ORk+fn5yXSRfwBMnz5dzz//vKHs2Wef1YBJ5Y2m+vL1L37J0rRk2//WrlN8u4J8ac0i296HTuelgF1cpNZdpOW/2Oqw1ziAytKqfX29OmOKoWzisDeUnJghvwDHTcj9A21lSQkX/4TwwOHtlJGerU2rjF9OeXqbddOd/fTbd5vk5W2Wl7ftiQt3T7NMJpOCw2orJydfacmOS4yg+mvfIEwz7zJu/nv1KzOUeCZTgbW8HOoHFu1rmJDuuMxWcXo0aaDpNw7Rqn1xeuGnpX89YFzxWreoq3emjzeUjZvysZJTMlXH33Epo7NlZ5c1LY+8vAKln8lWLW93SZKXp5sm3NhDP/2+TV6ebvLytM3Y8XB3lckkhQTVUk5ugVLTssp9LVxZOtQP0+xJxrHrqreLxi6fYsYu76Kx60z5+1l5nEy3vS/7erhX6nVQ8TrWDdNXNxv7VL8PZygxI1OBXo59KqioT50qpU8lZtiOFdvey0sp2dn22Rdnl0dNyjKOT2d/93V3L6pnO2dSMUukJmdly83ZWR6ursrIy3M4juohITtDIR6On/+DipYxPVXMUqcV5USWbXnL2mbGsJouKTddAe6+DuV13Gx973QxS52WJqMgW1tTDmhQSEd9eOA3SVLfoDbyN9fS2kTjVho7Ug8qoyBbbXwb6Zfj6y/xDnAlScjKVIiX4+f8IM+i98qs4set1Nxs5RYU2OuV1nZMs9YyO7to2ZFYQ70lh237cHYKqasVx9gLHUD1cclrSxw4cECxsbHq27ev/P39ZS3Hes5PPvmkpk2bZigzm83acPLrSw2n2qkfIe3bIWVnSh7nvf/ERRcdL2Fl2Ix0yVJoktXi+N+7sECyWkyyFHMMACrKwX3xevKuLwxlyaczdHDfSUV2bCiTyWR4T2jeup5ysvN0vJT9w87nH+Cttl3C9ccv25Sfb1wqxKeWhzy9zLpxch/dOLmPQ9tZCx7WumV79cJDf5/3k7+TfScTNeUz43JWpzMyFX0yUZ0a1ZXJJJ3/caRt/VBl5eXr0OnUMs/dpn6I3r31Gu05lqBpX/9m2LMONdeBuARNe/o7Q1lySqYOHExQm8h6Dn2qVbNQZefk6ejxlHJfy8PDVb61PJWani1J8vF2l6enm24e0003j+nmUH/OjKlavSFGT7/0U7mvhStLdHyiJs82jl2JGZmKjk9Up4aOY1e7eraxKy4ptVLjqu9n+0I2JTO7Uq+Dirc3IVETvr2gT2Vmam9CojrXqyuTpPPfxdqFFr0fpqSWeM5TGZlKysxSm1DHmaltQ4O199S5JeR3x5+S1EbB3sYvYc/+nlyUTEzIyFRCRqaCfYr5stbbSzn5BcokgVitRSUnqEfLhvJ2dVNG/rnXsn1AWNHxi98PvbwaeNeWZFsyEDXbgYwT6uAXIU9ns7IKz61i1rKWbRbqgTOOe8GWxezkKi+Xcwlov6KEZHGzo53lJGenci/khitUVFKCeoQ1cBy3gkLtx4tjlRSdkqg2ASEOx9oHhelweqoy820zEQM9vGQymeR0QX9yLZq57WKiPwGoXsqdRExKStKNN96o5cuXy2QyKSYmRo0bN9aUKVPk5+enN954o8xzmM1mmc2lrNf5N9Cxj7T4e5NW/27V4KKHSPPzpHWLpfAWVvnb9ntWUoKUlyOFFq3QUau25Olt1bZ10qgJ52Yc5mRLOzdIIfWtcvt7/6cFUMkyzuRo28aDDuWr/9ijPoNbq9dVrbTmD9sTnLVqe6rP4NbasHKfISEYWs9PknTymOMX8f2GtpGzs5OW/e64lGlqcqaef9AxQXjtzd3Vsm19/feJuUo+zZ4oNVV6Tq42xB5xKF+8K0ZD2jTT1ZFNtXh3jCSptqe7BrdpqhV7Dxr2S6zvb/vS/Ghymr2scaC/Ppx4nY6npOsfs35ib7C/kYzMXP25w3E/rhVr96l/7+bq26OZVq7bL0nyreWh/r2ba92mWMN+iWEhtSVJJ+JTJdmWPHV2cVJ2tnFprYnjesrJyaRNf9qeOk5Jy9K/XvrR4do3jOyoyBZheuH135TErOoaIT0nV+sPOo5di6JiNDSymQa3bKpFUefGriGtmmr5/gvGrqKE39GUNIfzlMXP00MpWcZEoZebqyZ076jkzCztOVl5X/KjcqTn5mrdYcc+tWBfjIa1aKYhzZtq4T5bn/LzcNewFk21LPagYR+nBrVtfepI6rk+tXB/jK5v3UqhPt46WTRrsUfD+mpcx19fbNlmr/fHgVg9U9BfN7SJ1A+79tgTlje2ay1JWnPoXGzzo/dpcueO6tWogdYWlft5uGtQ0witP3JEPLJTvS04Eq2pkd10U9P2+jRqkyTJzclZYyPaaFvicZ0s2qswzLOWPFxcFJueXO5r+Lq560x+riznPW3hYnLSPa27K7ewQOvjHf+/gJplZcJOjW/YX9fU7a45R1ZKklxNzhoW1kVRaYeVmGsbx4LMteXu7KojWeceeqjt6q3UfOPMshB3P3X0b6p96cfsZceK2gwM7qCZcYvt5b0CIuXhYlbMmROVdn+4vBbE7dfUdl11U4t2+nTXZklF41azNtp26oROZhaNW14+8nBxVWxasqHtE137qU1AsHadtn1+auzrp55hDfTpzs32egfTkuVkMmlk4+b6Pubc7NZRES0kSXuS+OwFoHopdxLxoYcekqurq44cOaKWLVvay8eNG6dp06ZdVBIRUuMWUqc+Vs37QkpPk4LCpPVLpNOnpAnnTdL84jVp/06TPllk+8Ds5CxdfYP08yyTpj9oVY+rJItFWrtISjlt0pTHjX+G7dggHSv6rr+wUDoWJ80v+v69XXepXgkzHvH39tU8KT1DSiiaOLZ8nRRf9Dn81uulYh4mBrRmyR7t3XFE014YrQYRgUpPydLIcV3l5GTS/y7Yv/C/n0yWJE0c/qbDeQYMb6fTCenaufmQw7HcnHytX77XobzngBZq3rpuscdQ8y3eHaPtR07oP2MGKyLIXylZ2RrfrZ2cTSa9/4dx2aEZd9wgSRr86ueSJE83V31y+2jV8jDri1Vb1LeFcX+Ko8lp2nHk5OW5EVwxVq7brz3RJ/TEP4epUYM6SkvP1rXD28vJyaQvLti/8M3/3ChJGn/HJ5Ikfz8vffbORC1dtVdHjtm+dOjSoZF6dInQxj8Pas1G2xf7ubkFWrPhgMO1e3dvqhYWa7HHULMsiorR9qMn9PK1gxURaBu7burSTs5OJr233Dh2zZxoG7uuevtze1mYr49GtbP9PXZ2X8O7+3aVJJ1IPaNfdtreE2/p2k5XtYjQ8n0HdTLtjAJ9vHRDh0iF+tbSY/MWKr/QUun3istj4b4YbTt+Qv8dNlhN6vgrJTtbt3SwvR++s8bYp2aPt/Wp/h+d61Mfrd+kYc2b6X83jdXMLdvk5eaqO7p2VnRCon7Yde5L0NOZWfpg/SY91Kenvrjxei2JOaAWQYEa166NfomK1q74U+edc7OGN2+m968bqc83b9WZ3Fzd1L6tXJyc9MZK9oOt7rafPqnfDu3VYx36qY67pw6fSdENjduonrevHl+/wF7vzV4j1T2kgRp9+V97mY+rWRNbdJIkdQ6sK0ma0Lyj0vNzlZ6Xo9n7tkqSrq7XVPe16akFR6J1NCNNtc3uGtWolVr4BenVbSuUmMMDNzXd3vQjWn5qh+6MGK7abt46nnVaQ0I7K8TdX6/unWuv91TkTWrvF6H+Sx+xl33e/WFtTY7RgTMndKYgW/U8AzQ8rKtcTM76JHa+vd6601GKy4jXhPBBCnb3U1T6YdX1CNDoer10OjdNv5/YeFnvGZVne+JJ/XYwWo917aM6Hp46nJ6iG5q2Vj2fWnp81UJ7vTf7D1f3sAZq9Olr9rIvo7ZpfPO2+nzIDfp012YVWCya0qazTmdn2hOSkvT9/t26q20XvdRnsCIDgrU/5bRaBwRrXPO22pecqEWHYux1fVzdNLF1R0lS5+CisTCyo9LzcpSem6vZUece4gGAqlLuJOLixYu1aNEi1atXz1DetGlTHT7s+CQ3Snb7Y9LPs6QNS6WsM1K9cOn+F6RmbUpvN+JmKSDEqqU/Sb99JeXn29pOfdqqThes7rd1jbR+ybnp80cP2H4kyS/AShIRxfp8jnQi/ly/WbLKpCWrbP8edbWVJCKKZbFY9cy9X+qOaUN07U3dZXZ31f7dx/XGM/N07CKXMq3XMEDNIuvqh9lry7VMNv7eLFar7vniJz08vI9u6dlBZlcX7T4Wr399v1iHTpe+7GRtTw+F1q4lSZo2zHGJ3J/+3EMS8W/IYrHqsee+1z2399f113SU2c1F0THx+u/bC8pcyjQjM1frN8eqc/tGGjIwUk5OTjp+MkWfzFqlb3/cLIY2nGWxWnXXVz/p0cF9dFu3DjK7uGj3iXg99dNixSWVvWRuPT9fPTiwl6Hs7O+bDh21JxG3HjmhDvXDNKZjG9X2dFd2Xr52HY/XUz8v0ca4oxV/Y6gyFqtVU+b+pCcG9NGETh3k7uKiXfHxeuz3xYpLLrtPnTyToVu+maunBvbVo/16K99SqBWxcXp52SrDLEZJen/dRqXn5Oi2ju31r6v663Rmpj5Yv1HvrTV+0Z6UlaXxX32nJwb00eQuHeXi5KRtx0/q4d8WKjrx4j4f4sr28NrfdDyzr64Pby1fs7v2piRoyrLvtSmh9PHF181dj7Tvayi7K9K2vPexjDR7EjE6NUExaad1XXik/N09lW8pVFRygv6x8kf9fmSfw3lRM02P+kanGg/V4JBO8nHxUGzGST25Y4Z2pjqukHO+X46tV/eAlupap4U8nc1KycvQlqT9+t+hpYrLjLfXK7AW6v4/39eE8EHqXqelrgpur6zCXK1J3K1PYxcoLZ9lc2uSh1f8ruOdeuv6pq3k6+auvcmJmrJonjbFHyu1XWZ+vsbP/1bPdB+o+zr0kJNM2nDyiF7csFzJOedWfUjNzdE1P36paZ176aoGEbq5ZTul5uTou3279Nrm1cq3nHuAy9fsrkc6G/8OvattF0nSsTNpJBFR6QqtLK+Lspms5fyW1sfHR1u3blXTpk3l4+OjHTt2qHHjxtqyZYuGDBmipKSkSw5m5aFml9wWKEu/RrblyCzx9DNUHqcQWz8b2u6ZKo4ENdnCHS9KkiKffKuKI0FNtmf6Q5Kkfte8VkZN4NKt/PVRSVKL5xjPUHmin7ONZ01eoZ+h8hx43NbPzp9tB1S0Q7c9IUmG2XZARVtx1euSZJiFB1S0Q3c+WtUhQNLH+/pVdQjVztTmK6s6hMvuolPNJ07Y1v/u06ePZs+ebS83mUyyWCx69dVXNWDAgIqPEAAAAAAAAAAAAMBlddHLmUZGRur999/Xa6+9poEDB2rLli3Ky8vTY489pj179ig5OVlr17KnAQAAAAAAAAAAAFDdXXQS8aWXXtLUqVM1dOhQRUVF6aOPPpKPj48yMjJ0/fXX695771VoaGhlxgoAAAAAAAAAAADgMrjoJOI//vEPDRs2TFOmTFFkZKQ++eQT/etf/6rM2AAAAAAAAAAAAABUgYtOIkpSeHi4li1bpvfee0833HCDWrZsKRcX4ym2bt1aoQECAAAAAAAAAACg4hTKqapDQDVQriSiJB0+fFjz5s2Tn5+frr32WockIgAAAAAAAAAAAIDqrVwZwE8//VQPP/ywBg0apD179igwMLCy4gIAAAAAAAAAAABQRS46iTh06FBt2rRJ7733niZMmFCZMQEAAAAAAAAAAACoQhedRCwsLNTOnTtVr169yowHAAAAAAAAAAAAQBW76CTikiVLKjMOAAAAAAAAAAAAAFeIcu2JCAAAAAAAAAAAgOrNYjVVdQioBpyqOgAAAAAAAAAAAAAAVxaSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMCAJCIAAAAAAAAAAAAAA5eqDgAAAAAAAAAAAACXTyFzzHAR6CUAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMXKo6AAAAAAAAAAAAAFw+FitzzFA2egkAAAAAAAAAAAAAA5KIAAAAAAAAAAAAAAxIIgIAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADl6oOAAAAAAAAAAAAAJdPoUxVHQKqAWYiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMHCp6gAAAAAAAAAAAABw+ViszDFD2eglAAAAAAAAAAAAAAxIIgIAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADFyqOgAAAAAAAAAAAABcPoUyVXUIqAaYiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMDApaoDAAAAAAAAAAAAwOVjsTLHDGWjlwAAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADBwqeoAAAAAAAAAAAAAcPkUWpljhrLRSwAAAAAAAAAAAAAYkEQEAAAAAAAAAAAAYEASEQAAAAAAAAAAAIABSUQAAAAAAAAAAAAABiQRAQAAAAAAAAAAABi4VHUAAAAAAAAAAAAAuHwsMlV1CKgGmIkIAAAAAAAAAAAAwIAkIgAAAAAAAAAAAAADkogAAAAAAAAAAAAADEgiAgAAAAAAAAAAADAgiQgAAAAAAAAAAADAwKWqAwAAAAAAAAAAAMDlU2hljhnKRi8BAAAAAAAAAAAAYEASEQAAAAAAAAAAAIABSUQAAAAAAAAAAAAABiQRAQAAAAAAAAAAABiQRAQAAAAAAAAAAABgYLJardaqDgIAAAAAAAAAAACXx792Xl/VIVQ7L7WdV9UhXHbMRAQAAAAAAAAAAABg4FLVAZxvWONHqjoE1GALDr4uSRra7pkqjgQ12cIdL0qSLPHNqjgS1GROIfslSeH/m17FkaAmi7v1SUnSTRvuquJIUJN90/0TSVKjWa9UcSSoyQ5NfFySFPHmm1UcCWqy2GnTJEktnnuriiNBTRb93EOSpLbT6GeoPDvftPWzZi/Rz1B59v/roaoOAcBFYiYiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMLii9kQEAAAAAAAAAABA5SpkjhkuAr0EAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGBAEhEAAAAAAAAAAACAgUtVBwAAAAAAAAAAAIDLx2I1VXUIqAaYiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMDApaoDAAAAAAAAAAAAwOVjYY4ZLgK9BAAAAAAAAAAAAIABSUQAAAAAAAAAAAAABiQRAQAAAAAAAAAAABiQRAQAAAAAAAAAAABgQBIRAAAAAAAAAAAAgIFLVQcAAAAAAAAAAACAy6fQaqrqEFANMBMRAAAAAAAAAAAAgAFJRAAAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGJBEBAAAAAAAAAAAAGBAEhEAAAAAAAAAAACAgUtVBwAAAAAAAAAAAIDLx2I1VXUIqAaYiQgAAAAAAAAAAADAgCQiAAAAAAAAAAAAAAOSiAAAAAAAAAAAAAAMSCICAAAAAAAAAAAAMCCJCAAAAAAAAAAAAMDApaoDAAAAAAAAAAAAwOVjsTLHDGWjlwAAAAAAAAAAAAAwIIkIAAAAAAAAAAAAwIAkIgD8P3v3HR5VmfZx/DdJJpNKICQkJIRAgBBCCRBAQLpIWwsoqKgI2LGwghVX17q2ta2vXUFFAQugu1goYkApAtJCCwm9pZHe67x/TAgMkwQShjS+n+vK9TLPKXMf936fc+bc53kOAAAAAAAAAACwQhERAAAAAAAAAAAAgBWKiAAAAAAAAAAAAACsONV1AAAAAAAAAAAAAKg9JTLUdQhoABiJCAAAAAAAAAAAAMAKRUQAAAAAAAAAAAAAVigiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKw41XUAAAAAAAAAAAAAqD2lZkNdh4AGgJGIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACsUEQEAAAAAAAAAAABYoYgIAAAAAAAAAAAAwIrThWycnp6uhQsXav/+/Xr00Ufl7e2tLVu2yM/PT4GBgfaKEQAAAAAAAAAAAHZSamaMGc6txkXE6OhoDR8+XF5eXjp06JDuuusueXt7a/HixTpy5Ijmzp1rzzgBAAAAAAAAAAAA1JIal5pnzpypKVOmKC4uTi4uLuXtY8aM0e+//26X4AAAAAAAAAAAAADUvhoXETdt2qR77rnHpj0wMFAJCQkXFBQAAAAAAAAAAACAulPjIqLJZFJmZqZNe2xsrHx9fS8oKAAAAAAAAAAAAAB1p8ZFxGuuuUbPP/+8ioqKJEkGg0FHjhzR448/ruuvv95uAQIAAAAAAAAAAACoXTUuIr7xxhvKzs5WixYtlJeXp8GDB6t9+/by9PTUv/71L3vGCAAAAAAAAAAAADsplYG/av5dipxquqGXl5dWrFihNWvWKDo6WtnZ2erZs6eGDx9uz/gAAAAAAAAAAAAA1LIaFxFPGTBggAYMGGCPWAAAAAAAAAAAAADUAzUuIr7zzjsVthsMBrm4uKh9+/YaNGiQHB0daxwcAAAAAAAAAAAAgNpX4yLiW2+9peTkZOXm5qpZs2aSpLS0NLm5ucnDw0NJSUkKCQlRVFSUgoKC7BYwAAAAAAAAAAAAgIvLoaYbvvTSS+rdu7fi4uKUkpKilJQUxcbG6rLLLtN//vMfHTlyRP7+/poxY4Y94wUAAAAAAAAAAABwkdV4JOJTTz2lRYsWqV27duVt7du31+uvv67rr79eBw4c0Guvvabrr7/eLoECAAAAAAAAAADgwpWYDXUdAhqAGo9EjI+PV3FxsU17cXGxEhISJEkBAQHKysqqeXQAAAAAAAAAAAAAal2Ni4hDhw7VPffco61bt5a3bd26VdOmTdOwYcMkSTt27FDbtm0vPEoAAAAAAAAAAAAAtabGRcTZs2fL29tbkZGRMplMMplM6tWrl7y9vTV79mxJkoeHh9544w27BQsAAAAAAAAAAADg4qvxOxH9/f21YsUKxcTEKDY2VpLUsWNHdezYsXydoUOHXniElwB3Txfd8cRV6j+ii0yuztq7/Yg+eWmJ9u86fl7bDxwToevuGKRW7VqotKRUh2MT9N3Hq7Qpak/5Oq1CfDViQh/1HBiqlq2bKz+3UPt2HddXby9T3I5jF+vQUI+4e7rojodGqP+wcLm4GrV35zF98vpS7YuJP+e2S7e/UOmyLev36cl7v6hw2dAx3fT4yxOUl1ugcf1erHHsaHxycqU5X0vRe6Qde6SMLINeesKscaPrOjLUZ84OjpoRMVDj2naRl7OLYtKT9ca21VqTcKjK7UKaeOvmDj3U3SdAXbz9ZXJ00oDv39fxnIwK13d3ctaDXS/XmOAwtXD1UFpBnrYmH9fMdUuUX2I7lTsal9KiUsUvPqTUdYkqzimWa5C7Aq5voyZdvKu1n7jXtitrV7p8rwhQ0G0drJaV5BYrfslhZWxOUWFqgYxNjPLs3EwtxwbLubmLPQ8H9ZCzg6Nmdh+gce06W/qytGS9vvUPrYk/VOV2IU28dUvH7pa+rLmfpS9b+IGO5WTarPt072G6zC9IrTy8ZHJ00vHsTP14aI8+3rVRucVFF+nIUB94mkx6YuBAXdm+vVyNRkUnJOil1au1KynpvLZv5+2tp4YMUWRAgIpKSxV14IBeWr1aqXl55euENGumCV26aEBwsFo3barcwkLtSkrSf9av147ExAr3+7fQUE3p2VNhvr4qLinRvtRUvbl2rdYfPWqX40bd83Qx6dErB2p4WDu5GI3acTxBry7/Xbvjz517XQP9NK57Z0UE+ivUz0dGR0eFPfvWObfr2TpA82+/UZLU97UPlJ6bf8HHgfrN08WkGVcP1LCu7eRqNGrH0QS98d/fted41XlmMEhX9wrX8K7tFRbYQl5uLjqemqFftu7VF6s2q7C4pHzda3qH68WJIyvd1xNf/aKft8TY7ZjQMHiaTHrsioG6MtTSx0WfSNArK3/X7oRz93HdAvw0rltnRQT4q2MLSx8X+q9z93EAUF/UuIh4SlhYmMLCwuwRyyXJYDDoudl3KKRTgBZ+skqZaTm66pb+em3+ND147ds6cehkldtfc9vlmvbsOG34bbdWvPaznE1OGn59Lz0/+w69MO1zrVu2U5I06sbLNOKGPlq7dId++mqd3DxdNWZiX7216EE9NfVTbVsbVxuHizpiMBj0/P/dqpCO/lr4+Vplpufoqhsv06uzb9eDEz/QiSOpVW7/2pMLbdo6hAdo3K39tWX9vgq3cXF11h0zRiovt8Aux4DGJT1Dev8Lg1r6mdWxnbRxW11HhIbg3/2v0ujWHfVZzCYdykzT9e26as6wG3Tzivn6K7nyB2J6+ARqSsdeiss4qX0ZJ9XZ27/SdT2NJn195S3yd/PUgn3bdDgrTd4mN/VuESRnRyeKiJeAw5/EKO2vk2oxIlAufq5KWZOofW/uVOgTEfII9TqvfaT9laycfbaFHUkyl5oV91q08k/kyOeKALn4uakgKU/JK08oc0eqwl/uLUfXC75ERz32+oAxGh3cUXN2/6VDmWka376rPhs+XhOXLdBfSZU/RNjTN0BTwiIVl5Gifekp6tzcr9J1uzVvqU2Jx/Tdvh0qKClRZ+8Wmta1ry5v2UY3LJ0n88U4MNQ5g6TZY8cqzNdXn/z1l9Ly8nRLRITmTZigsfPm6VB6epXb+3t4aMENNyi7sFBvrF0rN6NRd/bqpY4+Prpu/nwVlZZKkm7s2lUTunTR0rg4zdu+XZ4mkyZ266aFEydq6uLFWnfkiNV+p/frpwf79tUvsbFavGuXnBwdFdq8ufw8PC7SfwnUNoNB+ujmsero76M5azcrLTdPE3tHaO6U8br+o/k6nJpe5faDO7TV+J5dFJt4UsfSMtTW59wP7hgM0lOjhyqnsFDuzs52OhLUZwaD9O5dY9UxwEefR21WWk6ebrw8QrPvH6+b3pyvIyfTK93WxWjUixNHavuhE/pufbRSs3PVLbil7hvVT5eFttad75++57F5/3HNmveLzT4mDeqp0ABfbYg7YrMMjZtB0sc3jlWYn49m/2np426OjNBXt47XuNnzdTgtvcrtB7drqwndu2hv0kkdTc9QSPPqPZwIAHXtgu5QHDt2TP/73/905MgRFRYWWi178803LyiwS8WA0d3UuVdb/ev+uVrzS7Qk6Y+ftuuTlY/r1odG6LWH5le5/dWTB2jv9iN69s455W3Lv9uoL9c9reHX9SovIq5aslVf/We58nMLrdb7ePljuvXvIygiNnIDruyszj2C9eLDX2vNr7skSb8v36lP//eQJk27Qq/O+q7K7X/7abtNW7debVRaWqpVv+yocJuJdw9WXk6BojcdVL+hPGgAa77Npd8Xm+XbXNoZI024p64jQn0X0bylrmkTrpc2r9QnezZKkhYd2KFlV9+lJ3oO1fhlX1a67a/H4hTx7VvKKS7UXZ36VFlEfLT7EAW6N9FVP3+mY2eMVPxo95/2OxjUWzn7M5W2IVmBN4bIb0yQJMn7cn/t+ccmHf/mgDo+3eOc+ygtLNXxBQfk97fWil98qMLvyD2YpaBJ7eU7PLC83cXfTYdn71XWrnQ17eVjt2NC/RLh01LXtA3Xv/6K0ie7LH3Z4v07tezaOzQrcqiu/+WrSrddcXSfflnwH0tf1rlPlUXECUvn2bQdzkrXU72HqbtPgLaePHHhB4N6Z3RoqCIDA3X/kiVaGmf5ffdzbKx+nTpVf+/fXzN+/rnK7af16SM3o1HXzpun+KwsSdL2hAR9OX68ru/cWV/vsFz3L4mJ0X/Wr1du0elRrd/t3KnlU6bo7/36WRURu7dsqQf79tVLq1frsy1b7H3IqCdGhoeqZ+sA/f3bH7VstyX3ftkVq6UPTtGDQ/vpkUW2BZkzLdgUrU/WbFJBcYmeHjP0vIqIN0R2U0svTy3cslOT+/a0y3GgfruyW6h6tA3Qw5//qBXRljxbvi1WS2ZN0X2j+umJryrPs6KSEk1652ttP3R6JqZFf+7UibRM3T+qvy7r0Lq8OHg8NUPHU61nLDEZHfWP64dp476jSsnKvQhHh/psVKdQRQYF6MFFP2pZTNn5dU+slt87RdMH9dPD/626j5u/JVofr7f0cf8cOZQiIuqVUnON33aHS0iNs2TlypXq2LGjPvjgA73xxhuKiorSZ599pjlz5mjbtm12DLFxGzC6m1KTM7V26elCTEZqjv74abv6De8io7Njldu7eZiUnpJt1ZabXaD83EIV5p/+Ubdv53GrAqIkZaXnaudfBxTUroUdjgT12cDhnZV6MktrV+4ub8tIy9Ufy3eq39AwGY1V59nZjEZHXT68s3ZsPqSTSbYjLQJae2vcrf318eu/qOSMaUGAU5ydLYVE4HyNbh2m4tJSLdi3rbytsLRE3+7brkjfVmrp5lnpthmF+copLqx0+SmeRpMmtOuqBfu26VhOhowODnJ2qF7/iIYt7a9kyUHyGdqyvM3B2UHNB7VUzr5MFaace5q0xJ+PSGaz/Ea3qnB5SZ7lvOjkZT1qwqmp5bPBmR9xjdno4I6Wvix2W3lbQWmJvo2LVmSLQLv0ZZU5lm25IdrE2VTjfaB+G9Whg5JzcrQs7vQDoql5efo5NlbD27WTs2PV57RRHTrotwMHyguIkrTuyBEdSE3VmNDQ8radSUlWBURJSs/P16bjx9XO2/rG6NQePZSck6PPywqIbkZjjY8P9dfI8A5Kzs7R8j2ncy8tN09Ld8VqWMd2Mp4j91JyclVQjd+NXq4mPTSsv96JWqesfGa+uVRcGdFBJzNz9OuOM/IsJ0/LtsdqaOeq86y4pNSqgHjKbzssMyuF+FVd1Bkc3k4eLib9vJlpTC9FI8PK+rgY6z7ulz2xuiLU/n0cANQ3Nb5LMWvWLD3yyCPasWOHXFxctGjRIh09elSDBw/WhAkT7Bljo9auc4D27zous9l6UqG90Ufl4uaswLa+VW6/48/96jWoo6657XK1CGymViG+uu+5cXLzdNEPn6855/c38/FUZlrOBR0D6r92YS21b0+8bZ7tPCYXV2cFBldvxEPvgaHybOKqqJ+iK1x+76NjFL3poDatYYQrAPvo7O2ng5mpyi6yvoG+PcUymia8WeUjcs5X7xZBcnEy6nBWmt4fOE67b3pUeyY+qu9GTFKnZjxwcynIO5wtF383m+lE3UIshZ3cI9kVbVauMCVfCT8dVcANIXKo5EEw97aecjA56MSiQ8ranabC1AJlxaTr+DcH5NbWU006N7PPwaBeqqwv23bScmMz3Nt+fY2jwaBmJle1cPXQwIA2eqTHIGUVFpR/Fxqfzi1aaFdSks10tdsTEuRmNKpNs8r7Fz8PD/m4u2tnBe803J6QoPAW585NXzc3pZ3x7kRJ6te6taITEjS5Rw9tmjZNOx58UOvvvluTunc/n0NCA9HJ31e745N01s9NRR9PkJuzUW2bN7Xr900f2l/J2Tn65q+KZ8VB4xQW6Ks9x23zbOeRBLmajGrTomm199nc012SlJ6TV+V6f4sMU15hkVUBE5eOcH9f7U6wPb9Gnyjr47yb1kVYABqI9957T23atJGLi4suu+wybdy4sdJ1P//8cxkMBqs/FxcXq3XMZrP++c9/qmXLlnJ1ddXw4cMVF3dxz081LiLu2bNHt912myTJyclJeXl58vDw0PPPP69XX33VbgE2dt6+TZRawUiutLI27xZNqtz+g+f/q+gN+zXt2XH64o9/6JNfH9egMRGadetHitl6uMptO/duq049g/X7j7ZTVaJx8fb1UNrJLJv21GRLW/MWlT/1XpGhYyJUWFCkP8qmRj1Tn4Gh6tmvvT5+verpHACgOnxdPZSUZ1vAOdXWwu3C36vUxtNyc/XR7kPU0r2JHl63RP/cuEzBnk01f/jN8nV1v+DvQP1WlF4oY1Pb9yqdaitKr3oU2LEF++XW2kPefSu/2e7kaVTb+8JVmlesuFejtXPGn4p7ebucmzmrwxMRMjgaLuwgUK+1cHWvsi/zs0Nfdkq35i219abp2njD/fryyhtlMEh3/bZIGYXnHlGLhsnX3V1JObYPiCaXtfm5V34ea1G2rLLtm7m6VjmSsVdgoHoEBOin2NjytiYmk5q7uSkyMFAzLr9cH23cqAd//FF7kpP17LBhmti163kfG+o3X093JWdVkDvZlrYWnvbr20L9fHRjr256ddlqlZ5dTUKj5tvEXcmZFeRZWZtvk+rn2dShvZSVV6A1ew5Vuk4TN5MuDwvW6l0HlFtQVOl6aLx8PdyVlF07fRyAxuWbb77RzJkz9cwzz2jLli2KiIjQyJEjlZSUVOk2TZo0UXx8fPnf4cPWNZ7XXntN77zzjj788ENt2LBB7u7uGjlypPLzL97vvBoXEd3d3cvfg9iyZUvt37+/fNnJkycvPLJLhLOLUUWFtkPaCwuKJUkml6qneynIK9SxA8lasXCT/nX/XL352DdKTc7U0x9MVsvgyucK9GruocffukWJR1P13cdRF3YQqPecTUYVFhbbtJ9qczad/7RCbu4m9RkYqk1r4pSTZd05OTk56u5HR+unhZt05EDyhQUNAGdwcXRSYant+bKgpKRs+YVPj+ZutBSKzJJu+XW+/ndot+bFbdXdqxepqclVt4VGXvB3oH4rLSyVwcn28tjBaGkzF5ZWum3WnjSl/3VSrW5pd87vcfI0yjXYQwHj2yjk753Vcmywsvdm6PCnTJHV2Lk4OamwpKK+zHJNZo++7JS4jJO6ZfnXuuu3Rfpwx5/KLS6Sm9G2SI7Gw8XJSYXFttf8BWVtLk5ONstOMZUtqzg/S6zWOVtzV1e9PWaMjmZk6ONNm8rb3cumLvV2ddWTy5fr082b9XNsrO74/nvFnjyp+/v2Pc8jQ31Xad9WNn2fyVh57lXXU6OH6I+4Q1q7/8i5V0ajYjI6qaiCKSELi2qWZ3de0Vv9OgbrPz+tqXJa3Cu7hcrZyUk/b+E67VJ1rj6uqvMrgEvbm2++qbvuuktTp05VeHi4PvzwQ7m5uWnOnDmVbmMwGOTv71/+5+d3euYts9mst99+W0899ZSuvfZadevWTXPnztWJEyf0ww8/XLTjqHEv17dvX61Zs0adOnXSmDFj9PDDD2vHjh1avHix+p7jx0BBQYEKCqxP0CZT4343h5PRUZ5eblZtGanZKswvqvC9h84my/80BflVP+X05Lu3qbSkVM/edTrx1q/Yqdm/PaHJD4/WK9O/stnG5Oqs5z69Xa4eJj1yw6c270pEw+Xk5ChPL1ertoy0HBUWFMnZ2fb/3U+1FVbjabrLh4fL5GLUbz/ZjmAdN6m/vJq66cv3f6tm5ABQtfyS4grfT2gqGxWRX3LhTwXnF1v2sfJYnHKLT+9v28kTOpKVpp6+gRf8HajfHJwdZC62LRSWFlnaKntfobnErKNf7Zd3fz+5h1Q9i0RBUp7iXtmu4LvD1Ky3Zdr6pj195OzrosOf7FXG9hR5RfDS2MYqv7i4wtFcJkfLNZk9+rJTsosKtTbe8tTqiqP7dE1akj4Zep2u+vFz7UnjYa+GzOjgIK+zpjVKzcuz5FcFNzJPFf/yKygwnnKq0FhxfjparXMmVycnfTJunNyNRt2+eLHVuxJPfV9hSYl+OWOKJbOkn2JjNaN/f7X09LR6ByPqN6Ojg7xcz8q9nLzK+zanstwpqjz3qmN051B1DwrQNe/Ptcv+UD85OTrIy806z9Ky81RQVCyjUwX3z4zVz7OR3UP1wOjLtfjPHfp2XcWvaTnlb5FhSs/Jq3K0IhoHo0MFfVzuufu4qs6vABqfympbZ9e3CgsLtXnzZs2aNau8zcHBQcOHD9f69esr3X92draCg4NVWlqqnj176qWXXlLnzp0lSQcPHlRCQoKGDx9evr6Xl5cuu+wyrV+/XjfddJM9DtFGjYuIb775prKzLdPuPPfcc8rOztY333yjDh066M0336xy25dfflnPPfecVdszzzxT01AahE492+i1BdOs2iYP/JdSkzMrnLK0WVlbRVOdnuIf5K3eQ8L0n1nfWbVnZ+Rp118H1Tmyjc02TkZHPf3BZLUNa6mnJn+iw7EJNTga1Ffh3YP02uw7rNomj35DqcnZauZjO2Wpt6+lLSXp/H+4DxsToezMPG38fa9Vu5uHSRPvGqwfv90odw+T3D0sHaeLm0kGg0F+AU2Vn1+kjFTewQmg+pLzsuXnatuPtXC1TB2TlFv1u+rOR2LZdIIn8237qZT8XHk5u9i0o3ExNnVWUZrtw1WnpjGtaKpTSUpZm6CC+Fy1ntJBBcnWo/RL8ktUkJwvYxOjHEyOSlmToNKiUnl1ty4UevWwfM6Jy6SI2Igl5eXIv4IpS0/1ZYl26Msqs+xwrDRAurptJ4qIDVzPgADNv+EGq7ZBn36q5Jyc8mlJz+Rb1pZYwVSlp5yaxrSy7dPy8mxGYRgdHPT+NdcozMdHUxYvVmxKitXy9Px85RcXKzM/32bayZTcXEmSl8lEEbEB6REUoLlTJli1XfH2bCVn5cjXs4Lc8SibJjfLPn3boyMGatmuWBWVlCqwqeWeiaeL5XdnyyaecnZ0VFIF06qiYeneJkBz7rfOs1EvzFZyZo58m1SQZ2VtyZnnl2d9Q1vrXzeP1B97DuqFhSurXNe/qad6tg3Uwj93qLi08hkp0Dj0aBWgryZZ597Qd2crOTtHLTwufh8H1IVSM6/TqK7KalvPPvusVdvJkydVUlJiNZJQkvz8/BQTU/Ho9o4dO2rOnDnq1q2bMjIy9Prrr6t///7atWuXWrVqpYSEhPJ9nL3PU8suhhoXEUNCQsr/7e7urg8//PC8t501a5Zmzpxp1WYymTR27j9qGk69d3DPCc2a9JFVW1pylg7sPqHOvdvKYDDIfMYPq7CI1srPLdTxg5X/wG9aVhRycLR9Kt7J6CiHs6bjMhgMeuT1m9S9f3u99OCX2rHxwIUcEuqhA3sTNOvuz6zaUk9m68DeeHXuGWyTZx27tFJ+XqGOHz6/KYi9fTzUrXdb/fq/rSoqsr6J4NnEVW7uJt0wdaBumDrQZtsvfnlY637bo+dnzK/BkQG41O1OS1Rfv2B5GJ2VXXS6yNO9eUD58gu1M9VyweXvVkGx0s1DBzJSL/g7UL+5tvZQ1p5jKskrlqPr6cvk3AOWh7rcWlf8vpPClAKZS8yKfXGbzbLUtYlKXZuokOmd1TTSR8UZZaN0Sq1vqJtLLJ/NpbzfqTHbnZqofv6tbfsy35Zlyyt/N8aFcnZ0lKODgzyNjXsGmEvBnuRkTVq40KotOSdHu5OT1TswUAZZRvud0t3fX7lFRTqUllbpPhOzs5WSm6suZ92QkKQIf3/tSbb+XWqQ9PqoUerfurUe/PFHbTx2zGY7s6TdSUnq5u8vo4ODis64Ae/nYelPU/Pyznm8qD9iEpI1de4iq7bk7BzFJCQrMjhQBoN0Zr04olVL5RYW6WBKul2+P8CriQK6NdHV3TrZLPv+3lu1JyFJ4z6cZ5fvQt3ZeyJZd31gnWcns3K093iyeobY5lnX1i2VV1CkQ0np59x319b+envq1dp1NEmPzP1RJee47hrds6McHAz6eTNTmV4KYpKSNWWebR+3JzFZvYJsz68RgWV9XGp6bYYJoI5VVtuyh379+qlfv37ln/v3769OnTrpo48+0gsvvGCX76iJC5q0OT09XQsXLtT+/fv16KOPytvbW1u2bJGfn58CAyuf8qui4Z2NXXZmnratjbNpX/NLtAaOidDlo7pqzS+WKRSaNHPTgDHdtGHlLqv3JbZsbXkqPf6I5QnP+MMnVVJSqkF/i9DP808PgfXx91LnXm21669DVt817dmxGnx1D73z5Hdat2ynvQ8R9UB2Vr62brAtDv/x6y4NHNFFl18RrjW/7pIkNWnqpoEjuujP1XutCoItWzWTJMUfs73JMHhUVzk6Oui3n22nMk1PzdFzD9kWCK+9ua86dQvSK098p9STPGUMoGZ+ObxXd4f31cT23fXJno2SJGcHR41v101bk48rPtfSvwS4NZGLk5MOZFa/4HcgM1W7UxM1vFUHNTO5Kq3AcmNzYMu2CnT30ty9m+13QKiXmvX2VdIvx3QyKl5+Y4IkWaYyTfkjUW7tPOXc3DIatTAlX6UFpXIJsExV731ZiwoLjAfe2aUmEd7yGdxS7u0sxWmTv6tkltI2Jqv5QP/yddP+tBSPXIMrLlSicfjl8F7d0+UyTQztrk92ne7LJrTvqq3JJ073Ze6ecnU0an8N+rImRpNyi4tUbLYeMXFjhwhJUnQKM5E0dJkFBVp3xPZ9cEtjYzUmNFQjO3TQ0rLpQ5u5uGh0aKh+27/faiRhay8vSdKRjIzT28fF6brwcLX08FB82axD/YOCFOLtrTlbtlh91zPDhumqsDD9Y8UKLd+3r9JYf9q7Vz0DAnRd5876ZscOSZaC9jVhYYo9ebJ8BCQahsz8Aq0/YJt7y3bHaVTnUI3o1EHLdltyr6mbi0aGd1BU7AEVnZF7Qc0suXc0LcNmP+dy/9f/s2kb06Wj/talox5bvFSJmfzebAyy8gq0Ic42z1ZEx2lE91AN79pBK6LL8szdRSMiOmjVbus8a9XckmfHUk7nWdsW3nr3zrE6kZqpBz79QQVFtu+4O9uYnmE6kZqpLQePX+hhoQHIzC/QukMV9HF74jS6U6hGhHXQspiy86uri0aFdVBU3Fl9XNOyPi69+n0cgIbhfGtbPj4+cnR0VGKi9UPviYmJ8vf3r2Qra0ajUT169NC+suvtU9slJiaqZcuWVvvs3r37eR5B9dW4iBgdHa3hw4fLy8tLhw4d0l133SVvb28tXrxYR44c0dy5zFF/Ptb8Eq09Ww5pxqs3qHV7P2Wk5eiqW/rL0cFBX7693Grdl7+6R5I0ZdBLkqSM1Bwt/26jRt/UVy9/da/WLdshVw+Trrqlv0wuRn37wen30o2dOlBXT7pcuzcfUn5ekYZe29Nq3+uW71RBHu9GbKzWrNilPduPaObz49S6na8y03J11Y195OBg0Fdnvb/wlY+nSpImj7GdlnjomAidTMpU9KZDNssK8ou0PmqPTXv/oWHq2CWwwmW4tM1bLGVmS0llA2Gj1kkJZQ+533qd5Ml9dJxhW8oJ/XR4jx7tMUTNXdx1OCtN14V0VSsPLz3x58/l671x+VXq6xestl+9XN7maTRpcsdISVKkbytJ0uSOkcoszFdmYYHmxp4uDr6w+Vd9ecVEfTdikubHbZWns0l3hPXRgcwUfRVrfQMVjY97uyZq2ttXxxceVFFWoVxauCplTaIKTuarw+3dytc79HGMsmMy1POLwZIklwC38oLi2Uw+Lmoa6VP+uflAfyX+ckxHPo9V7uFsuQa6Kfdwtk6ujpdLoJvVumh8tp2M14+HYvRYz0Fq7uKmw5lpur59F7Xy8NLj634pX+/NAVepr39rtfni1fI2T6OzJney9GW9yvqy2zqd0ZfFWPqovv6t9Uyf4frl8F4dykqV0cFRvVsEaVRwqLafjNcPB3bV4hGjNv0SF6ctJ07o1ZEj1b55c6Xl5enWiAg5GAx6+6z3rnw5frwkafDs2eVtH2zYoNGhoZp3ww36fMsWuRmNuqt3b8UkJ2vRrtN5M6VHD03q3l1bTpxQXnGxru1kPSpseVyc8sreD7Vgxw7d2LWrnh02TG2bNdOJzEyNDQ9XYJMmuvuHHy7SfwnUtmW747Tt6Am9dO0ItfP1Vlpunib2jpCjg0HvRlnn3ueTr5ckXfH2nPK2AC9PXRNhyaPOAZbRsPcO6iNJOpGepf9FW35LrozZb/Pdnfwt7xf+fd9Bpefm2yxH47Fie5y2Hzqh528aoRB/b6Vn5+nGyyPk4GDQB0ut8+yTaZY8G/2iJc/cTEZ9eM84NXEz6fNVf2lQeFur9Y+ezFD04Xirtvb+zdUxwFefrtx4EY8KDcHSmDhtPXZCL181Qu19vJWWl6ebe1r6uHd+t869L26x5N6w987o45p46tqulj6uS0tLHzft8rI+LiNL/93J/TKgMXJ2dlZkZKRWrlypsWPHSpJKS0u1cuVKPfDAA+e1j5KSEu3YsUNjxoyRJLVt21b+/v5auXJledEwMzNTGzZs0LRp06rY04WpcRFx5syZmjJlil577TV5ep6e9mvMmDG6+eab7RLcpaC01Kx/3j5bd8y6StdMHiCTi1Gx0Uf15mNfVzmV6SnvPr1YB/fEa+QNfTTl0dGSpNjoY3r9kQXauen0iLSQTpbp3sIj2yi8gnclTh74LyUdp4jYWJWWmvX0/V/qzpkjde3EvpY823lcbzy9WMfOcyrTVsE+Cu0cqEVz11pNiQrU1JxvpBMJp+deX/G7QSt+t/z7mivNFBFhY+baJXq4+yCNC+kiL2cXxaQl6c6o77Qx6WiV2zVxdtHD3Qdbtd0Vfpkk6Vh2ulUR8c/EI5ry2zeaGTFIj3YfrLySYq04FquXt0Qpt7jI/geFeqfN3WE6sfigUtcmqSS3SK6tPNR+Rhd5hjW1y/6dPIwKe7an4r8/pIxtKToZdUJOHkY1H9hSgRPa2kxHj8bn4T9+1PEeA3VdSGd5mVy0Jy1Jd6xcpI2JttNBnsnL2UWP9Bhk1XZ3Z8sNqGPZGeVFxJj0ZP2ZcFhXtm6vFq4eMkg6nJWud7av1Ue7NlpNKYnGpdRs1h3ff68nBg3S5B495OLkpOiEBD22bJkOVjGV6Snx2dm6+dtv9eTgwXp04EAVlZQo6uBBvbR6tdUoxvAWLSRZ3s3YMyDAZj+Djh/X8UzLNNAFxcW69bvv9PigQRrfubPcjEbtTk7Wnd9/rz8OH7bTkaOulZrNunveD3p0xEBNuqyHTE5O2nkiQU/+sFwHU86de62aeemhYZdbtZ36vPHQ0fIiIi5tpWaz7vvkBz189UDdPKCHXIxO2nk0QU8tWK5DyVXnWVM3V7VsZnmP5oyrbF+/8t+Nu2yKiGMiwyRJv2xhKtNLXanZrLu++UGPXzFQt/W29HE74hP0xI/LdTD1PPq4pl6aMcS6jzv1ecPhoxQRgUZs5syZmjx5snr16qU+ffro7bffVk5OjqZOtQziue222xQYGKiXX7Y8CP/888+rb9++at++vdLT0/Xvf/9bhw8f1p133inJ8rq6hx56SC+++KI6dOigtm3b6umnn1ZAQEB5ofJiMJhrWA3w8vLSli1b1K5dO3l6emr79u0KCQnR4cOH1bFjR+XnV/8JsNEhj9QkFOC8/HLgdUnSqIin6zgSNGZLt1vmpy5NCK3jSNCYOfjHSpLVaDvA3g7eOkuSNPHPu+s4EjRmC/p+LElWI+4Aezs0+XFJUrs3bWfaAOxlf9m7ccKefauOI0FjFvPsDElSt5nkGS6e6DcteRb6L/IMF0/sP2bUdQiQNGnDnXUdQoPz5WWfVmv9d999V//+97+VkJCg7t2765133tFll1kebB8yZIjatGmjzz//XJI0Y8YMLV68WAkJCWrWrJkiIyP14osvqkePHuX7M5vNeuaZZ/Txxx8rPT1dAwYM0Pvvv6/Q0It3L7rGIxFNJpMyy54uPFNsbKx8fX0vKCgAAAAAAAAAAABcHKUynHslXJAHHnig0ulLV61aZfX5rbfe0ltvVf0Ah8Fg0PPPP6/nn3/eXiGeU43nS7rmmmv0/PPPq6jIMrWXwWDQkSNH9Pjjj+v666+3W4AAAAAAAAAAAAAAaleNi4hvvPGGsrOz1aJFC+Xl5Wnw4MFq3769PD099a9//cueMQIAAAAAAAAAAACoRTWeztTLy0srVqzQmjVrFB0drezsbPXs2VPDhw+3Z3wAAAAAAAAAAAAAalmNi4inDBgwQAMGDLBHLAAAAAAAAAAAAADqgWoVEd95553zXnf69OnVDgYAAAAAAAAAAABA3atWEfGtt946r/UMBgNFRAAAAAAAAAAAgHqo1Gyo6xDQAFSriHjw4MGLFQcAAAAAAAAAAACAesKhrgMAAAAAAAAAAAAAUL9UayTizJkz9cILL8jd3V0zZ86sct0333zzggIDAAAAAAAAAAAAUDeqVUTcunWrioqKyv8NAAAAAAAAAAAAoPGpVhExKiqqwn8DAAAAAAAAAAAAaDyqVUSUpNtvv/2c6xgMBs2ePbtGAQEAAAAAAAAAAODiKTU71HUIaACqXUT8/PPPFRwcrB49eshsNl+MmAAAAAAAAAAAAADUoWoXEadNm6YFCxbo4MGDmjp1qm699VZ5e3tfjNgAAAAAAAAAAAAA1IFqj1d97733FB8fr8cee0xLlixRUFCQbrjhBi1btoyRiQAAAAAAAAAAAEAjUKNJb00mkyZOnKgVK1Zo9+7d6ty5s+677z61adNG2dnZ9o4RAAAAAAAAAAAAQC264DdnOjg4yGAwyGw2q6SkxB4xAQAAAAAAAAAAAKhDNSoiFhQUaMGCBbryyisVGhqqHTt26N1339WRI0fk4eFh7xgBAAAAAAAAAABgJ6VmA3/V/LsUOVV3g/vuu09ff/21goKCdPvtt2vBggXy8fG5GLEBAAAAAAAAAAAAqAPVLiJ++OGHat26tUJCQrR69WqtXr26wvUWL158wcEBAAAAAAAAAAAAqH3VLiLedtttMhguzWGbAAAAAAAAAAAAwKWg2kXEzz///CKEAQAAAAAAAAAAAKC+cKjrAAAAAAAAAAAAAADUL9UeiQgAAAAAAAAAAICGq1S8tg7nxkhEAAAAAAAAAAAAAFYoIgIAAAAAAAAAAACwQhERAAAAAAAAAAAAgBWKiAAAAAAAAAAAAACsUEQEAAAAAAAAAAAAYMWprgMAAAAAAAAAAABA7Sk1G+o6BDQAjEQEAAAAAAAAAAAAYIUiIgAAAAAAAAAAAAArFBEBAAAAAAAAAAAAWKGICAAAAAAAAAAAAMAKRUQAAAAAAAAAAAAAVpzqOgAAAAAAAAAAAADUnlKzoa5DQAPASEQAAAAAAAAAAAAAVigiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABgxamuAwAAAAAAAAAAAEDtKTUb6joENACMRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACsUEQEAAAAAAAAAAABYoYgIAAAAAAAAAAAAwApFRAAAAAAAAAAAAABWnOo6AAAAAAAAAAAAANSeUrOhrkNAA8BIRAAAAAAAAAAAAABWKCICAAAAAAAAAAAAsEIREQAAAAAAAAAAAIAViogAAAAAAAAAAAAArFBEBAAAAAAAAAAAAGDFqa4DAAAAAAAAAAAAQO0plaGuQ0ADwEhEAAAAAAAAAAAAAFYoIgIAAAAAAAAAAACwQhERAAAAAAAAAAAAgBWKiAAAAAAAAAAAAACsUEQEAAAAAAAAAAAAYMWprgMAAAAAAAAAAABA7Sk1G+o6BDQAjEQEAAAAAAAAAAAAYIUiIgAAAAAAAAAAAAArFBEBAAAAAAAAAAAAWKGICAAAAAAAAAAAAMAKRUQAAAAAAAAAAAAAVpzqOgAAAAAAAAAAAADUnlKzoa5DQAPASEQAAAAAAAAAAAAAVigiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYPZbDbXdRAAAAAAAAAAAACoHVeumlHXITQ4K4a8Vdch1DpGIgIAAAAAAAAAAACw4lTXAZwp9MVLr4qL2hP7lOXJis6zyDNcPLtetuRZ269eruNI0JgdvHWWJKk0IbSOI0Fj5uAfK4nrM1xcp67P2r35Zh1HgsZs/8yZkqT2r9Gf4eLZ95ilPwt7jjzDxRPzjCXPwp8kz3Dx7H7JkmehL5FnuHhin2QEXH1QajbUdQhoABiJCAAAAAAAAAAAAMAKRUQAAAAAAAAAAAAAVigiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKw41XUAAAAAAAAAAAAAqD2lZkNdh4AGgJGIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACsUEQEAAAAAAAAAAABYoYgIAAAAAAAAAAAAwIpTXQcAAAAAAAAAAACA2mM2G+o6BDQAjEQEAAAAAAAAAAAAYIUiIgAAAAAAAAAAAAArFBEBAAAAAAAAAAAAWKGICAAAAAAAAAAAAMAKRUQAAAAAAAAAAAAAVpzqOgAAAAAAAAAAAADUnlIZ6joENACMRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACsUEQEAAAAAAAAAAABYoYgIAAAAAAAAAAAAwApFRAAAAAAAAAAAAABWnOo6AAAAAAAAAAAAANSeUrOhrkNAA8BIRAAAAAAAAAAAAABWKCICAAAAAAAAAAAAsEIREQAAAAAAAAAAAIAViogAAAAAAAAAAAAArFBEBAAAAAAAAAAAAGDFqa4DAAAAAAAAAAAAQO0xmw11HQIaAEYiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACtOdR0AAAAAAAAAAAAAak+p2VDXIaABYCQiAAAAAAAAAAAAACsUEQEAAAAAAAAAAABYoYgIAAAAAAAAAAAAwApFRAAAAAAAAAAAAABWKCICAAAAAAAAAAAAsOJU1wEAAAAAAAAAAACg9pjNhroOAQ0AIxEBAAAAAAAAAAAAWKGICAAAAAAAAAAAAMAKRUQAAAAAAAAAAAAAVigiAgAAAAAAAAAAALBS4yJiVFSUPeMAAAAAAAAAAAAAUE841XTDUaNGqVWrVpo6daomT56soKAge8YFAAAAAAAAAACAi6DUbKjrENAA1Hgk4vHjx/XAAw9o4cKFCgkJ0ciRI/Xtt9+qsLDQnvEBAAAAAAAAAAAAqGU1LiL6+PhoxowZ2rZtmzZs2KDQ0FDdd999CggI0PTp07V9+3Z7xgkAAAAAAAAAAACgltS4iHimnj17atasWXrggQeUnZ2tOXPmKDIyUgMHDtSuXbvs8RUAAAAAAAAAAAAAaskFFRGLioq0cOFCjRkzRsHBwVq2bJneffddJSYmat++fQoODtaECRPsFSsAAAAAAAAAAACAWuBU0w0ffPBBLViwQGazWZMmTdJrr72mLl26lC93d3fX66+/roCAALsECgAAAAAAAAAAAKB21LiIuHv3bv3f//2frrvuOplMpgrX8fHxUVRUVI2DAwAAAAAAAAAAgH2ZzXUdARqCGk1nWlRUpODgYPXt27fSAqIkOTk5afDgwTUODgAAAAAAAAAAAEDtq1ER0Wg0atGiRfaOBQAAAAAAAAAAAEA9UKMioiSNHTtWP/zwgx1DAQAAAAAAAAAAAFAf1PidiB06dNDzzz+vtWvXKjIyUu7u7lbLp0+ffsHBAQAAAAAAAAAAAKh9NS4izp49W02bNtXmzZu1efNmq2UGg4EiIgAAAAAAAAAAANBA1biIePDgQXvGAQAAAAAAAAAAgFpQKkNdh4AGoMbvRAQAAAAAAAAAAADQONV4JKLZbNbChQsVFRWlpKQklZaWWi1fvHjxBQcHAAAAAAAAAAAAoPbVuIj40EMP6aOPPtLQoUPl5+cng4GhrwAAAAAAAAAAAEBjUOMi4pdffqnFixdrzJgx9owHAAAAAAAAAAAAQB2r8TsRvby8FBISYs9YAAAAAAAAAAAAANQDNS4iPvvss3ruueeUl5dnz3gAAAAAAAAAAAAA1LEaT2d6ww03aMGCBWrRooXatGkjo9FotXzLli0XHBwAAAAAAAAAAADsy2w21HUIaABqXEScPHmyNm/erFtvvVV+fn4yGEg4e/I0mfTYFQN1Zcd2cjEaFX0iQa/8+rt2JySdc9tuAX4a162zIgL91bGFj4yOjgp98a1aiBoNjaeLSQ+PHqgrwtvJxdmonUcT9NrPv2vPiarzzGCQru0RruGd2yssoIW83Fx0PDVDv0Tv1Wd/bFZhcUktHQHqC2cHR82IGKhxbbvIy9lFMenJemPbaq1JOFTldiFNvHVzhx7q7hOgLt7+Mjk6acD37+t4TkaF67s7OevBrpdrTHCYWrh6KK0gT1uTj2vmuiXKLym+CEeGhiwnV5rztRS9R9qxR8rIMuilJ8waN7quI0NDUFvXYhN7dlPfNkGKCPRXgFcTLd6+S08sWW7vw0E94Gky6YmBA3Vl+/ZyNRoVnZCgl1av1q6kc+eUJLXz9tZTQ4YoMiBARaWlijpwQC+tXq3UM2aGCWnWTBO6dNGA4GC1btpUuYWF2pWUpP+sX68diYlW+1t9xx1q5eVV4XcdSkvTFZ99VvODRZ3xNJn0+JCBGtGhnVycLHn2ctTv2pV4/nn2j2GDFdkqQEUlpVp14KBe+s06zwKbNNHqe++ocPu//+8n/RQTW/751dEjdH3Xzjbr7U9J1cjZX1Tz6FCfeZpMevTKgRoeZjlv7jieoFeXn995s2uAn8Z1t5w3Q/0s582w5859D6NnUIDm336jJKnvax8oPS//go8D9Zuni0kPjxqo4Z3L8uzY+d3DkKSurfw0tmdndQvyV6i/Jc/Cn6w4z5p7uGnmyAEa1LGt3E3OOpCUok9Wb9KynXH2PiTUMU+TSY8NK7vmdzIqOr7smv98z5vNvTVr+GBFBlnOm6v3HdRLK1crLdd65j5fd3dNH9RP/du2lq+7u5Kys7Uydr8+WLfRqu+KfXJGpd+19uBhTV2wuGYHCgAXoMZFxJ9++knLli3TgAED7BkPJBkkfXzTWIX5+Wj2+s1Ky83Tzb0i9NWk8Rr36XwdTkuvcvvB7dtqQo8u2pt4UkfTMxTS3LtW4kbDYjBIH0weq44tfTTnj81Kz8nTTX0j9Pld4zXh3fk6kpJe6bauRqP+NWGkth05oW83RCs1J1cRrVvq/uH91Ldda039dGHtHQjqhX/3v0qjW3fUZzGbdCgzTde366o5w27QzSvm66/kY5Vu18MnUFM69lJcxkntyzipzt7+la7raTTp6ytvkb+bpxbs26bDWWnyNrmpd4sgOTs6UUSEjfQM6f0vDGrpZ1bHdtLGbXUdERqK2rwWu6t/L7k7O2vHiQT5erjb90BQbxgkzR47VmG+vvrkr7+UlpenWyIiNG/CBI2dN0+H0tOr3N7fw0MLbrhB2YWFemPtWrkZjbqzVy919PHRdfPnq6i0VJJ0Y9eumtCli5bGxWne9u3yNJk0sVs3LZw4UVMXL9a6I0fK9/niqlVyc3a2+p5AT089PGCA/jh82N7/CVALDJI+vX6swlr46NONmy151iNC824ar2vnnrvv8vfw0IKbJyiroFBv/L5W7s5G3dG7l0J9muv6LxeU59kp/9sdo9UHDlq1bT0Rb7PfguJiPbl0hVVbVkFhjY4R9ZNB0kc3j1VHfx/NWWc5b07sFaG5U8br+o/n63BqepXbD+7QVuN7dlFs4kkdS8tQW59z38MwSHpq9FDlFBbK/ay+DI3TqXsYYf6WexhpuXmaeFmEvrhzvCa8N1+Hq7iHIUmDOrbV+F5dtDfhpI6lZqitb8V55m5y1ld336DmHm76ct1WnczO1aiuoXrr5qv06Dc/66ftey/C0aEuGCR9fEPZNf+flvPmzT0j9NWt4zVuzrnPm36eHpo3aYKy8gv15irLefP2y3optEVzjf/s9HnTzWjUN5NvlJuzUfM3Rys+M0thfj66pVd3XRYcpHFz5slcts9H/vuLzfd0aemnKX16as0Brs8A1I0aFxGDgoLUpEkTe8aCMqM6hSoyKEAPLvxRy2IsTzn9vCdWy6dN0fTB/fTwD7YnlDPN3xytj9dtUkFxif45cihFRFRoRJdQ9WgToBnzftTysqfplu6I1U8PT9EDw/vpsW8qz7OikhLd8sHX2nbk9E2ChZt26kRaph64sr/6tmutP/cfqXR7NC4RzVvqmjbhemnzSn2yZ6MkadGBHVp29V16oudQjV/2ZaXb/nosThHfvqWc4kLd1alPlUXER7sPUaB7E13182c6dsZIxY92/2m/g0Gj4ttc+n2xWb7NpZ0x0oR76joiNBS1eS1265ff6URGliRp62P32+8gUK+MDg1VZGCg7l+yREvjynIqNla/Tp2qv/fvrxk//1zl9tP69JGb0ahr581TfJYlX7YnJOjL8eN1fefO+nrHDknSkpgY/Wf9euUWFZVv+93OnVo+ZYr+3q+fVRFxxf79Nt9z/2WXSZL+t2fPhR0w6sTojqGKbBWgB374UUtjy/IsJlYr7pqiv1/eTzN/rLrvmtavj1yNRl37xfzTeRafqLk3Xq/runbWN9t3WK2/KzFJ/90dc864iktLz2s9NFwjw0PVs3WA/v7tj1q2x5J7v+yK1dIHpujBIf30yOKqc2/BX9H6ZK3lvPn06KHnVUS8IbKbWnp5auGWnZrct6ddjgP128guoeoZHKCH5lvfw/h55hTdf457GJL09YZofbrakmf/uHpopUXEG/t0VbBPM039dKE2HDhatu12Lbh3oh4bPVjLd8apqKS0wm3RsJRf8y8+65r/nimaPqifHq6goHeme/tbzpvj5sxXfKblvBl9IlGf33y9ruvWWd9ss5w3h3UIUaumXrr7mx+0av/ph28y8gr0wMC+CvPz1Z7EZEnS/3bZni8vC26lUrNZP+6mgA2gbjjUdMM33nhDjz32mA4dOmTHcCBJIzt1UHJ2jpbHnJ4mIS03T7/sidUVoe1kdHSscvuUnFwVMJ0kzmFElw46mZWjFbvOyLOcPC2LjtXQ8KrzrKik1KqAeMqvu/ZJkkJaULi+lIxuHabi0lIt2LetvK2wtETf7tuuSN9WaunmWem2GYX5yik+95PonkaTJrTrqgX7tulYToaMDg5ydqi6LwScnS2FRKC6avNa7FQBEY3bqA4dlJyTo2Vxp3MqNS9PP8fGani7dnI+R06N6tBBvx04UF7YkaR1R47oQGqqxoSGlrftTEqyKiBKUnp+vjYdP6523ue+Prs6LExH0tO1Jd72Og/136iOlr5rWexZeRYTq+Htz51nI0PbK2r/Qes8O1yWZx1DK9zG1egko8O5bys4GAzyYLRYozUyvOy8ucf6vLl0d6yGdbT/PQwvF5MeGtZf70StU1Z+QY3jRsNS6T2MHbEa1uk88iz7/PKsZ5tApWTnlhcQJclslpbtiJVvE3f1atuq5geBemVkWCXX/DGxuqLDuXNqZFh7Re07WF5AlKR1h47oQEqqRnc6fd70MJkkSSdzcq22T8rOkWQZsV8Zo6OjRnTsoI1HjikxK/v8Dw4A7KjGRcRbb71VUVFRateunTw9PeXt7W31h5oL9/fV7oSk8qHsp0SfSJCbs1FtvZvWRVhoZDoF+Gr3iSSZz0q0HccsedbGp2m19+njaZmGLf2sud/RuHX29tPBzFRlF1kXA7ennJAkhTfzu+Dv6N0iSC5ORh3OStP7A8dp902Pas/ER/XdiEnq1KzFBe8fAM7EtRjsrXOLFtqVZJtT2xMS5GY0qk2zZpVu6+fhIR93d+08652Gp7YPb3Hu86Cvm5vS8qq+Pgv39VWH5s21JIYRYw1VuJ+vdiVW0HfFl13fN2ta6bZ+Hu7ycXfXjgTbPIuOT1S4n69N+4OX99WOGQ9q18PTtXjSRA1o07rCfbsajdr29/u17aH79deD0/Ts8KFyMxqrc2io5zr5+2p3fAW5d7zsvNm8qV2/b/qw/krOztE3m3ece2U0Gp1aVnwPI/poze9hVMTZ0VEFRbZFnbyyh3Q6B1z471vUD+F+Nb/mP3Xe3Blve97ccSJRnc44b246ekwlpaX6x5VDFBHgLz9PDw1u10bTLu+jFXv36UBKWqXfM6RdG3m5umjJTq7PANSdGk9n+vbbb9sxDJzJ18Ndm44ct2lPzrI8odLC00OxySm1HRYaGV9Pd/11sIo8a+KhuMTq5dntg3opK79Af+w9ZI8Q0UD4unooKc/2ibhTbS3cPC74O9p4Wm6uPtp9iI5kp+vhdUvkaTTp790GaP7wmzXix0+UnJdzwd8DABLXYrA/X3d3bTxeQU7lWHLKz91dsSdPVrhtC3fLQ1pJObbnueScHDVzdZWzo6MKSyoeXdErMFA9AgL03oYNVcZ4badOkqT/UkRssHzd3bXpqG2encodPw8PxZ6suO/y9bBcryVn2+ZZUrZ1npWazfrj4CEtj9uvxKxsBTX10u29emr2+HG6Z/H/tOqM9yQm5+Tokw1/aVdikgwGaVDbNrq1Z3eFtfDVLQu+U8nZ1QA0SL6e7vrrXOfNJPucN0Nb+OjGyG66Z973KiV/Lim+nu7665Btnp28gHsYFTl0Mk392rdWQFNPnUg/PcIssk2gJMnPi3dYNxaVXvOXnQtbeFR+zX/O86abq4yOjioqKdH+k6l6+pdf9fiwQfpuysTy9RZH79I/flphs/2Zru7SSQXFxVp6xmhJwJ5KzYa6DgENQI2LiJMnT7ZnHDiDi5OTCiuYYqGg7MaAi1ON/2cDypmMTiqq4GZTYVFJ+fLquGtIb/XvEKznf1jJlDKXGBdHJxWWVtFnOV74k+buRsv0V2ZJt/w6X7nFlqdAd6Ul6vtRk3VbaKTe2P77BX8PAEhci8H+LDllO6rh1PRVVeWUqWxZRUXCUzlpcnKqcHlzV1e9PWaMjmZk6ONNmyr9DoOkv3XsqJ2JidqfmlrlsaD+cqkkD05N32eqIs9cqsyz4vLtC0tKFJ+VpanffW+1zg+7dmvp7ZM1a+ggqyLi67+vtVrvp5hYHUpL08ODBmhUxw76KSb2PI8O9Vml583zyL3qemr0EP0Rd0hrDxw598poVEzGqvPMXtdnC//aqRv7dNObE/+mV35arZTsXI3qGqrh4e0tcXAd2Gic67zpUsV9sVPLqjpvujidvu+WmJWt6PgErd5/SCcyMtUrKFCTenVXWm6eXv3tjwq/w93ZWUPatdXq/QeVVcB9NgB1xy5nvvz8fBUWWk9j16RJk0rXLygoUMFZnZ+pbH7oS4nRwUFeri5Wbam5ecovLpazk+2826ayubjzq5grGzib0bGCPMvJU0FRcYXzuzsbLW0VTd9RmVFdQzX9ysu1cNMOfbMh+sICRoOTX1Jc4fsJy/uskiKbZdX+jrKi4cpjceUFREnadvKEjmSlqadv4AV/B4BLD9disDejg4O8XM7KqbxTOWX70+vUjciqcupUobGi99mdysmK3qXj6uSkT8aNk7vRqNsXL7Z5V+KZLgsKUktPT322ZUul66D+qLLvqihPnCrPk1Pyq8wzp3Nun5FfoEU7d+nevn3k7+GhhOzK39s0568temhAf13epjVFxAam2ufN88i96hjdOVTdgwJ0zftz7bI/1E9V3cOoKs/sdX0Wm3BSj377i5659grNv/cmSVJyZo5e+Wm1nhl7hXILL/z3LWpXTc+b+VXcFzu1rKrz5qmc7NkqQB/dMFY3fP61dpZNG/5r7H5lFxTqgYF9tTB6l/aftH2Ia2RYe7kYnfQ/pjIFUMdqXETMycnR448/rm+//VYpKbZDu0sqmU5Hkl5++WU999xzVm3PPPOM5ORV03AapB5BAfpq0gSrtqH/N1vJ2Tlq4WE7PYJv2fvmkniRLqqhe+sAfX63dZ5d+epsJWflyLdJFXmWeX551q99a718w0j9vvegnv9h5YUHjAYnOS9bfq6eNu0tXC3TeyTlXniflVg2NerJfNupQlLyc+Xl7GLTDgDnwrUY7K1nQIDm33CDVdugTz9Vck5O+bSkZ/Ita0usYKrSU05NRVnZ9ml5eTZPwRsdHPT+NdcozMdHUxYvVmwFv9fOdE1YmEpKS3kfYgPRMzBA8yZa912DP5yt5Jyc8pw606ncSayisJdctsy3gr6vhUfFeXa2+EzLtH9eri5VFhELikuUnpdvU3BH/dcjKEBzp1jn3hVvl/22rIXz5qNXDtSyXbEqKilVoJflwXVPF8sD6S29POXs6KikCqYWRMPSvXWAvrjLOs+Gv1aWZ562eeZTzXsY52P5zjhF7dmvjv6+cnAwaM+JJPVu20qSZbpTNCw9WgXoq1vPuuZ/r4pr/rK2pAs5b+bmlY9CvKlHV6Xk5JYXEE9ZGbdf0wf1U8/AgAqLiNd07qTM/HxF7TtoswwAalONi4iPPfaYoqKi9MEHH2jSpEl67733dPz4cX300Ud65ZVXqtx21qxZmjlzplWbyWTS/H+/X9NwGqSYxGRNmbfIqi05O0d7EpLVq3WgDJLVy30jAloqt7BIB1PTazNMNHB745N1x6fWeXYyO0cx8cmKbBMog0FWLybvFmTJs0Mn08+5765B/nrn1qu161iSZs7/USWlvJPiUrQ7LVF9/YLlYXRWdtHpUendmweUL79QO1MTJEn+bhUUK908dCCDqdcAVB/XYrC3PcnJmrRwoVVbck6Odicnq3egbU519/dXblGRDqVVfkMyMTtbKbm56uLnZ7Mswt9fe5KTrdoMkl4fNUr9W7fWgz/+qI3HjlUZs7Ojo0Z16KANx45V+N5F1D97kpJ12zdn9V05OdqTmKxerSrvuw6lpVe6z8TsHKXk5Kqrv22edWvppz1JyRVsZS2oqeWh4NTcvCrXc3c2qpmb6znXQ/0Tk5isqXNtz5sxCcmKDK4g9wLLzpsp6Xb5/gCvJgro1kRXd+tks+z7e27VnoQkjftonl2+C3Vnb3yy7ph9ce5hVEdRSal2Hj/9W7Zf+2BJ0vp9TKXb0MQkJWvK/Aqu+ROT1SuoZtf8p86bXVranje7Bvgp5ozzZnN3NzkYbN87Z3RwkCQ5lv3fM/m6u+uy4FZaHL27wlcRAUBtqnERccmSJZo7d66GDBmiqVOnauDAgWrfvr2Cg4M1b9483XLLLZVuazKZLsnpS8+WmV+gdQdtLz6WxcRpdHioRoR10LKyF+c2c3XRqE4dFBV3wOrkEdTM8kPtaFpG7QSNBiczv0B/7rfNs+U74jSya6iu7NxBy3da8qypm4tGdO2gVXvOyjPvsjxLPZ1nIb7e+mDyWB1Py9R9X/xQPmc8Lj2/HN6ru8P7amL77vpkz0ZJkrODo8a366atyccVn2t5Kj3ArYlcnJx0ILP6Bb8DmananZqo4a06qJnJVWkFlptOA1u2VaC7l+bu3Wy/AwJwyeBaDPaWWVCgdUdsc2ppbKzGhIZqZIcOWhpXllMuLhodGqrf9u+3GuHV2suSU0cyTufU0rg4XRcerpYeHoove/K9f1CQQry9NeesKUifGTZMV4WF6R8rVmj5vn3njHlI27bycnHRf/fsqf4Bo05kFhRo3WHbPPslNk6jw0I1MrSDlsae7rtGd+yg3/YfsM6zsoLfkfQz8iw2Ttd1CVdLTw/Fl40c69fakmef/bW1fD1vV1el5lkXAP083DW+axftSUpWclkx2tnRUUZHB+WcNfXf/f36ysFg0O8HD13AfwXUhcz8Aq2v6Ly5J06jOodqRKcOWran7Lelq4tGhndQVKz9zpv3f/0/m7YxXTrqb1066rHvlyqxbDQsGrbM/AKtr+AexrKdFd/DGNm1g1bFnPsexoUIbt5UN/bpqqg9B3TYTkVx1J7M/AKtO1TJNX+nCq75wzooat9ZOVV23jx6xnlz2d44jesaLn9PDyWcOm+2CVJIc299vvH0efNQapoGhrRRn9attPHI6Ye7/tY5TJK0OzHJJra/hYfK0cFBS3YxSwSAulfjImJqaqpCQkIkWd5/mJpquSk8YMAATZs2zT7RXaKW7onT1mMn9PLVI9Te11tpuXm6OTJCjg4GvbN6vdW6X9xyvSRp2LtzytsCvDx1bVfLk3mnnoiZNqCPJOlERpb+u4MbBLBMz7HtyAm9OH6E2rWw5NlNl0XI0WDQe79a59nsOy15NuI1S565ORv18e3j1MTVpM9+/0uDwtparX80NUPbj8TXzoGgzm1LOaGfDu/Roz2GqLmLuw5npem6kK5q5eGlJ/78uXy9Ny6/Sn39gtX2q5fL2zyNJk3uGClJivS1TA8zuWOkMgvzlVlYoLmxp4uDL2z+VV9eMVHfjZik+XFb5els0h1hfXQgM0VfxfIOJ1Rs3mIpM1tKOmn5HLVOSih7KPTW6yRPj7qLDfVXbV6LDe0QojA/H0mWp5E7tvApX/e32APaeyp50aD9EhenLSdO6NWRI9W+eXOl5eXp1ogIORgMenu9dU59OX68JGnw7NnlbR9s2KDRoaGad8MN+nzLFrkZjbqrd2/FJCdr0a5d5etN6dFDk7p315YTJ5RXXKxrO1mP1lkeF6e8s94ZdU1YmAqKi8uLm2i4lu6N09bjJ/TKmBFq72Ppu27pYbm+/89a6zybe6Ol7xry0em+68M/N2p0x1B9ddMEfb55q9yNRt3Zp5dikpK1aMfpPHtsyEC1buql9YePKik7W4FeTXRTRDe5GZ304spV5ev5urvrf1Nu0Y979mp/iuV+wcC2wRraLkSrDxzUr3H7L+J/DdSmZbvjtO3oCb107Qi1KztvTuxtOW++u8o69z6/zZJ7V/zH+rx5Tdnows4BlvPmvQNPnzf/F205b67ca5sznfx9JUm/xx1Uel6+nY8M9cmpexj/ur7sHkZOnib2tfRx7551D2POHZY8u/LfZ+RZU09d3aPs+izQkmf3DC3Ls7QsLdl2+vpsyUO3admOOJ1Iz1Qrby/ddFk3ZeTl67n//npRjxG1a2lM2TX/306fN8uv+X8/65r/5rJr/vfPOG+u3ajRYaH68pYJmvvXVrkZjbqjb9l5M/r0efOrv7brum6d9eGEa/XVX9t0PDNTfVq30tWdw7TmwGFFn0iwie3qLp2UmJWtDYePXqSjByzMTCqH81DjImJISIgOHjyo1q1bKywsTN9++6369OmjJUuWqGnTpnYM8dJTajbrrq9/0ONXDNRtvXvI5OSkHfEJemLJch1MPffc662aemnGkMut2k593nD4KEVESLLk2bTPftDDYwbqlv49ZDI6aeexBP1j4fJzzvHf1M1VLZta3kExc/RAm+U/bN5FEfESM3PtEj3cfZDGhXSRl7OLYtKSdGfUd9qYVPUFbxNnFz3cfbBV213hl0mSjmWnWxUR/0w8oim/faOZEYP0aPfByisp1opjsXp5S5Ryi3m5PSo25xvpRMLpqWNW/G7Qit8t/77mSjNFRFSoNq/FRoa113URncs/d27pp85lhceEzGyKiI1EqdmsO77/Xk8MGqTJPXrIxclJ0QkJemzZMh2sYirTU+Kzs3Xzt9/qycGD9ejAgSoqKVHUwYN6afVqq9Fl4S1aSLK8m7FnQIDNfgYdP67jmZnlnz2cnTU0JERRBw8qu7DQZn00LKVms+5Y+IOeGDpQt/W05NmOhAQ99sv59V3xWdm6ZcF3enLYID06aICKSku0av9BvRT1u1WerTl0WDd376Zbe0SoiYtJWQUF2nTsmN5fv1G7zhhNkVlQoKj9B3V5m9Ya1zlcjg4GHU5L1+ur1+jTTZvFPavGo9Rs1t3zf9CjVw7UpMss582dJxL05A/LdTDl/M6bDw2zPm+e+rzx0NHyIiIubaVms+79/Ac9Mnqgbu13+h7Gk+dxD0OSApt56e9XWufZqc8bDxy1KiLGxCdrXGS4mnu4KS0nX0t3xOrdX9crNYdpmBuTUrNZd337gx4fNlC39ar+NX9CVrZu+eo7zRo+SA8PGaCiEst585WVv1uNYjyYmqbr5szXQ4P765ouYfLxcFdSVrY+/fMvm2KlJLX1bqauLf00ZwPnSgD1g8Fsrlm9+a233pKjo6OmT5+uX3/9VVdffbXMZrOKior05ptv6u9//3u19xn64ls1CQU4L7FPzZAkdZ5FnuHi2fWyJc/OHG0H2NvBW2dJkkoTQus4EjRmDv6xkrg+w8V16vqs3Ztv1nEkaMz2z5wpSWr/Gv0ZLp59j1n6s7DnyDNcPDHPWPIs/EnyDBfP7pcseRb6EnmGiyf2yRl1HQIkRfz4dF2H0OBsv+qFug6h1tV4JOKMGaf/H3348OGKiYnR5s2b1b59e3Xr1s0uwQEAAAAAAAAAAACofTUuIp4tODhYwcHB9todAAAAAAAAAAAAgDriUN0NfvvtN4WHhyvzjHdpnJKRkaHOnTvrjz/+sEtwAAAAAAAAAAAAAGpftUcivv3227rrrrvUpEkTm2VeXl6655579Oabb2rgwIF2CRAAAAAAAAAAAAD2YzYb6joENADVHom4fft2jRo1qtLlI0aM0ObNmy8oKAAAAAAAAAAAAAB1p9pFxMTERBmNxkqXOzk5KTk5+YKCAgAAAAAAAAAAAFB3ql1EDAwM1M6dOytdHh0drZYtW15QUAAAAAAAAAAAAADqTrWLiGPGjNHTTz+t/Px8m2V5eXl65plndNVVV9klOAAAAAAAAAAAAAC1z6m6Gzz11FNavHixQkND9cADD6hjx46SpJiYGL333nsqKSnRP/7xD7sHCgAAAAAAAAAAAKB2VLuI6Ofnp3Xr1mnatGmaNWuWzGazJMlgMGjkyJF677335OfnZ/dAAQAAAAAAAAAAcOHMZkNdh4AGoNpFREkKDg7Wzz//rLS0NO3bt09ms1kdOnRQs2bNbNY9duyYAgIC5OBQ7ZlTAQAAAAAAAAAAANSBGhURT2nWrJl69+5d5Trh4eHatm2bQkJCLuSrAAAAAAAAAAAAANSSiz488NR0pwAAAAAAAAAAAAAaBuYYBQAAAAAAAAAAAGCFIiIAAAAAAAAAAAAAKxf0TkQAAAAAAAAAAAA0LKVmQ12HgAbgoo9ENBhIRAAAAAAAAAAAAKAhuehFRLPZfLG/AgAAAAAAAAAAAIAdVXs609tvv/281pszZ44kaffu3QoICKju1wAAAAAAAAAAAACoI9UuIn7++ecKDg5Wjx49zmuUYVBQUI0CAwAAAAAAAAAAAFA3ql1EnDZtmhYsWKCDBw9q6tSpuvXWW+Xt7X0xYgMAAAAAAAAAAABQB6r9TsT33ntP8fHxeuyxx7RkyRIFBQXphhtu0LJly3j/IQAAAAAAAAAAQD1nNvNX3b9LUbWLiJJkMpk0ceJErVixQrt371bnzp113333qU2bNsrOzrZ3jAAAAAAAAAAAAABqUY2KiFY7cHCQwWCQ2WxWSUmJPWICAAAAAAAAAAAAUIdqVEQsKCjQggULdOWVVyo0NFQ7duzQu+++qyNHjsjDw8PeMQIAAAAAAAAAAACoRU7V3eC+++7T119/raCgIN1+++1asGCBfHx8LkZsAAAAAAAAAAAAAOpAtYuIH374oVq3bq2QkBCtXr1aq1evrnC9xYsXX3BwAAAAAAAAAAAAAGpftYuIt912mwwGw8WIBQAAAAAAAAAAABeZ2UydB+dW7SLi559/fhHCAAAAAAAAAAAAABqH9957T//+97+VkJCgiIgI/d///Z/69OlT4bqffPKJ5s6dq507d0qSIiMj9dJLL1mtP2XKFH3xxRdW240cOVJLly69aMfgcNH2DAAAAAAAAAAAAFxivvnmG82cOVPPPPOMtmzZooiICI0cOVJJSUkVrr9q1SpNnDhRUVFRWr9+vYKCgjRixAgdP37car1Ro0YpPj6+/G/BggUX9TgoIgIAAAAAAAAAAAB28uabb+quu+7S1KlTFR4erg8//FBubm6aM2dOhevPmzdP9913n7p3766wsDB9+umnKi0t1cqVK63WM5lM8vf3L/9r1qzZRT0OiogAAAAAAAAAAACAHRQWFmrz5s0aPnx4eZuDg4OGDx+u9evXn9c+cnNzVVRUJG9vb6v2VatWqUWLFurYsaOmTZumlJQUu8Z+tmq/ExEAAAAAAAAAAAC4lBQUFKigoMCqzWQyyWQyWbWdPHlSJSUl8vPzs2r38/NTTEzMeX3X448/roCAAKtC5KhRo3Tdddepbdu22r9/v5588kmNHj1a69evl6OjYw2PqmoUEQEAAAAAAAAAAC4hZrOhrkNocF5++WU999xzVm3PPPOMnn32Wbt+zyuvvKKvv/5aq1atkouLS3n7TTfdVP7vrl27qlu3bmrXrp1WrVqlK664wq4xnMJ0pgAAAAAAAAAAAEAVZs2apYyMDKu/WbNm2azn4+MjR0dHJSYmWrUnJibK39+/yu94/fXX9corr2j58uXq1q1bleuGhITIx8dH+/btq/7BnCeKiAAAAAAAAAAAAEAVTCaTmjRpYvV39lSmkuTs7KzIyEitXLmyvK20tFQrV65Uv379Kt3/a6+9phdeeEFLly5Vr169zhnPsWPHlJKSopYtW9bsgM4DRUQAAAAAAAAAAADATmbOnKlPPvlEX3zxhfbs2aNp06YpJydHU6dOlSTddtttVqMYX331VT399NOaM2eO2rRpo4SEBCUkJCg7O1uSlJ2drUcffVR//vmnDh06pJUrV+raa69V+/btNXLkyIt2HLwTEQAAAAAAAAAAALCTG2+8UcnJyfrnP/+phIQEde/eXUuXLpWfn58k6ciRI3JwOD3O74MPPlBhYaHGjx9vtZ9T71x0dHRUdHS0vvjiC6WnpysgIEAjRozQCy+8UOFoSHuhiAgAAAAAAAAAAADY0QMPPKAHHnigwmWrVq2y+nzo0KEq9+Xq6qply5bZKbLzRxERAAAAAAAAAADgEmKu6wDQIPBORAAAAAAAAAAAAABWKCICAAAAAAAAAAAAsEIREQAAAAAAAAAAAIAViogAAAAAAAAAAAAArFBEBAAAAAAAAAAAAGDFqa4DAAAAAAAAAAAAQO0xmw11HQIaAEYiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACtOdR0AAAAAAAAAAAAAapG5rgNAQ8BIRAAAAAAAAAAAAABWKCICAAAAAAAAAAAAsEIREQAAAAAAAAAAAIAViogAAAAAAAAAAAAArFBEBAAAAAAAAAAAAGDFqa4DAAAAAAAAAAAAQO0xmw11HQIaAEYiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABghSIiAAAAAAAAAAAAACtOdR0AAAAAAAAAAAAAao/ZXNcRoCFgJCIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAAFihiAgAAAAAAAAAAADACkVEAAAAAAAAAAAAAFYoIgIAAAAAAAAAAACw4lTXAQAAAAAAAAAAAKD2mM2Gug4BDYDBbDab6zoIAAAAAAAAAAAA1I523/yrrkNocPbf+I+6DqHWMZ0pAAAAAAAAAAAAACv1ajrTgeNer+sQ0Ij98f0jkqTBV/+7jiNBY7Z6yaOSpIl/3l3HkaAxW9D3Y0lS6Itv1XEkaMxin5ohSSpNCK3jSNCYOfjHSpLa//vNOo4Ejdm+R2dKkkL/xXkTF0/sPyznza6PkGe4eHa8bsmznveSZ7h4tnxoybOwZ8gzXDwxz82o6xAAnCdGIgIAAAAAAAAAAACwQhERAAAAAAAAAAAAgJV6NZ0pAAAAAAAAAAAALjKzoa4jQAPASEQAAAAAAAAAAAAAVigiAgAAAAAAAAAAALBCEREAAAAAAAAAAACAFYqIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAABgxamuAwAAAAAAAAAAAEDtMZvrOgI0BIxEBAAAAAAAAAAAAGCFIiIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAAFihiAgAAAAAAAAAAADACkVEAAAAAAAAAAAAAFac6joAAAAAAAAAAAAA1CJzXQeAhoCRiAAAAAAAAAAAAACsUEQEAAAAAAAAAAAAYIUiIgAAAAAAAAAAAAArFBEBAAAAAAAAAAAAWKGICAAAAAAAAAAAAMCKU10HAAAAAAAAAAAAgNpjNhvqOgQ0AIxEBAAAAAAAAAAAAGCFIiIAAAAAAAAAAAAAKxQRAQAAAAAAAAAAAFihiAgAAAAAAAAAAADACkVEAAAAAAAAAAAAAFac6joAAAAAAAAAAAAA1CJzXQeAhoCRiAAAAAAAAAAAAACsUEQEAAAAAAAAAAAAYIUiIgAAAAAAAAAAAAArFBEBAAAAAAAAAAAAWKGICAAAAAAAAAAAAMCKU10HAAAAAAAAAAAAgNpjNhvqOgQ0ADUaiVhSUqLff/9d6enpdg4HAAAAAAAAAAAAQF2rURHR0dFRI0aMUFpamr3jAQAAAAAAAAAAAFDHavxOxC5duujAgQP2jAUAAAAAAAAAAABAPVDjIuKLL76oRx55RD/++KPi4+OVmZlp9QcAAAAAAAAAAACgYXKq6YZjxoyRJF1zzTUyGE6/gNNsNstgMKikpOTCowMAAAAAAAAAAABQ62pcRIyKirJnHAAAAAAAAAAAAKgN5roOAA1BjYuIgwcPtmccAAAAAAAAAAAAAOqJahURo6Ojz3vdbt26VTsYAAAAAAAAAAAAAHWvWkXE7t27y2AwlL/3sCq8ExEAAAAAAAAAAABomByqs/LBgwd14MABHTx4UIsWLVLbtm31/vvva+vWrdq6davef/99tWvXTosWLbpY8QIAAAAAAAAAAAC4yKo1EjE4OLj83xMmTNA777yjMWPGlLd169ZNQUFBevrppzV27Fi7BQkAAAAAAAAAAACg9lSriHimHTt2qG3btjbtbdu21e7duy8oKAAAAAAAAAAAAFwsVb+yDpCqOZ3pmTp16qSXX35ZhYWF5W2FhYV6+eWX1alTJ7sEBwAAAAAAAAAAAKD21Xgk4ocffqirr75arVq1Urdu3SRJ0dHRMhgMWrJkid0CBAAAAAAAAAAAAFC7alxE7NOnjw4cOKB58+YpJiZGknTjjTfq5ptvlru7u90CBAAAAAAAAAAAAFC7alxElCR3d3fdfffd9ooFAAAAAAAAAAAAQD1Q43cini0kJERxcXH22h0AAAAAAAAAAACAOlLtkYjvvPNOhe1HjhzRZ599Jn9/f0nS9OnTLywyAAAAAAAAAAAA2J+5rgNAQ1DtIuJDDz2kwMBAOTlZb1paWqq5c+fKaDTKYDBQRAQAAAAAAAAAAAAaqGoXEe+++25t2LBB8+fPV6dOncrbjUajli9frvDwcLsGCAAAAAAAAAAAAKB2VfudiB9++KH++c9/auTIkXr33XcvRkwAAAAAAAAAAAAA6lC1i4iSNG7cOK1fv17ff/+9Ro8erYSEBHvHBQAAAAAAAAAAAKCO1KiIKEmBgYH69ddfNWjQIPXo0UNmM2/hBAAAAAAAAAAAABqDar8T8UwGg0GzZs3SiBEjtGbNGrVs2dJecQEAAAAAAAAAAOBiYFwYzkONi4hRUVEaOnSoJCkyMlKRkZF2CwoAAAAAAAAAAABA3anxdKajRo1Su3bt9OKLL+ro0aP2jAkAAAAAAAAAAABAHapxEfH48eN64IEHtHDhQoWEhGjkyJH69ttvVVhYaM/4AAAAAAAAAAAAANSyGhcRfXx8NGPGDG3btk0bNmxQaGio7rvvPgUEBGj69Onavn27PeMEAAAAAAAAAAAAUEtqXEQ8U8+ePTVr1iw98MADys7O1pw5cxQZGamBAwdq165d9vgKAAAAAAAAAAAAALXkgoqIRUVFWrhwocaMGaPg4GAtW7ZM7777rhITE7Vv3z4FBwdrwoQJ9ooVAAAAAAAAAAAAF8ps4K+6f5cgp5pu+OCDD2rBggUym82aNGmSXnvtNXXp0qV8ubu7u15//XUFBATYJVAAAAAAAAAAAAAAtaPGRcTdu3fr//7v/3TdddfJZDJVuI6Pj4+ioqJqHBwAAAAAAAAAAACA2lej6UyLiooUHBysvn37VlpAlCQnJycNHjy4xsEBAAAAAAAAAAAAqH01KiIajUYtWrTI3rEAAAAAAAAAAAAAqAdqPJ3p2LFj9cMPP2jGjBn2jOeS5OFm0rTJgzTosg4ymYzaExev9z5fpdgDSefc9skHR2n0sC427YePpejWBz+zaps0/jKFd2ip8NCW8m7qrjlfr9Nn36yz23GgfvNwN+neKYM1sF8HmUxOiolN0HtzohS3/9x59sRDozX6iorz7LZpcyrdbvjgTnr6kauUm1eo0Tf854LiR/1WWlSq+MWHlLouUcU5xXINclfA9W3UpIt3tfYT99p2Ze1Kl+8VAQq6rYPVspLcYsUvOayMzSkqTC2QsYlRnp2bqeXYYDk3d7Hn4aCe8zSZ9NgVA3Vlx3ZyMRoVfSJBr/z6u3YnnLs/6xbgp3HdOisi0F8dW/jI6Oio0BffqnDdiT27qW+bIEUE+ivAq4kWb9+lJ5Yst/fhoIHLyZXmfC1F75F27JEysgx66Qmzxo2u68hQ33iaTHp88ECN6NBeLk5GRSck6OWo1dqVdO6+S5LaeXvrH8OGKDIwQEUlpVp14IBeilqt1Ly8Sre5plOY3rxqjHIKCxXxn3dtlo/pGKrbe0UqxLuZSsxmxZ1M0ccbN2nVgYM1Pk7UrfJzZOgZ58iV53eOlKR2zb0168rBigyy5NnqfQf10q+rlZZrnWetm3npkaED1a9NkJydHLU7IUlvr16nDYeP2exzdKdQTb2sp0KaN1NJqVlxySn69M+/tGofedaYeLqYNPOqgRrWpZ1cnI3aeSRBry/5XXuOV517BoN0TWS4rujaXp0CW6iJm4uOp2Zo6da9+nz1ZhUWl1S6bY82AZr7wI2SpIH//EDpufl2PSbUPx6uJj103UAN7V6WZ4cS9NbC3xVz9Nx93LgBXTSmTye18W8mT1eTkjNytDn2mD766U/Fp2RWul33dgGa86glz4Y9/IHSc8izxs7TxaRHrxyo4Z0s59IdxxP06rLftTv+3HnWNdBP47p3VkQrf4X6WX5vhj1T8e/NmOcqvqf+xoo1+mTNpgs6BgCwpxoXETt06KDnn39ea9euVWRkpNzd3a2WT58+/YKDuxQYDNJrT12ndm18teCHTcrIytO4Ud31zgs36s5HvtSx+PRz7qOgsFivvb/Mqi07p8BmvbtvGaiU1GzFHUjSZT3b2usQ0AAYDNIr/7xe7dr66uvFm5SRmaexf+uu/7x0k+56aK6On2ee/fv/rPMsp4I8O8XVxah7pw5Wbl7hhYaPBuDwJzFK++ukWowIlIufq1LWJGrfmzsV+kSEPEK9zmsfaX8lK2dfxT/ezKVmxb0WrfwTOfK5IkAufm4qSMpT8soTytyRqvCXe8vRtcanNDQgBkkf3zRWYX4+mr1+s9Jy83Rzrwh9NWm8xn06X4fT0qvcfnD7tprQo4v2Jp7U0fQMhTSvvNB9V/9ecnd21o4TCfL1cK90PVza0jOk978wqKWfWR3bSRu31XVEqI8Mkj69fqzCfH316aa/lJaXp1u6R2jeTRN07dx5OpyeXuX2/h4eWjDxBmUVFOqNP9bK3WjUHb17KdTXR9d/OV9FpaU227gZjXps8CDlFFZ8LTapR3c9M3yYftt/QIt+3yWTk6Ou69JZn14/Tvf98D8tj9tnhyNHbTJI+vjGsnPkn2XnyMgIfXXreI2bfe5zpJ+nh+ZNmqCsgkK9GbVW7s5G3d63l0JbNNf4OQvK88zf00PfTr5JJWazZv/5l3KLinV9RLjmTLxOk+ct0l9Hj5fvc1Kv7np65FBFxR3Q69G7ZXJ01HUR4fr4xrF6YOESLd9LnjUGBoP03h1j1THAR5+t2qz0nDzd2D9Cc6aN141vz9eRk+mVbutiNOrFm0Zq+6ET+nZ9tFKzcxUR3FL3jeynyzq01h0fLqz0O2eNG6rcgkK5mZwv0pGhPjEYpHceGKvQQB/NXbFZ6dl5mjA4Qh/PHK9bXp6vo0npVW7fMaiFjqdkaHX0fmXlFiigeRONG9BVA7u21Y0vfqWTGTkVfudjNw5Vbn6h3FzIs0uBwSB9dMtYdfTz0Zx1lnPpxN4RmjtlvK7/aL4Op6ZXuf3gDm01vmcXxSae1LG0DLX1qfrB6rX7DuuH7but2vbEJ1/oYQDnzWyu6wjQENT4juvs2bPVtGlTbd68WZs3b7ZaZjAYKCKepyH9Oqprp0A9/dr/tGp9rCQpau1ezX/vDt1+0+V6/q2fzrmPkpJSLV+955zrTbj7YyUkZ8rL01U/zr3/gmNHwzHk8o7qGh6of778X61eV5Zna2I076M7dfstl+uF188vz1as2n3O9U6ZdGM/5eYVamv0UQ3o277GsaP+y9mfqbQNyQq8MUR+Y4IkSd6X+2vPPzbp+DcH1PHpHufcR2lhqY4vOCC/v7VW/OJDFX5H7sEsBU1qL9/hgeXtLv5uOjx7r7J2patpLx+7HRPqr1GdQhUZFKAHF/6oZTFxkqSf98Rq+bQpmj64nx7+4Zcqt5+/OVofr9ukguIS/XPk0CqLiLd++Z1OZGRJkrY+xnkTFfNtLv2+2Czf5tLOGGnCPXUdEeqj0R1DFRkYqAf+u0RLY8v6rphYrbhzqv5+eX/N/OnnKref1rePXI1GXTt3nuKzLP3S9oQEzb1hvK7r0lnfRO+w2eb+fpcpp7BQG44e1fD27WyW39azh7bHJ+juxT+Uty3csUtrpt2t6zqHU0RsgMrPkYvOOkfeO0XTB/XTw/+t+hx57+V95Ops1Lg58xWfacmz6BOJ+vyW63VdRGd9s9WSZ/f07y1PF5Ou+vhLHUxNkyR9u3WHlt47WU9eOVjXzZlfvs9be3VX9IkE3fPtf8vbFm7fpT+m36Wx3cIpIjYSI7qFqkfbAM2c+6NWRFtyb9n2WP34+BTdP6KfHp9fee4VlZTo1v/7WtsPx5e3LdqwUyfSMnX/yP7q26G1/ow7YrPd+L7d5N/UU4s27NSkQT3tf1Cod4b3DFX3dgF69OMftXKLJc+Wb47VD89N0b1X9dM/5lTdx72y4DebtlXb92vek7foqr7h+nyZ7civ6wZ0k5+3p35Yu1M3X0GeXQpGhoeqZ+sA/f2bH7VstyXPftkZq6XTp+jBof30yKKq82zBpmh9ssbye/PpMUPPWUQ8lJKmJdExdosfAC6GGr0TUZIOHjxY6d+BAwfsGWOjNqR/qFLScrT6z9jytvTMPP22dq8G9Gkvo5Pjee3HwcEgN9eqn4pKSK58egY0boMvt+TZ7+tP51lGZp6i1uzV5ZfZN88kKbBlU024NlLvfRqlkgqejEfjkvZXsuQg+QxtWd7m4Oyg5oNaKmdfpgpTzj3dS+LPRySzWX6jW1W4vCTPMo2Rk5d1/jk1tXw2ONf4dIYGZmSnDkrOztHyspujkpSWm6df9sTqitB2MjpW3Z+l5OSqoIppsc50qoAIVMXZ2VJIBKoyKrSDknNytCz2dN+Vmpenn/fGanj7dnI+R981MrSDovYfKC8gStK6w0d0IDVVY8JCbdYPbtpUUyN76qWo1Squ5FrMw+SslNxcq7bswkLlFhYqv7i4OoeHemJk2IWdI0d2bK+ouIPlBURJWnfoiA6kpGp0p9N5FhkUqD2JyeUFREnKLy7Wb3EH1KWln4KbNS1v9zA5KyXHOs9yCguVW1SkgiLyrLG4slsHnczM0a87zsi9nDwt2x6rIV2qzr3iklKrAuIpK3dYCswhLWxvwDdxNenBUf313rJ1ysqvfHYcNC5X9Oygkxk5+m3r6TxLz87Tis2xGhLR7rzva5zpRNk0pp6uJptlTdxMuu/a/vpwyTpl5ZFnl4qR4R2UnJWj5Xusz6VLd8VqWJh9f2+eYnJylHMN8hcAagt3XetYh7YtFHsg0Wbo8J64eLm6GBUU0Oyc+3AxGbV03nQtmz9dP829XzPuvkKuLsaLFDEaog4hforbX0GexcbL1cVZQYHnl2c/fzNdv3z7dy2Z/4Aeund4pXn24F3DtDX6qDZs5j0nl4K8w9ly8XezmU7ULcRTkpR7JLvK7QtT8pXw01EF3BAiB+eKL5zd23rKweSgE4sOKWt3mgpTC5QVk67j3xyQW1tPNel87hxG4xDu76vdCUk6e8aN6BMJcnM2qq1307oICwCqFO7XQrsSK+i74i19V5tmlZ/H/Dw85OPurh2JiTbLouMTFN6ihU37U8OG6M+jx7T6YOXXYhuOHNWgtm00qUd3BTZpohDvZnp2+DB5mkz6YsvW8z421B8Xco7083SXj4e7dsbb5tmOE4nq5Odb/tnZyVH5FRQA88raurQ8nZMbDx/TwHZtNKlXdwV6NVFI82Z6ZuRQeZqc9cUm8qyxCAvw1Z7jSTa/N3ccLevjfJtWe58+npap5NNybN/7+uCo/jqZlaPv1tuOwkbjFRbkq5ijtnm281CCXE1GBbdoel778XJ3UTNPV3Vq7adnbxshSdq413a0633X9FdKRo4W/U6eXUo6tfTV7njbPIs+XnYubd7Urt83tnu4tv7jQUU/PV0/3n+brura0a77BwB7qPF0pmazWQsXLlRUVJSSkpJUetYTrosXL77g4C4FzZu5a/tu25fPp6RZ5mL38fbQgSMnK90+JS1H83/YqNj9SXJwkC7r0VbXje6h9m18Nf2pb1RSysTGkLybuWv7zqM27SmpluJOc28PHThcRZ6lZmvB4o2K258og8GgPpFtNe5vPdSura8emvW1VZ717RWi3j3a6PbpX9j/QFAvFaUXytjUdoTqqbai9Krfi3lswX65tfaQd1/bm6CnOHka1fa+cB35LFZxr0aXtzfp2kxtH+gsg6OhhtGjofH1cNemI8dt2pOzLOfNFp4eik1Oqe2wAKBKvu7u2nTUtu9Kyrb0XX4e7oo9WfG1mG/Zu+eTs23f1ZSUk6Nmrq5ydnRUYYnlqfchIW01oE2wrv7iyypjev63KDVzc9Uzw4fpmeHDJEmpubm67duF2nrCdlQQ6r9Kz5HZ5z5H+np4WK17pqTsHDVzc5XR0VFFJSU6mJKmXkGBcnc2KqewqHy9yKAASZZ3K57ywnJLnj09cqieHjlUkpSak6vJ8xZp23HyrLHwbeKuzQdsc+9kZk7Zcg/FJVTv+mzq0F7KyivQmphDVu2hLX00vm833Tf7e5XyIqdLik8Td22JqyLPmnpo34lz59nSV+6SyWi5HZqWnadXv47Shj3WRcQOgT66bmA3TX+XPLvU+Hq466/D5/i9mWSf35tbjpzQL7tidSwtQy08PXRLnwi9Pn6MPFxM+npT9Ll3AAC1pMZFxIceekgfffSRhg4dKj8/PxkM3MCtCZOzk4qKbIe5F5Y9xWlyrvp/oo+++sPq88o1e3X0RJruvnWghvQP1co1e+0XLBosk7OTiiqYTqGwLPdMpqrz7JO51nn22x8xOnY8VXfdNkiDL++o3/6wzN/u5OSgB+4cqv/9sl2Hj3IT/1JRWlgqg5PtwHYHo6XNXFj5lLZZe9KU/tdJdfznud+b6ORplGuwh3yHN5FLoLvyDmcr8eejOvxpjEIe6FzzA0CD4uLkpMIK+rOCspvnLk41vrQBgIvGxclJhSW2I7cKytpMVfRdp/q1U0VCq+3L+kOTk5MKS0pkdHDQP4YO0YLt0dqXklplTPlFxTqYmqaErGxF7T8gd2dnTe3VU+9de7UmLvhWh9PTz/PoUF+4lOXB2U7lSVXnyKrzrLh8naKSEi3YEq0rQtvp7XF/05ur1iqvqEg3R0aoS0s/Sdb5nF9UrIMpqUrIzFLUvoNydzZqSp+eenf81bp57jc6kpZR8wNGvWEyniP3jNW7PrtzWG/1Cw3WC4tW2kxX+sTYIVqz95DWx9qOHEPjZnKu+HdA+X2N88yzB//vezkbndTW31tjLguTq8l2hqVHbxyidbsO6c895NmlxsVYye/N4url2fm4efY3Vp8Xb92pRffcohlXXK7vt+6q9rSoAHCx1Ljn+/LLL7V48WKNGTOm2tsWFBSooMD6QtBksp1/vDFxcnJQEw8Xq7b0zDwVFBbLaLSdvs+57KRUUFj990R8s2Sz7ph4uXp1C6aIeImx5JmrVVt6Zq4lzyqYX925LPcKCqqfZ9/+d7Nuv2WAIrsHlxcRJ1zbS15NXDVn/toaRI+GysHZQeZi20JhaZGlrbL3FZpLzDr61X559/eTe0iTKr+jIClPca9sV/DdYWrW2zKdVtOePnL2ddHhT/YqY3uKvCJ4KVljYnRwkJer9XkzNTdP+cXFFb4vwlT2bgre4wWgLlXZdzna/vQylbUVVNF3nerXKnpvoqmsPzy1/dRekWrm6qr/rF1/zlj/75qrVFJaqru//29526/79uvXO6dq5sDL9fclP51zH6gbVedZ5XlS1Tmy6jxzslrn9/2H9Pyy3/Tw0AH67523SpIOpabprVVr9fgVg5R7xujEd67/m4pLzbr329N5tjJ2v5ZPm6qZQy7XQ9//fF7HjPrBydFBXm7WuZeWnaeConPkXjXefzkyIlQPjrpcizbs0Lfro22WdQ8O0LjX59YgejQUTo4O8nI/K8+yLPfPKvodUH5f4zzz7K9Yy2xg63Yd0urt+/XtP29TXkGhvlm1XZI0IjJUESEBmvA8edaYGR0rOJfm5Cm/qJLfm07Vy7OaKCop1byN2/Tc1cPVOcBPW46cuGjfBZRjsDXOQ42LiF5eXgoJCanRti+//LKee+45q7ZnnnlGkkfFGzQCXToG6v/Zu+/4qKr8/+PvSTLpIZSENCC0FAgQEoqAdJFmQ5oiKGJdFQvsimJZy+6q3/2py7rioquIKKIIiIJKUZqC0juEBAg1FRII6SGZ3x+TBIZMQjJMGryej0ceS+7ce+dz42fPmXM/c8/5z9/vstg25pGPdCY9S00aeZTZv2Tb6bSK1xKzJj//gjIyc+Xl5XrlnXFN6RAepH+/ebfFtrse/FBp6Vlq0rjs/79Ktp2xNc/O55QWxz3cnXXf2J5a8uMOebg7y8PdPJWlm6tRBoPk37SBcvMu6Oy57Cq/F+o2Y0NnFaSXnbK0ZBpTa1OdStKZDUnKS8xWi/tDlJeaa/FaYW6h8lJzZWxglIOLo878lqSigiJ5d7YsFHpHmX/PisugiHiNiWoeqC/uHWOxbcB/PlFqZpaaepbtN32L181JOV/19gwA7CU6KFDz7h5rsa3fhx8rNStLvlbarpL2LNnKFJIlUrOKp2mzdryHh9JzcpRfWChPZ2c93vMGzduxS57OzvJ0Nve/HkajDDIoqEED5VwoUFp2jpp7e6tf61Z6ccUqi/Ody83VtpOn1CUosGoXjhoV1cxKH/l+BX2k55X7yNTMTIt9L9XU00Pp2TkquORJsy+27tKiXfsU1tRXBYWFOpCcqjGdO0gyFxQlqXlDb/Vt00ov/XB5nuVp28kERTcjz+qbzi0D9eljlrk35B+fKDUjS74NyuaOT/G21IzKfT7rGdJCb4wbovUx8frbol/KvP7nW/to5e5YFRQWKbCR+UuIXq7mL6T7N/SS0clRqRnlt6eoHyLbBOp/Uy3z7JYXP9HpjCz5eFeQZ2erPg44efqcDp5I0bDu4aVFxKdH9dGq7eY8C2hSnGdu5jzza+wlJydHnT5HntV3Uc0DNXeSZZ7d9C9zX2qtL6yp8WbiufOSVKbACQC1yeYi4quvvqrXXntNs2fPlpub25UPuMT06dM1depUi20uLi765e7/2BpOnXfoaIqeeWWBxba0s1k6dDRFndo1k8Egi0V724cGKCe3QCcS0qv8Xm6uRnl7uensubILkOPadig+RVNfuizP0rN06EiKOkaUl2f5OnHKhjxzM8q7gbvOZpjzzMvTVe7uzrpn9A26Z/QNZfb/+pNH9esfcXrpH0uq/F6o29xaeOr8gZMqzLkgR7eL3Ur2kQxJknsL618QyT+TJ1OhSbF/31nmtbQNyUrbkKzWT0WoYRcfXThX/I32y9Z5NRWafzex/us1JyY5VffPW2SxLTUzSweSUtW1RZAMsvzCXGRggLLzCxSfdrYmwwQACwdSUnXfgoUW21KzsnQgJVVdm1lpuwL8lZ1foKPp5X8WS87M1JmsbHX08yvzWqcAfx1ISZUkebu6ytPZWY/e0E2P3tCtzL7rHn1Iq+IO6bEl38vHw12S5GBlSQonR0c5OlifRQB1Q0xKOX1kcqq6NreSZ0FX7iOTz2fpTFZ26ZSkl+oY6KeY5NQy23MKLlisa9izZQvlFBRo20nzkxNNSvLMSj4ZHRzIs3ooNiFVD39omXunz2fpYEKqolsFlRlvdmphzr2jqWeveO6OLfw14/7btO9Eiv4yd5kKrXy+D2jUQLc0aqBbotuVee2bqRMUcypFY/41r8rXhbol9mSq/jTDMs/OnMvSwROpimpbNs86tgpQTl6BjqWcten9XIxOpU8zSlJA4wYK6N5Aw7uXzbP5L07QwRMpGvcP8qy+i0lK1aTPyvalMUmp6tKibJ6V9qVnzlZrXM0beUuS0rO4pwug7rC5iDh27FjNnz9fTZs2VcuWLWU0Ws4hvn379nKPdXFxueanL71cZlaetu0uO5f62o2xGtArTP16hGrt77GSJG8vNw3oFaaNWw5brGMX6G/uSBKSzOtGOBsd5ejooJzcAotz3j+2pxwcDNq0I766Lgd1VGZWnrbtOlZm+9oNB9W/d5j69gzVuo3FedbATf17h2nj5svzrKEkKSHprKTiPHNyUE6OZZ5NvKuXHBwM2rzNnGfp57L14j++LfPeo26NVkR4oF5/e5nOpPFtvWtRo26+SvnppE6vSZTf8OaSzFOZnvk1We5tvOTcxPwNuvwzuSrKK5JroPmGUuMbmlotMB55b58aRDaWT78AebTxkiS5+LtJJil9c6qa9PEv3Tf9jxRJklvwtfsk+/UqIzdPG+PL9psrYuI0rH2oBoeHaEVMnCSpkZurhrYL0Zq4IxZPSZQMwE6w3hKAGpKRl6eNx8q2XT8djNWwsFANCQ3R8tiLbdewsFCtPnzYYi2xFg3NbdfxsxfbruVxcRoZ0V4BXp5KLP4GfM8WzdW6cWN9utU87jqTna0/XTI1aYmJ0VGKCgzUM8t+KH2q8Vj6WRUWFemW8DDN33VxukB/T091bRakbSdPXe2fAtUoIzdPG49a6SMPxGlYOyt9ZLiVPrI4z05ckmcrYuJ0Z6f28vfyVFJJnrVsrtZNGmvO5h0VxhQVFKDB4W01f9suZeaZZ6MoybPh7UL11faLeebn5akuzYO0nTyrdzJy8vRHXNncW7k7ToMjQzWoY4hW7TbnXkN3Vw3uFKJ1+yxzr1kTc+6dPHMx91o1bayZD47QqfQMTZ69pNx1wJ7+9Psy24Z2DtOwqDBN/3K5kouf4EH9dj47T5tjyubZL9vjdHOXUA2MCtEv24vzzMNVg6JDtH73EYv7Gs18ivPstDnPHB0Mcnd11vlsy6WVIlr6qW2Qj5ZviSndNvW/ZfNsSNcwDekWppc/Xa7kdPLsWpCRm6ffj1jpS/fFaWhEqAa3C9GK/RfbsyERIVpz0H7jzUbubkrPtiwUejgbdV+PaKVlZWtfYnKVzwkA1cXmIuLEiRO1bds2TZgwQX5+fjJY+RYrrmzt77HaezBB058cqpbNm+hsRo7uHNZZDg4GffKV5bpyM14zT4009tH/SZIaN/TQ7Hfv08+/xujYqTOSpBs6t1LPrq31x/Z4/bb5kMXxQ/q1l59vA7m6mP+zR0Y0032je0iSVqzbr+TUjGq9VtSedRtjtS8mQc8/PUwtWzTRuYwc3THcnGefXrZ+4bt/N+fZ3Q99JElq3MhDH/97on5Zf0DHT6ZJkrpFtVTPbm20adsR/bbJ/KEqL++CfvvDMuckqXePEIUXmay+hmuDR5sGatjNV6cWxqvgfL5cm7rpzG/Jyjudq5AHOpXud/SjGGXGnFP0Z/0kSa6B7qUFxcu5+LiqYRef0t+b9PFX8k8ndXxOrLKPZcotyF3ZxzJ1el2iXIPcLfbFtW35gTjtOJmgN28brLa+jZWenaN7ukTK0cGg99ZZrgH22fhRkqSB788u3Rbo7aU7Opq/VVzytMVjvbtLkhLOndd3ew6U7jsgpLXC/cy5ZXRwUFhTn9J9V8ce0cGU09V0lahv5i2WMjKlkpRYs1FKKn5oZ8JIyYvvOVz3lsfGaUdCgt4aNkRtmzRRek6OxneOlKPBUGb9wrljR0uS+n/0Sem2WX9s0rDQUH1x11jN2bZdHs5GPdStm2JSU7Vo7z5J5vXqfj50uMx73xzSVp1MRRavpeXkaOGefborsqM+HztaK+MOycPZqPGdO8vVyUmzNm2ujj8DqtnymOI+8tbBauvTWOk5ObonuriPXF9OHznzYh85a8NmDWsXqs8njNHcLTvk7mzUgz26KiY5VYt27SvdL7CBl/498hb9EndEpzOzFOLbRHdHd9LBlFS9u/bi2CI9O0eLdu3T2KiO+mz8KK06eEgezs66p0ukXI1OmrVhSzX/RVBTVu2O066jCfrb2MFq49dY6Vk5uqtXpBwcDPpgpWXuffyoOfeGvmHOPXcXoz58+E41cHPRnLVb1bddK4v9T5w5p13HzE+8rt5Xto0LCzKvl/5bTLzOZueWeR3Xjp+3x2n3kQS9et9gtfZvrLNZORrT15xns5ZZ5tmsKeY8u/VFc565uTjrpzce0sptsTqccEa5+QVqG+Sj23tGKDMnT//7cVPpsWt3Wcmz5uY827A3XmezyLNr2Yr9cdp5IkFvjBisNsXjzXHdzJ/Z3l9jmWdzJprz7KYZluPN2yPN482IQPN48099i8ebZ8/r+93m8eb47pG6KbyN1sQeUeK58/L19NCoqAgFeDfQtMXLVVBYVO3XCgCVZXMR8YcfftCKFSvUu3dve8Zz3SkqMunZvy3SExP7adQtUXJxNirmUJLeeO+nK05lmpmVp41bD6trZLCGDoiQg4NBp5LO6sPP12v+d1stHruXpFsGdVRUh+alv3fp2EJdOraQJO0+cIoi4jWsqMikaa8u1GMP9NfI26Ll4uykmLgkvTXjpytOZZqZlafftxxW184tNWRghBwcHHQqMV0ffbZeX327pUye4frU8pFwJSyOV9qGFBVmF8itmafaTukgr/CGdjm/k6dR4a9GK/Hbozq384xOr0mQk6dRTfoEKGhMKzk4MR3W9aLIZNLDXy3Rczf10X3douTi5KQ9iUl6fulKxaddeWrmZg29NaX/jRbbSn7fdOyERRFxSHhbjYyMKP09IsBPEcWFx6SMTIqIKDX7aykh6eIX6latN2jVevO/b7/ZRBERKjKZ9ODCb/V8/766LzpKrk5O2pOUpGk/rVB8BVOZlkg8n6nxXy3QCwP66dm+fVRQVKi1R+L1xpp1Fk8xVsVfV/2smNRUjenYQX/uax7T7UlM0rM/LtcWnhCrl4pMJj38tZU+clnl+sik85ka//k3mj6or/48oLcKCgu19lC83vplvcWTF5n5+UrNzNKErp3V0NVFyeez9PmWnfrvhk3KyrecveSVn35RTEqqRkd20NT+F/Ns2vfLtfUEeXatKDKZ9PgnSzT11j66p3eUXIxO2nciSS99tVJHUyvOvYbubgooXt9wyi19yrz+3ZZ9pUVEXN+KTCY9+f4SPTOyj+4eGCVXo5P2HUvSK5+t1LHkivMsN79ASzbsVdew5ropOkSuRielnsvU8i0x+vinzUo8w/0wmBWZTHrkiyV6dnAf3XuDuT3beypJLyxZqfgzlRhvNvLWMzdZjjdLft8cf6K0iLj9eIKimgdqdHRHNXRzVU5BgfacStIL363SpvgT9r8wALgKBpPJthJAeHi4FixYoE6dOl1550rqc+fbdjsXcLlfv/2LJKnfbf+vliPBtWzd0mclSeP+eKSWI8G1bH4P85PCoX//Vy1HgmtZ7EtTJElFSaG1HAmuZQ7+5mnW2/6/d2s5ElzLDj07VZIU+g/6TVSf2BfN/WbHv5BnqD573jbnWfSfyDNUn+2zzHkW/gp5huoT89qU2g4BkoI/5j55VR176NnaDqHG2fzoxjvvvKNp06bp6NGjdgwHAAAAAAAAAAAAQG2zeTrTCRMmKDs7W23atJG7u7uMRqPF62lpaVcdHAAAAAAAAAAAAICaZ3MRccaMGXYMAwAAAAAAAAAAAEBdYXMRceLEifaMAwAAAAAAAAAAAEAdYXMR8VK5ubnKz8+32NagQQN7nBoAAAAAAAAAAABADbO5iJiVlaXnnntOCxYs0JkzZ8q8XlhYeFWBAQAAAAAAAAAAwP4MptqOAPWBg60HTps2TatXr9Z///tfubi46OOPP9Zrr72mwMBAzZ07154xAgAAAAAAAAAAAKhBNj+JuHTpUs2dO1f9+/fXpEmT1KdPH7Vt21bBwcGaN2+exo8fb884AQAAAAAAAAAAANQQm59ETEtLU+vWrSWZ1z9MS0uTJPXu3Vvr16+3T3QAAAAAAAAAAAAAapzNRcTWrVsrPj5ekhQeHq4FCxZIMj+h2LBhQ7sEBwAAAAAAAAAAAKDm2VxEnDRpknbt2iVJev755zVz5ky5urpqypQpevbZZ+0WIAAAAAAAAAAAAICaZfOaiFOmTCn996BBgxQTE6Nt27apbdu26tSpk12CAwAAAAAAAAAAgJ2ZajsA1Ac2FxEvFxwcrODgYHudDgAAAAAAAAAAAEAtqfJ0pqtXr1b79u2VkZFR5rVz584pIiJCv/76q12CAwAAAAAAAAAAAFDzqlxEnDFjhh5++GE1aNCgzGve3t569NFH9e6779olOAAAAAAAAAAAAAA1r8pFxF27dmno0KHlvj548GBt27btqoICAAAAAAAAAAAAUHuqXERMTk6W0Wgs93UnJyelpqZeVVAAAAAAAAAAAAAAao9TVQ8ICgrS3r171bZtW6uv7969WwEBAVcdGAAAAAAAAAAAAKqByVDbEaAeqPKTiMOHD9fLL7+s3NzcMq/l5OTolVde0a233mqX4AAAAAAAAAAAAADUvCo/ifjSSy9p8eLFCg0N1eTJkxUWFiZJiomJ0cyZM1VYWKgXX3zR7oECAAAAAAAAAAAAqBlVLiL6+flp48aNeuyxxzR9+nSZTCZJksFg0JAhQzRz5kz5+fnZPVAAAAAAAAAAAAAANaPKRURJCg4O1o8//qj09HQdOnRIJpNJISEhatSoUZl9T548qcDAQDk4VHnmVAAAAAAAAAAAAAC1wKYiYolGjRqpW7duFe7Tvn177dy5U61bt76atwIAAAAAAAAAAABQQ66qiFgZJdOdAgAAAAAAAAAAoA6gdINKYI5RAAAAAAAAAAAAABYoIgIAAAAAAAAAAACwQBERAAAAAAAAAAAAgIVqLyIaDIbqfgsAAAAAAAAAAAAAdlTtRUSTidU5AQAAAAAAAAAAgPrEqaoHPPDAA5Xab/bs2ZKk/fv3KzAwsKpvAwAAAAAAAAAAgOrA81+ohCoXEefMmaPg4GBFRUVV6inD5s2b2xQYAAAAAAAAAAAAgNpR5SLiY489pvnz5ys+Pl6TJk3ShAkT1Lhx4+qIDQAAAAAAAAAAAEAtqPKaiDNnzlRiYqKmTZumpUuXqnnz5ho7dqxWrFjB+ocAAAAAAAAAAADANaDKRURJcnFx0bhx47Rq1Srt379fERERevzxx9WyZUtlZmbaO0YAAAAAAAAAAAAANcimIqLFCRwcZDAYZDKZVFhYaI+YAAAAAAAAAAAAANQim4qIeXl5mj9/vm6++WaFhoZqz549ev/993X8+HF5enraO0YAAAAAAAAAAADYi4mfKv9ch5yqesDjjz+ur776Ss2bN9cDDzyg+fPny8fHpzpiAwAAAAAAAAAAAFALqlxEnDVrllq0aKHWrVtr3bp1WrdundX9Fi9efNXBAQAAAAAAAAAAAKh5VS4i3nfffTIYDNURCwAAAAAAAAAAAIA6oMpFxDlz5lRDGAAAAAAAAAAAAADqCofaDgAAAAAAAAAAAABA3VLlJxEBAAAAAAAAAABQj5lYtg5XxpOIAAAAAAAAAAAArBYTewABAABJREFUACxQRAQAAAAAAAAAAABggSIiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAABYoIgIAAAAAAAAAAAAwIJTbQcAAAAAAAAAAACAmmMw1XYEqA94EhEAAAAAAAAAAACABYqIAAAAAAAAAAAAACxQRAQAAAAAAAAAAABggSIiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAABYcKrtAAAAAAAAAAAAAFCDTLUdAOoDnkQEAAAAAAAAAAAAYIEiIgAAAAAAAAAAAAALFBEBAAAAAAAAAAAAWKCICAAAAAAAAAAAAMACRUQAAAAAAAAAAAAAFigiAgAAAAAAAAAAALBAEREAAAAAAAAAAACABYqIAAAAAAAAAAAAACxQRAQAAAAAAAAAAABggSIiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAABYcKrtAAAAAAAAAAAAAFBzDKbajgD1AU8iAgAAAAAAAAAAALBAEREAAAAAAAAAAACwo5kzZ6ply5ZydXXVDTfcoM2bN1e4/zfffKPw8HC5urqqY8eO+vHHHy1eN5lM+utf/6qAgAC5ublp0KBBiouLq85LoIgIAAAAAAAAAAAA2MvXX3+tqVOn6pVXXtH27dsVGRmpIUOGKCUlxer+Gzdu1Lhx4/Tggw9qx44dGjFihEaMGKG9e/eW7vPPf/5T7733nmbNmqVNmzbJw8NDQ4YMUW5ubrVdB0VEAAAAAAAAAAAAwE7effddPfzww5o0aZLat2+vWbNmyd3dXbNnz7a6/7///W8NHTpUzz77rNq1a6e//e1vio6O1vvvvy/J/BTijBkz9NJLL+mOO+5Qp06dNHfuXCUkJGjJkiXVdh0Gk8nE8pkAAAAAAAAAAADXidbvvVPbIdQ7Bx6drLy8PIttLi4ucnFxsdiWn58vd3d3LVy4UCNGjCjdPnHiRJ09e1bfffddmXO3aNFCU6dO1TPPPFO67ZVXXtGSJUu0a9cuHTlyRG3atNGOHTvUuXPn0n369eunzp0769///rddrvFyPIkIAAAAAAAAAABwPTEZ+Kniz5tvvilvb2+LnzfffLPMn/b06dMqLCyUn5+fxXY/Pz8lJSVZ/c+RlJRU4f4l/1uVc9qDU7Wd2Qbhr/6rtkPANSzm1SmSyDNUr5I8a/nZ/9VyJLiWHZ34nCSpzbvv1nIkuJYdnjpVktT2/5FnqD6HnjXnWVFSaC1HgmuZg3+sJPpNVK/SfvOfjDdRfQ5NM483Q98gz1B9Yl8w51mbt+k3UX0O/2VqbYcA2GT69OmaOtUyfy9/CvFaU6eKiAAAAAAAAAAAAEBdY23qUmt8fHzk6Oio5ORki+3Jycny9/e3eoy/v3+F+5f8b3JysgICAiz2uXR6U3tjOlMAAAAAAAAAAADADpydndWlSxf98ssvpduKior0yy+/qGfPnlaP6dmzp8X+krRq1arS/Vu1aiV/f3+LfTIyMrRp06Zyz2kPPIkIAAAAAAAAAAAA2MnUqVM1ceJEde3aVd27d9eMGTOUlZWlSZMmSZLuu+8+BQUFla6p+PTTT6tfv3565513dMstt+irr77S1q1b9dFHH0mSDAaDnnnmGf39739XSEiIWrVqpZdfflmBgYEaMWJEtV0HRUQAAAAAAAAAAADATu666y6lpqbqr3/9q5KSktS5c2ctX75cfn5+kqTjx4/LweHiZKG9evXSl19+qZdeekkvvPCCQkJCtGTJEnXo0KF0n2nTpikrK0uPPPKIzp49q969e2v58uVydXWttuugiAgAAAAAAAAAAHA9MdV2ANe+yZMna/LkyVZfW7t2bZltY8aM0ZgxY8o9n8Fg0Ouvv67XX3/dXiFeEWsiAgAAAAAAAAAAALBAEREAAAAAAAAAAACABYqIAAAAAAAAAAAAACxQRAQAAAAAAAAAAABggSIiAAAAAAAAAAAAAAtOtR0AAAAAAAAAAAAAapCptgNAfcCTiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAAAYIEiIgAAAAAAAAAAAAALFBEBAAAAAAAAAAAAWKCICAAAAAAAAAAAAMCCU20HAAAAAAAAAAAAgJpjMNV2BKgPeBIRAAAAAAAAAAAAgAWKiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAAAYIEiIgAAAAAAAAAAAAALFBEBAAAAAAAAAAAAWHCq7QAAAAAAAAAAAABQg0y1HQDqA55EBAAAAAAAAAAAAGCBIiIAAAAAAAAAAAAACxQRAQAAAAAAAAAAAFigiAgAAAAAAAAAAADAAkVEAAAAAAAAAAAAABacajsAAAAAAAAAAAAA1CBTbQeA+sAuTyLm5uba4zQAAAAAAAAAAAAA6gCbi4hFRUX629/+pqCgIHl6eurIkSOSpJdfflmffPKJ3QIEAAAAAAAAAAAAULNsLiL+/e9/15w5c/TPf/5Tzs7Opds7dOigjz/+2C7BAQAAAAAAAAAAAKh5NhcR586dq48++kjjx4+Xo6Nj6fbIyEjFxMTYJTgAAAAAAAAAAAAANc/mIuKpU6fUtm3bMtuLiopUUFBwVUEBAAAAAAAAAAAAqD1Oth7Yvn17/frrrwoODrbYvnDhQkVFRV11YAAAAAAAAAAAALA/g6m2I0B9YHMR8a9//asmTpyoU6dOqaioSIsXL9bBgwc1d+5cLVu2zJ4xAgAAAAAAAAAAAKhBNk9nescdd2jp0qX6+eef5eHhob/+9a86cOCAli5dqptvvtmeMQIAAAAAAAAAAACoQTY/iShJffr00apVq+wVCwAAAAAAAAAAAIA6wOYnEU+cOKGTJ0+W/r5582Y988wz+uijj+wSGAAAAAAAAAAAAIDaYXMR8Z577tGaNWskSUlJSRo0aJA2b96sF198Ua+//rrdAgQAAAAAAAAAAABQs2wuIu7du1fdu3eXJC1YsEAdO3bUxo0bNW/ePM2ZM8de8QEAAAAAAAAAAMCeTAZ+qvpzHbK5iFhQUCAXFxdJ0s8//6zbb79dkhQeHq7ExET7RAcAAAAAAAAAAACgxtlcRIyIiNCsWbP066+/atWqVRo6dKgkKSEhQU2aNLFbgAAAAAAAAAAAAABqls1FxP/7v//Thx9+qP79+2vcuHGKjIyUJH3//fel05wCAAAAAAAAAAAAqH+cbD2wf//+On36tDIyMtSoUaPS7Y888ojc3d3tEhwAAAAAAAAAAACAmmdzEVGSHB0dLQqIktSyZcurOSUAAAAAAAAAAACAWnZVRcSFCxdqwYIFOn78uPLz8y1e2759+1UFBgAAAAAAAAAAgGpgqu0AUB/YvCbie++9p0mTJsnPz087duxQ9+7d1aRJEx05ckTDhg2zZ4wAAAAAAAAAAAAAapDNRcQPPvhAH330kf7zn//I2dlZ06ZN06pVq/TUU0/p3Llz9owRAAAAAAAAAAAAQA2yuYh4/Phx9erVS5Lk5uam8+fPS5LuvfdezZ8/3z7RAQAAAAAAAAAAAKhxNhcR/f39lZaWJklq0aKF/vjjD0lSfHy8TCYm0wUAAAAAAAAAAADqK5uLiAMHDtT3338vSZo0aZKmTJmim2++WXfddZfuvPNOuwUIAAAAAAAAAAAAoGY52XrgRx99pKKiIknSE088oSZNmmjjxo26/fbb9eijj9otQAAAAAAAAAAAANiPgQklUQk2FxEdHBzk4HDxQca7775bd999t12CAgAAAAAAAAAAAFB7bC4iXiorK0tff/21cnJyNHjwYIWEhNjjtAAAAAAAAAAAAABqQZXXRDx+/Lj69esnLy8v3XzzzTp+/Liio6P10EMP6cknn1Tnzp21fv366ogVAAAAAAAAAAAAQA2ochHxL3/5i/Lz8zVr1iy5u7tryJAhCgkJUWJiopKTkzVs2DC9+uqr1RAqAAAAAAAAAAAAgJpQ5elM169fr++//17du3fXsGHD5OPjo9mzZ8vPz0+S9PLLL+umm26ye6AAAAAAAAAAAAAAakaVi4gpKSkKDg6WJDVu3Fju7u6lBURJ8vf3V3p6uv0iBAAAAAAAAAAAgP2YajsA1AdVns5UkgwGg9V/AwAAAAAAAAAAAKj/qvwkoiT99a9/lbu7uyQpPz9f//jHP+Tt7S1Jys7Otl90AAAAAAAAAAAAAGpclYuIffv21cGDB0t/79Wrl44cOVJmHwAAAAAAAAAAAAD1U5WLiGvXrq2GMAAAAAAAAAAAAADUFTatiShJa9assWccAAAAAAAAAAAAAOoIm4uIQ4cOVZs2bfT3v/9dJ06csGdMAAAAAAAAAAAAqCYGEz9V/bke2VxEPHXqlCZPnqyFCxeqdevWGjJkiBYsWKD8/Hx7xgcAAAAAAAAAAACghtlcRPTx8dGUKVO0c+dObdq0SaGhoXr88ccVGBiop556Srt27bJnnAAAAAAAAAAAAABqiJM9ThIdHS1/f381adJEb731lmbPnq0PPvhAPXv21KxZsxQREWGPt7lmebm66Nmb+2hQeBu5Go3acypJ/7dyvfYnplzx2I5Bfrqzc4Qig/wV6ucjo6Ojwl/91xWPi24RqC8fuEuS1OOf/9XZ7Nyrvg7UbTWVZzGvTrG6/Z2ff9P/fttyVdeAusnZwVFTO/fWnW0i5O3sqpj0VL2941f9lni0wuNaN2is8WGd1dknUB2a+MnF0Um9F/5XJ7Myyuz7creBusGvuZp5esvF0UmnMjO07OgBfbRvs7IvFFTTlaEu8HJx0fN9+ujmtm3lZjRqd1KS3li3TvtSrtx2SVKbxo31Uv/+6hIYqIKiIq05ckRvrFuntJyc0n1aN2qkMR06qHdwsFo0bKjs/HztS0nRv3//XXuSky3Ot+7BB9XM29vqex1NT9dNn35q+8Wi1ni5uOi5fn00OKStXJ3Mefbmmqrl2YsD+6tLUKAKCou09sgRvbHGMs8ud3u7cL1763Bl5ecr8t/vl3l9eFioHujaRa0bN1KhyaS402f00eYtWnsk3ubrRP2VlS3N/krafUDac0A6d96gN5436c5htR0Z6pq61m8+1bOnnu7Zs8z75F24oPbvvXd1F4ta4+Xiouf699HgkDaX9JvrtS+5Kv1mP3VpVtJvxuuN1db7zRYNvfVM7166MbiFPJydlZR5Xj/GxOrdXzdKkgyS7uzQXkNC26p906bydnXVyXPntCzmoD7evE35hYX2vHTUIC8XF00b2Ec3hxXnWWKS3vp5vfZXNs+aNNb0Qf3Upbk5z9Yditcbv6xTerZlnvl6eOipvj3Vq1UL+Xp4KCUzU7/EHtZ/N27W2ZyL98piX7B+r0OSNsQf06T5i227UNQ5Xi4uer5vH90cUtyXJibpjbVV7EsHXBwbrDlyRG+svfLY4F+3mMcGnd4rOzYAgNp0VUXEgoICfffdd5o9e7ZWrVqlrl276v3339e4ceOUmpqql156SWPGjNH+/fvtFe81x2CQPrxnhML8fTR7wzalZ+doXLdIzb1/tEZ9+KWOpZ2t8Ph+Ia00OrqDYpNP62T6ObXyaVyp93xp2ABl5efLw9nZTleCuqym82zD4WNassvy//cHElOv9jJQR73de7iGBYdp9v6tOpqRrtFtO+rTQaM1bsV8bU05Ve5x0b6Buj+8i+LOndGhs2cU0cSv3H07NQnQluST+ubQHuUVFiqicVM91rGHbgxoqbHL5+k6nZL8mmeQ9MmIEQr39dX/tm5Vek6OxkdGat6YMRoxb56Onj1b4fH+np6aP3asMvPz9c6GDXI3GvVQ164K8/HRyC+/VEFRkSTpro4dNaZDBy2Pi9O8Xbvk5eKicZ06aeG4cZq0eLE2Hj9ees6/r10r98v6ziAvL/25d2/9euyYvf8EqAEGSR+PMufZx1uK86xzpObdPUZ3zJ2nY5XJs3FjdT4vX+/8ukEeRqMe7NZVob4+GvX5xTy7lLvRqGn9+iqrnGUA7o3qrFcGDdTqw0e0aP0+uTg5amSHCH086k49vuR7rYw7ZIcrR31y9pz0wWcGBfiZFNZG2ryztiNCXVQX+80SL/38s7ILLn7xq8hK24j6obTfbOqjjzdvM+dZVKTm3T1ad8z9UsfSz1Z4vL+np+bfM8bcb67fIA/n4n7Tp4lGfT7fot9s19RX8+4ereTMLH2yZZvO5uYqoIGXAry8SvdxMxr1z+FDtONUgr7cuVtp2dnqHBigp2/sqV7BLTThq4XV9JdAdTJI+mjsCIX7+eiTP8x5dk90pL6YMFp3zr5ynvl5eWrevWN0Pjdf764159kDN3RVaNMmGv3pxTxzNxr19cS75O5s1Jfbdisx47zC/Xw0vmtn3RDcXHfOvjjW/Mt3P5V5nw4Bfrq/e7R+O8I44FphkPTJyOK+9NKxwV1jNOLzSvald49VZvHYwN25uC/19dHIL8ofGzzXt/yxAQDUNpuLiE8++aTmz58vk8mke++9V//85z/VoUOH0tc9PDz09ttvKzAw0C6BXquGtA9VdItAPb1gmVbsj5Mk/bQvVsufvF9PDuipvywq+yHlUvO37Nb/ftuivAuFenn4gEoVEcd26aQAby8t3L5XE3tE2+U6ULfVdJ4dPZOupbtj7BY/6q5InwDd3qq9/rF1jf63b7MkafHhvVpxx4Oa3mWARv30RbnHrjpxSD/N/7eyLuTr4YjuFRYRxyyfV2bbsfNn9VK3gersE6gdpxOu/mJQ5wwLDVWXoCA9sXSplseZ264fY2P186RJerpXL0358ccKj3+se3e5G426Y948JZ4/L0nalZSkz0eP1qiICH21Z48kaWlMjP79++8WNze/2btXK++/X0/37GlxM3TV4cNl3ueJG26QJH1/4MDVXTBqxbAwc55N/m6plscW51lMrFY9NElP39hLU3+4Qp716C43o1F3zLXMs7ljR2tkhwh9vXtPmWOe6HmDsvLztenECQ1q26bM6/dFR2lXYpIeWbykdNvCPfv022OPaGREe4qI1yHfJtL6xSb5NpH2xkhjHq3tiFAX1cV+s8Ty2Fil5zL7zbVgWFioujQL1OQlyyz7zYfv19M39tTUZRWPLR/rWdxvfvblxTxLTNbcu0ZpZMcIfb3LnGcGSW/fMlRH0tI1/qtvlHfB+hOFBYWFGvPFV9qRkFi67evde3UqI0PP9O6lXsEttPFY2ZxE3Ta0Xai6NA/Uk4uXaUVMcZ4diNXKR+/XU3176s9WCnqX+lMvc57dOftLJWaY82x3QrLm3DNKIztF6Oud5jwbGNJazRp665Gvl2jt4YuzPZzLydPkPj0U7uerA8nmL0R/v6/sPY4bgpupyGTSsv0H7XLdqH0lY4Mnvr9kbHAwVj8/aB4bTKnE2MDdaNQdn1/SlyYm6fOxozWqQ4S+sjY26GEeG/xx4oRutjI2AIDaZvOaiPv379d//vMfJSQkaMaMGRYFxBI+Pj5as2bNVQV4rRvSPkSpmVlaeSCudFt6do6W74vVwLA2Mjo6Vnj8mazscj9MW+Pt5qJnBvbSe2s26nxuns1xo36p6TyTJBcnRzk7VXxe1H/DgsN0oahI82N3lm7LKyrUgrjd6tI0SAHuXuUeey4/V1kXbP+m3cnMc5KkBs4uNp8DddvQkBClZmVpRdzFtistJ0c/xsZqUJs2cr5C2zU0JESrjxwpHbxJ0sbjx3UkLU3DQ0NLt+1NSbG4ESpJZ3NzteXUKbVpfOUv59wWHq7jZ89qe2LiFfdF3TM0tDjPYi/Ls4OxGtT2ynk2JDREaw5flmfHivMsPLTM/sENG2pSl2i9sWadLpTzJI6ni7POZGdbbMvMz1d2fr5yL1yoyuXhGuHsbC4kAhWpy/2mwWCQJ7PgXBOGhpnHlmX6zZjK9pttteZwvPV+M+xinvVpFawwXx+9t+EP5V0olKuTkxwMhjLnKygqsiggllgZa/7CTZsmV/4sh7pnSHjxPYwYy3sYP8XE6qaQK9/DGBLeVmsOxZcWECVp49HjOnImTcPaXcwzTxfzWPJ0luXnrpTMLEnmqZfLY3R01OCwEG0+flLJ5zMrf3Go0652bFBhXxpWdmzQsmRssHadCnlKH7XBxE+Vf65DNhURCwoKFBwcrB49esjFpfybt05OTurXr5/NwV0P2vn7an9iikyXJeDuU0lydzaqVZOGdn2/pwb0Umpmlr7eWvabL7h21XSejejcXjtefFK7X3pKy564T7d2DLPr+VF3RDT2U3xGmjILLIuBO0+bB/LtGze123s5Ggxq5OKmpm6e6hPYUn+J6qvz+Xml74VrT0TTptqXklLmM9qupCS5G41q2ahRucf6eXrKx8NDey9bm6nk+PZNr5ybvu7uSq9g3QpJau/rq5AmTbQ0hqev66v2fk21L7lsnu1ONPeRlcmzy9cAKzneWp69NLC//jhxUuviy1/bcNPxE+rbqqXujeqsoAYN1LpxI706aKC8XFz02fYdlb42ANeXutxvrnnwQe2aPFm7J0/WO8OGqYm7+xXPh7qpvZ/vFfrNhuUe6+fpYe43k6z1m8lq7+db+nuv4BaSpPzCQn173z3aO/VJ7Z0yWTNuGy5v1yt/idDXw0OSrvhZDnVTez9f7U+ykmcJxfcwGjcs99iSPNubWDbP9iQkq90lebblxEkVFhXpxZv7KzLQX35enurXpqUeu7G7Vh08pCNn0st9n/5tWsrbzVVL9zIOuJZENLU+NtiVWIW+1Eobt6uCscGmEye1toKxAQDUNpumMzUajVq0aJFefvlle8dz3fH18tDWY2XXDEst/tZTUy9Pxaacsct7hfr56K6unfTovG9VdHk1Cde0msyz7ccT9NO+WJ08e05NvTw1vluk3h41XJ4uLvpq6267vAfqjqZuHkrJKfuty5Jtfu6ednuvTk0C9O0t95b+fvjcGT28epHO5TM11rXK18NDm09ZabuyzG2Xn4eHYk+ftnps0+IbRynF+15+fCM3Nzk7Oiq/0PpT1l2DghQVGKiZmzZVGOMd7dpJkr6jiFhv+Xp4aMuJsnlW8g10P8/y86zkBmVJf2pxvJU869+6lXq3DNZtn31eYUyvr16jRu5uemXQQL0yaKAkKS07W/ctWGj1aQsAkOpmv5mRm6u5O3Zoe2Ki8gsL1S0oSBMiIxXp768R8+Ypk/Wf6p1y+82SPPP0VOxp62NLX0/z2MBqv5lpmWclN+rfu/0W/Rp/VLP+2Kzwpr760w3dFODlpbu+/LrCOB++oavO5+Vp3ZGjVbk81BG+nh7acryCexienopNtTHP3N1kdHRUQWGhDp9O08s//aznBvbVN/ePK91v8e59evGHVRXGeFuHdsq7cEHLL3laEvWfr4eHNp+soC+tYGxQ1b60f+tW6h0crFvnVjw2AIDaZvOaiCNGjNCSJUs0ZcoUe8Zz3XF1crI6ECuZOtLFaPN/ojJeGtZfv8Yd1YbDrAdwvanJPLtntuVgbvGOvVr0yHhNuelGfbtzX5WnRUXdVm5uFZqnfXF1NNrtveLOndb4lV/J3cmoLr5BujGwpdyNTIt1LXN1clK+lSmESqYVcnUqv+1yKX7Nen4Wlu5j7fUmbm6aMXy4Tpw7p4+2bCn3PQySbgkL097kZB1OS6vwWlB3mdsxK3lWvM2lgjxzrSjPLljmmdHBQS8O6K/5u3br0JmK8yW34ILi09KVdD5Taw4fkYezsyZ1jdbMO27TuPkLdOzs2UpeHYDrSV3sN+fssHx6ekVcnHYlJWnG8OEaHxmpDyvoZ1E3XXFsaWu/eUm/m19YKHdn8zhiT1KS/vzDcknSithDyi24oGf79a5wrcPHenRT75bB+uvKX3Q+j2Vc6qMr5ZlrBfcwSl6rcJzq5KSC4teTz2dqd2KS1h0+qoRzGeraPEj3du2s9Owc/d/qX62+h4ezs/q3aaV1h+PJsWtMuWMDO/elRgcHvdS/cmMDAKhtNlcOQkJC9Prrr2vDhg3q0qWLPIq/bVHiqaeeKvfYvLw85V3WyVY0Leq1wOjoIG83V4ttaVk5yr1wwep82i7Fa8nlFdhn3ZthEaHq3DxQt38w1y7nQ91U23lmTUFhkeZt3qnXbhukiEA/bT+eUG3vhZpXbm45mruX3MKCMq/ZKrMgXxsSj0mSVp04pNvTU/S/ASN167I5OpCearf3Qc0zOjjI2/WytiunuO2yMkgrGZxVtDZcySDPen46WuxzKTcnJ/3vzjvlYTTqgcWLy6z5dKkbmjdXgJeXPt2+vdx9UHcYHaz0kdklfaSVPCveVtFaOLkV5ZmTZZ5N6tpFjdzc9O8Nv18x1v/cfqsKi4r0yLfflW77+dBh/fzQJE3tc6OeXvrDFc8B4NpVX/vNEktjYvRC3766sUULioh1WMX95pX7PWsq7Dcv63dL9l164KDFft/vj9Gz/XorOijAahFxeHiopvS5UQt279GXO5kJp66zNc9yK7iHUfJahePU4vyKbhaoD8eO0Ng5X5VOQflz7GFl5uVrcp8eWrh7nw6fLlvgGRLeVq5GJ33PVKb1VoV9qbWxgZ370pKxwYyNVx4bAEBts7mI+Mknn6hhw4batm2btm3bZvGawWCosIj45ptv6rXXXrPY9sorr0jytjWcOi+qeaDm3j/GYttNMz5R6vks+Xp5lNnf17P4EXg7Lc787OA+WrEvVgWFRQpq2ECS5FW8jkBAAy85Ozoq5XzZx+1Rv9R2npWnZDHzywcHqP9ScrLkb2XK0qZu5m3J2dWXWyuOxUq9pdtataOIWM9FBwbqy7FjLbb1/fhjpWZllU4Jc6mSKSSTrUwTU6JkCpnyjk/PySnzDVGjg4M+uP12hfv46P7FixV7puJpnm8PD1dhURHrIdYT0UGBmne3ZZ71+9CcZyX94aWaFm9LtjIVVomSaY2sHn9Jnnk6O+vxnjdo3o5d8nR2lqez+SlqD6NRBhkU1KCBci4UKC07R829vdWvdSu9uMJyCq1zubnadvKUugQFVu3CAVxz6mu/eanEzMwyN29Rt0QHBWreOMuxZb9Zn5j7TSt5UpI7yZnlf/5PLX6tvH730jwrmVb8TFa2xX5nss2/W8ufG4Nb6O3hQ7T2cLxeXvFLuXGg7ohqFqgvJljm2YCZnyg1M6v0s9ilSu9hXE2eZeeUPoV4d1RHncnKLrOG3S9xh/VU356KDgq0WkS8PaKdMnJzteYQ69jVV9FBgfryrsv60o8q0ZdWMDaobF/q6eysJ3rcoHk7LccG7s5GGQzmsUHuhQKdyWZNVwB1g81FxPirWPB1+vTpmjp1qsU2FxcXffXmBzafs66LSUrVpLmLLLalZmYpJilVXYKDZDBIly5TGNksQNn5BYo/c9Yu7x/o3UCBnRrotk7tyrz27Z8m6EBSiu6cNc8u74XaU9t5Vp7mjcxfEEjP4gPQtWZ/WrJ6+reQp9FZmQUX17Tp7BtQ/HpKtb23s6OjHB0c5GW8tp9kvx4cSE3VvQsXWmxLzcrS/tRUdQsKkkGyWNi+s7+/sgsKdDQ9vdxzJmdm6kx2tjr4+ZV5LdLfXwdSLQvPBklvDx2qXi1a6Mlly7T55MkKY3Z2dNTQkBBtOnnS6poXqHsOpKTqvgVl8+xASqq6NiubZ5EB/srOr0SeZWWro5U86xTgrwMp5jzzdnWVp7OzHr2hmx69oVuZfdc9+pBWxR3SY0u+l4+HuyTJwWAos59TcbsH4PpWH/vNyzVr0ED7UqrvcyKu3oGUVN339WVjy6wsHUgup98MDCjuN8+We87kzCxzv+lvrd/0K+03JZmLOpEd5edl+YVFv+L17tKyLYuLkQH++uDO27QnKUVPfr9MhZcOfFFnxaSk6v4vy97DOJCcqq7Ny8+z+LSz5Z6zJM86BJTNs46Bfoq5JM+aeLhb/cxlLP68Ze1zl6+Hh24IbqbFu/eXFiNR/xxISdW9VsYG+1NS1c1KG9c5oAp9qZU2LtLa2KB7Nz3avezYYP0j5rHBn7773qZrA6qE7hKVYL+F0KrAxcXlmp++9HIZuXn6/UjZqTZW7I/T0IhQDW4XohX7zYsxN3R31ZD2IVoTe8TiA0lJIeZE+rkqv/8TX5XteIZ3CNMtHcI0bfFyJRc/KYb6rbbzrJG7m9Iv+6aUh7NR9/WIVlpWtvYlJpdzJOqrn44d1KMdbtC40M76377NkiRnB0eNadtRO1ITlJhtblsCPbzk5mjU4Yyqz/XfwOii7AsFumAqsth+V0ikJGn3maSrvArUtoy8PG08XrbtWh4bq+GhoRoSEqLlcea2q5Grq4aFhmr14cMWT0S08Da3XcfPXWy7lsfFaWT79grw9FRi8TeSezVvrtaNG2v2ZVOQvjJwoG4ND9eLq1Zp5aFDV4y5f6tW8nZ11XcHDlT9glErMvLyrE579tPBWA0LC9WQ0BAtjy3OMzdXDQuzkmcNi/Ps7GV5FtFeAV6eSix+sr9nC3OefbrVnGdnsrP1p0umJi0xMTpKUYGBembZD6VPNR5LP6vCoiLdEh6m+bsuTsPm7+mprs2CtO3kqav9UwCo5+pTv9nYzU1pOZbjg/GRkWri7q71R49W7cJRo8rtN2PjNCzcWr8ZotWHj1y534yN08gO5fWbF9fQ/PnQYb18U3+N6hChRXv2ld7jHNupgyTpt6MXY2vTuLH+N2qETp3L0MOLlpSum4e6LyM3TxuPWrmHEROnYe1CNTg8RCtiLubZ0PAQrTl02T2M4jw7cUmerTgYpzs7tpe/l6eSSvKsZXO1btJYczZfzLOjaenq07qlurdops3HL34Z4paIcEnS/uSyX3a4pX2oHB0ctHQfs5HUZxX2pZUdG1jrS2PLjg16Fbdxs7ddMjZYUs7YICBQz/zwQ+nT2ABQF9hcRDSZTFq4cKHWrFmjlJQUFRVZ3txdvHjxVQd3PVixP047TyTojTsGq41vY6Vn52hct0g5Ohj0/hrLebHnTBwlSbppxuzSbYHeXro90vx0YUSg+Zsuf+rbXZKUcPa8vt9tvrn5S8zhMu/dzt9XkrT+ULzOZufa+cpQl9RUno3vHqmbwttozcEjSjx3Xr5eHhoVFaEA7waatni5Cgot2wnUfztPJ2rZ0RhNi+6rJq7uOpaRrlFtO6iZp7ee2/hT6X7v9r5VPfxbqOVn/1e6zcvorIntukiSuvo2kyTd166LMvJzlZGfp7kx5g/YPfxb6JXug/TTsYM6ej5NRgdHdWvaXEODQ7XrdKKWHNlXg1eMmvRTXJy2JyTo/4YMUdsmTZSek6MJkZFyMBg043fLtuvz0aMlSf0++aR02383bdKw0FDNGztWc7Zvl7vRqIe7dVNMaqoW7buYN/dHRenezp21PSFBORcu6I52lk/tr4yLU85la1/cHh6uvAsXSm/Sov5aHhunHQkJemvYxTwb3zlSjgZDmfUL544151n/jy7m2aw/zHn2xV1jNWfbdnk4G/VQSZ7tNedZ7oUL+vlQ2c9iN4e0VSdTkcVraTk5Wrhnn+6K7KjPx47WyrhD8nA2anznznJ1ctKsTZur48+AemDeYikjU0o5bf59zUYpqfhhigkjJa+ys4vjOlMX+831Dz2kHw4e1MHTp5VXWKiuQUG6NSxM+1JSNH8369XVR8sPxmnHqQS9NXyw2vqYx5bjo8rpN+8yjy37f3hxbDnrj80aFhaqL+4eoznbdsjDaNRD3bsqJiVVi/ZczLPTWdn64PfNmtKnlz4dM1Kr4g4pvKmv7orsqO/3x2hP8fSTHs5GfTr2Tnm7uujjzVs1oE0rixiOnz2nHQmJ1fXnQDVZHhOnHScT9OYtF/Psni7mexjvrbfMs8/uMefZwA8uybMNmzUsPFSfjx+juVt3yN1o1IM9ivNs98U8+2LrLo3sFKFZY+7QF1t36lRGhrq3aKbbIsL125Fj2p1Q9gurt3Vop+Tzmdp07EQ1XT1q00+xxX3p0Ev60s7FfellbdznxWODfv+rZF96ydhglbWxQdu26uRfZPU1AKhNNhcRn3nmGX344YcaMGCA/Pz8ZLDy+D+urMhk0iPzlujZwX107w1RcnFy0t6EJL2wZKXiz5T/iHyJZo289czAGy22lfy++eiJ0uIOrm81lWfbjycoqnmgRkd3VEN3V+XkF2jPqSS98N0qbYrnA/a16s+/LtOpqD4a2TpC3i6uOpCeogd/WaTNyRVPa+Xt7Kq/RPW12PZIhLk4fTLzXGkRMeZsqv5IOqabW7RVUzdPGSQdO39W7+3aoA/3bVZBEcXpa1WRyaQHv/1Wz/ftq4lRUXJ1ctLupCRNW7FC8RVMI1MiMTNT9yxYoBf69dOzffqooLBQa+Lj9ca6dRbfIG3ftKkk8xpT0YFl15vre+qUTmVklP7u6eysAa1ba018vDLz88vsj/qlyGTSgwu/1fP9++q+aHOe7UlK0rSfKpln5zM1/qsFemFAPz3bt48Kigq19ki83lizrsz6YZX111U/KyY1VWM6dtCf+/aWJO1JTNKzPy7XFp5EvG7N/lpKSLo45lq13qBV683/vv1mE0VE1Ml+8/uYGEUFBGhISIhcnJyUkJGhj7Zs0QebNin3si/ooH4w95tL9PyAPpf1mysVn1bJfnP+N3phYF8927e3ud88HK831qwv02/O/H2TMnJzdW+Xznrxpv46nZWlD37fpPc3birdp6GrmwIbNJAkTevfp8z7LdqzjyJiPVRkMunhBUv03MA+uq+r+R7GnsQkPb+0cnmWdD5T47/4RtMH9dWf+/dWQaE5z976Zb3FU4zxaekaOftLPdOvl27vEC4fTw+lnM/Ux39sLVOslKRWjRupY4CfZm/axgyA16gik0kPLvpWz/cr7kuNxX1pFcYG93y9QC/0Lx4bFBZqzZF4vbHW9rEBANQ2g8lk20TxjRs31hdffKHhw4fbLZjwV/9lt3MBl4t5dYok8gzVqyTPLn3iDrC3oxOfkyS1effdWo4E17LDxetXt/1/5Bmqz6FnzXlWlBRay5HgWubgHyuJfhPVq7Tf/CfjTVSfQ9PM483QN8gzVJ/YF8x51uZt+k1Un8N/mVrbIUBS6N/pT6oq9qUptR1CjSu7QnAleXt7q3Xr1vaMBQAAAAAAAAAAAEAdYHMR8dVXX9Vrr72mnMsWSQcAAAAAAAAAAEDdZTDxU9Wf65HNayKOHTtW8+fPV9OmTdWyZUsZjUaL17dv337VwQEAAAAAAAAAAACoeTYXESdOnKht27ZpwoQJ8vPzk8FgsGdcAAAAAAAAAAAAAGqJzUXEH374QStWrFDv3r3tGQ8AAAAAAAAAAACAWmbzmojNmzdXgwYN7BkLAAAAAAAAAAAAgDrA5iLiO++8o2nTpuno0aN2DAcAAAAAAAAAAABAbbN5OtMJEyYoOztbbdq0kbu7u4xGo8XraWlpVx0cAAAAAAAAAAAAgJpncxFxxowZdgwDAAAAAAAAAAAAQF1hcxFx4sSJ9owDAAAAAAAAAAAAQB1hcxHxUrm5ucrPz7fY1qBBA3ucGgAAAAAAAAAAAEANc7D1wKysLE2ePFlNmzaVh4eHGjVqZPEDAAAAAAAAAAAAoH6yuYg4bdo0rV69Wv/973/l4uKijz/+WK+99poCAwM1d+5ce8YIAAAAAAAAAAAAoAbZPJ3p0qVLNXfuXPXv31+TJk1Snz591LZtWwUHB2vevHkaP368PeMEAAAAAAAAAACAPZhqOwDUBzY/iZiWlqbWrVtLMq9/mJaWJknq3bu31q9fb5/oAAAAAAAAAAAAANQ4m4uIrVu3Vnx8vCQpPDxcCxYskGR+QrFhw4Z2CQ4AAAAAAAAAAABAzbO5iDhp0iTt2rVLkvT8889r5syZcnV11ZQpU/Tss8/aLUAAAAAAAAAAAAAANcvmNRGnTJlS+u9BgwYpJiZG27ZtU9u2bdWpUye7BAcAAAAAAAAAAACg5tlcRLxccHCwgoOD7XU6AAAAAAAAAAAAALWkytOZrl69Wu3bt1dGRkaZ186dO6eIiAj9+uuvdgkOAAAAAAAAAAAA9mUw8VPVn+tRlYuIM2bM0MMPP6wGDRqUec3b21uPPvqo3n33XbsEBwAAAAAAAAAAAKDmVbmIuGvXLg0dOrTc1wcPHqxt27ZdVVAAAAAAAAAAAAAAak+Vi4jJyckyGo3lvu7k5KTU1NSrCgoAAAAAAAAAAABA7alyETEoKEh79+4t9/Xdu3crICDgqoICAAAAAAAAAAAAUHuqXEQcPny4Xn75ZeXm5pZ5LScnR6+88opuvfVWuwQHAAAAAAAAAAAAoOY5VfWAl156SYsXL1ZoaKgmT56ssLAwSVJMTIxmzpypwsJCvfjii3YPFAAAAAAAAAAAAHZgqu0AUB9UuYjo5+enjRs36rHHHtP06dNlMpkzzWAwaMiQIZo5c6b8/PzsHigAAAAAAAAAAACAmlHlIqIkBQcH68cff1R6eroOHTokk8mkkJAQNWrUqMy+J0+eVGBgoBwcqjxzKgAAAAAAAAAAAIBaYFMRsUSjRo3UrVu3Cvdp3769du7cqdatW1/NWwEAAAAAAAAAAACoIdX+eGDJdKcAAAAAAAAAAAAA6gfmGAUAAAAAAAAAAABg4aqmMwUAAAAAAAAAAEA9wySSqASeRAQAAAAAAAAAAABgodqLiAaDobrfAgAAAAAAAAAAAIAdVXsR0WTimVgAAAAAAAAAAACgPqnymogPPPBApfabPXu2JGn//v0KDAys6tsAAAAAAAAAAAAAqCVVLiLOmTNHwcHBioqKqtRThs2bN7cpMAAAAAAAAAAAAAC1o8pFxMcee0zz589XfHy8Jk2apAkTJqhx48bVERsAAAAAAAAAAADszMBKdKiEKq+JOHPmTCUmJmratGlaunSpmjdvrrFjx2rFihWsfwgAAAAAAAAAAABcA6pcRJQkFxcXjRs3TqtWrdL+/fsVERGhxx9/XC1btlRmZqa9YwQAAAAAAAAAAABQg2wqIlqcwMFBBoNBJpNJhYWF9ogJAAAAAAAAAAAAQC2yqYiYl5en+fPn6+abb1ZoaKj27Nmj999/X8ePH5enp6e9YwQAAAAAAAAAAABQg5yqesDjjz+ur776Ss2bN9cDDzyg+fPny8fHpzpiAwAAAAAAAAAAAFALqlxEnDVrllq0aKHWrVtr3bp1WrdundX9Fi9efNXBAQAAAAAAAAAAwM5MtR0A6oMqFxHvu+8+GQyG6ogFAAAAAAAAAAAAQB1Q5SLinDlzqiEMAAAAAAAAAAAAAHWFQ20HAAAAAAAAAAAAAKBuoYgIAAAAAAAAAAAAwAJFRAAAAAAAAAAAAAAWqrwmIgAAAAAAAAAAAOovg6m2I0B9wJOIAAAAAAAAAAAAACxQRAQAAAAAAAAAAABggSIiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAABYoIgIAAAAAAAAAAAAwIJTbQcAAAAAAAAAAACAGmSq7QBQH/AkIgAAAAAAAAAAAAALFBEBAAAAAAAAAAAAWKCICAAAAAAAAAAAAMACRUQAAAAAAAAAAAAAFigiAgAAAAAAAAAAALBAEREAAAAAAAAAAACABafaDgAAAAAAAAAAAAA1yFTbAaA+4ElEAAAAAAAAAAAAABYoIgIAAAAAAAAAAACwQBERAAAAAAAAAAAAgAWKiAAAAAAAAAAAAAAsUEQEAAAAAAAAAAAAYMGptgMAAAAAAAAAAABAzTGYajsC1Ac8iQgAAAAAAAAAAADAgsFkMlFvBgAAAAAAAAAAuE5ETP9XbYdQ7+x7c0pth1DjeBIRAAAAAAAAAAAAgIU6tSZi63+9W9sh4Bp2ZMpUSVLb/+MbFqg+h54zfxulzbu0Z6g+h6cWt2f/pD1D9Tk0zdyehf6DPEP1iX2RfhPVr6TfLEoKreVIcC1z8I+VJIW9Tr+J6nPwr+Z+s/1L5Bmqz/6/m/Ms5E3yDNUnbvr19zQXUF/xJCIAAAAAAAAAAAAAC3XqSUQAAAAAAAAAAABUM1NtB4D6gCcRAQAAAAAAAAAAAFigiAgAAAAAAAAAAADAAkVEAAAAAAAAAAAAABYoIgIAAAAAAAAAAACwQBERAAAAAAAAAAAAgAWn2g4AAAAAAAAAAAAANchU2wGgPuBJRAAAAAAAAAAAAAAWKCICAAAAAAAAAAAAsEAREQAAAAAAAAAAAIAFiogAAAAAAAAAAAAALFBEBAAAAAAAAAAAAGDBqbYDAAAAAAAAAAAAQM0xmGo7AtQHPIkIAAAAAAAAAAAAwAJFRAAAAAAAAAAAAAAWKCICAAAAAAAAAAAAsEAREQAAAAAAAAAAAIAFiogAAAAAAAAAAAAALDjVdgAAAAAAAAAAAACoQabaDgD1AU8iAgAAAAAAAAAAALBAEREAAAAAAAAAAACABYqIAAAAAAAAAAAAACxQRAQAAAAAAAAAAABggSIiAAAAAAAAAAAAAAtOtR0AAAAAAAAAAAAAao7BVNsRoD7gSUQAAAAAAAAAAAAAFigiAgAAAAAAAAAAALBAEREAAAAAAAAAAACABYqIAAAAAAAAAAAAACxQRAQAAAAAAAAAAABgwam2AwAAAAAAAAAAAEANMtV2AKgPeBIRAAAAAAAAAAAAqAVpaWkaP368GjRooIYNG+rBBx9UZmZmhfs/+eSTCgsLk5ubm1q0aKGnnnpK586ds9jPYDCU+fnqq6+qFBtPIgIAAAAAAAAAAAC1YPz48UpMTNSqVatUUFCgSZMm6ZFHHtGXX35pdf+EhAQlJCTo7bffVvv27XXs2DH96U9/UkJCghYuXGix76effqqhQ4eW/t6wYcMqxUYREQAAAAAAAAAAAKhhBw4c0PLly7VlyxZ17dpVkvSf//xHw4cP19tvv63AwMAyx3To0EGLFi0q/b1Nmzb6xz/+oQkTJujChQtycrpY+mvYsKH8/f1tjo/pTAEAAAAAAAAAAIAa9vvvv6thw4alBURJGjRokBwcHLRp06ZKn+fcuXNq0KCBRQFRkp544gn5+Pioe/fumj17tkymqi2GyZOIAAAAAAAAAAAAQAXy8vKUl5dnsc3FxUUuLi42nzMpKUlNmza12Obk5KTGjRsrKSmpUuc4ffq0/va3v+mRRx6x2P76669r4MCBcnd318qVK/X4448rMzNTTz31VKXj40lEAAAAAAAAAACA64mJn6r+vPnmm/L29rb4efPNN63+eZ9//nkZDIYKf2JiYirxH6piGRkZuuWWW9S+fXu9+uqrFq+9/PLLuvHGGxUVFaXnnntO06ZN0//7f/+vSufnSUQAAAAAAAAAAACgAtOnT9fUqVMttpX3FOKf//xn3X///RWer3Xr1vL391dKSorF9gsXLigtLe2KaxmeP39eQ4cOlZeXl7799lsZjcYK97/hhhv0t7/9TXl5eZV+epIiIgAAAAAAAAAAAFCBqkxd6uvrK19f3yvu17NnT509e1bbtm1Tly5dJEmrV69WUVGRbrjhhnKPy8jI0JAhQ+Ti4qLvv/9erq6uV3yvnTt3qlGjRlWafpUiIgAAAAAAAAAAAFDD2rVrp6FDh+rhhx/WrFmzVFBQoMmTJ+vuu+9WYGCgJOnUqVO66aabNHfuXHXv3l0ZGRkaPHiwsrOz9cUXXygjI0MZGRmSzMVLR0dHLV26VMnJyerRo4dcXV21atUqvfHGG/rLX/5SpfgoIgIAAAAAAAAAAAC1YN68eZo8ebJuuukmOTg4aNSoUXrvvfdKXy8oKNDBgweVnZ0tSdq+fbs2bdokSWrbtq3FueLj49WyZUsZjUbNnDlTU6ZMkclkUtu2bfXuu+/q4YcfrlJsdi8ipqSk6OOPP9YLL7xg71MDAAAAAAAAAAAA14zGjRvryy+/LPf1li1bymQylf7ev39/i9+tGTp0qIYOHXrVsTlc9Rkuk5iYqJdfftnepwUAAAAAAAAAAIAdGPip8s/1yO5FRAAAAAAAAAAAAAD1G0VEAAAAAAAAAAAAABYoIgIAAAAAAAAAAACw4FTVA6ZOnVrh66mpqTYHAwAAAAAAAAAAAKD2VbmIuGPHjivu07dvX5uCAQAAAAAAAAAAAFD7qlxEXLNmTXXEAQAAAAAAAAAAgJpgqu0AUB/YvCYixUQAAAAAAAAAAADg2mRzEXHo0KFq06aN/v73v+vEiRP2jAkAAAAAAAAAAABALbK5iHjq1ClNnjxZCxcuVOvWrTVkyBAtWLBA+fn59owPAAAAAAAAAAAAQA2zuYjo4+OjKVOmaOfOndq0aZNCQ0P1+OOPKzAwUE899ZR27dplzzgBAAAAAAAAAAAA1BCbi4iXio6O1vTp0zV58mRlZmZq9uzZ6tKli/r06aN9+/bZ4y0AAAAAAAAAAAAA1JCrKiIWFBRo4cKFGj58uIKDg7VixQq9//77Sk5O1qFDhxQcHKwxY8bYK1YAAAAAAAAAAABcJYOJn6r+XI+cbD3wySef1Pz582UymXTvvffqn//8pzp06FD6uoeHh95++20FBgbaJVAAAAAAAAAAAAAANcPmIuL+/fv1n//8RyNHjpSLi4vVfXx8fLRmzRqbgwMAAAAAAAAAAABQ82yazrSgoEDBwcHq0aNHuQVESXJyclK/fv1sDg4AAAAAAAAAAABAzbOpiGg0GrVo0SJ7xwIAAAAAAAAAAACgDrCpiChJI0aM0JIlS+wYCgAAAAAAAAAAAIC6wOY1EUNCQvT6669rw4YN6tKlizw8PCxef+qpp646OAAAAAAAAAAAANiZqbYDQH1gcxHxk08+UcOGDbVt2zZt27bN4jWDwUAREQAAAAAAAAAAAKinbC4ixsfH2zMOAAAAAAAAAAAAAHWEzWsiAgAAAAAAAAAAALg22fwkoslk0sKFC7VmzRqlpKSoqKjI4vXFixdfdXAAAAAAAAAAAAAAap7NRcRnnnlGH374oQYMGCA/Pz8ZDAZ7xgUAAAAAAAAAAACglthcRPz888+1ePFiDR8+3J7xXPO8XFz0fJ8+GtymrdyMRu1KStIb69dpX0pKpY5v07ixXurXX10DA1VQVKQ18Uf0j3XrlJaTU7pP60aNNKZDB/VpEawWDRsquyBf+5JTNOOP37UnOdnifEPattUtoWHq5O8nX3cPJZ4/r9XxR/SfTZt0Pi/PrteOmuPl4qLn+vfR4NA2cnUyandikt5cs177kiuZZ00a68WB/dSlWaAKCou09nC83lhtmWclWjT01jN9eunG4BbycHZW0vnz+jEmVu/+utFiP4OkcZ076e7OHdW6cWPlXChQTEqq/vHLOsWknrbHZaOGlbRnN7c1t2e7k5L0xroqtmf9+6tLSXt25IjeKKc96x1c3J7l52tfSor+/XvZ9qzELaGhuj86WuG+vrpQWKhDaWl6d8MG/X7ihF2uGzWrtD0LKW7PkqrYnjW+rD07UrY9C2rQQOv+9KDV45/+/gf9EBNb+vv/DRusUR0jyux3+EyahnzyWRWvDnWFl4uLpt3URzeHtpGr0ajdCUl665f12p9U+X5z+s391KW5Oc/WHYrXGz+vU3q2Zb/ZopG3/jKgj3q2bC5nJ0ftT0rRjHUbtenYyTLnHNYuVJNuiFbrJo1UWGRSXOoZffzHVq09xLrk9VVd6zef6tlTT/fsWeZ98i5cUPv33ru6i0W9lJUtzf5K2n1A2nNAOnfeoDeeN+nOYbUdGeoDLxcXPTuoj24ON/elexKS9NbKyvWlHQP9NDIyQp2C/BXm5yOjo6PCXv9Xmf1cnBz112ED1SnIXwENvOTgYNCJtHNatHOfvty6SxcumyEL1x4vVxf9eUgfDWpfnGcnk/TPn9brQGIl8izITyOiI9Spmb9C/c151v6lsnk2Iqq93hg1pNzzTPvmJy3bFXNV14G6zcvFRdMG9NHgsEvuqf2yXvurcE/thUGW99Te/LnsPTVfDw891aenbmzVQr4eHkrJzNTPcYf1342bdTYntzouDSjLVNsBoD6wuYjo7e2t1q1b2zOWa55B0icjRqidj6/+t22r0nNyND4yUl+OHqM7vpyno2fPVni8v6envhozVufz8/X2hg3yMBr1UNeuCmviozvnf6mC4g/Md3XoqLEdOmh5XJy+2L1LXs4uGtepkxbdPU6Tvl2sDcePl57zH4NuVkpmppYciFHC+QyF+fjo3sjO6t+ylW6bN095hReq8S+C6mCQ9PHoEQpv6qOPN29TenaOxkdHat640brjsy91LP1shcf7e3lq/j1jdD4vX++sN+fZg927KtS3iUbNnV+aZ5LUrqmv5o0breTMLH2yZZvO5uQqoIGXAhp4lTnvW8MH6/b24Vqy74C+2L5Lbkaj2vv5qomHu5Rq5z8Cql1Jexbu66v/bb3Yns0bM0Yj5lWuPZs/dqwy8/P1zoYNci9pz3x8NPLLS9qzjh01prg9m7drl7xczO3ZwnHjNGnxYm28pD2TzDdEn+zRQz/Fxmrxvn1ycnRUaJMm8vP0rKa/BKqTQdLHoy5pz3JyND4qUvPuHq075laiPfO8rD1zNurBbl0V6tNEoz63bM8k6fv9MVp3xLJAsyMhscx58y5c0AvLV1lsO5+Xb9M1ovYZJH101wiF+/nokz/M/eY9XSL1xYTRuvOTK+eZn5en5t1rzrN315jz7IEeXRXatIlGz76YZ/5enlow8W4Vmkz65I+tyi64oFGR7TV73EhNnLdIW0+cKj3nvV076+UhA7Qm7oje3r1fLo6OGhnZXh/dNUKTFy7VyoOHqvEvgupQV/tNSXrp55+VXVBQ+vvly1Tg+nH2nPTBZwYF+JkU1kbavLO2I0J9YZD00T0jFObno082FvelXSP1+cTRGvm/L3Us7WyFx/cLaaXR0R0Um3xaJ9PPqZVPY6v7uTo5qa1vE60/dFSnzp5TkUmKahag6UP6qVOQv/7y7U/2vzjUGQaD9N97Ryjc30ezfzPn2bjukfrswdEa898vdezM2QqP7xvWSqO7dNDB5NM6mXZOrXyt59nWo6f03Ddlc+m+XtEK8/fVH4fL9qW4dhgk/W9s8Rh00yX31MaP1ohPK3dP7csJxWODdebPbA/e0FVhvk00as7FsYG70agF990ld2ej5m3frcSM8wpv6qMJXTqrR4vmGvHpPGo7AOoMm4uIr776ql577TXNnj1bbm5u9ozpmjUsNFRdA4P0xLKl+ikuTpL0Q2ysfrl/kp7p2UvP/PRjhcc/3r273I1G3fHlPCWcPy9J2pWcpM9HjdaoiAh9tWePJGnpwRj9+4/fLW4GfLNvr1ZOvF9P9+hpUUR8YtlSbTpp+e33vcnJemfoMN3RLlwL9u61y7Wj5gwLD1WXZoGavGSZlh8059mPMbFa9cj9erp3T01dWvHA6rEe3eVmNOqOOV8qsSTPEpM19+5RGtkxQl/vMueZQdLbtw7VkbR0jZ//jfIuFJZ7zuHhoRrVMUKPLf5eq+IO2+dCUauGhYaqS1CQnli6VMuL27MfY2P186RJerpXL035seL27LGS9mzevIt5lpSkz0df1p7FxOjfv1/Wnu3dq5X336+ne/a0uBnaOSBAT/booTfWrdOn27fb+5JRC4aFXdKexV7Snj18v56+saemLrtCe9azuD377LL27C7L9qzEvuQUfbf/yt8qvlBUVKn9UD8MbReqLs0D9eSiZVoRU5xnB2K18k/366m+PfXn7yrOsz/d2F1uzkbdOftLJWaY82x3QrLmjB+lkZER+nqHOc8e7dVNXq4uuvWjzxWfli5JWrBjj5b/aaJeuLmfRs7+svScE7p21u6EJD264LvSbQt37dOvTz2sEZ3aU0Ssh+piv1lieWys0nP5tjsk3ybS+sUm+TaR9sZIYx6t7YhQXwxtH6ro5oF66ptlWnHA3Mb9tD9WK564X0/263nF4t78rbv1vw1blHehUC8PHVBuEfFcbp7umv2Vxbavtu3W+bw83ds9Sm+tXKfTWdn2uSjUOUMiQhUdHKhn5i/Tyn3mPFu+J1Y/TrlfTwzsqWlWCn+X+mrTbn283pxnL946oNwi4sn0czqZfs5im4uTo16+baA2xZ/Q6Uxy7Fo2tPie2pOLL95T++lArFY+er+e7tNTU7+/wtigl3kMOuLTS8YGicn6bNwojewUoa93mj+z3RTSWs0aeuvhBUu09vDFL7Key83Tk717qJ2fr/Yn8417AHWDg60Hjh07Vunp6WratKk6duyo6Ohoix+UNSwkRKlZWaU3DiQpLSdHP8TGalCbNnJ2dKzw+KFtQ7Q6/khpAVGSNhw/riNpabolNLR0296UFIsbB5J0NjdXW0+dUpvGlh+SLi8gStLKQ+YbU20bW/9AhbptaFiIUjOztOKgZZ79GBOrQW2vnGdDwtpqzeH40htUkrTx2HEdOZOm4eEX86xPq2CF+frovQ1/KO9CoVydnORQztqoD3SL1s6ERK2KOyyDJDejzd9fQB0xtLg9W3FZe/ZjZduzkBCtPnLEMs+K27PhlWjPtlhpzyZFRSk1K0tziguI7kajzdeHuqG0PYu1sT0LLac9S0vT8LBQq8e4GZ1kdLjyxyMHg0Gezs6VvBLUZUPCzXm2MuZinqVn5+inA7G6KbSNjJXpN+PiS28SSNLGo+Z+c1i7i3nWpXmQDiSnlhYQJSn3wgWtjjuiDgF+Cm7UsHS7p4uzzlx2EzQrP1/ZBQXKK2CWiPqoLvabJQy0Zyjm7GwuJAJVNaRdcV964LK+dH+sbgq7cl96Jiu7wi+lXsmpsxmSpAauLjafA3Xf4IgQnT6fpVX7LfNsxd5YDWxXvXk2ILyNPF1dmMb0OjA03Po9tZ9iYnVTSCXvqR0qZ2xwyT01Txdze3X5Fx9SM7MkSbl85gdQh9h8J3/ixInatm2bJkyYID8/PxnKKR7gogjfptqXklLmcfTdSUm6p1MntWrYSAfPWF8bzs/DUz4eHlbXANuVnKT+LVtd8f19PNyVbmVNu8v5enhIUqX2Rd3Tvqmv9iVbybPEJI3r3EktGzVU7OkzVo/18/Qw51li2TzbnZisfm1alv7eq2ULSVL+hUJ9e9896hjgp/wLF7Qy7rBeWfmLzuWa19T0dHZWpwB/zdu+S3/ue6Puje4sTxdnHT97Tm+v+00/XrLWGOqPiKbW27NdSUka16mTWjZqpNjT5bRnnub2bK+19iwpSf1bXbk983Uv2571bNFC2xMSNDEqSk/06KHGbm5KyczUB5s36/OdOyt7aahD2vvZoT1LKqc9a92yzPYnb+yh6QP6qshk0t6kZL376wb9drTsUztuRqN2Pv2E3J2NOpuTq2UHYvTPdb+VuXGP+qG9v6/2J1nJs4Qk3R3dSa0aN1Rsajl55uUhH08P7bXSb+5JSFbfS/pNZydHZeSWXW86p/gGQYeApqXTI20+dlJD2oXo3q6dtTruiFycHHVv187ycnHWZ1t22HSdqF11sd8ssebBB+Xp7Kys/HytOnxYb6xbpzPZPGUBoPLa+ftqf2LZNm7PqSTd3aWTWjVpqNgU632pLYwODvJ0cZaL0UkdAvz0QM+uOnn23BWnTUX91i7AV/sTUmS6LNF2n0zS2G6d1NKnoeKS7Zdnl7o1Mlw5+QVatS/uyjujXitvDLorIUl3R3VSy4rGBsVjUGtjg8vvqW05flKFRUV66eb+euuXdUo6n6mwpj56rFd3rTx4SEcu+eIhANQ2m4uIP/zwg1asWKHevXvbM55rmq+HhzafOlVme0qW+VsmTT09yi0iNvX0sNj38uMbubnJ2dFR+YXWv1XVLShI0QGBen/TpivG+WjXbrpQVFQ65SrqF19PD205aSXPir/N5OflWe5Nd9/ideNSK5FnLRs1kiS9d8ct+jX+qGb9sVnhTX31px7dFODlpbvmfS1JatHQWw4Gg25pF6bCoiL9c+2vOp+Xp4ldozTj9uHKzMvT+vhjdrl21Jzy2rOS3PHz8Cj3ZmhTj/Lbs9RKtGddg4IUFRiomZe0Zw1cXNTE3V1dgoLUs0UL/ef335Vw/rxGR0To1YEDdaGwUPP37LF6PtRdvh4e2nKi/H7Tz7MS7VmmlfYs0zLPikwm/Rp/VCvjDiv5fKaaN/TWA12j9cnoO/Xo4u+19pJ1ElOzsvS/TVu1LzlFBoPUt1VLTYjurPCmvho//xsVXn5XA3Wer6eHthy30p4V505TL89ybxRcMc/c3WR0dFRBYaHiz6Sra/MgeTgblZV/seDcpXmgJHP/XOJvK9eokbubXh4yQC8PGSBJSsvK1sR5i7TzVNl1OlH31bV+U5IycnM1d8cObU9MVH5hoboFBWlCZKQi/f01Yt48Zeaz1iuAyvH18tBWK31pyqV9qR2LiDe3a6t/jbql9Pc9p5L0wtKVfA67xvl6eWjrsbJ5dvr8xTyrjiKit5uLeocE65cDh5Wdz5cGr3W+ntbHoKml926vPDaw+pntsjHooTNpeumnn/X8wL76ZuK40v0W796nF35cZY9LAQC7sbmI2Lx5czVo0MCesVzzXJ2clF9Y9nH0vOJtrk7l/+coec3azYGS6RhcnJysvt7EzU3/GjZcJ86d00dbt1QY4+1h4bqrY0d9uGWLjp49W+G+qJtcnZyUb2WKjkvzpKJjpfLy7ELp8fmFhaVTRe5JStKfly2XJK2IPaTcggt6tn9v9QpuoY3Hjsu9eHqsxu5uGjV3vnYlJkmSfjl0RGv/9IAe73UDRcR6yJxnVtqzC1duz1wqyrPCK7dnM4YXt2dbLrZnHsX52NjNTU8tW6YfYs1PuP4UG6sf77tPT/ToQRGxHnItJw+uuj0rtGzPEs+f16RvvrXYZ8m+/Vr+wERNH9DXooj49voNFvv9EBOro+np+nPf3hoaFqIfeLq63rlSntn++exie1hQWKj523frptA2mnHnLXp37QblFBToni6R6hDgJ8kyn3MLLij+TJqSMs5rzaF4eTgbdX/3aL0/+jbdM/drHb9snR7UfXWt35SkOTssn2pdERenXUlJmjF8uMZHRurDLRWPGwCgRHlj0PxKfGazxaajJ3X/54vUwNVFPVs1V5ifr9xYyuCa52Ks+F6HazUtmzI4IlTOTk5MZXqdsMvYwGqeWo5BJSk5M1O7E5O07vBRnTqXoa7Ng3Rf185Ky8nR/63+9aqvBagMA9+/QSXYvCbiO++8o2nTpuno0aNVPjYvL08ZGRkWP3l5Zad3qq+MDg7ycXe3+HEwGJR74YKcHct2Ni7F23Kt3FgoUfKatbm3XZzM2/KsHO/m5KSPR9wpT6NRj37/XYVTrXULCtJbgwdr3dGjenvDbxVfJGqd0cFBPh7uFj+leeZUtTwpUXGeOVkcX7Lv0v0HLfb7fr/5g3V0UIDFfsfPnistIEpSdkGBfjl0RJ0C/OXIdMh1VoXtmZUPzyV5UlF7lldRnjlW3J7978475WE06k/fWbZnJe+XX1ho8RS1SdIPsbEK8PJSgJdXJa4YtaHC9qyK/V6JCtszR8v2zJpzuXlatHef2jRpLH9Pz3L3k6TZW7ersKhINxZP84y6ydY8s/3zmWV7uP7wUb2+YrW6tgjSdw9N0MrHJql/21b611pzYfrSb7a/N+oWBXg30PPLVmpFTJwW796ve7/4RkYHB03tf6ONfwHUhPrSb5ZnaUyMUjIzdWML2jMAZVV1DOpcic9stjiTla3f449rxYE4vfrjaq2NO6JPJ4ySj4e7Xd8HtcPo6CAfT3eLHweDQXkFFd/rqK415G6NDNfZ7Bz9Gnu0Ws6P2lGtYwOreWo5Bo0OCtRHY0bo3XUb9dnWHfo57rDeWr1eH2zcrAe6d1HbJtbXsgaA2mDz13QmTJig7OxstWnTRu7u7jJe9q2vtLS0co9988039dprr1lse+WVVyTva+PJxujAQM0fM9ZiW59PPlZqVlbpdESXKp2iyMpUWCVKpwEp5/j0nJwy35QxOjjov7fdrnAfH01cvFixZ8qf1iHcx0cf3X6HYk+f1hPLljINSD0QHRSoefeMsdjW77+fKDUzq3Rdy0uVTImbfD6z3HOmZppfs3r8ZXlWkpOXr5lT8ru3q2vxfuZznrEynUNado6cHR3lZjQyZVYdFR0YqC/HWrZnfT8uvz0ryZ1kK/+9S5RO4VzO8eW1Zx/cbm7P7rfSnp3NzVXuhQvKyM1V0WXtV2lOurgo8fx5oe6JDgrUvHGXtWezPlFqVjntWUmeZVaiPfO03h5ay7PLJWaY88XbzVVJFbxX3oVCnc3JLW33UDdFNQvUF/da5tmA9839ZlMreVKSOymV6TfLy7PsHBVckmdfbN2lRbv2KayprwoKC3UgOVVjOneQJB0tXvekeUNv9W3TSi/9YDmN0bncPG07maDoZoGVuVzUkvrSb1YkMTOT9gyAVVHNA/X5RMu+dOC/P1Hq+axy+0Kp4r7UHlbsj9PUgb11U1gbfb2d2Ufqu84tAvXZg5Z5Nujt8vPMx6v68izA20tdgoP0zdY9ulBUZPfzo/ZENQvUvPGWedb/g+J7atbGBqX3bq88NrD6me2yMejdUR11Oitbe5Ms109cHXdYT/fpqahmgTp0pvx76wBQk2wuIs6YMcPmN50+fbqmTp1qsc3FxUVzP5hp8znrkgOpqbp30UKLbalZWdqfmqpuQUEySBYL9EYG+Cu7oEDxZ8tfNDc5K1Ons7PV0c+vzGuRfv46kJpqsc0g6e2hQ9WrRQs9+cMybT51stxzt/D21pyRI3UmO1sPLPm2Ut9SRu07kJKq+75aZLEtNStLB1JS1bWZtTwLUHZ+gY6mny33nMmZWTqTla2OAWXzrFOAnw4kX8wz8wedjvK77Amdkt/Tigs3KZlZSsnMsljrqURTTw/lFlxQFgXEOutAaqruXVj59qyzv7k9O5peQXuWmakz2dnqYK09879Ce7ZsmTafLNuemSTtT0lRJ39/GR0cVHDJAK80J3Nyrni9qB0HUlJ139dW2rPkctqzwCq0Z/7ltGcpqVaOstS8obck8xceKuLhbFQjd7cr7ofaFZOSqvvnXZZnmcV51txKngWZ8yw+7Wy550w+b86zDlb6zY6BfopJLptnOQUXLNY17NmyhXIKCrTtZIIkqUnxUxQODmUnDDE6OMjRynbUHfWl36xIswYNtC8lpUrHALg+xCSn6v7Py/alMcmp6tKibBvXqaQvPXO2WuNyKZ7G0svVpVrfBzXjYGKqHvzUMs9OZ2YpJilVXYKDZDBIl35vtFOz4rHB6bN2j2V4pzA5OBiYyvQaFJOSqonzqzA2KBmDVjQ2yCx/bHD5PTUfD3ers3I5FX/Wd+IzP4A6xOYi4sSJE21+UxcXF7m4XLsf7jLy8rTh+PEy23+Ki9Xw0FANDQkpnW6vkaurhoeE6pcjhy2+QdzC23zj8vi5i2verIiL08j27RXg6anE4m+39GreXK0bN9bsHdst3uvVAQN1W1i4Xvh5lVYcOlRurD7u7vps5CgVmaSJ3y7mJns9kpGXp43HrOTZwTgNCw/VkLAQLT9YnGdurhoWHqLVh49Y5lnxDfLjZy/m2fLYOI3s0F4BXp5KLP4mX8/g5mrdpLE+3Xpx7ZyfDx3Wyxf6a1THCC3as6/0w9XYSPMTFb8dvRjbDzEHNalrtG5s2UIbirc3cnPVoJA2+v34cfHca92VkZenjVbas+Wx5vZsSEiIll/Sng0LDdXqw1duz5ZX1J5tt2zPXhk4ULeGh+vFVau0soL27IeDBxUdGKiRERH6unj9Q2dHR90eHq7Y06etLm6OuqHc9iy2uD0LDdHy2Evas7CraM9amPPs0vassZtbmf7Pz9NDozt20IGUVKUW546zo6OMjg7Kyrf8ss0TPXvIwWDQ+vijV/FXQHXLyM3TxqNl82zFgTgNaxeqweEhWhFzMc+GhodoTdwRiycJSwrLJy7JsxUxcbqzU3v5e3kqqSTPWpr7zTmbLdecu1xUUIAGh7fV/G27lJln/kLNsfSzKiwq0vB2ofpq++7Sff28PNWleZC2nzxl418ANaE+9ZvW2r7xkZFq4u6u9TYsWQHg2peRm6ff4620cfvjNLR9qAa3C9GKA5f0pe1DtCb2sr60UXFfasP6vo3cXJWek1tm+5go8xh0b0JymddQ/2Tk5un3w1Y+s+2N05AOobq5fYhW7jPnWUN3Vw3pEKK1MZflWePiPEu7unWkb+kUroSzGdp2jM9f15ryxgbLD5rHBlbvqR268hh0xcE43dnxsrFB8T21OVsujg3i09LVp3VLdW/RTJuPX/zC163twyVJ+5P5QheAusMuqw7n5uYq/7IniRo0uDamJrWnn+LitD0hQf83eIjaNm6i9JwcjY+MlIPBoBm//26x7xejRkuS+s7+pHTbB5s3aVhoqOaNGas5O7bLw2jUw127KSY1VQv37Svdb1JUlO7t3FnbEhKUU3BBd4S3szj3ykNxyimeg3vOnSMV3LChPtyyRV0Dg9Q1MKh0vzPZWfrNyk0Q1G3LD8Zpx6kEvTVssNo2aWzOs6hIORoM+vdvlnk29+5RkqT+s2aXbpv1+2YNCwvVF+PGaM7WHfJwNuqh7l0Vk5KqRXsu5tnprGx98PtmTenTS5+OHalVcYcU3tRXd0V21Pf7Y7TnkikZZv2+RcPDQjVzxK2avWW7zuflaVznTnJycNA76zZU818E1aG0PRsyRG2bmNuzCeW0Z5+PNrdn/T652J79d1NxezZ2rOZs3y53o1EPdzO3Z4suac/uL27PtickKOfCBd3R7rL2LO5iezZ/zx7d1bGjXh04UK0aNVJCRoZGtG+voAYN9MiSJdX0l0B1Km3Phg9WW5/GSs++pD3bcFl7dldxe/bhJe3ZH8Xt2d1jNGfbDnkYrbdn0/r3UYuG3vr92AmlZGYqyLuB7o7sJHejk/7+y9rS/Xw9PPT9/eO17MBBHS6eWqZPq2ANaNNa647E6+e4w9X410B1WR4Tpx0nE/TmrcV5lpOje6Ij5ehg0HvrLfPss/HmPBs485I827BZw9qF6vMJYzR3yw65Oxv1YI+uiklO1aJdF/MssIGX/j3yFv0Sd0SnM7MU4ttEd0d30sGUVL279mJfmJ6do0W79mlsVEd9Nn6UVh08JA9nZ93TJVKuRifN2rClmv8iqA51sd9c/9BD+uHgQR08fVp5hYXqGhSkW8PCtC8lRfN37xauT/MWSxmZUspp8+9rNkpJxQ9OTBgpWZlcBNCKA8V96e2D1dbX/JltXFdzX/qfdZZt3Jx7zX3pTe9d7EsDvb10Rydze9Uh0PwEz2N9ukuSEs6e13d7DkiSbu/UTnd36aSfDx7WifRz8nA2qneblurdJlirDx7WH0dPVPu1ovas3BennccT9I+Rg9WmaWOlZ+Vo3A3mscH7qy3zbPYkc57d/M4ledbQS7d1Ls6zIHOePdr/Yp4t3XnA4hxtmzZReICv/rduc7VdE+qe5THmMeibt5jHBmk5ORpfMjb49bKxwThzng3478U8++/GzRoaHqovxo/RZ8Vjg4duKB6D7r74me2Lbbs0qlOEPhx9hz7ftlMJ5zLUvUUz3RYRrt/ij2lXQlLNXDAAVILNRcSsrCw999xzWrBggc5YWWOj8ArrDF2PikwmPbDkW03v01cTo6Lk6uSk3UlJmrZyheIrmMKoRGJmpsZ9s0Av9u2nab37qKCwUGvi4/XG+nUW34Rp59tUktQlMFBdAsuum9Pnk1M6lZEhSWrf1Lzvo926ldnvjxMnKCLWQ0Umkx78ZomeH9BH93Ux59mepCRN+3Gl4tMqkWfnMzV+/jd6YWBfPduvtwqKCrX2cLzeWL2+zHo7MzduUkZuru6N7qwXb+qv01lZ+uD3TXp/wyaL/c5kZ+vueQv0/IA+mtQtWk4ODtpxKlF/XrZcMamn7Xr9qBlFJpMe/PZbPd/3svZsReXbs3sWLNAL/frp2T6XtGfrLNuzkjYqOjBQ0Vbas76nLrZneRcuaMI33+i5vn01OiJC7kaj9qem6qFvv9Wvx47Z6cpRk4pMJj24sLg9i76kPfvJhvas7yXt2RrL9uy3o8d0T+dOmhAVqQauLjqfl6ctJ0/qg983a98l3wDNyMvTmsPxurFlC90Z0V6ODgYdSz+rt9f9po+3bOOp6nqqyGTSw18v0XM39dF93aLk4uSkPYlJen5Z5fIs6Xymxn/+jaYP6qs/D+itgsJCrT0Ur7d+WW/xjfjM/HylZmZpQtfOaujqouTzWfp8y079d8OmMk+3vvLTL4pJSdXoyA6a2r+3JGlPYpKmfb9cW0/wTfj6qC72m9/HxCgqIEBDQkLk4uSkhIwMfbRliz7YtEm5xYVGXH9mfy0lJF2cXm3VeoNWrTf/+/abTRQRYVWRyaRHvlyiaYP66N7uxX1pQpKmf7dS8Weu3MY1a+itZwbcaLGt5PdNR0+UFhG3HU9QVLNA3RIRJh9Pd10oKlL86XS9sWKtvti80+7XhbqlyGTSn+Yu0V+G9tGEHlFyMTpp76kkvbBopY6evnKeBTXy1tODLPOs5PfN8SfKFBFvizQ/EbZsN1OZXk+KTCY9tGCJnhvQR/d2LR6DJibpuaqMDeZ9oxdu6qu/9C8eGxyO15u/WI5B49PSdeenX2pK3166IyJcPp4eSjmfqY//2Kp/X1asBKoVNzJQCQaTyWRTqjzxxBNas2aN/va3v+nee+/VzJkzderUKX344Yd66623NH78+Cqfs/W/3rUlFKBSjkwxr8PZ9v/+VcuR4Fp26LkpkqQ279KeofocLl5XuO0/ac9QfQ5NM7dnof8gz1B9Yl+k30T1K+k3i5JCazkSXMsc/GMlSWGv02+i+hz8q7nfbP8SeYbqs//v5jwLeZM8Q/WJmz6ltkOApM6T+f95Ve18//rLXZufRFy6dKnmzp2r/v37a9KkSerTp4/atm2r4OBgzZs3z6YiIgAAAAAAAAAAAIDa52DrgWlpaWrdurUk8/qHaWnmtYF69+6t9evX2yc6AAAAAAAAAAAAADXO5iJi69atFR8fL0kKDw/XggULJJmfUGzYsKFdggMAAAAAAAAAAABQ82wuIk6aNEm7du2SJD3//POaOXOmXF1dNWXKFD377LN2CxAAAAAAAAAAAABAzbJ5TcQpUy4uIDlo0CDFxMRo27Ztatu2rTp16mSX4AAAAAAAAAAAAGBfBlNtR4D6wOYi4uWCg4MVHBxsr9MBAAAAAAAAAAAAqCVVns509erVat++vTIyMsq8du7cOUVEROjXX3+1S3AAAAAAAAAAAAAAal6Vi4gzZszQww8/rAYNGpR5zdvbW48++qjeffdduwQHAAAAAAAAAAAAoOZVuYi4a9cuDR06tNzXBw8erG3btl1VUAAAAAAAAAAAAABqT5WLiMnJyTIajeW+7uTkpNTU1KsKCgAAAAAAAAAAAEDtqXIRMSgoSHv37i339d27dysgIOCqggIAAAAAAAAAAEA1MfFT5Z/rUJWLiMOHD9fLL7+s3NzcMq/l5OTolVde0a233mqX4AAAAAAAAAAAAADUPKeqHvDSSy9p8eLFCg0N1eTJkxUWFiZJiomJ0cyZM1VYWKgXX3zR7oECAAAAAAAAAAAAqBlVLiL6+flp48aNeuyxxzR9+nSZTOZnOA0Gg4YMGaKZM2fKz8/P7oECAAAAAAAAAAAAqBlVLiJKUnBwsH788Uelp6fr0KFDMplMCgkJUaNGjcrse/LkSQUGBsrBocozpwIAAAAAAAAAAACoBTYVEUs0atRI3bp1q3Cf9u3ba+fOnWrduvXVvBUAAAAAAAAAAACAGnJVRcTKKJnuFAAAAAAAAAAAALXPQOkGlcAcowAAAAAAAAAAAAAsUEQEAAAAAAAAAAAAYIEiIgAAAAAAAAAAAAAL1V5ENBgM1f0WAAAAAAAAAAAAAOyo2ouIJhOrcwIAAAAAAAAAAAD1iVNVD3jggQcqtd/s2bMlSfv371dgYGBV3wYAAAAAAAAAAADVgee/UAlVLiLOmTNHwcHBioqKqtRThs2bN7cpMAAAAAAAAAAAAAC1o8pFxMcee0zz589XfHy8Jk2apAkTJqhx48bVERsAAAAAAAAAAACAWlDlNRFnzpypxMRETZs2TUuXLlXz5s01duxYrVixgvUPAQAAAAAAAAAAgGtAlYuIkuTi4qJx48Zp1apV2r9/vyIiIvT444+rZcuWyszMtHeMAAAAAAAAAAAAAGqQTUVEixM4OMhgMMhkMqmwsNAeMQEAAAAAAAAAAACoRTYVEfPy8jR//nzdfPPNCg0N1Z49e/T+++/r+PHj8vT0tHeMAAAAAAAAAAAAsBcTP1X+uQ45VfWAxx9/XF999ZWaN2+uBx54QPPnz5ePj091xAYAAAAAAAAAAACgFlS5iDhr1iy1aNFCrVu31rp167Ru3Tqr+y1evPiqgwMAAAAAAAAAAABQ86pcRLzvvvtkMBiqIxYAAAAAAAAAAAAAdUCVi4hz5syphjAAAAAAAAAAAAAA1BUOtR0AAAAAAAAAAAAAgLqlyk8i4v+zd+dxVdX5H8ffF7jsm8gmLqgoIrhrbrnlrmVppS1q2T6Z9Usry6mm3ZqmaZqWqZnSVrXMnJrMXHIty41SRERcwBUEBWQVEO7vj4vokUUvAlfw9Xw87uPhPevn0KfzPed87vd7AAAAAAAAAAAA6i+Txd4RoD6gJyIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwIAiIgAAAAAAAAAAAAADJ3sHAAAAAAAAAAAAgDpksXcAqA/oiQgAAAAAAAAAAADAgCIiAAAAAAAAAAAAAAOKiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMDAyd4BAAAAAAAAAAAAoO6YLBZ7h4B6gJ6IAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwIAiIgAAAAAAAAAAAAADiogAAAAAAAAAAAAADJzsHQAAAAAAAAAAAADqkMXeAaA+oCciAAAAAAAAAAAAAAOKiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAAyd7BwAAAAAAAAAAAIC6Y7LYOwLUB/REBAAAAAAAAAAAAGBAEREAAAAAAAAAAACAAUVEAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYOBk7wAAAAAAAAAAAABQhyz2DgD1AT0RAQAAAAAAAAAAABhQRAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgAFFRAAAAAAAAAAAAAAGFBEBAAAAAAAAAAAAGJgsFovF3kEAAAAAAAAAAACgbvSc8qa9Q6h3Nn8yw94h1Dl6IgIAAAAAAAAAAAAwcLJ3AOdq/fbf7R0CGrD9jzwmSWr5+Wt2jgQNWdLkpyRJEc//w86RoCGLf366JCniBfIMtSf+OWuedXycPEPt2fGGNc/avE6eofbsnWnNs3YvkmeoPbv/Ys2zkpRwO0eChswhOEGS1HsSPUdQezZ+Ye1lEzWLdhO1Z+er0+0dAoCLRE9EAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYHBZvRMRAAAAAAAAAAAAtcxi7wBQH9ATEQAAAAAAAAAAAIABRUQAAAAAAAAAAAAABhQRAQAAAAAAAAAAABhQRAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgIGTvQMAAAAAAAAAAABA3TFZ7B0B6gN6IgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwIAiIgAAAAAAAAAAAAADiogAAAAAAAAAAAAADCgiAgAAAAAAAAAAADBwsncAAAAAAAAAAAAAqEMWeweA+oCeiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAyc7B0AAAAAAAAAAAAA6o7JYu8IUB/QExEAAAAAAAAAAACAAUVEAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYEAREQAAAAAAAAAAAICBk70DAAAAAAAAAAAAQB2yWOwdAeoBeiICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwcLJ3AAAAAAAAAAAAAKg7Jou9I0B9QE9EAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYEAREQAAAAAAAAAAAICBzUXEhQsXqrCwsOz74cOHVVJSUvY9Ly9Pr7/+es1EBwAAAAAAAAAAAKDO2VxEvO2225SZmVn2PTIyUklJSWXfs7OzNWvWrJqIDQAAAAAAAAAAADXNwsfmzxXI5iKixWKp8jsAAAAAAAAAAACA+o13IgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwMCpOistX75cPj4+kqSSkhKtWrVKsbGxkmR4XyIAAAAAAAAAAACA+qdaRcQ777zT8P2BBx6okWAAAAAAAAAAAAAA2J/NRcSSkpLaiAMAAAAAAAAAAAB1wESpBxehxt+JmJqaqtmzZ9f0ZgEAAAAAAAAAAADUkRovIiYnJ+vZZ5+t6c0CAAAAAAAAAAAAqCM1XkQEAAAAAAAAAAAAUL9RRAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgIGTrSvMmDGjyvlpaWnVDgYAAAAAAAAAAAC1zGLvAFAf2FxE/OOPPy64zIABA6oVDAAAAAAAAAAAAAD7s7mIuGbNmtqIAwAAAAAAAAAAAMBlotrvRKSYCAAAAAAAAAAAADRM1S4ijhw5UmFhYXr55Zd16NChmowJAAAAAAAAAAAAgB1Vu4h45MgRTZs2TYsWLVLr1q01YsQILVy4UIWFhTUZHwAAAAAAAAAAAIA6Vu0ior+/v6ZPn65t27Zp06ZNCg8P19SpUxUSEqJHHnlE27dvr8k4AQAAAAAAAAAAUANMFj62fq5E1S4inqtbt26aNWuWpk2bppycHM2dO1fdu3dX//79tXPnzprYBQAAAAAAAAAAAIA6cklFxKKiIi1atEijR49WaGioli9frnfffVfHjh3T3r17FRoaqvHjx9dUrAAAAAAAAAAAAADqgFN1V3z44Ye1YMECWSwWTZ48Wa+//ro6dOhQNt/Dw0NvvPGGQkJCaiRQAAAAAAAAAAAAAHWj2kXEuLg4vfPOO7rxxhvl4uJS4TL+/v5as2ZNtYMDAAAAAAAAAAAAUPeqNZxpUVGRQkND1bt370oLiJLk5OSkgQMHVjs4AAAAAAAAAAAAAHWvWkVEs9msb775pqZjAQAAAAAAAAAAQG2zWPjY+rkCVauIKEljx47Vt99+W4OhAAAAAAAAAAAAALgcVPudiG3bttWLL76oDRs2qHv37vLw8DDMf+SRRy45OAAAAAAAAAAAAAB1r9pFxDlz5sjX11fR0dGKjo42zDOZTBQRAQAAAAAAAAAAgHqq2kXExMTEmoyjwXB2dNT0Xn01NiJSPq4uij9+XG/+tkG/HDpwwXWDPDz1zIBB6t8iVCaTSRsPH9LL69fqUNbJcstOiOyge7v1UHNvHyXnZOuTbX/os5g/KtzutW3b6a4u3RThH6DTJcXak56uN3/7Rb8dPlTh8j2aNNXC8bdKkrr/51/KOJVvw18AlxtnB0fN6Nxf41pHycfZVfGZaXpj23r9kpxU5Xqtvf00MbyrujRuog6Ng+Xi6KR+i9/X4dzy+fjLuAfVzNOn3PR5CX/o6U3La+pQUA94ubroiWH9NTQiTK5ms3YcSdFfV6xXXHLqBdft2DRI47pEqXPTYIUH+cvs6KiI5/9xwfW6tQjR/LtvkST1fv19ZeaduuTjwOXNy6WSPEu5iDwLqSDPXriIPGt+Xp7lk2cNnZeri2Zc11+DO4TJ1dms2IMpeuP79dp1pOo8M5mk67tHakjHNmrfNFDe7q46kn5Sy/7YrU/WRavwdHGl63ZtGaLPplnzrP9fOJ81NF4uLnpyUH8NbxsmVyezYlJS9Oqa9dp57MLnLkkK8/PT04MHqnuzEBUVl2jt/kTNXr1O6fnlr9Vb+Pro0X59dXVoC3k4OyslJ1tL4xP05s+/SpJMksZ1iNSI8DaKDAyUj6urDp88qSXxu/XR5mgVFleep6h/vFxc9MTQ/hp2pt08mqLXbGg3b+wcpU5Ng9WutN1s92L5dtPFyVF/GTVYnZoGq4m3lxwcTDqUflLfbNup+Vu363RJSW0cGuqh3Dxp7pdSzC5pxy7pZLZJs5+yaNwoe0eG+sDT3UXTbu2vgT3ayNXZrLj9KXp7/jrtTrq4tvQMR0cHfTF7slo1bay356/T/KVnO0f4+3po2m0D1L51kPx9PVVSUqKDKZn65qdtWvpzXE0fEuoJL1cXPTaqv4ZElt4bHErR60vXa9fRC98b3NA1UkOj2igiJFA+pfcGP8bs1sc/V31vAACXi2q/ExEV+9vQkbq7a3d9t3uXXly3RsUWi+ZcP049mjStcj13s1nzbxyvXk2b6V9bNuufG39VVECgFtx0i3xdXQ3L3tahk14bOkJ70k/o+XWr9XvyUT0/aLAe6H5Vue3+X68++ufIa5Wck61Xfl6rv/+2QbuPpynI07PCOEySnhs0WLmFhdX9E+Ay80bfa3VP5FX6NjFOL2z9ScUlJfp48Hj1CGhW5Xrd/JtqSrvu8jA7a+/JExfcz870Y3r0l+8Nn4V7Y2rqMFAPmEzSv28fq2s7ttO8zdv1xsqf5efhrs+m3KxQP98Lrj+wbSvd3K2DLJIOZ5QvVle2z2dGXcM56wpi0jl5tmW73vipDvJM5NmVxmSS3rtnrEZ3bacFG7brH0t+lp+nu+Y+eLNa+PtWua6r2ayXbx0hPw83LfwtRq9/t1axB1M0dUQfvX/vuCr3OWvcNcorIM8aIpOkj24aqzHt2+nz37fr9XU/q7G7u+bderNCG/lecP1gT08tuH28Qhv56u/rN2jOlq0a1LqVPplwo8wOxlu69oEB+vaO29U+MEBztkTrxVVr9P2u3Qo85/rfzWzW66NHyM/NTfO3xeiV1Wu1PTlF/3d1H80dX3meov4xSfrP7WN1Xcd2+mLLdv3tp5/l5+6uz++0rd2Uqm43XZ2c1CagsdbvTdKbq3/R6yt/VvyxNM0aMVCv3TCiho4GDUHmSelfn5q074DULsze0aA+MZmkNx8fq+F9I7Ro5Ta9++V6NfJ207+eHq/mQb42bWvC8C4KauxV4TxfLzcF+nlqzeY9emfBOv170a86kZmjvzwwUn+acHUNHAnqG5NJev/Osbq2czvN37hdb/5ovTf45L6b1aKxb5XrupnNemX8CDXydNPCTTH665K12nE4RQ8N7aN/T+GaC0D9UO2eiBaLRYsWLdKaNWuUmpqqkvN+Wbh48eJLDq6+6RQUrDHtIjT753X66I+tkqTF8XFaNvFOPdlvgMZ/vaDSdSd17KJWjfw09ssvFJN6TJK09kCSlk28U/d27aE3fvtFkuTi6KTH+vTT6sR9emjp95Kkr3bukIPJpGlX9daC2BhlFRRIkroEN9HDPfto9s9rNXfb7xd1DLd16KQmnl5auHOH7uravbp/ClwmOjduoutbReqV6NX6MG6zJGnxvlgtH3OvZnUbpJuWf1HpuisP79GPX+1W7ulC3RfZU1F+QVXuKyUvW98m7qzR+FG/jIgMV7cWIfq/hUu0PG6PJOnHnQla9vAUPXxNHz3+zY9Vrr9gS4w+/GWLCk4X69nR16iVv98F9zmheyc18fHSot9jdWfvbjVyHLi8GfJs1zl5Nm2KHh7UR48vvkCebY3RhxtK82wUeYaKDe8Urq6tQjTjsyVaGWPNs+XbE7TkySl6aHgfPTm/8jwrKi7WpHe+1PYDyWXTvtkUq6MZWXpoRF/1bttCG/ccLLfezb07KdjXS99sitXkAeRZQzOqXbi6NwvRtG+XaFmCNaeWxido5X1T9H9X99GMJVWfux7s01NuZrNu+HS+krOzJUnbk4/ps1tu0o0do/TV9h2SrAWjN64dqf3pGZr45dcqqOTX7UXFxRr/xZf64+jZPP0qJlZHsrL0aL++6hvaQr8eKJ+nqH9GRoarW/MQPfL1Oe1mXIKWPzRFDw/so8f/a0O7ObLydvPkqQLdMvdLw7Qvo2OUXVCgyT276rUV63Q8N69mDgr1WkBjaf1iiwIaS7Hx0vgH7B0R6ovBPcPVKbypZv3ze63ZYj2frdqUoIVv3KV7b+qr5/619KK208jbTXeP7a3Pl2zRAzeXLwruPXRcU1/52jBt0cptemPGDZowvKv+8/WvKrFYLv2AUG8M7xCuri1DNH3eEq2Itebesh0J+uGxKZo2tI9mflX1vcHE97/UtoNnr7kWbbHeG0wb1le9w1po4z6uuWA/Jk5nuAjV7on46KOPavLkyUpMTJSnp6d8fHwMnyvRqDbhOl1Soi93nu19VVhcrK/jYtW9SYiaeFb8Kyfrum21PSW5rIAoSfsz0vXroYMa3Ta8bFqfZs3l5+amL2K2G9b/PGabPJyddU3L1mXT7urSTWm5ufq4tIDobjZXGb+Pi6tm9OmntzZuUFZhwcUdNC5ro0Lb6XRJiRbs2VY2raCkWAv3bVf3wGZq4l55Tp4sPKXc07b1hjA7OMjNqeo8Q8M1IrKt0nJytaL0AZUkZeTla9nOBA1uFyazo2OV65/Izav0YWdFfNxc9Ojgvnp7za/KPsU560pRaZ7F1VKeuZJnV6JhndrqeFauftpxTp7l5mv59gQN6lB1np0uLjEUEM9YtWOvJKl1YPkH8N5uLnp4ZF+9t5w8a6hGtrOeu5YnnM2p9Px8LY1P0NA2YXK+wLlrRHgbrdmXWFZAlKRfDxzU/vR0jW539l6hf6tQtQvw19sbNqrgdLFcnZzkYDKV215RSYmhgHjGigRrnoY1vvAPLFA/jGhfcbv5Y1yChtRCu3m+I5lZkiRvV5dqbwMNi7OztZAI2Oqanm11IjNXa7eePZ9lZudr1aYEDegWJrNT1eezM6be0l8HkzO0bMMum/affDxLrs7mi94PGo7hHdrqeHauVu48794gJkHXRFbdlhYVlxgKiGf8tLPyewMAuNxUu4j4+eefa/Hixfrxxx/1ySef6OOPPzZ8rkRRAYFKzMxQznnDnW1PSZEktQ8IqHA9k6QI/wDtOKeAWLbusWS19G0kj9ICYGRAoCRpR2qKYbnY1GMqLilRVOl8SerbvIViUlM0pUs3bb1vqmIffEQb73lAkzt1qTCOGX2uVlperubHMgRlQxHlF6TErHTlFBlzcttx6wVM5AV6F9qib3Codt32uHbd9ph+Gfeg7oroUWPbRv3QPjhAccmpOv9HmTFHUuTubFarCwzzYatHrumrtJxcfbV1R41uF5e3sjw7b3qt5dng0jyLJs+uJBEhAdp1pPz5bMcha561DPC1eZv+Xh6SrA8czvfwyL46np2rr38jzxqqyKAA7TxWwbkruTSnqhjSNMjTQ/4eHtqRUv5eISb5mCKDzt5j9A1tIcn6Q8b/3nG7Ymc8rNjp0/TWmNHyuYgiToBHaZ5W8J5F1E+VtZs7aqndNDs4qJGbq4K9PTW0XZju7tNDhzNP6kB6Zo3uB8CVp11ooHYnlb8+i9uXIjdXs1oEN7rgNiJbB2t0/0j944u1KndiPI+L2Uk+nq5q4u+t0f0jde2AKMXuPaqCotPVPwjUS+1DAhR3tIJ7g8Ol13EXeN1BRc7cG2Tmcc0FwCo9PV0TJ06Ut7e3fH19dc899ygnJ6fKdQYNGiSTyWT4/OlPfzIsc/DgQV177bVyd3dXYGCgnnjiCZ0+bVtbVu3hTH18fNS6desLL3gFCfDwUFpu+f+wqXnWaUEeFb+H0NfVTS5OTkrNzS03L610WqCHpxIzMxTo4aHTJSU6cd6NfVFJiTJOnSrbh7eLixq7uat7k6bq06yF3t70m47mZOnm9h30wqAh1t5p5xQLIxr767YOnXT3/xYzLEMDEujmqdT8CnKydFqQW8U5aatdGanamnpY+7PS5evippvDOuq5q4YqyM1Tr/2xtkb2gctfgJeHth44Um56Wk7peczLUwmpF36/5sUID/LXLT066YF5/+WcdYUJ8PLQ1oMV5Fl2LeRZoL9u6U6eXYkCvD0Uvb98nh3Pyi2d76k9Kbbl2V3X9FB2foF+iU8yTA9v4q+be3fS1DnkWUMW4OGhLYfK59SZ6/8gT08lHK84pwJK32V4pj01rJ+Tq0ZubnJ2dFRhcbFaNrI+QH37+mv1c2KSPti4WRGBAfpTr6vUxMtLt8z/qso47+vVQ9kFBVq3P8mWw8NlrLJ2M7UWrs8kaVj7NvrHTdeWfd9xJEV//n6Fijm/AbhEjX099Ed8BddnmdbzmX8jD+07fLzKbTx2xzX6aWOCYvcmq4m/d5XLThjZVQ/d0r/s+5bYA3rpP8urETnquwAvD21NrOIe1NtTe47Z1pbePaCHsk8V6OfdSTURIoAGYOLEiUpOTtbKlStVVFSku+66S/fff7/mz59f5Xr33XefXnzxxbLv7u7uZf8uLi7Wtddeq+DgYP36669KTk7WHXfcIbPZrNmzZ190bNUuIj7//PN64YUXNHfuXLm5uVV3Mw2Kq5OTCovLD/VyZvgXV6eK/9xnple4brFxXVcnJxVVsJx1/dNyKV3Ow+wsSfJzc9PDPy7RD3t2S5J+3JOgHyfeqYdK3594xl8GDta6A4n65eCBCx8o6g1XRycVllSUV6fL5teE+9Z+Y/j+9b4YfTp4gu6JvEqf7I5WSl52JWuiIbnQOdDFXDP5JknPjBqkn/ckaQPvDrjiuDo5qbCCYdXK8qyStrY6yvJsP3l2pXExX+Cazsbz2b2Dr1Kf8FC99M2qcsOVPjV2kH7ZnaTfEsizhuyCbWQV566q7xVOl61fWFwsd2fr6CU7UlL02A/LJEnLE/bqVNFpPTGwX5XvOnyw91Xq1zJUf1mxStkFDKvbUFTWbhbWQrspSZuSDmvK59/I29VFfVo1V7ugALld4LUaAHAxXJydVFRBz4nC0p6BLs5Vn8+uHRClsOb+mvX29xe1v5W/xit+/zH5erupX5fW8vNxv+A+0DC5mCt+FltYVL1nHfcNukp924bqxW/L3xsAuDLt2rVLy5Yt05YtW9Sjh3V0v3feeUejR4/WG2+8oZCQkErXdXd3V3BwcIXzVqxYobi4OP30008KCgpSly5d9NJLL+nJJ5/U888/L2dn54uKr9rDmU6YMEEZGRkKDAxUx44d1a1bN8OnKgUFBcrKyjJ8ChrAjeqp06crfJ+JS+l46acq6SZ6ZnqF6zoa1z11+nSlY207Ozqp4JzlJOvDhh/3JpQtY5H0w57dCvHyUkjpOxqvbdtO3ZqEaPbP6y54jKhfThWflrNDRXnlVDa/tszZtUVmB0f1DmpRa/uAfZgdHeTv6W74OJhMFzwH1tSwL6OiwtWleYj+uoJzVkNmdnCQv4e74VOWZxW8h6Qsz2wckqEy5NmVwcnRQY293A0fB5NJBUUXuKaz4Xw2onO4Hh55tb7ZtEMLf4spN69LaIje+B951lBUee6qqo2s4txV9b2Ck2H9M8t+v2u3Ybn/xcVLkro1bVLhPkZHhGt6/6u1MGaH5m/j1Qb1ka3tpnMNt5tnnMjN02+JB7V81x49v3S11u7Zr48n3SR/D/cLrwwAsl6f+fm4Gz4OJpMKCk/LXMEPH5xLCzgFhZWfz9zdnDV1Qj998cNWpaZXPTTcGSknsrVl50Gt/G23nnv/Rx1JPal3nrq5Rn8ci8tLZc86CooqfhbrbLb9WcfIjuF6ZNjVWrRlh77axDUXUB/VRm3rt99+k6+vb1kBUZKGDh0qBwcHbdq0qcp1582bJ39/f3Xo0EGzZs1SXl6eYbsdO3ZUUNDZV5qNGDFCWVlZ2rlz50XHV+2W784771R0dLQmTZqkoKAgmUymi1731Vdf1QsvvGCY9txzz0l+XtUN57KQlpurIM/yw0MGulunHatgqFNJyjyVr4LTpxVY+g6Sc515L0lq6bqpublycnBQYzc3w5CmZgcHNXJ1LdtH5ql8nTpdpKyCgnJDY50oTSRvV1cdzcnWrH4D9OOeBBUWF6upl3U4B29n6ztTmnh5yezoUOFQq7j8pebnKNit/P9XgaXDmB6rYKjTmnI0L0uS5OviWmv7gH10bR6iz6aMN0wb8tYcpWXnKsCrgvOYZ+l5LLtm8u2J4f21fGeCiopL1NTXes7yKn3PUxNvLzk7Oio1m3NWfVdlnnlWkGdeNZxnw87JM5/z8synNM8qGFoQ9UuXliH6+EFjno14ZY7SsnIV4F0+z/xLp6VlXVye9WnbQrNvG6H18Yl66ZtV5eY/dl1/rYix5llII2OeBft6yezkqLQs8qw+6dY0RPNuM+bUwA/mKC03t+y6/lxnrv+PVfGui7TSeRWd+wI9PZSRn1/WS/HMeelEbp5huTPX/z6u5a/Lrg5toTdGj9DafYl6dnn5PEX90LV5iD6/05h7g/9ZebsZWMPXZ5VZHrdHMwb305B2Yfrqd977CuDCOoWH6F9PTzBMG/foRzqRmSt/3wquz0qnHc+o/Jpp4ugecnJy1E8bd5cNYxroV/o6IA/rew/TMnJ0urik0m2s3rxHYwd3UpeIptq0g1G8GqIuLUL0yf3GtnTYX0vb0gruDcruQS/23qBNC706YYTW707Ui99yzYXLBCPO26yy2tbzzz9f7W2mpKQoMDDQMM3JyUl+fn5KSUmpdL3bb79doaGhCgkJUUxMjJ588knt3r1bixcvLtvuuQVESWXfq9ru+apdRPzhhx+0fPly9evXz+Z1Z82apRkzZhimubi46LN/v1vdcC4LcWmp6t2suTydnZVTWFg2vUtpd9JdaWkVrmeRtPvEcXUMDCo3r0twEx04mancoiLrNo6nSpI6BgZr7YHEsuU6BgbL0cFBcaXzLZLi0tLUKShYZgcHFZWcvRAKLH1vYnq+9WFCiJe3bojw1g0R7cvtf8ltkxWXlqrrFnx+sX8GXEbi0lPVp32oPM3Oyik6Jyf9Q0rnH6u1fbfw9JUkpZ/Kq3pB1DvxKWm66zPjELZpObmKT0lT99CmMplkeOF452ZNlFdYpMQTmTWy/xAfb4V08taYTuXPWf/90yTtSknVuA/m1ci+YD/xxy6QZzJe63ZuWod59kBpnv2bPKvvEo6m6b5/G/PseHaudh9NU7dW5c9nnVpY8ywpLfOC2+7YIlhvTRmjnYdS9fhnS1RcUv7urEkjb13byFvXdiufZ1/PmKT4I6ka/w/yrD7ZlZqmO74679yVm6tdx9LUo1kF566Q0pzKyKx0m8dycnUiN08dg8vfK3RqEqRdqWfvMWJTjkmdOyrIy/jDxjM/dEzPM16XdW4SrH+NG6MdKal6+H9LeG9dPRZ/LE1TPq+g3TyWpu4tyudepxpuNytzpsfOmR9IAMCF7DmQpodfXWSYduJkrhIOpKlLu/LXZ1Fhwco/VaSDKRmVbjO4sZd8PF315etTys2bckMvTbmhlyb/+XPtOVjxczvp7HCpnu6czxqq3clpuuej8+4NcnIVn5ym7i0ruDdoXnoddzzzgtvu2DxYb08ao52HUzVjfsX3BgDqh8pqWxV56qmn9Ne//rXK7e3atavasdx///1l/+7YsaOaNGmiIUOGaN++fQoLC6v2ds9X7SJi8+bN5e1d9UuIK+Pi4lLpH7Y++3Fvgu7vfpVujeqkj/7YKsk67NDNkR30R8pRJedY3wsX4uklV7NZ+zPSDes+efUAdQwM0o5Ua2GnlW8j9WnWQh/9vrVsuV8PHVJGfr4mdupsKCJO7NRZeUVFWpN4dtoPe3arW5MQ3dg+Sl/t3FEWzw0R7ZVw4nhZ78IHlnxX7liuC2+nMeERmrFiqVKq+GU0Lm8/HozXA1G9dFvbLvowbrMkydnBUePDOuqPtCNKLn1XYYi7t9ycnLQvK72qzVXIx9lV2UXGHq9OJgc92KG3CopP67cU3vHU0GSdKtBvFbwjbnncHo2MCtfw9m21PG6PJMnX3VUjIttqTcJ+wzsEmjfykSQdyjhp8/4f+vJ/5aaN7tBO13Zop5mLl+lYFu/gbAiyThXot8QK8mzXOXm2qzTP3Oo4z/5LnjUUWfkF2rinfJ6tiNmj4Z3DNbRjW62MOXs+G96prdbtNOZZs8bWPDt84myetQr003v3jNWRjCxNm/tt2Xvvzvd/H5fPs5Fd2mlU13aaNX+Zjp0kz+qbrIKCCt85+GPCHo2KCNeI8LZalmDNqUZurhrVrq1W79tveN9hC19rTh3MPJtTyxL26MYOkWri5ank0p5jfVo0V2s/P3289Y+y5X7au0/PDhmkmzpE6ZsdO8uKRhM6dZAk/ZJ0NrYwPz99eNNYHTmZpfu+qTxPUT9U1m4ui9ujkZHGdrORm6tG1nC72cjNVRn5p8pNH9/VmnuxR2vvx4sAGpbsvAJt2Vn+fLZmc4KG9ArXoB5ttWaL9Xzm4+mqwb3C9csf+1R0TjvWNNB6PjuSaj2fLVzxh9ZF7zVsr5G3u2bdM0xL1sdqffQ+HU2zLuvr5abM7Hyd7/pBHVRSYtHupNSaOVBcdrJOFWjjvgruDXbs0YiO4RoW1VYrYs+5N+jYVmt3ndeW+pW2peln29LWAX56/07rvcHUT7nmAuo7W2pbjz32mKZMmVLlMq1bt1ZwcLBSU43ty+nTp5Wenl7p+w4r0qtXL0nS3r17FRYWpuDgYG3evNmwzLFj1utyW7Zb7SLi3//+d82cOVMffPCBWrZsWd3NNCjbj6Xohz279UTffmrs7q4DmRm6sX2Umnp568mflpct98bwUerdrLlav/33smlfxGzTLVEdNef6cfrw9606XVKie7p21/G83LKCpCQVFJ/WPzZu0IvXDNW7o67T+oMHdFVIU42LiNQbv/6skwVnb9zm74jRhKiOemHQELXybaSj2dkaF9FeTb28dd/3/y1bbuV+44WUJEUGBEiS1iUlKeNU+Ysn1A/bjidrSdIuzew6UI1d3XUgO0M3te6oZp4+evK3H8uWe/Pq69Q7uIVafv5a2TQvs4vujOguSeoR0FSSdEe7bsoqKlBW4Sl9tvt3SdKwZm01rWNf/XgwXodyTsrXxVXXt4xURKNAvf7HWqWdYhi2K8XyuD3aduioZt8wXGEBfsrIy9dtV3WWo4NJ7675zbDsJ3feJEka8tbcsmkhPl66vrO1N05UiLW3xZ8G9JQkHc3M1v9irL/MWRW/r9y+2wdbz1nr9yYqM6/8Ayw0HFXm2drz8uyO0jz753l51um8POtfmmcnz8mz3VXk2Z5EZVbwoBQNx8qYPdqedFQvTRiusCA/ZeTm65a+neXgYNK/Vhjz7KMHrHk2crY1z9xdzPr3fePk7eaiT9Zu1YD2rQzLHzpxUtsPJEuSVu8sn2ftmlrz7Jd4zmcNybLde/THkaN6bfRwtfG3nrsmdu0sR5NJ/9xgzKnPbrHm1KB/nz13fbBxs0a1C9cXt47XJ9F/yMNs1r09eyg+NU3f7Dj7LovjuXn612+bNb1/X308/kat3LNXEYEBuqVzR/0vLl47Uqw3jB7OZn08YZx8XF300eatuibMmKcHM0/qj6PJtfXnQB1avmuP/jh8VK9eP1xtzrSbPazt5jvrzms3J5e2m28b280bStvNDqXt5oP9z16ffbfD2m5e36m9bu3eST/t3qdDGSfl4WxWv7CW6hcWqtW792lj0qFaP1bUH/MWS1k5Uupx6/c1v0oppR3AJt0oeZV/Swyg1Zv3aMeeo3rm/hFq1bSxTubk68Yh1vPZh4uN57N3Z90sSRo3fY4kaXdSarni35lhTfcfPqH10Wevyabc0EudwkO0MSZJx45ny9vTVYOuaquosGAtXP6HDh/LrMWjxOVoRewebTt4VC/fPFxhgda29NZe1uu4934y5t6ce61t6fDXS+8NnM36z93We4OP12/VgIjz7g3ST2r7Qa65gIYqICBAAaV1lqr06dNHmZmZio6OVvfu1ufxq1evVklJSVlh8GJs27ZNktSkSZOy7b7yyitKTU0tGy515cqV8vb2VmRk5EVvt9pFxEmTJikvL09hYWFyd3eX2Ww2zE9Pt71HU0Pw2IofNaP31RoX0V4+Lq6KP56me7//r7YcPVLlerlFRbp98UI903+Qpl3VWyaTSZuOHNLL69cqPd9YxPtix3YVlZTo3q49NKR1mJKzs/XS+jX6eNvvhuUKik9r0uKFevLqARof2UHuZrPijqfqnv8t1s8HGb/9SvHYhiU6kjtAN7bqIB8XV+3KSNU9qxdpc2rVN/I+zq56vMsAw7T7o6wnrcM5J8uKiPGZqdpz8rjGtoqSn6u7ikqKFZeeqqnr/qulB3fXzkHhslRisej+ed/qieH9NblXV7k4OSn2aIr+/O0KJZ6ofGiZM5o18tGjg682TDvzfXPSobLiDq5sJRaL7p//rZ4YVs088yXPcGElFoumzvlWM67rr9v7dZWL2Uk7D6XomS9XKCmt6jzzdXdTk9L3G06/tn+5+d9t2VlWRMSVo8Ri0T2LvtVT1/TXHd26ytXJSTtSUjTzxxVKTL/wuSs5O0cTF3ytPw8eoCcG9FNRSbHW7kvU7DXrDb0YJem93zYp69QpTe7eRU8PGaTjubn612+b9O6vm8qW8XV1U0jpqDIzB5XP02927KSI2ECcaTdnDu2vyT2t7eaOoyma9Z0N7eY157Wbpd83JR0qKyJGHzyqrs1CdG1UO/l7uut0SYkSj2do9vK1+mLztho/LtRvc7+SjqaYyr6vXG/SyvXWf18/zEIRERUqsVg042//1cO3D9CEEdbrs12JKXrpP8t1MPnC57OL9eu2/WoW6KPrBnRQI283FRad1t6Dx/XSv5fph5/jamw/qD9KLBY9+PG3emx0f03sa8292MMpenrRCiUdv4h7A1/rNdeMUeWvub6N3kkREYDat2+vkSNH6r777tMHH3ygoqIiTZs2TbfeeqtCQqyvJTty5IiGDBmizz77TD179tS+ffs0f/58jR49Wo0bN1ZMTIymT5+uAQMGqFOnTpKk4cOHKzIyUpMnT9brr7+ulJQUPfPMM3rooYdsGinUZLFU78UXn376aZXz77zzTpu3eW7PPKCm7X/kMUky9LYDalrS5KckSRHP/8POkaAhi39+uiQp4gXyDLUn/jlrnnV8nDxD7dnxhjXP2rxOnqH27J1pzbN2L5JnqD27/2LNs5KUcDtHgobMIThBktR70pt2jgQN2cYvrO/6ippFu4nas/PV6fYOAZL63fiGvUOod35Z/HitbDc9PV3Tpk3T999/LwcHB9100016++235Vn6fvukpCS1atVKa9as0aBBg3To0CFNmjRJsbGxys3NVfPmzTVu3Dg988wzhtcQHjhwQA8++KDWrl0rDw8P3XnnnXrttdfk5HTx/Qur3ROxOkVCAAAAAAAAAAAA2JepWt3LUBv8/Pw0f/78Sue3bNlS5/YHbN68udatW3fB7YaGhmrp0qWXFFu1i4jnOnXqlAoLCw3Tzq12AgAAAAAAAAAAAKg/HKq7Ym5urqZNm6bAwEB5eHioUaNGhg8AAAAAAAAAAACA+qnaRcSZM2dq9erVev/99+Xi4qKPPvpIL7zwgkJCQvTZZ5/VZIwAAAAAAAAAAAAA6lC1hzP9/vvv9dlnn2nQoEG666671L9/f7Vp00ahoaGaN2+eJk6cWJNxAgAAAAAAAAAAAKgj1e6JmJ6ertatW0uyvv8wPT1dktSvXz+tX7++ZqIDAAAAAAAAAAAAUOeqXURs3bq1EhMTJUkRERFauHChJGsPRV9f3xoJDgAAAAAAAAAAADXMYuFj6+cKVO0i4l133aXt27dLkp566im99957cnV11fTp0/XEE0/UWIAAAAAAAAAAAAAA6la134k4ffr0sn8PHTpU8fHxio6OVps2bdSpU6caCQ4AAAAAAAAAAABA3at2EfF8oaGhCg0NranNAQAAAAAAAAAAALATm4czXb16tSIjI5WVlVVu3smTJxUVFaWff/65RoIDAAAAAAAAAAAAUPdsLiK+9dZbuu++++Tt7V1uno+Pjx544AG9+eabNRIcAAAAAAAAAAAAgLpncxFx+/btGjlyZKXzhw8frujo6EsKCgAAAAAAAAAAALXDZOFj6+dKZHMR8dixYzKbzZXOd3JyUlpa2iUFBQAAAAAAAAAAAMB+bC4iNm3aVLGxsZXOj4mJUZMmTS4pKAAAAAAAAAAAAAD2Y3MRcfTo0Xr22Wd16tSpcvPy8/P13HPP6brrrquR4AAAAAAAAAAAAADUPSdbV3jmmWe0ePFihYeHa9q0aWrXrp0kKT4+Xu+9956Ki4v19NNP13igAAAAAAAAAAAAAOqGzUXEoKAg/frrr3rwwQc1a9YsWSzWt0maTCaNGDFC7733noKCgmo8UAAAAAAAAAAAAAB1w+YioiSFhoZq6dKlysjI0N69e2WxWNS2bVs1atSo3LKHDx9WSEiIHBxsHjkVAAAAAAAAAAAANc1i7wBQH1SriHhGo0aNdNVVV1W5TGRkpLZt26bWrVtfyq4AAAAAAAAAAAAA1JFa7x54ZrhTAAAAAAAAAAAAAPUDY4wCAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA6fa3oHJZKrtXQAAAAAAAAAAAOAimSz2jgD1Qa33RLRYyEQAAAAAAAAAAACgPrG5J+Ldd999UcvNnTtXkhQXF6eQkBBbdwMAAAAAAAAAAADATmwuIn7yyScKDQ1V165dL6qXYfPmzasVGAAAAAAAAAAAAAD7sLmI+OCDD2rBggVKTEzUXXfdpUmTJsnPz682YgMAAAAAAAAAAABgBza/E/G9995TcnKyZs6cqe+//17NmzfXhAkTtHz5ct5/CAAAAAAAAAAAADQANhcRJcnFxUW33XabVq5cqbi4OEVFRWnq1Klq2bKlcnJyajpGAAAAAAAAAAAA1JQSCx9bP1egahURDRtwcJDJZJLFYlFxcXFNxAQAAAAAAAAAAADAjqpVRCwoKNCCBQs0bNgwhYeHa8eOHXr33Xd18OBBeXp61nSMAAAAAAAAAAAAAOqQk60rTJ06VV9++aWaN2+uu+++WwsWLJC/v39txAYAAAAAAAAAAADADmwuIn7wwQdq0aKFWrdurXXr1mndunUVLrd48eJLDg4AAAAAAAAAAABA3bO5iHjHHXfIZDLVRiwAAAAAAAAAAAAALgM2FxE/+eSTWggDAAAAAAAAAAAAdcJi7wBQHzjYOwAAAAAAAAAAAAAAlxeKiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAAyd7BwAAAAAAAAAAAIC6Y7LYOwLUB/REBAAAAAAAAAAAAGBAEREAAAAAAAAAAACAAUVEAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYOBk7wAAAAAAAAAAAABQhywWe0eAeoCeiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAyc7B0AAAAAAAAAAAAA6o7JYu8IUB/QExEAAAAAAAAAAACAAUVEAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYEAREQAAAAAAAAAAAICBk70DAAAAAAAAAAAAQB2y2DsA1Af0RAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgAFFRAAAAAAAAAAAAAAGFBEBAAAAAAAAAAAAGFBEBAAAAAAAAAAAAGDgZO8AAAAAAAAAAAAAUHdMFou9Q0A9QE9EAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYGCyWBj4FgAAAAAAAAAA4EoxeNhr9g6h3lm98il7h1Dn6IkIAAAAAAAAAAAAwMDJ3gGcq/fyWfYOAQ3YxhGvSpIGrXrczpGgIVs75A1JUqcZ/7BzJGjIYt6cLkmK/DN5htoTN9uaZ93+RJ6h9vz+gTXPwmeTZ6g9CX8ubTefIc9Qe+JetuZZ70lv2jkSNGQbv5ghSSpJCbdzJGjIHIITJEmdH6XdRO3Z/tZ0e4cASSqxdwCoD+iJCAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwMDJ3gEAAAAAAAAAAACg7pgsFnuHgHqAnogAAAAAAAAAAAAADCgiAgAAAAAAAAAAADCgiAgAAAAAAAAAAADAgCIiAAAAAAAAAAAAAAOKiAAAAAAAAAAAAAAMnOwdAAAAAAAAAAAAAOqQxd4BoD6gJyIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwIAiIgAAAAAAAAAAAAADJ3sHAAAAAAAAAAAAgDpksdg7AtQD9EQEAAAAAAAAAAAAYEAREQAAAAAAAAAAAIABRUQAAAAAAAAAAAAABhQRAQAAAAAAAAAAABhQRAQAAAAAAAAAAABg4GTvAAAAAAAAAAAAAFB3TBZ7R4D6gJ6IAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwIAiIgAAAAAAAAAAAAADiogAAAAAAAAAAAAADJzsHQAAAAAAAAAAAADqkMVi7whQD9ATEQAAAAAAAAAAAIABRUQAAAAAAAAAAAAABhQRAQAAAAAAAAAAABhQRAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgIGTvQMAAAAAAAAAAABA3TGV2DsC1Af0RAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgIHNRcSFCxeqsLCw7Pvhw4dVUnK232teXp5ef/31mokOAAAAAAAAAAAAQJ2zuYh42223KTMzs+x7ZGSkkpKSyr5nZ2dr1qxZNREbAAAAAAAAAAAAADuwuYhosViq/A4AAAAAAAAAAACgfnOydwAAAAAAAAAAAACoQ3QQw0WwuSciAAAAAAAAAAAAgIatWj0Rly9fLh8fH0lSSUmJVq1apdjYWEkyvC8RAAAAAAAAAAAAQP1TrSLinXfeafj+wAMPGL6bTKbqRwQAAAAAAAAAAADArmwuIpaUlNRGHAAAAAAAAAAAAAAuE7wTEQAAAAAAAAAAAICBzUXEhIQEbd682TBt1apVuuaaa9SzZ0/Nnj27xoIDAAAAAAAAAABADbPwsflzBbK5iPjkk09qyZIlZd8TExM1ZswYOTs7q0+fPnr11Vf11ltv1WSMAAAAAAAAAAAAAOqQze9E3Lp1q2bOnFn2fd68eQoPD9fy5cslSZ06ddI777yjRx99tMaCBAAAAAAAAAAAAFB3bO6JePz4cTVr1qzs+5o1azRmzJiy74MGDVJSUlKNBAcAAAAAAAAAAACg7tlcRPTz81NycrIkqaSkRFu3blXv3r3L5hcWFspiuUIHhwUAAAAAAAAAAAAaAJuLiIMGDdJLL72kQ4cO6a233lJJSYkGDRpUNj8uLk4tW7aswRABAAAAAAAAAAAA1CWb34n4yiuvaNiwYQoNDZWjo6PefvtteXh4lM3//PPPNXjw4BoNEgAAAAAAAAAAADXDxIiSuAg2FxFbtmypXbt2aefOnQoICFBISIhh/gsvvGB4ZyIAAAAAAAAAAACA+sXm4UwlycnJSenp6eUKiJLUuXNnNW7c+JIDAwAAAAAAAAAAAGAf1SoiStLIkSMVFhaml19+WYcOHarJmAAAAAAAAAAAAADYUbWLiEeOHNG0adO0aNEitW7dWiNGjNDChQtVWFhYk/EBAAAAAAAAAAAAqGPVLiL6+/tr+vTp2rZtmzZt2qTw8HBNnTpVISEheuSRR7R9+/aajBMAAAAAAAAAAABAHal2EfFc3bp106xZszRt2jTl5ORo7ty56t69u/r376+dO3fWxC4AAAAAAAAAAABQEywWPrZ+rkCXVEQsKirSokWLNHr0aIWGhmr58uV69913dezYMe3du1ehoaEaP358TcUKAAAAAAAAAAAAoA44VXfFhx9+WAsWLJDFYtHkyZP1+uuvq0OHDmXzPTw89MYbbygkJKRGAgUAAAAAAAAAAABQN6pdRIyLi9M777yjG2+8US4uLhUu4+/vrzVr1lQ7OAAAAAAAAAAAAAB1r1rDmRYVFSk0NFS9e/eutIAoSU5OTho4cGC1gwMAAAAAAAAAAABQ96pVRDSbzfrmm29qOhYAAAAAAAAAAAAAl4FqFRElaezYsfr2229rMBQAAAAAAAAAAAAAl4NqvxOxbdu2evHFF7VhwwZ1795dHh4ehvmPPPLIJQcHAAAAAAAAAACAGlZi7wBQH1S7iDhnzhz5+voqOjpa0dHRhnkmk4ki4kUwmxx1f9thGtmkq7zMbtqXnaJ/712hzSf2VrnewMBIjWveS2GewfJxdldmYa5iMw/qo32rtD/nWKXrNXXz0/yrH5WLo1lTfntX8VlHavqQcBkymxx1V+uRGt6km7yc3LUvJ1lz9v+o6PQ9Va7XL6CDrm/aR609g+Vt9tDJwhzFZR3UJ/tXKDE3xbCss4OTbm4+QMObdFewayNlF+Vr58kkfZK4Qkm5leckGh4vVxdNH9NfgzuGyc1s1o5DKfr7d+u160hqleuZTNKYHpEa2rGNIpoGysfdVUfST+rHP3br07XRKjxdXLbs9VdF6uXbRlS6rae++FFLf4+vsWPC5cfL1UWPjeyvoVFhcjWbteNwil5ful67jladZ5LUsVmQxnaLUqfmwQoP9pfZ0VGRf/5Hhcs29nTXjBH9NKBdK3m4OGt/6gl9uG6LlsdWff5Ew+Dp5qJHb+yva7qEydXZrNikFP1j0XrFH7pwno3r10Gje7ZXy+BG8nJzUdrJXEUnHNa/f9io5BNZla7XJSxEc5+4RZI0+LH3lZl7qsaOB/bn5eKimYP7a1i7MLk6mRWTnKLXflqvuGMXzilJCmvsp1lDB6p78xAVFZdo3d5EzV61Thl5+YblAjw89MiAPurbqoUCPDyUmpOjVQn79P6vm5WZfzanEv48vdJ9bUg8oLsWLK7egeKy4+XqosdG9NfQyHPazR/Xa1fyRbSbTUvbzWbntJvPlG83x3aN1OybKr8+m/n1j1qyneuzhszT3UXTbu2vgT3ayNXZrLj9KXp7/jrtTrq4c9wZjo4O+mL2ZLVq2lhvz1+n+UvPPm/y9/XQtNsGqH3rIPn7eqqkpEQHUzL1zU/btPTnuJo+JNRjuXnS3C+lmF3Sjl3SyWyTZj9l0bhR9o4M9YGXm4seHdNfgztZn2vEHkzRG9+tV/zhi3iucVWkhnQyPtdY9vtufbrG+FxDkjxdnXXvsF4a3ClMQT5eSs/J06aEg/pg2UalZGbX5iECgE2qXURMTEysyTiuSM92HK/BQR305YENOpR3XNeGdNeb3abooS0fanvmgUrXC/MKVnZRvhYe3KDMwjw1dvHUdU17aG7vqbp30/vam51S4XqPRlyrYgs/L7jSPBV5qwYGdtKiQz/rcF6aRja5Sn/tfK+m//6+dpxMqnS91p5NlHM6T98c+kUnC3Pl5+KlUU2u0vtXPaKHtr6jfTnJZcs+HXW7rvaP0pKjm7Qn+7Aau/hobLO+eq/xw7p709917FRGHRwp7M1kkt69b6zahfjrkzXRysjN1y1Xd9ach27WrW/O18HjmZWu62o26+XbRmh70lF9/VuM0nPy1Cm0iaaO7KNe4S10778WlS0bve+IZs37sdw2Jg/opvCQAG3ac7A2Dg+XCZNJev/OsYoI9tfcn6OVkZev23p11qf33qzx783XgROZVa4/oF0r3dyjg3anHNfh9JNqFeBX4XIeLs764v4Jauzprs9//UPHc/I0smO4/nH7dXriq6X6YfvuWjg6XC5MJuntaWMV3tRfn62MVmZOvsYP7Kz/zLhZE1+dr0OpmVWu3655oI6cOKl1MfuUnVegkMbeGtevo/p3bKVbXv5Cx0/mVrjPmbdco7xThXJ3da6lI4O9mCT9Z8JYRQT5a87GaGXk5+v2bp31xaSbNW7ufB3IyKxy/SAvT82bPF7Zpwr15toN8nA26+5ePRQe2Fg3f7xARSXWa3x3s1lf3XmL3J3Nmh8do+SsbEUE+Wtijy7qFdpc4+bOk6V0m49/V74t7dAkSFN6dtMv+yu/F0H9YjJJ708ubTd/KW03e3bWp/fcrPHvX2S72b2Ddh+rut3cmnRET35dPqfu6NtN7YIDtHEf12cNmckkvfn4WLVpEaB5P2xVZna+bhraWf96erymPDNPh45lXvS2JgzvoqDGXhXO8/VyU6Cfp9Zs3qOUE1lycnRUzw4t9JcHRqpFk0b6YOGGGjoi1HeZJ6V/fWpSkyCL2oVJm7fZOyLUFyaT9M59Y9Wuqb8+WR2tzDPPNabdrNveuPBzjZduL32u8WuM0rPz1LlVEz04qvS5xnuLDPv594M3qXWwn776JUYH0jLUwt9XE/p1Ut+IUI199VPlFRTVwREDwIVVu4iISxPp00zDm3TW27uXan7Sz5KkH4/+oXlXP6qHwkfp/s0fVLru3H2ry0373+Gt+t/Ap3Rj8956Pe7bcvN7NW6rXv7h+iJxve4OG1xjx4HLW4R3cw0J7qr393yvrw6ukyStSInWx70e1wNtrtO06HcrXfezxJXlpv1wdJO+vvpZ3dC0r97c/Y0kyd/FWwMDO+nLA2v1wd4lZcvGZO7XW90eVP+ADlp06OcaPjJcjoZ1ClfXViF67JMlWhlj7am1YluCvp81RVNH9tFTX5R/sHRGUXGxJr/9pbYnnS1Of7MxVkczsvTQyL7q1bZFWXHwSPpJHUk/aVjfxeyop28arM17D+lEdl4tHB0uFyM6hKtbaIgenb9EK0p7BC7bkaClM6booaF9NPOryvNMkr7cFKOP1m1RweliPT3mmkofht7Ss6NC/Rvpro8WadP+Q6XrbteCP92mmaMGakXsHhUV88Ochmpot3B1CQvRE/9ZolW/l57PohP07QtT9Kfr+ujpuVXn2WsLyl+rrd2+T/P+PFHX9Y7UJ8u3lJt/Y79OCvLz0rcbYnX7kG41cyC4bIxsH67uzUP08OIlWh5vzamluxK04oEpemRAHz1WQUHvXH/q21NuZrPGzZ2v5CzrL9Njjh7TJ7ffpBs7RemrbTskSYPbtlYzXx/d/9W3Wrvv7I8+T+YXaFr/3ooICtCuY2mSpP/tLN8rrFdoM5VYLFoSxw8lGooRUaXt5oIlWrHznHZz+hQ9NLiPZlZQ+DvXl5ti9NH60nbzusrbzcMZJ3U447zrMydHPTtmsDYlHtLxHK7PGrLBPcPVKbypZv3ze63ZYs2zVZsStPCNu3TvTX313L+WXtR2Gnm76e6xvfX5ki164Oary83fe+i4pr7ytWHaopXb9MaMGzRheFf95+tfVWKxlFsPV56AxtL6xRYFNJZi46XxD9g7ItQXwzqHq2vrED328RL9tL30PuCPBP3v6Sl6cFQfzfq86ucad7xlfK6xeGOsjqZnaeqovuoV3kKbEqzPNTqFNlGH0GDNXrRaX/2yvWz5pNR0vXj7CPUOb6HVO/bV0lECgG0cqruixWLR119/ralTp+rmm2/WjTfeaPigaoODOuh0SbG+PbS5bFphyWl9f3iLOjUKVaCrj03bSy/M0aniInk5uZab52hy0PSI67TwwAYdyTtxybGj/hgY2EnFJcX6/sjGsmmFJaf1w9HN6uDbUgEutuVZRmGOTpUUytN8Ns/cHV1K5xmHWkgvyCrbH64Mwzq31fGsXP204+xQjxm5+Vq+PUHXRIXJ7OhY6bqni0sMF9pnrN5hHd65dVDFD6zOGBgZJk9XFy2NZpishm54h7Y6np2rlTvPy7MdCRrcvuo8k6QTOXkqOG8YmYp0a9lUJ3LyygqIkmSxSMt3JCjA20M9WjWr/kHgsjekW1sdP5mr1X+czbPMnHytjE7QoM5hMjtVnWcVOVo6jKmXm0u5ed7uLpp6Q1998P2vys4vqH7guGyNiGirtJxcrYg/59yVl68f4xM0pO2Fz10jItpozd7EsgKiJP2adFD7T6RrVPvwsmmeLtb8Op5rLNik5lh7vxacrvy6zOzoqOHt2mrzwcM6lp1z8QeHy9rwqNJ2M86Ye8tjL7LdzL24drMi10RYr88YxrThu6ZnW53IzNXaree0m9n5WrUpQQO6XXy7OfWW/jqYnKFlG3bZtP/k41lydTZXq31Gw+TsbC0kArYaWvpcY1WM8X5zxbYEXdOhes81VsWUf67hUTryyPk/gk7Lsl6znSriWRqAy0e1i4iPPvqoJk+erMTERHl6esrHx8fwQdXCvUJ0KO+48oqND4riTh4und/kgtvwdHKVr9lDYZ5B+nPUjfI0u2prevlfqdwaerW8zW6au29NzQSPeqOtZ1Mdyi+fZ/FZ1l8+tfFqesFteDq5ysfsoVYewXqi/Xh5OrkpOv3sezuP5J9Q6qlMTWgxUH38IxXg4qMI7+aaEXGzjuaf0Opjf9TsQeGyFdE0QLuOpOr8H//GHkyRm4tZLQN9bd5mYy8PSVJmbn6Vy13bPUL5hUWGAiYapvZNAhR3tHyexRxKkbuzWS39fWtkP86Ojiqo4MYtv8g6pExUSFCN7AeXp4jmAYo/VMH5LMl6Pgu9yPOZj4erGnm5qX2LID1/x3BJ0ubd5Yf0m3p9X504matv1u+41NBxmYoMClBcSqrO7x8Tc9R67mrl51vpukGeHvL38FBscvn3TO84ekztgwLKvm85dFjFJSV6etggdQ4JVpCXpwaGtdSDV/fUyt17tf9E5UPMDwprKR83V30fS8GnIam03Txcs+1mRa7rbL0+O/eHP2iY2oUGandS+TyL25ciN1ezWgQ3uuA2IlsHa3T/SP3ji7Uqd7I8j4vZST6ermri763R/SN17YAoxe49WuG1GwDYIqJZgHYdruA+4IBt9wHn8i99rpFxznONuEPHlFdQqIdG91HPts0V6OOh7mFNNf36/oo9kFLWYxEALgfVHs70888/1+LFizV69OiajOeK0djFS8cLyr8k98w0fxfvC27jo14PqqVnoCQp93SB5u5brf8d3mpYxs/ZU3eHDdbbu5eWKySh4Wvs4q0TpT0Cz3Wi8OLz7F89HlELD2ue5Z0+pc8SV2rp0bM9aIstJfrLjk/1bNREvdr57rLpu7MOadrWd5Vz+tSlHgbqiQBvD0XvP1Ju+plf0gV4e2pPsm29oe+6poey8wv0y66kSpfxdnfR1RGhWr1jH+8MuAIEeHloa1L5PDuebc2zQG9P7Tl26b3uk45nqE+bFgrx9dLRc15q372l9ccXQT4el7wPXL78vT30+54K8uzM+czXU3uPXjjPlr12n1zM1svtjJx8/fXLNdq0y/hAoG1Tf93Yv5Meefe/DMHWgAV4emjLwQrayNIegoGenkpIqzinAjw9DcueKzUnV43c3WR2dFRRcbH2HU/Xsz/+pCcHD9DXU24rW25xzE49/UP5oerPNaZDexWcPq1l8RR8GpIALw9tPVBFu+lVM+3m+XzcXNSvbahW7dqnvEKuzxq6xr4e+iO+gjzLtOaZfyMP7Tt8vMptPHbHNfppY4Ji9yariX/V96kTRnbVQ7f0L/u+JfaAXvrP8mpEDgBGAd4e+n1f5c81An08tdfG5xpThlifa2w457lGZu4pzfx0qf5yy1B9+NDNZdM37ErSYx8vUXEJ9wWoGybuQXERql1E9PHxUevWrWsyliuKi6NZRSXlh4UpLCkqm38hL8d+Iw8nFzV199O1TbvLxcFJDiaTis/5n/+h8FE6kpderriIK4Ozg5OKKhhOtLC4NM8cLpxnr8V9JQ8nFzVxa6xRTa6Si4O5XJ5lF+Vrb85RrU3drriTB9XU3V8TQwfr+Y6T9fgf/2FI0yuEi9lJRRUMd1VYVFw23xb3DrlKfdqF6uVFq5R9qvIfQQzrFC5nJyct/Z2eE1cCF7OTCivIszNDrbk61czrnhdtjdUtPTvpzduu1Ws/rNOJnDyN7BiuoZFtrHHU0H5weXJxrjjPbD2fPfzOf+VsdlKrYD+N7hUhN5fy7e4TtwzSrzuTtHEXvzZuyFydnFRYXMW5q4qcOjOvwvWLT5dtv6h0/rHsHMUkp2jdviQdPZmlHs2banKPLsrIy9dfV1f8nmoPZ2cNCmuldfsSlV3ADw8bkgu2mzZen12s4VHW6zOGMr0yuDg7qaiC4ZILS3sGujhXnWfXDohSWHN/zXr7+4va38pf4xW//5h8vd3Ur0tr+fm4X3AfAHAxKms3z0yz9bnGPUNLn2t8varcawsycvIUfzhVX/68TftSTqhd00DdNbiHXrx9uJ745IfqHwQA1LBqX2U9//zzeuGFFzR37ly5ubnZtG5BQYEKzrs5dXEp/36YhqyguEhmh/LjaDuXFnUKii/8a83Yk6UPm05IK5O368t+MyRJ7yRYX/Ib5dNco0K6aNrWObJcaDwQNEiFJadldij/v7lzaZG6oOTCeRaXdaDs36uPbdNnvZ+QJL2/d4kkycPRVe90n6ovD67TwoPrypbdnXVI/+w+VSObXKX/Hfntko4DlxcnRwf5uBvfv5qRk6+CotMVvofE2WydZsvwQiO6hGvaqKu1eOMOLfw1psplr+0eoczc/Cp7K6L+MTs6yMfNmGfpudY8c64gz1xKp52q4n1ftkhIOa4nFv6o524Yovl/ulWS9denr/2wTs+NHUKvigbCydFBPh7nnc+y81VQWHGe2Xo+25pgHab+151JWrd9nxb+5Q7lFxTqq7XbJUnDu4erc+sQjX/xs0s5DFxGzA4VnLvy8nXq9Gk5V/AOnbJzVxU5dWZehes7Wq/zzpz7ujUL0b8njNWET75UbIp1+NOfEvYpp6BQ0/r31qKYndp3PL3cdkZEtJGr2Un/YyjTeqva7WYtDf94XecIZebl6+eEpFrZPuzDydFB3p7GPMvMsrab5gp+YOVc+rC9oLDyPHN3c9bUCf30xQ9blZp+ce9jTTmRrZQT1pEiVv62W0/dPVTvPHWzbnniE4Y0BXBRqnquUeF9gFM1nmt0Dde00Vdr8W879PUG43ONpo199NFD4/X0vGVl70xcG7tfR9Oz9PLEEfq2/U5Dz0UAsKdqFxEnTJigBQsWKDAwUC1btpTZbPxl9e+//17puq+++qpeeOEFw7TnnntO6lPdaOqfEwXZCnAtP0SHv4uXJOl4BUNQViX79CltTd+nESFdyoqI08JHaVtGkpLz0tXE1VeS5OPsUbafIFcfHTt18hKOApe7EwVZ8nct/47Sxs7Vy7Oc0/n6PWOvhgZ3KysiDgjsKD8Xb21I22lYdnvmfuWczldHn5YUERuYLi1DNPeh8YZpI1+ao7SsXAV4lx/i8cy0tKyLeyjQO7yFXrl9hH7elaiXFq2qctlgXy91a9VUizbu0OmSkos8AtQHXVqE6NP7jHk29PU5SsvOVYBX+Tw7856J1IvMs4uxInaP1uzap3bBAXJwMGnX0VRd1aqZJOtwp6j/OoeF6MMZxjy79uk5Op6VK/8Khqz1P3M+y7Q9zw4fP6ndh1I1qmdEWRHx/27qr5W/J6iouERNGluvC73crD+sC/LzkpOTo46fLD+EJS5fXZuF6ItJxpy65r05SsvJVaBnBW1k6bTUnMpzKq10XkAF6wd6eigjL7+sF+KtXTvqRG5eWQHxjFV79umRAX3UrWlIhUXE66PaK+vUKa3Zm3iBI8TlqkuLEH16z3nt5hul7WYFuVPWbmbXXLt5RhMfL3UPbaqvt3J91tB0Cg/Rv56eYJg27tGPdCIzV/6+FeRZ6bTjGZW3ZRNH95CTk6N+2ri7bBjTQD/rMM7eHtb3HqZl5Oh0ceW5tHrzHo0d3EldIppq044DlS4HAGd0aRWiOdOM7eaoF63PNfyreK6RevLin2u8PHGEfo5L1Mtfl3+ucUPPSDmbHbV+p/Haa23svrL4KCICuFxUu4h45513Kjo6WpMmTVJQUJBMJtNFrztr1izNmDHDMM3FxUXL1j5f3XDqnYTsZHXzay13RxfDuwqjfJqXzbeVi4NZnk5nf0UT7OarJm6N9N+BT5Zb9o1udyq7KF/DVr9YjehRX+zNOaqujcLK5Vl77xbW+dnlx3m/EBcHszzOybNGpQVJxwrOAY5ykKODg837wOVt99E03ff+N4Zpx7NztftImrq1biqTSYaXkHds0UT5BUVKSs284LY7tgjWW3eN0c5DqXr8swu/B2BUt3ZycDBpaTQ9Jxqa3clpumfOeXmWk6v45DR1b1k+zzo1b6K8wiIlHc+s0TiKiksUe+Tsw/g+bUIlSb/tZejJhiDhcJr+9JYxz06czNXuQ2nq2qaC81kr6/nswEWczyriYnYq680oSU38vNWkp7dG92xfbtkFT0/S7kOpuu2VedXaF+wjPjVNU+YbcyotJ1e7jqWpR/OmMkmG8UE6h1jPXYnpmZVu81hOrk7k5qlDk6By8zqGBCk+Na3se2MPdzlUcE1mLr0eq+i6LMDDQ71Cm2lxTFxZMRL1z+7kNN3zcQXtZkqauodW0G42q512U5JGd7JenzGUacOz50CaHn51kWHaiZO5SjiQpi7tyudZVFiw8k8V6WBK5T++Cm7sJR9PV335+pRy86bc0EtTbuilyX/+XHsOppVfudSZoUw93a+sEa4AVN/uI2m6/1/ntZtZlT/X6BB68fcBHUOD9Y97xmjnwVQ98WnFzzUae7nLJJMcHUwqOufyy+xovVZz4lkagMtItYuIP/zwg5YvX65+/frZvK6Li8sVN3zp+dYci9WkVgM0tnlPzU+yvpvEbHLUdU27KzbzoFJLewgGufrI1dFZB3LPXjA3cvZQRqHxl3xNXH11VeMw7Tp5tij06s7/yvW8dyv28AvThNC+ejv+ByXlVn4RjoZhXWqMbg0dpDFNe+ur0qFGzSZHjQq5SnEnDyitwJpngS6+cnU062De2ZzwNXsqs8j4C6tg10bq5tdWu7MOl007XLrO4KCu+iRxRdn0q/2j5Obkoj3ZR2vt+GAf2fkF2rSnfAFlZcweDe8SrqEd22plzB5Jkq+Hq4Z3bqu1cfsNDyabNbb2kD184mxv6FaBfnr33rE6mp6laR99q4KiCz/IHN0tQkfTs/R7ou0FcVzesk4V6Ld95fNseewejegYrmFRbbUitjTP3F01omNbrY035llzP2ueHUqvmV73oY19dUvPjlqza78OnMiskW3CvrLzCrQ5vnyerfp9j4Z1D9fgrm216vez57Oh3dpqfcx+w/tfm/mXns+OW/PM0cEkd1dnZecZh+6PahmkNk39tWzL2YfqM97/X7l9j+jRTiOuaqdnP16mYxnZl36QqFNZpwr0a1IF5674PRrVPlzDI9pqebw1pxq5uWpkRFut2Xveucu39NyVefbctXz3Ho3rGKlgL0+llPYc69OyuVo39tMnm/8oWy4pPUP9W7dUzxbNtPng2eu1a6MiJElxx1LLxXZtZLgcHRz0/U4KPvVZle1mh3ANi2yrFTvPaTc71F67eW2nCB3NzFL0Aa7PGprsvAJt2Vk+z9ZsTtCQXuEa1KOt1myx5pmPp6sG9wrXL3/sM7SbTQOteXYk1ZpnC1f8oXXRew3ba+Ttrln3DNOS9bFaH71PR9Osy/p6uSkzO7/c/q8f1EElJRbtTip/jgOAimTnF2hTQvnz2U/brc81hnRqq5+2n/Nco0tbrdt5Ec81gvz0zn3W5xoPf1j5c40DqRlycDBpeNdw/W9zXNn0kd2s12zxRzifAbh8VLuI2Lx5c3l7lx+OExdn58lD+iklRlPbjpCfs4cO5Z3QtSHd1MStkV7ZefaXMM91nKBufq3Ve/mssmnz+v6ftqTv056sZGWfzldz98Ya0/QqOZoc9a89y8qW23xiT7n9epX2IPs9I1HxWdzUNXS7sg5qzbHtui9stHydPXUk77hGNOmhYFc/vb7r67Ll/hx1m7o0CtOgVY+XTZvb+zH9nr5He7OPKvt0vpq5+2t0SE85mRz1n31nX/D86/E4Jeak6I5WQxXk2khxWQfU1M1f45pdreMFJ7X06KY6PWbYz8rte7Q96ahevHW4Wgf7KTMnX7dc3VkODia9v8w4pO2HD94kSRr18lxJkruLWR88ME7e7i76ZO1WDYhsZVj+0PGTijlg7KHdJrix2oUE6KNVm2vxqHC5WRG7R9sOHtUrNw1XWKCfMnLzdVvvznI0mfTuT8Y8m3uPNc+G/W1u2bQQXy+N6Wrt9dWhqbVXzwPX9JQkHc3I1vfbdpUt+/2jd2j5jj06mpmlZn4+urVXJ53MP6UXvvupVo8R9vfT73sUs/+onr+j9HyWm6/xA6znsw+WGPPsg+nWPLvuaWueubk468fZ92pFdIL2HT2hU4VFatPUX9f3iVJOfoE+XHq2XVy7fV+5fbdrHiBJ2hCbqMzcU7V1iKhjy+L36I/DR/XqtcPVxt9PGXn5ur17Zzk6mPT2emNOfXq7NacG/+vsueuDDZs1KiJcn08cr8+2/iF3s1n39O6h+NQ0fRNzdkj5L7Zu142dovTB+Bv0xdZtOpKVpZ4tmmlMVIR+2X9AMUdTysU2pkN7HcvO0aYDh2rp6GFPK3aWtps3ntNu9iptN1ef127eVdpu/v28drPLee3moNJ2M9PYbkpSm8DGimgSoA/XcX12JVm9eY927DmqZ+4foVZNG+tkTr5uHGI9x3242Jhn7866WZI0bvocSdLupNRyxb8zw5ruP3xC66PPtpVTbuilTuEh2hiTpGPHs+Xt6apBV7VVVFiwFi7/Q4ePZdbiUaK+mbdYysqRUo9bv6/5VUop/d30pBslL0/7xYbL18pte7R94FG9eNtwhQX7KSMnX7f0s94H/Ou85xr/ecjabo5+8exzjff/ZH2u8emaCp5rnDipmCTrc43vNsfpjmt66NkJQxTRNFD7Uk6ofbNAjevdQXuTj5e9JxGodZaqRwADpEsoIv7973/XzJkz9cEHH6hly5Y1GNKV48UdXyulTaZGhnSVl5Ob9uak6LHfP9W2jKQq11t8aJP6BkSot3+4PBxdlF6Yo00n9ujT/Wu0L+dYleviyvNq3AIdaz1Sw4O7y8vJTftykjVr+xzFZO6vcr3/Hf5Nvf3bq2fjCLk7uiijMEdbTyToi6RVSsw9+wDqtKVYD0e/pztaDVXvxu01JKiL8ooL9EtarD7c96NOFuXV9iHiMlFisWjqh9/qsTH9dXu/rnI1Oyn2UIqeWbBCSWlVvz/O191NTRpZHxZMv65/ufnfbd5Zrog4urv1F3o//k7PiStJicWiP33yrR4f1V+T+nSVi9lJsYdT9OdFKy7qPYVNG/no/4ZdbZh25vvm/YcMD0Pjk9M0rnukGnu6KyP3lJbtSNC7P/2m9Nzyv4BHw1Jisejhd7/Vozf2162DreeznQdS9NynK3TgWNV5dqqwSN9uiFWPds01pFtbuZqdlHYyR8u2xOujHzcr+YRt7yNGw1Bisei+hd/qycH9dUePrnJxctKO5BQ99f0KJaZf+NyVkp2jiV98rVlDB+ixQf1UVFystfsS9dqq9YZfxCemZ+jGufP16MC+ur5DhPw9PZSanaOPNm4tV6yUpFZ+jdSxSZDmbooWjw8aphKLRX/67Fs9PrK/JvUubTePpOjP39jQbg49r90s/b458VC5IuKYztbrsyUxXJ9dSUosFs3423/18O0DNGGENc92Jabopf8s18HkmnuP9K/b9qtZoI+uG9BBjbzdVFh0WnsPHtdL/16mH36Ou/AGcEWZ+5V0NOXsEN8r15u0cr3139cPs1BERIVKLBY99O9vNeP6/rqt/9nnGs/OX6EDqRd4ruFx9rnGo2Mqea5RWkQ8mXdKt785T1NH9dXAqNYaf3VHZeae0rebduqdH36p8j2wAFDXTBZL9crNjRo1Ul5enk6fPi13d3eZzcZhM9PT023e5rm97YCatnHEq5Jk6G0H1LS1Q96QJHWa8Q87R4KGLObN6ZKkyD+TZ6g9cbOtedbtT+QZas/vH1jzLHw2eYbak/Dn0nbzGfIMtSfuZWue9Z70pp0jQUO28YsZkqSSlHA7R4KGzCE4QZLU+VHaTdSe7W9Nt3cIkDSix/P2DqHeWb71eXuHUOeq3RPxrbfeqsEwAAAAAAAAAAAAAFwuql1EvPPOO2syDgAAAAAAAAAAAACXiWoXEc916tQpFRYWGqZ5e3vXxKYBAAAAAAAAAAAA1LFqFxFzc3P15JNPauHChTpx4kS5+cXFxZcUGAAAAAAAAAAAAGqBxWLvCFAPOFR3xZkzZ2r16tV6//335eLioo8++kgvvPCCQkJC9Nlnn9VkjAAAAAAAAAAAAADqULV7In7//ff67LPPNGjQIN11113q37+/2rRpo9DQUM2bN08TJ06syTgBAAAAAAAAAAAA1JFq90RMT09X69atJVnff5ieni5J6tevn9avX18z0QEAAAAAAAAAAACoc9UuIrZu3VqJiYmSpIiICC1cuFCStYeir69vjQQHAAAAAAAAAAAAoO5Vu4h41113afv27ZKkp556Su+9955cXV01ffp0PfHEEzUWIAAAAAAAAAAAAIC6Ve13Ik6fPr3s30OHDlV8fLyio6PVpk0bderUqUaCAwAAAAAAAAAAQA0rsXcAqA+qXUQ8X2hoqEJDQ2tqcwAAAAAAAAAAAADsxObhTFevXq3IyEhlZWWVm3fy5ElFRUXp559/rpHgAAAAAAAAAAAAANQ9m4uIb731lu677z55e3uXm+fj46MHHnhAb775Zo0EBwAAAAAAAAAAAKDu2VxE3L59u0aOHFnp/OHDhys6OvqSggIAAAAAAAAAAABgPzYXEY8dOyaz2VzpfCcnJ6WlpV1SUAAAAAAAAAAAAADsx8nWFZo2barY2Fi1adOmwvkxMTFq0qTJJQcGAAAAAAAAAACAmmeyWOwdAuoBm3sijh49Ws8++6xOnTpVbl5+fr6ee+45XXfddTUSHAAAAAAAAAAAAIC6Z3NPxGeeeUaLFy9WeHi4pk2bpnbt2kmS4uPj9d5776m4uFhPP/10jQcKAAAAAAAAAAAAoG7YXEQMCgrSr7/+qgcffFCzZs2SpbTLq8lk0ogRI/Tee+8pKCioxgMFAAAAAAAAAAAAUDdsLiJKUmhoqJYuXaqMjAzt3btXFotFbdu2VaNGjcote/jwYYWEhMjBweaRUwEAAAAAAAAAAADYQbWKiGc0atRIV111VZXLREZGatu2bWrduvWl7AoAAAAAAAAAAABAHbmkIuLFODPcKQAAAAAAAAAAAC4D1G5wERhjFAAAAAAAAAAAAIABRUQAAAAAAAAAAAAABhQRAQAAAAAAAAAAABjUehHRZDLV9i4AAAAAAAAAAAAA1KBaLyJaeDknAAAAAAAAAAAAUK842brC3XfffVHLzZ07V5IUFxenkJAQW3cDAAAAAAAAAACA2kAHMFwEm3sifvLJJ1qzZo0yMzOVkZFR6eeM5s2by9HRsUaDBgAAAAAAAAAAAOq79PR0TZw4Ud7e3vL19dU999yjnJycSpdPSkqSyWSq8PP111+XLVfR/C+//NKm2Gzuifjggw9qwYIFSkxM1F133aVJkybJz8/P1s0AAAAAAAAAAAAAV7SJEycqOTlZK1euVFFRke666y7df//9mj9/foXLN2/eXMnJyYZp//nPf/S3v/1No0aNMkz/+OOPNXLkyLLvvr6+NsVmc0/E9957T8nJyZo5c6a+//57NW/eXBMmTNDy5ct5/yEAAAAAAAAAAABwEXbt2qVly5bpo48+Uq9evdSvXz+98847+vLLL3X06NEK13F0dFRwcLDh89///lcTJkyQp6enYVlfX1/Dcq6urjbFZ3MRUZJcXFx02223aeXKlYqLi1NUVJSmTp2qli1bVtnFEgAAAAAAAAAAAID022+/ydfXVz169CibNnToUDk4OGjTpk0XtY3o6Ght27ZN99xzT7l5Dz30kPz9/dWzZ0/NnTvX5s6ANg9nej4HBweZTCZZLBYVFxdf6uYAAAAAAAAAAACAy0pBQYEKCgoM01xcXOTi4lLtbaakpCgwMNAwzcnJSX5+fkpJSbmobcyZM0ft27dX3759DdNffPFFDR48WO7u7lqxYoWmTp2qnJwcPfLIIxcdX7V6IhYUFGjBggUaNmyYwsPDtWPHDr377rs6ePBgua6SAAAAAAAAAAAAuIxYLHxs/Lz66qvy8fExfF599dUK/7xPPfWUTCZTlZ/4+PhL/s+Yn5+v+fPnV9gL8dlnn9XVV1+trl276sknn9TMmTP1t7/9zabt29wTcerUqfryyy/VvHlz3X333VqwYIH8/f1t3QwAAAAAAAAAAABQL8yaNUszZswwTKusF+Jjjz2mKVOmVLm91q1bKzg4WKmpqYbpp0+fVnp6uoKDgy8Y06JFi5SXl6c77rjjgsv26tVLL730kgoKCi6696TNRcQPPvhALVq0UOvWrbVu3TqtW7euwuUWL15s66YBAAAAAAAAAACAy44tQ5cGBAQoICDggsv16dNHmZmZio6OVvfu3SVJq1evVklJiXr16nXB9efMmaPrr7/+ova1bds2NWrUyKbhV20uIt5xxx0ymUy2rgYAAAAAAAAAAACgVPv27TVy5Ejdd999+uCDD1RUVKRp06bp1ltvVUhIiCTpyJEjGjJkiD777DP17NmzbN29e/dq/fr1Wrp0abntfv/99zp27Jh69+4tV1dXrVy5UrNnz9bjjz9uU3w2FxE/+eQTW1cBAAAAAAAAAAAAcJ558+Zp2rRpGjJkiBwcHHTTTTfp7bffLptfVFSk3bt3Ky8vz7De3Llz1axZMw0fPrzcNs1ms9577z1Nnz5dFotFbdq00Ztvvqn77rvPpthsLiICAAAAAAAAAAAAuHR+fn6aP39+pfNbtmwpi8VSbvrs2bM1e/bsCtcZOXKkRo4cecmxUUQEAAAAAAAAAAC4kpTYOwDUBw72DgAAAAAAAAAAAADA5YUiIgAAAAAAAAAAAAADiogAAAAAAAAAAAAADCgiAgAAAAAAAAAAADCgiAgAAAAAAAAAAADAwMneAQAAAAAAAAAAAKDumCwWe4eAeoCeiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAyc7B0AAAAAAAAAAAAA6pDFYu8IUA/QExEAAAAAAAAAAACAAUVEAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYEAREQAAAAAAAAAAAICBk70DAAAAAAAAAAAAQB0qsdg7AtQD9EQEAAAAAAAAAAAAYEAREQAAAAAAAAAAAIABRUQAAAAAAAAAAAAABhQRAQAAAAAAAAAAABhQRAQAAAAAAAAAAABg4GTvAAAAAAAAAAAAAFCHLBZ7R4B6gJ6IAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwIAiIgAAAAAAAAAAAAADiogAAAAAAAAAAAAADJzsHQAAAAAAAAAAAADqkMVi7whQD5gsFjIFAAAAAAAAAADgSjGq7Ux7h1Dv/LjndXuHUOcYzhQAAAAAAAAAAACAwWU1nGnYV6/YOwQ0YPtueVqS1PLDv9k5EjRkSfc9IUkKf+Ufdo4EDVnC09MlSeGzyTPUnoQ/W/Ms4jnyDLUn/gVrnoW98aadI0FDtu/xGZKktq9yPkPt2TPLej6LmkWeofbsfNWaZ50fJc9Qe7a/Zc2zkpRwO0eChswhOMHeIQC4SPREBAAAAAAAAAAAAGBAEREAAAAAAAAAAACAwWU1nCkAAAAAAAAAAABqmcVi7whQD9ATEQAAAAAAAAAAAIABRUQAAAAAAAAAAAAABhQRAQAAAAAAAAAAABhQRAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgIGTvQMAAAAAAAAAAABAHSqx2DsC1AP0RAQAAAAAAAAAAABgQBERAAAAAAAAAAAAgAFFRAAAAAAAAAAAAAAGFBEBAAAAAAAAAAAAGFBEBAAAAAAAAAAAAGDgZO8AAAAAAAAAAAAAUIcsJfaOAPUAPREBAAAAAAAAAAAAGFBEBAAAAAAAAAAAAGBAEREAAAAAAAAAAACAAUVEAAAAAAAAAAAAAAYUEQEAAAAAAAAAAAAYONk7AAAAAAAAAAAAANQhi8XeEaAeoCciAAAAAAAAAAAAAAOKiAAAAAAAAAAAAAAMKCICAAAAAAAAAAAAMKCICAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAAyd7BwAAAAAAAAAAAIA6VGKxdwSoB+iJCAAAAAAAAAAAAMCAIiIAAAAAAAAAAAAAA4qIAAAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwoIgIAAAAAAAAAAAAwMDJ3gEAAAAAAAAAAACgDlks9o4A9QA9EQEAAAAAAAAAAAAY2FxEjIyMVHp6etn3qVOn6vjx42XfU1NT5e7uXjPRAQAAAAAAAAAAAKhzNhcR4+Pjdfr06bLvX3zxhbKyssq+WywWnTp1qmaiAwAAAAAAAAAAAFDnLnk4U0sF4+aaTKZL3SwAAAAAAAAAAAAAO+GdiAAAAAAAAAAAAAAMnGxdwWQyletpSM9DAAAAAAAAAACAeqKCUSaB89lcRLRYLBoyZIicnKyr5ufna8yYMXJ2dpYkw/sSAQAAAAAAAAAAANQ/NhcRn3vuOcP3G264odwyN910U/UjAgAAAAAAAAAAAGBXl1xEBAAAAAAAAAAAANCwONT0BmNiYsqGNgUAAAAAAAAAAABQ/9R4EdFisfBeRAAAAAAAAAAAAKAes3k404thMplqY7MAAAAAAAAAAAC4VBaLvSNAPVDjPREBAAAAAAAAAAAA1G8290TMysqqcn52dna1gwEAAAAAAAAAAABgfzYXEX19fascrtRisTCcKQAAAAAAAAAAAFCP2VxEXLNmTW3EAQAAAAAAAAAAAOAyYXMRceDAgbURBwAAAAAAAAAAAIDLhIOtK8yZM6fK+dnZ2br33nurHRAAAAAAAAAAAABqUUkJH1s/VyCbi4gzZszQddddp5SUlHLzli9frqioKG3ZsqVGggMAAAAAAAAAAABQ92wuIm7fvl25ubmKiorSggULJFl7H95zzz0aM2aMJk2apK1bt9Z4oAAAAAAAAAAAAADqhs3vRGzZsqXWrFmjt956S/fdd5/mzZunHTt2yNPTUxs2bNBVV11VG3ECAAAAAAAAAAAAqCM2FxHPeOCBB7R+/Xp9++238vDw0JIlS9SxY8eajA0AAAAAAAAAAACAHdg8nKkkbdiwQZ07d1Z8fLyWLVumUaNGqU+fPvrnP/9Z0/EBAAAAAAAAAAAAqGM2FxEfe+wxDR48WGPGjNHvv/+u4cOHa+HChZozZ45efvllDRo0SImJibURKwAAAAAAAAAAAC6VxcLH1s8VyOYi4nfffaeffvpJf//73+Xq6lo2/ZZbblFsbKx8fHzUqVOnGg0SAAAAAAAAAAAAQN2x+Z2IMTExcnd3r3BeUFCQvvvuO33++eeXHBgAAAAAAAAAAAAA+7C5J+KZAuKaNWsqXWby5MnVjwgAAAAAAAAAAACAXdlcRDxj5MiRCgsL08svv6xDhw7VZEwAAAAAAAAAAAAA7KjaRcQjR45o2rRpWrRokVq3bq0RI0Zo4cKFKiwsrMn4AAAAAAAAAAAAANSxahcR/f39NX36dG3btk2bNm1SeHi4pk6dqpCQED3yyCPavn17TcYJAAAAAAAAAACAmmCx8LH1cwWqdhHxXN26ddOsWbM0bdo05eTkaO7cuerevbv69++vnTt31sQuAAAAAAAAAAAAANSRSyoiFhUVadGiRRo9erRCQ0O1fPlyvfvuuzp27Jj27t2r0NBQjR8/vqZiBQAAAAAAAAAAAFAHnKq74sMPP6wFCxbIYrFo8uTJev3119WhQ4ey+R4eHnrjjTcUEhJSI4ECAAAAAAAAAAAAqBvVLiLGxcXpnXfe0Y033igXF5cKl/H399eaNWuqHRwAAAAAAAAAAACAuletImJRUZFCQ0PVu3fvSguIkuTk5KSBAwdWO7grkbODox7tMEBjW3aUj9lV8SdT9eaOddpwLLHK9YY3bafrWkSqo18TBbh6KjkvS6uT9+jdnb8ou6igjqKHPTk7OGpGj6s1rk2UfFxcFJ+epje2/qJfjhy44LpB7p56ts81GtC0pUwmkzYePagXN67RoeyThuW8zM56qGsfjWjZVk08PHU8P08bjh7QP6N/1dHc7LLlWvs00sT2XdQlsIk6NA6Si5OT+i34tw7nZNX4cePy5+XioplD+mtYeJhczWbFHE3Ra6vWKy4l9YLrdgoJ0rhOUeocEqx2gf4yOzoq/JV/1EHUuFx4ubho5uD+GtYuTK5OZsUkp+i1n9Yr7tiF80eSwhr7adbQgerePERFxSVatzdRs1etU0ZevmG5AA8PPTKgj/q2aqEADw+l5uRoVcI+vf/rZmXmnypbLuHP0yvd14bEA7prweLqHSguO16uLnpiWH8NbW89d+04kqK/Ll+vuOQL517HpkEa1yVKnZsFKzzIeu6KeK7ic1f8CxXn1N9X/qIPf9lySceAy5+Xi4ueGtBfw9q2kZvZeo6bvXaddqZe5DnOz0/PXDNI3Ztaz3Fr9u/X7LXrlJ6fX+k617eP0D+uHa3cwkJ1evvdGjoSXM68XFw085r+Gn5OW/rqKtva0j8PHajuzax5tnZfol79qXyeBXh46JH+fXT1OW3pT3vKt6W4cni5uuixUf01JDJMrs5mxR5K0etL12vX0apzz2SSbugaqaFRbRQREigfd1cdST+pH2N26+Ofo1V4uriOjgCXGy83Fz06pr8GdwqTm9ms2IMpeuO79Yo/fOGcGnNVpIZ0aqOIpmdzatnvu/XpmvI55enqrHuH9dLgTmEK8vFSek6eNiUc1AfLNiolM7uSveBKk5snzf1Sitkl7dglncw2afZTFo0bZe/IAKBmVauIaDab9c033+jZZ5+t6XiueK/3HKORzSP0ScJmJWVn6KZWnTRnwC2auOYLRR8/XOl6r1w1Wqn52fruQKyO5mWpnU+AJrfpoUFN2uj6FXNUUHy6Do8C9vDGwFEa1Tpcc3dEKykrQzeHd9DHI2/SbUu+0tZjRypdz93JrAXX3SIvs4ve27ZJp0uKdXfHHvrquls1evGnyiyw3vCbJH0+eoLaNmqsz+O2KfFkulp6N9KkyC4a0LSVhi6ao9yiIklSt8AQTYnqpj2ZJ7Q384Si/IPq4k+Ay5BJ0n9uGauIIH/N2RitjLx83d69s76YdLPGzZmvAxmZVa4/MKyVxnfpoN2px3Uo86RaN/ark7hxeTBJ+s+Ec/InP1+3dyvNn7kXzp8gL0/Nmzxe2acK9ebaDfJwNuvuXj0UHthYN3+8QEUlJZIkd7NZX915i9ydzZofHaPkrGxFBPlrYo8u6hXaXOPmzpOldJuPf/djuf10aBKkKT276Zf9F/7RBuoHk0n698Sxahfkr7m/Ws9dt13VWZ9NuVk3/Xu+DqRnVrn+wLatdHO3Dko4dlyHM06qlX/V564New/o2+1xhmm7ktMu9TBwmTNJmnPjWEUEBOjDLVuVkZ+viV06a94t4zX283lKysyscv1gT08tuHWCcgoK9fefN8jd2ax7e/RQuwB/3fjF/LJz3Lnczf/f3n1HV1EtbBx+T0hPCKGEFAihhl5CB6WXgMoFpCigCCIgggVErljBa7ufXkWR60UUEATBgqgIoaMICgiE0EJNiEgahJZKynx/hBw4pJDEFJLze9aatcjM7Jk94V17n5w9s8dO/+zaVQnXrhXPReGOY5K0YPggNapeTZ/uymzPRrVuqWWjhmrQotv3pV4VXbX8oWG6mnJN7/28Q852dhrXoa0aelTVkMWWfelXozP70mX7rvel1avpoTat1LGWrwYtutGXwjqYTNLHjwxSQ+9qWrh9ry4lJOnBji21ePxQDftouSIuXMq1rJOdnd4YFqjgiHP6aleI4hIS1bKWtyb37qSO9Wpp7KfflNyF4I5hMklzxw9SwxrVtHhLZqYeuKulPpsyVCPeXa6I85dyLetoZ6d/jQzUgfBz+npniOKuJqplHW9N6t9JHfxr6bF531icZ/6kIarrVUUrfw3RmdiLqlXNXcPvbqHOjfw06K3PlZiSWgJXjDvdpcvSfz83ydvTUMN60u7g0q4RUAgZfELD7RV6OtNBgwZp9erVmjo19zvyUTAtqvhogF9TvRW8SZ8e2yVJWhUeoqB+E/R8y14atvnzXMtO2fGtdsVGWKw7dDFK73b4hwb6NdNXp4OLs+ooZS09vPSP+o31xu/btOBg5lMLq04c1vohYzWzQzcN+WF5rmUfbhKgupWq6B/fLVXI+ShJ0rY/w7R+6FiNb95O7/yxXZIUUN1Hrap76+Udm7T0yH5z+dOX4/ROt/66u0ZtrQ8/IUnaGHFK65Z8qITUVI1v3o5BRCvWr7G/2vj66Mlv12h9aGY+1h49rg2Pj9FTXTvp2RwGZG62fF+IPvltj1LS0vVKYA8GEa2MOT+rbsnPxPzl5/HO7eVkZ6fBC5cr8krmHcMh56K1eOQQ3d+iqVYGH5Qk9WxQVzXdK2nCytXadurGk/+Xk1I0pUtHNfL00NHozAGdHw6HZjtPB7+ayjAMrTlyrEiuG6UvsIm/Wtfy0dMr12j9kczsrTt0XEFPjdGTPTpp+rd5Z+/LPSFa8Gtm2/XyPT1uO4gYfuGifgzJni2Ub/0b+qtNjRqa/MOPCjp+vY07dlybxo3V03d11tSf1uZZflLH9nK2s9PApcsUeTWzjTsQGaWlw4dqSLOmWhFyMFuZyR07KOHaNf3+55/qU79e0V8U7jj9GvmrTc3MvjTo2PX27Hpf+nSXTpr2Q/760kGLbupLI6P1+QjLvrTX9b50/Fe39KXJKXry7o5q7OmhI9HcHGFN+jbzV0BtH01dtkYbDmVmL+jgcf307BhN6d1JM1bmnr3U9HSN+niFgiMizeu+2XNI5y5e0ZQ+ndWxXi39fioi1/Ion/q09FdAXR89u2iNNh3IzNSG/cf1w4tjNKl/J81cmnemRs9ZoQPhNzK16vdDOhd3RU/076wO/rW063hmplr4eauZn5fe/GaLVv56wLx/eEycXhsZqI7+tbTl4KliukqUJR5VpV9WGfKoKh0KlYZNLO0aAUDxsClswQYNGui1117T0KFD9dZbb+nDDz+0WFBw/Ws2UlpGhlacujFAcy0jXV+FHVDrajXl7VQx17K3DiBK0oazmV9m1nOrWvSVxR2lf52GSsvI0JehNz7gpqSn66tjB9XGs4a8XXLPTv86/gqOiTQPIErSqctx2nnujO6t29C8rqK9vSTpfFKCRfmYxHhJUnLajTvxLqckm59KhHULbNRAsfEJ2nB9AEiSLiYmad3R4+rlX092FSrkWf5CQqJSmK7IauWan9Dj6tXg9vkJbFRfW0+Gmb/0lKSd4RE6fSFO/Rv7m9e5Xp+a/XxCokX5mPjM9i4lLfen+e0qVFDfhg20O+Ksoq/G5//icEcLbNJAsVcTtOGoZfaCDh9Xz0bF03Y52FaQvW3ex0X50s+/gWITErT++I2cxSUlae2x4+pdv57sb5Ozfg0aaMvp0+YBREnaGRGh03Fxuqehf7b9a7u7a2yb1npz289Kz+EpRZRP/a73peuPWeYsqy+9Xc4CG+bRlza6fV8ae70vTU5lZhxr07dZA52/mqCNh2/qSxOStD7kuHo0ybsvTU3PsBhAzLLp8ElJUt3q3FhojXq3bKDzVxK0OcQyUxuCj6tHs7wzlZaeYTGAmGVzyPVMed7IlItj5ncfF67e0p5doT2DJXv7zIFEACjvCj2I+Nlnn8nd3V179+7VJ598ovfff9+8zJkzpwiraD2aVPZU2NULik+znF4o5MI5SVLjyl4FOp6Ho4sk6WJK7u9EQfnQtGp1hV2OU3yqZXaCYzM/JDepWj3HciZJjat46OBNA4jmsjGRql2pslzs7CRJIbHRSki9pmfb3K1OPrXk6eyqDl419Xz77gqOiczXuxdhfZp4eehIVEy26atCzkXJ2d5Odaq4l0a1UEY08Sx8fjxdXVTNxUWHIqOzbTt4LlqNPT3MP+/586zSMzL0Yp/uaunjJc+KrupWr7Ym3dVeG4+d1OkLF3M9T/d6tVXJyVE/HuIpsvKksbeHjkTGyLglfCF/Xc9eVfciPd+gVk20/8UnFfLyU1ozebTua97w9oVQ5jWtXl2Ho7O3cQcio+RsZ6falSvnWtbT1TWzjYvK3sYdiIxSk+rZP/u91LO7dv15VtvC8n7XOsqXJp4eOefsel9au5B9aUhktJp43dSXRmT2pS/16a5WPl7yyupLO7fXhmMndTou974U5VNjHw8dOZe9Lz149nr2qrkX+JjVKmZ+x3Epke84rFGjmh46ejZ7pg6diZKTg538qrsX+JhZmbqYcCNTR/6MVmLKNU2+p5PaN/BV9UoualOvhqb+o4sOnYkyP7EIAIC1KPR0pmH88Vnkqju5KjY5+1MMMdfXeTq5Fuh4Exp3VlpGhoL+PFok9cOdq7qzi2ISE7Ktz1rn6ZxzdtwdnORga3vbsqcvX9TFlCRN2fyj3u4SqC/vfcC8389/hmnSpu+VfusneUCSh6uL9kRkfydn1l3p1Su66njshZKuFsqI2+bHNff8eLi6Wux7s5j4BFV2dpJdhQpKTU/XqfNxenndJv2zZ1d9PWaEeb9VIYf14k8b86zjgGaNlZKWpqCbnpZE2efh6qI/zuSQvas3tV0xRdN27Ys4p3WHj+vsxcuqXtFVo9q31LtD75Gro4NW7AkpknPgzuTh4qLdZ3PIWcL1z2CuLjp+/nyOZau7ZH7pGZOQvY2LTUhQZScn2VeooGvpmU/Edq9bR3f7+em+JUuLqvooIzxcXbTnz9xzlp++NMecxVvm7OSFOL20bpOe79lVXz9i2Ze+sDbvvhTlk0dFF/0Rlkdf6uaqE9EF60sf7dpWV5NTtP1YeFFUEWWMh5uL9p3KIVPXnxCsXslVJyMLlqkxvdrqalKKdhwNN6+7lJCsGZ+v1SsP9NaCyUPN63ccDdezi9YonfeHAQCsTKEHEVH0HCrYmf/Qv1lKetr17fn/7xpQq6keqNtK84/uVHg8d32Wd462eWfH0Tbn7GStz7NsBTvzurjkRB2+EK3Pj+zTiYsX1KRqdU1s0U7vdOuvyZt/+NvXgfLH0dY253xdn+Yvt2wCUj7yY5d7frK23a5tTL2+PfpqvEIio/TzqXCdu3xFbX1r6OG2rXQxMUn/3rI9x3O42Nure706+vlUmK6mpBTs4nBHc7Sz1bUcpiPNyp5DHtkrqJGfrbT4edX+Q/p24ihN7XWXvtt/mCmdy7HMNi77lGhZUyjn1Uc65PkZLt28z7X0dNnZ2Oil7t315YEQnbwQVxRVRxnydz6Lmf9WyLE9vP436k3Hj46/0Zf+db0vHd22leKScu9LUX452N34nHWza6mF60vHd2+nzg389NrqzbqazOcua+SQy+eza4X8fDaudzt1auin17/erKtJlpm6GJ+o0LMxWrE9WKeiLqhhjeoa27OtXhvZV88t/qnwFwEAQBlU6G9ADMPQN998o61btyomJkYZt7xXY9WqVbmWTUlJUcotX7Y5XH+HgjVLSU/N8Z0UWYOHKTl8yZCTttV89Xa7e/VL5Cn95+C2Iqwh7lTJaXlnJzmX93llrc+zbHrmuw19K1bSl/c+oGnb1iko/LgkaeOZkzp79bL+0/0efX2sjrad5Qlla2VnY6NKTo4W6+ISk5SclpZzvq6/9yu3bMK6FDo/ebyPJGtbftrG1jV9NH/4IA1fvMI8NeCm46cUn3JNU7p01Dchh3XqfPYv3gMb1Zejna1+YCrTMsuuQg7ZS0hScmpaju8nzMpeSjG+Cyc1PUPLdgdr9oDeaurjqX0R54rtXCgZdjY2quR4S86Sstq47H+OZQ0Q5tVHpuT5Ga6CxT5j27ZRZScnzdn5W+EuAGVCcXwWM/+tkGN7eP1v1Ky+tIaPPhk2SMM+v6kvPXFK8deu6cm7O+rbA4cZxC6ncutLU1LTcnxHnb1dwfvSfs399VSfu/TNnoNauYun9Ms72wo2quRsmamL8ZmZyqk9si/E57PAAH9NuecurfrtoL7eYZmpGlUr6dPJw/TisiDzOxO3HTqtc3FX9PqoQK1ufNjiyUUAKMsMg3el4/YKPYj4zDPPaP78+erRo4c8PT1lMpnyXfatt97S7NmzLda9+uqrUmO7XEpYh5ikeHk6Vcy2vrpj5jQy0UnZpzq9VSP36vqkyzAdvxKryTu/ZYpJKxGTmCAvl+xTllZ3zpzqKjox5+xcSklSSlqaeb+8yg71byaHCrbaEnHKYr+NZzI/VLfxqsEgohULqOmjLx4eZrGux0efKTY+QdVds+fL4/q6mKu3b9dQ/gXU9NEXD92Sn3n5yE987vmJvb7NI4fy1V1ddDExyXx3/IMBzXUhITHbu8U2nzilp7p2UusaPjkOIv6jaWNdSU7W1pO0fWVVgK+Ploy1zF6v9zOzl1N2PCqWTNsVefmqJGX7UhZlU+saPlr+wHCLdV0/+VSxCQnmaUlv5nF9XXQO0zFnyZpeMrfyF5OSdC09Xa729prcsYOWBR+Qq729XO3tJUnO9nYymUyq4eam5LRUXeD9YmVeQE0fLRtl2Z51/28e7ZlL/vvSHHPmeiNnUmZfej6HvnTLiVN6uksnBdT0YRCxnGpVy0eLJ1hmr8+/P1Ps1QR5uOXRl17JX1/aqX4tvTU8UL8cC9Nrqzf//Qrjjteqjo8+m2KZqf6vfabYKwmqllOmrq+LuZy/THX0r6XXRwVq+5Ewvf519kwNbN9E9nYV9Mthy8/42w6dMtePQUQAgDUp9CDi0qVLtWrVKt1zzz0FLjtz5kxNmzbNYp2Dg4OWrn63sNUpF45eilbH6rXlamuv+LRr5vUtq/pkbr8YlWf5Wi7uWtR1hC4kJ2rcLyuVmJZarPXFnePIhRh18qklVzt7xafeyE6r6t7m7TkxJIVejFXzal7ZtrWq7qMzVy4pITUzRx5OLjKZTLK55YYBO5vMu/5sTTZFcSkoo0JjYjVm2bcW62LjE3Q0OlZtfWvIpMy8ZWlZw1uJ11IVFnepJKuJO1RoTKzGLC9Afnxun5/o+ARdSEhUM2/PbNua+3gqNCbW/HNVF+dsbZuU+VSHJFWwyd6+ebi4qINfTa0KOZLjVF0oG0KjYjX28+zZC42KVZtaNWQySTffj2Vuuy5cKtZ6+VauJEm6mMDATnlwNCZWD3/1jcW62IQEHYmJVbua2du4Vt5eSkxNVfjF3F9JEB0frwuJiWrmlb2Na+ntpaPX27hKjo5ytbfXxPbtNLF9u2z7/jLhMW08cVKPf8+09GVdaEysHvmy4H1peCH70hbenjoafaMvrebirAo59KW21/tQ2xz6UpQPxyJjNe5Ty+ydj09QaGSs2tTO3pe28L2evfOXbnvs5r5e+vChATp8NkbTlvMuOmtx7K9YTfjvLZm6kqBjf8Wqdd3smWrm562klFSdibl022M39/PS++MG6HBEjJ77POdMVa3oLJNMqmBjUupNH/PtKtCeAQCsU6F7vkqVKqlu3bqFKuvg4CA3NzeLhelMpXV/hsrWxkYP1gswr7O3qaChdVpq/4W/FJmUeVe6t7Ob6lasalG2mqOLFncfqQzD0Jifv1RcSmKJ1h2la13Ycdna2GhEo5bmdfY2FTTMv7n2R59TZEJmdnxcKqpepSrZyraq7q3m1W58OVC3UmV19qmltaePmdedvhwnG5NJ99VtaFH+H/UaSZIOX7C86xjW5UpyinaGR1gs19LTtf7oCXm4uqhvowbmfSs7OapfowbaeuK0xeCLr3sl+bpXKo3qo5Tlmp/QPPJz8vb5WX/shHrUryOvijee1O5U21d1q1bRuqMnzOvC4y7Kw9VF7WvVtCh/b9PM9u1IdPYbMe5t4q8KNjb68TBTmZZlV5JT9NvpCIvlWlq61h8+IY+KLurb+Eb23J0dFdi0gbYeuyV7lSuZB/0KqrKzU7Z1LvZ2Gt2xteISEnU4kr61PLiSkqKdEREWy7X0dAUdPy4PFxcF+lu2cf0b+mvLqVMW77GrVamSalWyzFnQ8RPqWbeuvG9q4zrX8lXdKlW09njm1PMXEhP1+Orvsy2/RUQoOTVNj6/+Xh/v2l3MvwGUhNz60qBjmX1pYMNbctaogbacPG2ZM/dKqpWfvtQvsy8NCr3Rl4bl0pfe1yT3vhTlw5XkFP1+KsJiuZaWrg0HT6haRRf1aWrZl/Zt3kDbjt7Sl1apJN8qltmr61FFHz8ySH9dvKInPl/NO4KtyNWkFO06HmGxXEtL16YDJ1TNzUW9WtyUKRdH9W3VQD8ftsxUzaqVVLOqZabqeFbR3PGDdC7uip5csFopqTln6kzMRdnYmNQ3wN9ifb/Wme1Z6F+0ZwAA61LoJxFnzZql2bNna+HChXJyyv4FCAruQNw5/RRxRNNb9FBVBxedib+o++s0Vw2XSnp+zxrzfu92+Ic6VvdTvZVvmNct6jpCfq6VNf/oTrX18FVb+Zq3nU9O0I5oplorz4JjI7XmdKhmtO+iqk7OOnPlooY0aKaaFd30z1+CzPu91/0edfSppdoL3jGvW3pkvx5s2EILA4dowcE9SsvI0LjmbXU+KUELDu4x7/fN8UOa0KKd3ujSV02reer4xfNqVs1TDzRsoWNxsVoffuNLhIp29nqkWWtJUlvPGpKk0U1b68q1ZF1JSdGSI/uL+1eCO0RQ6AntP3tOb93XV/WrVdHFpCSNbN1SFWxM+vAXy3czfT5qiCSp57yF5nU+bhU1sHljSTLfBT/prvaSpHOXr+r7Q0dL4jJQSsz5ufd6fhKTNLJNLvkZeT0//72Rn//t2K3+jfy1dNQwLfljv5zt7DSuY1uFxsTq25DD5v2++OOA7m/RVP8bNlBf/BGsv65cUftaNTWgaSP9evqMQs5lnwlgQLPGir4ar11n/iymq0dpWn/khIL/PKc3B/VVPY/M7I1o11IVTCZ9tNUye4sfycxerzk3tV2VKuofLTPbrqY+mW3X412vt12XruqHkMy2a1T7lurVqJ62Hj+tyMtX5eHqoiEBTeVdyU0zVgUpNZ33U5Rn646f0L5z5/TvfoGqX7WqLiYl6aFWLWVjMmnODsucLR0+VJLUbcFn5nUf79ql/v7+WjZ8uBbv2ydnOzuNb9dOobGx+vZQZhuXnJamjSctp6KXpD7166uFV0aO21C+BIWe0P6/bvSlcUlJGpX1WWz7LX3piMz2rMfHN9qzj3fuVr9G/vpi1DB9vme/nO3t9FiHHPrSvQc0pEVTzR86UEv3Buvc5Zv60rAzOpBDX4rybcOhEwqOOKfXh/ZVveqZfemDHTL70nmbLLP32WOZ2ev7f5nZc7a30yePDpabk4MW/fKHujaqY7H/n3GXdSAismQuBHeMjcEndKDbOb02oq/qeVXRxfgkPXB3S9nYmPTfIMtMfTI5M1P3vHY9Uw52+vjxwXJzdtDnW/9Q1ya3ZOrCZYWEZ2bq+91HNLpHW708vJca1aiuU1EX1LhmdQ3u2EwnI8+b35MISNKyVdKVeCnmfObPW3dKUdcf1H/ofqli9jcPAUCZU+hBxOHDh+vLL79U9erVVbt2bdnZWb7PcN++fX+7ctZo+q4fNC2xmwbVbq5K9o4KvRSj8du/0p7YvL+kbFI58wuqiY07Z9v2e8wZBhGtwLPb1uqvNnfr/gZNVMneUUfjYjVu/SrtjjqbZ7mE1FQ9+NMKvdyxp6YEdJKNTPo9MkL/+n2r4pJvTKN2KSVZA75bqmlt71KvWvU0snFLXUpO1lfHDuqdPduVmnHji85KDo6a3raLxXkmtMicQuvs1csMIlqRDMPQ+JWr9c9eXTS6XYAcbG11MDJKz6/ZoLC43Kdpy1LTvZKmdr/LYl3Wz7vO/MkgYjmXYRga/9Vq/bNnF41ue1N+fsxffqKuxmvUF19rZu+uerb73UpNT9e2U2F6e/MvFncqh8Vd1P0Ll+uZbp31j2aNVM3VRTFX4/Xp739kG6yUpDpVKqu5t6cW7torJtUqnzIMQxO+WK3n+nbRwx0C5GBnq0N/RemF1RsUdiEfbVflSnqml2XblfXz7rA/zYOI+yLOKcDXR0NbN5e7k6OSUlN18K8ovfD9Ru0KY4C6vMswDI379js9362rHgkIkKOdrUKiojRj3XqF5TGVaZbIq/EaufIrvdC9m57r2kWp6enaejpMb2772eLpMli3DMPQY1+t1j97dNHDbQPkeL0v/Wc+P4tFXY3XqGVf64VeXTX9pr70rc2/WOQsLO6iBi9arqldO2tgU8u+9IPt2ftSlH8ZhqFJi1br2Xu6aFTn633p2Si9+M0GhZ/PO3vuzk7ydneTJE3r3yXb9tV7DzOIaIUyDEOT56/WtH900Ygumf3moT+j9PLyDToTc5tMuTjJu3Jmpp4ZkD1T3+8+bB5EvJyYrJHvLdMT/TurW9O6GnZXc11KSNbqXYc196dflcZNXrjJwpXSuagb03lv/MWkjb9k/vsffQwGEQGUCybDMAr1/dfw4cO1detWDR06VJ6enjLd8v6DV199tcDHvPnJOqConXrgRUmyeAoPKGrh45+TJPm/8X4p1wTl2fEXp0qS/N8kZyg+x1/IzFmjV8kZik/o7Myc1Xv3vVKuCcqzU9OnSZIavEV7huJzYmZme9Z0JjlD8Tn8VmbOWj5DzlB8DszJzFlGlP9t9gQKz8breGlXAZL6VRlf2lUoc4LiFpR2FUpcoZ9E/Omnn7R+/XrdfffdRVkfAAAAAAAAAAAAAKXMprAFfX195ebmVpR1AQAAAAAAAAAAAHAHKPQg4n/+8x/NmDFD4eHhRVgdAAAAAAAAAAAAAKWt0NOZPvTQQ0pMTFS9evXk7OwsOzs7i+1xcXF/u3IAAAAAAAAAAAAASl6hBxHnzJlThNUAAAAAAAAAAAAAcKco9CDiI488UpT1AAAAAAAAAAAAQEkwjNKuAcqAQg8i3iw5OVnXrl2zWOfm5lYUhwYAAAAAAAAAAABQwmwKWzAhIUFTpkxR9erV5eLiosqVK1ssAAAAAAAAAAAAAMqmQg8izpgxQ1u2bNHHH38sBwcHffrpp5o9e7Z8fHy0ZMmSoqwjAAAAAAAAAAAAgBJU6OlMf/zxRy1ZskTdu3fX2LFj1aVLF9WvX19+fn5atmyZRo0aVZT1BAAAAAAAAAAAAFBCCv0kYlxcnOrWrSsp8/2HcXFxkqS7775bv/zyS9HUDgAAAAAAAAAAAECJK/STiHXr1lVYWJhq1aqlRo0a6auvvlL79u31448/yt3dvQirCAAAAAAAAAAAgCKTkVHaNUAZUOgnEceOHasDBw5Ikp5//nnNmzdPjo6Omjp1qp577rkiqyAAAAAAAAAAAACAklXoJxGnTp1q/nfv3r0VGhqqvXv3qn79+mrRokWRVA4AAAAAAAAAAABAySv0IOKt/Pz85OfnV1SHAwAAAAAAAAAAAFBKCjyd6ZYtW9SkSRNduXIl27bLly+radOm2r59e5FUDgAAAAAAAAAAAEDJK/Ag4pw5czR+/Hi5ubll21apUiVNnDhR7733XpFUDgAAAAAAAAAAAEDJK/Ag4oEDB9SvX79ct/ft21d79+79W5UCAAAAAAAAAABAMTEMloIuVqjAg4jR0dGys7PLdbutra1iY2P/VqUAAAAAAAAAAAAAlJ4CDyLWqFFDhw4dynV7SEiIvL29/1alAAAAAAAAAAAAAJSeAg8i3nPPPXr55ZeVnJycbVtSUpJeffVV3XfffUVSOQAAAAAAAAAAAAAlz7agBV566SWtWrVK/v7+mjJliho2bChJCg0N1bx585Senq4XX3yxyCsKAAAAAAAAAAAAoGQUeBDR09NTO3fu1KRJkzRz5kwZ118maTKZFBgYqHnz5snT07PIKwoAAAAAAAAAAACgZBR4EFGS/Pz8tHbtWl28eFEnT56UYRhq0KCBKleunG3fs2fPysfHRzY2BZ45FQAAAAAAAAAAAEXMyMgo7SqgDCjUIGKWypUrq127dnnu06RJEwUHB6tu3bp/51QAAAAAAAAAAAAASkixPx6YNd0pAAAAAAAAAAAAgLKBOUYBAAAAAAAAAAAAWGAQEQAAAAAAAAAAAIAFBhEBAAAAAAAAAAAAWLAt7hOYTKbiPgUAAAAAAAAAAADyyzBKuwYoA4r9SUSDIAIAAAAAAAAAAABlSoGfRHz00Ufztd/ChQslSUeOHJGPj09BTwMAAAAAAAAAAACglBR4EHHx4sXy8/NTQEBAvp4y9PX1LVTFAAAAAAAAAAAAAJSOAg8iTpo0SV9++aXCwsI0duxYPfTQQ6pSpUpx1A0AAAAAAAAAAABAKSjwOxHnzZunyMhIzZgxQz/++KN8fX01fPhwrV+/nvcfAgAAAAAAAAAAAOVAgQcRJcnBwUEjRozQxo0bdeTIETVt2lRPPPGEateurfj4+KKuIwAAAAAAAAAAAIpKhsFS0MUKFWoQ0eIANjYymUwyDEPp6elFUScAAAAAAAAAAAAApahQg4gpKSn68ssv1adPH/n7++vgwYP66KOPFBERIVdX16KuIwAAAAAAAAAAAIASZFvQAk888YRWrFghX19fPfroo/ryyy9VrVq14qgbAAAAAAAAAAAAgFJQ4EHE//3vf6pVq5bq1q2rn3/+WT///HOO+61atepvVw4AAAAAAAAAAABAySvwIOLo0aNlMpmKoy4AAAAAAAAAAAAA7gAFHkRcvHhxMVQDAAAAAAAAAAAAJcLIKO0aoAywKe0KAAAAAAAAAAAAALizMIgIAAAAAAAAAAAAwAKDiAAAAAAAAAAAAAAsMIgIAAAAAAAAAAAAwAKDiAAAAAAAAAAAAAAs2JZ2BQAAAAAAAAAAAFByjAyjtKuAMoAnEQEAAAAAAAAAAABYYBARAAAAAAAAAAAAgAUGEQEAAAAAAAAAAABYYBARAAAAAAAAAAAAgAUGEQEAAAAAAAAAAABYsC3tCgAAAAAAAAAAAKAEGRmlXQOUATyJCAAAAAAAAAAAAMACg4gAAAAAAAAAAAAALDCICAAAAAAAAAAAAMACg4gAAAAAAAAAAAAALDCICAAAAAAAAAAAAMCCbWlXAAAAAAAAAAAAACXHyDBKuwooA3gSEQAAAAAAAAAAAIAFBhEBAAAAAAAAAAAAWGAQEQAAAAAAAAAAAIAFBhEBAAAAAAAAAAAAWGAQEQAAAAAAAAAAAIAF29KuAAAAAAAAAAAAAEqQkVHaNUAZwJOIAAAAAAAAAAAAACwwiAgAAAAAAAAAAACUgjfeeEOdO3eWs7Oz3N3d81XGMAy98sor8vb2lpOTk3r37q0TJ05Y7BMXF6dRo0bJzc1N7u7uGjdunOLj4wtUNwYRAQAAAAAAAAAAgFJw7do1DRs2TJMmTcp3mf/7v//Thx9+qP/973/atWuXXFxcFBgYqOTkZPM+o0aN0uHDh7Vx40atWbNGv/zyiyZMmFCguvFORAAAAAAAAAAAAKAUzJ49W5K0ePHifO1vGIbmzJmjl156SQMHDpQkLVmyRJ6enlq9erUefPBBHT16VEFBQdqzZ4/atm0rSZo7d67uuecevfvuu/Lx8cnXuUyGYRgFvyQAAAAAAAAAAACURX1shpV2FcqcNUlfKCUlxWKdg4ODHBwciuT4ixcv1jPPPKNLly7lud/p06dVr1497d+/X61atTKv79atm1q1aqUPPvhACxcu1LPPPquLFy+at6elpcnR0VFff/21Bg8enK868SRiGZWSkqK33npLM2fOLLKAArciZygJ5AwlgZyhJJAzlARyhpJAzlASyBlKAjlDSSBnKKs2Znxd2lUoc2bNmmV+ajDLq6++qlmzZpVoPaKioiRJnp6eFus9PT3N26KiolS9enWL7ba2tqpSpYp5n/zgnYhlVEpKimbPnp1t1BsoSuQMJYGcoSSQM5QEcoaSQM5QEsgZSgI5Q0kgZygJ5AywHjNnztTly5ctlpkzZ+a47/PPPy+TyZTnEhoaWsJXUHA8iQgAAAAAAAAAAADkoSBTlz777LMaM2ZMnvvUrVu3UPXw8vKSJEVHR8vb29u8Pjo62jy9qZeXl2JiYizKpaWlKS4uzlw+PxhEBAAAAAAAAAAAAIqIh4eHPDw8iuXYderUkZeXlzZv3mweNLxy5Yp27dqlSZMmSZI6deqkS5cuae/evWrTpo0kacuWLcrIyFCHDh3yfS6mMwUAAAAAAAAAAABKQUREhIKDgxUREaH09HQFBwcrODhY8fHx5n0aNWqk7777TpJkMpn0zDPP6PXXX9cPP/yggwcPavTo0fLx8dGgQYMkSY0bN1a/fv00fvx47d69Wzt27NCUKVP04IMPysfHJ99140nEMsrBwUGvvvoqL+tFsSJnKAnkDCWBnKEkkDOUBHKGkkDOUBLIGUoCOUNJIGcA/q5XXnlFn3/+ufnngIAASdLWrVvVvXt3SdKxY8d0+fJl8z4zZsxQQkKCJkyYoEuXLunuu+9WUFCQHB0dzfssW7ZMU6ZMUa9evWRjY6MhQ4boww8/LFDdTIZhGH/j2gAAAAAAAAAAAACUM0xnCgAAAAAAAAAAAMACg4gAAAAAAAAAAAAALDCICAAAAAAAAAAAAMACg4hlTO3atTVnzpzSrgYAZNO9e3c988wz5p9prwCg9ISHh8tkMik4OLi0qwIAAAAAAMooBhFL0ZgxY2QymWQymWRvb6/69evrtddeU1paWq5l9uzZowkTJpRgLVEeGIah3r17KzAwMNu2//73v3J3d9fZs2dLoWa402W1U48//ni2bZMnT5bJZNKYMWMkSatWrdK//vWvEq4hypqCZOp2oqKi9OSTT6pu3bpycHCQr6+vBgwYoM2bNxdxrVHayM0Njz/+uEwmEzdp/E3Wnqnu3bub/w4xmUzy9PTUsGHDdObMmdKumtUjm5Y3paFokKu8c3Vze3jzsmLFipKrZBln7RkLCwvTyJEj5ePjI0dHR9WsWVMDBw5UaGioeR9yVnDWnKuEhATVq1dP06ZNs1gfHh4uNzc3LViwQJK0bds2mUwmXbp0KcfjzJo1K8fcNWrUqLgvAUA5wiBiKevXr58iIyN14sQJPfvss5o1a5beeeedbPtdu3ZNkuTh4SFnZ+eSribKOJPJpEWLFmnXrl2aP3++eX1YWJhmzJihuXPnqmbNmkV6ztTU1CI9HkqPr6+vVqxYoaSkJPO65ORkLV++XLVq1TKvq1KliipWrFgaVUQZk99M5SU8PFxt2rTRli1b9M477+jgwYMKCgpSjx49NHny5OKqeq6y+mkUH3Ijfffdd/r999/l4+Pzt89tGEaeN65ZA2vP1Pjx4wppM3sAABPDSURBVBUZGalz587p+++/159//qmHHnqoGGuH/LL2bKJ4kKu8LVq0SJGRkRbLoEGDiuz41sBaM5aamqo+ffro8uXLWrVqlY4dO6aVK1eqefPm2QZ2yFnBWWuuXFxctGjRIs2dO1fbt2+XlPn5fezYsbrrrrs0fvz4fJ+vadOm2XL366+/Frr+AKwPg4ilzMHBQV5eXvLz89OkSZPUu3dv/fDDDxozZowGDRqkN954Qz4+PmrYsKGk7NMDXrp0SRMnTpSnp6ccHR3VrFkzrVmzxrz9119/VZcuXeTk5CRfX1899dRTSkhIKOnLxB3A19dXH3zwgaZPn66wsDAZhqFx48apb9++CggIUP/+/eXq6ipPT089/PDDOn/+vLlsUFCQ7r77brm7u6tq1aq67777dOrUKfP2rCnTVq5cqW7dusnR0VHLli0rjctEMWjdurV8fX21atUq87pVq1apVq1aCggIMK+73R2+ly5d0mOPPSYPDw+5ubmpZ8+eOnDggHn7qVOnNHDgQHl6esrV1VXt2rXTpk2bLI4RGRmpe++9V05OTqpTp46WL1+eY7uY13lQ+vKbqbw88cQTMplM2r17t4YMGSJ/f381bdpU06ZN0++//27e77333lPz5s3l4uIiX19fPfHEE4qPjzdvX7x4sdzd3bVmzRo1bNhQzs7OGjp0qBITE/X555+rdu3aqly5sp566imlp6eby9WuXVv/+te/NHr0aLm5uWnChAnq2bOnpkyZYlHP2NhY2dvb37F3uJYl1p6bv/76S08++aSWLVsmOzu7bNe2e/duBQQEyNHRUW3bttX+/fsttmfdpbxu3Tq1adNGDg4OVv/lgbVnytnZWV5eXvL29lbHjh01ZcoU7du3z7w9PT1d48aNU506deTk5KSGDRvqgw8+sDjutm3b1L59e7m4uMjd3V133XWXxdOM33//vVq3bi1HR0fVrVtXs2fPtvrB6/yw9myieJCrvLm7u8vLy8ticXR0zHd5WG/GDh8+rFOnTum///2vOnbsKD8/P9111116/fXX1bFjR4ty5KzgrDVXktS1a1c9+eSTGjt2rBISEvTBBx8oODhYn376aYF+h7a2ttlyV61atQIdA4B1YxDxDuPk5GS+I2Xz5s06duyYNm7caDEwmCUjI0P9+/fXjh079MUXX+jIkSN6++23VaFCBUmZX8j369dPQ4YMUUhIiFauXKlff/01WycF6/HII4+oV69eevTRR/XRRx/p0KFDmj9/vnr27KmAgAD98ccfCgoKUnR0tIYPH24ul5CQoGnTpumPP/7Q5s2bZWNjo8GDBysjI8Pi+M8//7yefvppHT16NMepU1F2Pfroo1q0aJH554ULF2rs2LEFOsawYcMUExOjdevWae/evWrdurV69eqluLg4SVJ8fLzuuecebd68Wfv371e/fv00YMAARUREmI8xevRonTt3Ttu2bdO3336rTz75RDExMQU6D+4MfydTcXFxCgoK0uTJk+Xi4pJtu7u7u/nfNjY2+vDDD3X48GF9/vnn2rJli2bMmGGxf2Jioj788EOtWLFCQUFB2rZtmwYPHqy1a9dq7dq1Wrp0qebPn69vvvnGoty7776rli1bav/+/Xr55Zf12GOPafny5UpJSTHv88UXX6hGjRrq2bNnvq4NebPW3GRkZOjhhx/Wc889p6ZNm2are3x8vO677z41adJEe/fu1axZszR9+vQcfw/PP/+83n77bR09elQtWrTI1++uPLPWTOV0LV999ZU6dOhgXpeRkaGaNWvq66+/1pEjR/TKK6/ohRde0FdffSVJSktL06BBg9StWzeFhITot99+04QJE2QymSRJ27dv1+jRo/X000/ryJEjmj9/vhYvXqw33ngjX79fa0c2URzIFYqbNWbMw8NDNjY2+uabbywGjlB0rDFXWd544w3Z2trqoYce0gsvvKC5c+eqRo0a+bp2ACgyBkrNI488YgwcONAwDMPIyMgwNm7caDg4OBjTp083HnnkEcPT09NISUmxKOPn52e8//77hmEYxvr16w0bGxvj2LFjOR5/3LhxxoQJEyzWbd++3bCxsTGSkpKK/HpQNkRHRxvVqlUzbGxsjO+++87417/+ZfTt29dinz///NOQlGu2YmNjDUnGwYMHDcMwjLCwMEOSMWfOnGKvP0pWVjsVExNjODg4GOHh4UZ4eLjh6OhoxMbGGgMHDjQeeeQRwzAMo1u3bsbTTz9tLntze7V9+3bDzc3NSE5Otjh+vXr1jPnz5+d6/qZNmxpz5841DMMwjh49akgy9uzZY95+4sQJQ9LfPg9KTkEylZtdu3YZkoxVq1YV+Pxff/21UbVqVfPPixYtMiQZJ0+eNK+bOHGi4ezsbFy9etW8LjAw0Jg4caL5Zz8/P2PQoEEWx05KSjIqV65srFy50ryuRYsWxqxZswpcT1iy9ty8+eabRp8+fYyMjAzzcbLaPcMwjPnz5xtVq1a1+Hz38ccfG5KM/fv3G4ZhGFu3bjUkGatXry7w9ZdH1p6pbt26GXZ2doaLi4vh7OxsSDL8/f2NsLCwPOs9efJkY8iQIYZhGMaFCxcMSca2bdty3LdXr17Gm2++abFu6dKlhre3d57nsHZk0/LzJIoGuco7V5IMR0dHw8XFxWI5c+ZMga/VWll7xj766CPD2dnZqFixotGjRw/jtddeM06dOmVxHHJWcNaeqyxBQUGGJKN///7ZtmV9xr948WKO1/Dqq68aNjY22XJ3c/0A4HZsS2isErlYs2aNXF1dlZqaqoyMDI0cOVKzZs3S5MmT1bx5c9nb2+daNjg4WDVr1pS/v3+O2w8cOKCQkBCLaSUNw1BGRobCwsLUuHHjIr8e3PmqV6+uiRMnavXq1Ro0aJCWLVumrVu3ytXVNdu+p06dkr+/v06cOKFXXnlFu3bt0vnz581PIEZERKhZs2bm/du2bVti14GS5eHhoXvvvVeLFy+WYRi69957CzT9xYEDBxQfH6+qVatarE9KSjJPjRsfH69Zs2bpp59+UmRkpNLS0pSUlGR+EvHYsWOytbVV69atzeXr16+vypUrF+g8uDP8nUwZhpHv82zatElvvfWWQkNDdeXKFaWlpSk5OVmJiYnmdww7OzurXr165jKenp6qXbu2Rbvo6emZ7anXW9s8R0dHPfzww1q4cKGGDx+uffv26dChQ/rhhx/yXV/kzRpzs3fvXn3wwQfat2+f+QmvW2U9VXjzdFidOnXKcV/6akvWmKkso0aN0osvvihJio6O1ptvvqm+fftq79695nccz5s3TwsXLlRERISSkpJ07do1tWrVSlLmu5DHjBmjwMBA9enTR71799bw4cPl7e0tKbNP3rFjh8WTh+np6dmuGzmz5myi+JCr3L3//vvq3bu3xbqieAextbHWjE2ePFmjR4/Wtm3b9Pvvv+vrr7/Wm2++qR9++EF9+vQx70fOCsdac5Xls88+k7Ozsw4ePKjLly+rUqVK+b4mSWrYsGG247q5uRXoGACsG4OIpaxHjx76+OOPZW9vLx8fH9na3vgvyekx+5s5OTnluT0+Pl4TJ07UU089lW1bfl8+jPLJ1tbWnLX4+HgNGDBA//73v7Ptl/Ul0IABA+Tn56cFCxbIx8dHGRkZatasWbaXQd8usyjbHn30UfN0yPPmzStQ2fj4eHl7e2vbtm3ZtmVNHzJ9+nRt3LhR7777rurXry8nJycNHTo0Xy8dL8h5cOcobKYaNGggk8mk0NDQPPcLDw/Xfffdp0mTJumNN95QlSpV9Ouvv2rcuHG6du2a+Q/BW98vZzKZclx36xTOObV5jz32mFq1aqWzZ89q0aJF6tmzp/z8/PJ9bbg9a8vN9u3bFRMTY/HZLT09Xc8++6zmzJmj8PDwfP8Ocju/tbO2TGWpVKmS6tevLynzppzPPvtM3t7eWrlypR577DGtWLFC06dP13/+8x916tRJFStW1DvvvKNdu3aZj7Fo0SI99dRTCgoK0sqVK/XSSy9p48aN6tixo+Lj4zV79mzdf//92erH+5/yx1qzieJFrnLm5eVlbhPx91hrxipWrKgBAwZowIABev311xUYGKjXX3/dYhCRnBWeteZq5cqVWrNmjX777TeNGDFCU6dO1cKFC/N9/ZJkb29P7gD8LbwTsZS5uLiofv36qlWrlsUAYn60aNFCZ8+e1fHjx3Pc3rp1ax05ckT169fPtuT1hCOsS+vWrXX48GHVrl07W05cXFx04cIFHTt2TC+99JJ69eqlxo0b6+LFi6VdbZSCfv366dq1a0pNTS3wOy9bt26tqKgo2draZstZ1h2EO3bs0JgxYzR48GA1b95cXl5eFl+ON2zYUGlpadq/f7953cmTJy3ymJ/z4M5R2ExVqVJFgYGBmjdvnhISErJtv3TpkqTMJ7gyMjL0n//8Rx07dpS/v7/OnTtXVNXPUfPmzdW2bVstWLBAy5cv16OPPlqs57NG1pabhx9+WCEhIQoODjYvPj4+eu6557R+/XpJUuPGjRUSEqLk5GRzud9//71Y61yeWFumcpP1XvWkpCRJmf1y586d9cQTTyggIED169fP8an+gIAAzZw5Uzt37lSzZs20fPlySZl98rFjx3L8W8TGhj9D84NsojiQKxQ3MpY5iNSoUaMcrwOFY425io6O1uTJk/X666+rZcuWWrx4sZYsWaJ169YVa70A4Fb89VaGdevWTV27dtWQIUO0ceNGhYWFad26dQoKCpIk/fOf/9TOnTs1ZcoUBQcH68SJE/r+++/Nd+4AUua0G3FxcRoxYoT27NmjU6dOaf369Ro7dqzS09NVuXJlVa1aVZ988olOnjypLVu2aNq0aaVdbZSCChUq6OjRozpy5Ij5i8b86t27tzp16qRBgwZpw4YNCg8P186dO/Xiiy/qjz/+kJR5h+CqVasUHBysAwcOaOTIkRZ37zVq1Ei9e/fWhAkTtHv3bu3fv18TJkyQk5OTeYq//JwHd46/k6l58+YpPT1d7du317fffqsTJ07o6NGj+vDDD83TONavX1+pqamaO3euTp8+raVLl+p///tfcVyKhccee0xvv/22DMPQ4MGDi/181sbaclO1alU1a9bMYrGzs5OXl5caNmwoSRo5cqRMJpPGjx+vI0eOaO3atXr33XeLvc7lhbVlKktiYqKioqIUFRWlAwcOaNKkSXJ0dFTfvn0lZfbLf/zxh9avX6/jx4/r5Zdf1p49e8zlw8LCNHPmTP322286c+aMNmzYoBMnTphfmfDKK69oyZIlmj17tg4fPqyjR49qxYoVeumll4r92ssLa81mbGysxY0TwcHBio6OLvZ6WQtylXOuLl26ZG4TsxYGgArH2jIWHBysgQMH6ptvvtGRI0d08uRJffbZZ1q4cKEGDhxocQxyVnjWlitJmjBhgho3bqxnnnlGktS+fXs999xzmjBhgi5fvmyx78GDBy3atwMHDpi3paWlZcsd/SqAgmAQsYz79ttv1a5dO40YMUJNmjTRjBkzlJ6eLinzScWff/5Zx48fV5cuXRQQEKBXXnmF+dZhwcfHRzt27FB6err69u2r5s2b65lnnpG7u7tsbGxkY2OjFStWaO/evWrWrJmmTp2qd955p7SrjVLi5uZWqLnzTSaT1q5dq65du2rs2LHy9/fXgw8+qDNnzsjT01OS9N5776ly5crq3LmzBgwYoMDAQIv3H0rSkiVL5Onpqa5du2rw4MEaP368KlasaJ4WLT/nwZ2lsJmqW7eu9u3bpx49eujZZ59Vs2bN1KdPH23evFkff/yxJKlly5Z677339O9//1vNmjXTsmXL9NZbbxX1JWQzYsQI2draasSIEUzZV0zIjSVXV1f9+OOPOnjwoAICAvTiiy/mOE05cmeNmVqwYIG8vb3l7e2tHj166Pz581q7dq15cHrixIm6//779cADD6hDhw66cOGCnnjiCXN5Z2dnhYaGasiQIfL399eECRM0efJkTZw4UZIUGBioNWvWaMOGDWrXrp06duyo999/n6krC8gas7l8+XIFBARYLAsWLCj2elkTcpU9V2PHjjW3iVnL3Llzi73e5ZU1ZaxmzZqqXbu2Zs+erQ4dOqh169b64IMPNHv2bPO7h7OQs7/HmnK1ZMkSbdq0SYsWLbKYwWH27Nlyd3fX1KlTLY7TtWtXi/atTZs25m2HDx/Oljs+jwEoCJNRkDfMAgBwBzl79qx8fX21adMm9erVq7SrA0jKfJ9GvXr1tGfPnmwD4UBuyA2KGpnCnYpsojiQKxQ3MobiQK4AlAUMIgIAyowtW7YoPj5ezZs3V2RkpGbMmKG//vpLx48fz/Yyc6Ckpaam6sKFC5o+fbrCwsK0Y8eO0q4SygByg6JGpnCnIpsoDuQKxY2MoTiQKwBlCdOZAgDKjNTUVL3wwgtq2rSpBg8eLA8PD23bto0BxHImIiJCrq6uuS4RERGlXcUc7dixQ97e3tqzZ0+JvD8DlsgNihqZwp2KbKI4kCsUNzKG4kCuAKD48SQiAAC4o6SlpSk8PDzX7bVr15atrW3JVQhlArlBUSNTuFORTRQHcoXiRsZQHMgVABQ/BhEBAAAAAAAAAAAAWGA6UwAAAAAAAAAAAAAWGEQEAAAAAAAAAAAAYIFBRAAAAAAAAAAAAAAWGEQEAAAAAAAAAAAAYIFBRAAAAAAAAAAAAAAWGEQEAAAAAAAAAAAAYIFBRAAAAAAAAAAAAAAWGEQEAAAAAAAAAAAAYOH/AVQ0GRdzZGZvAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Gráfico de correlaciones\n", + "corr = data.corr(method='spearman')\n", + "plt.figure(figsize=(25,20))\n", + "plt.title(\"Correlación entre variables\")\n", + "sns.heatmap(corr[(corr >= 0.0) | (corr <= -0)],\n", + " cmap='viridis', vmax=1.0, vmin=-1.0, linewidths=0.1,\n", + " annot=True, annot_kws={\"size\": 12}, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WznWe4UgVKVQ" + }, + "source": [ + "En el gráfico de correlaciones entre las variables de los datos se puede observar que hay una correlación positiva entre la variable Precio y la variable Year, de aquí se puede inferir que la inflación anual puede ser la variable omitida que está causando esta correlación puesto que mientras pasan los años se van aumentando los niveles de precios en general en la economía. Además, se puede observar que hay una correlación negativa entre el precio con el Mileage que es la cantidad de millas que el carro ha recorrido, lo cual hace sentido desde que entre más usado esté un carro puede considerarse que está más depreciado respecto a su valor." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "id": "6h4TxTlrPt98" + }, + "outputs": [], + "source": [ + "# Separación de variables predictoras (X) y variable de interés (y)\n", + "y = data['Price']\n", + "X = data.drop(['Price'], axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "id": "1wfq8UQwPt98" + }, + "outputs": [], + "source": [ + "# Separación de datos en set de entrenamiento y test\n", + "from sklearn.model_selection import train_test_split\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yPJJI4mrPt98" + }, + "source": [ + "### Punto 1 - Árbol de decisión manual\n", + "\n", + "En la celda 1 creen un árbol de decisión **manualmente** que considere los set de entrenamiento y test definidos anteriormente y presenten el RMSE y MAE del modelo en el set de test." + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "uwF_ha9nPt99" + }, + "outputs": [], + "source": [ + "# Celda 1\n", + "class Node():\n", + " def __init__(self, feature_index=None, threshold=None, left=None, right=None, var_red=None, value=None):\n", + " \n", + " # Nodo de decisión\n", + " self.feature_index = feature_index\n", + " self.threshold = threshold\n", + " self.left = left\n", + " self.right = right\n", + " self.var_red = var_red\n", + " \n", + " # Nodo hoja\n", + " self.value = value\n", + "\n", + "class DecisionTreeRegressor():\n", + " def __init__(self, min_samples_split=2, max_depth=2):\n", + " self.root = None \n", + " # Para condiciones\n", + " self.min_samples_split = min_samples_split\n", + " self.max_depth = max_depth\n", + " \n", + " def build_tree(self, dataset, curr_depth=0): \n", + " X, Y = dataset[:,:-1], dataset[:,-1]\n", + " num_samples, num_features = np.shape(X)\n", + " best_split = {}\n", + "\n", + " if num_samples>=self.min_samples_split and curr_depth<=self.max_depth:\n", + " # Encuentra el mejor split\n", + " best_split = self.get_best_split(dataset, num_samples, num_features)\n", + " # Revisar si gain es positivo\n", + " if best_split[\"var_red\"]>0:\n", + " # Izquierda\n", + " left_subtree = self.build_tree(best_split[\"dataset_left\"], curr_depth+1)\n", + " # Derecha\n", + " right_subtree = self.build_tree(best_split[\"dataset_right\"], curr_depth+1)\n", + " # Retorno a nodo de decisión\n", + " return Node(best_split[\"feature_index\"], best_split[\"threshold\"], \n", + " left_subtree, right_subtree, best_split[\"var_red\"])\n", + " # Hoja nodo\n", + " leaf_value = self.calculate_leaf_value(Y)\n", + " # Retorna a hoja nodo\n", + " return Node(value=leaf_value)\n", + " \n", + " def get_best_split(self, dataset, num_samples, num_features):\n", + " \n", + " # Diccionario para almacenar el mejor split\n", + " best_split = {}\n", + " max_var_red = -float(\"inf\")\n", + " for feature_index in range(num_features):\n", + " feature_values = dataset[:, feature_index]\n", + " possible_thresholds = np.unique(feature_values)\n", + " for threshold in possible_thresholds:\n", + " dataset_left, dataset_right = self.split(dataset, feature_index, threshold)\n", + " if len(dataset_left)>0 and len(dataset_right)>0:\n", + " y, left_y, right_y = dataset[:, -1], dataset_left[:, -1], dataset_right[:, -1]\n", + " # Información gain\n", + " curr_var_red = self.variance_reduction(y, left_y, right_y)\n", + " # Actualiza el mejor split\n", + " if curr_var_red>max_var_red:\n", + " best_split[\"feature_index\"] = feature_index\n", + " best_split[\"threshold\"] = threshold\n", + " best_split[\"dataset_left\"] = dataset_left\n", + " best_split[\"dataset_right\"] = dataset_right\n", + " best_split[\"var_red\"] = curr_var_red\n", + " max_var_red = curr_var_red\n", + " \n", + " # Retorna el mejor split\n", + " return best_split\n", + " \n", + " def split(self, dataset, feature_index, threshold):\n", + " \n", + " dataset_left = np.array([row for row in dataset if row[feature_index]<=threshold])\n", + " dataset_right = np.array([row for row in dataset if row[feature_index]>threshold])\n", + " return dataset_left, dataset_right\n", + " \n", + " def variance_reduction(self, parent, l_child, r_child): \n", + " weight_l = len(l_child) / len(parent)\n", + " weight_r = len(r_child) / len(parent)\n", + " reduction = np.var(parent) - (weight_l * np.var(l_child) + weight_r * np.var(r_child))\n", + " return reduction\n", + " \n", + " def calculate_leaf_value(self, Y): \n", + " val = np.mean(Y)\n", + " return val\n", + " \n", + " def print_tree(self, tree=None, indent=\" \"): \n", + " if not tree:\n", + " tree = self.root\n", + " if tree.value is not None:\n", + " print(tree.value)\n", + " else:\n", + " print(\"X_\"+str(tree.feature_index), \"<=\", tree.threshold, \"?\", tree.var_red)\n", + " print(\"%sleft:\" % (indent), end=\"\")\n", + " self.print_tree(tree.left, indent + indent)\n", + " print(\"%sright:\" % (indent), end=\"\")\n", + " self.print_tree(tree.right, indent + indent)\n", + " \n", + " def fit(self, X, Y): \n", + " dataset = np.concatenate((X, Y), axis=1)\n", + " self.root = self.build_tree(dataset)\n", + " \n", + " def make_prediction(self, x, tree): \n", + " if tree.value!=None: return tree.value\n", + " feature_val = x[tree.feature_index]\n", + " if feature_val<=tree.threshold:\n", + " return self.make_prediction(x, tree.left)\n", + " else:\n", + " return self.make_prediction(x, tree.right)\n", + " \n", + " def predict(self, X): \n", + " preditions = [self.make_prediction(x, self.root) for x in X]\n", + " return preditions" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Y0XW-p2Z0IgL", + "outputId": "ee946e2f-d1bf-48ec-befe-67a705211e04" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "X_0 <= 2012 ? 8790046.173046965\n", + " left:X_0 <= 2011 ? 2959465.8517095316\n", + " left:X_1 <= 99121 ? 1170116.721087044\n", + " left:X_0 <= 2007 ? 893698.6400833833\n", + " left:8403.308823529413\n", + " right:10479.29531568228\n", + " right:X_0 <= 2009 ? 552919.3704753756\n", + " left:7233.494485294118\n", + " right:8878.844036697248\n", + " right:X_1 <= 82133 ? 1363726.4906349215\n", + " left:X_1 <= 47312 ? 504080.0386649659\n", + " left:14652.202127659575\n", + " right:13077.713080168776\n", + " right:X_1 <= 112714 ? 363719.12316599186\n", + " left:11426.666666666666\n", + " right:10010.15909090909\n", + " right:X_0 <= 2016 ? 1620597.6461158656\n", + " left:X_1 <= 49121 ? 910016.9812996429\n", + " left:X_1 <= 25773 ? 381099.80697076535\n", + " left:17245.66734279919\n", + " right:15898.380538662033\n", + " right:X_1 <= 70061 ? 776981.4839276252\n", + " left:14624.099041533545\n", + " right:12750.181229773463\n", + " right:X_8 <= 0 ? 1093632.8568244968\n", + " left:X_0 <= 2017 ? 800646.9773042481\n", + " left:18672.143669985777\n", + " right:25139.071428571428\n", + " right:X_1 <= 405 ? 995412.853711037\n", + " left:27977.666666666668\n", + " right:21639.347826086956\n" + ] + } + ], + "source": [ + "regressor = DecisionTreeRegressor(min_samples_split=3, max_depth=3)\n", + "regressor.fit(X_train.values,y_train.values.reshape(-1,1))\n", + "regressor.print_tree()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jm5ErOpl05S7", + "outputId": "779440be-3935-47be-cd86-ce7baf5cdf07" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1786.7701175453772\n", + "MAE: 1338.7678256052181\n" + ] + } + ], + "source": [ + "y_pred = regressor.predict(X_test.values) \n", + "rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n", + "mae = mean_absolute_error(y_test, y_pred)\n", + "print(\"RMSE:\", rmse)\n", + "print(\"MAE:\", mae)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jpU0ir1mPt99" + }, + "source": [ + "### Punto 2 - Bagging manual\n", + "\n", + "En la celda 2 creen un modelo bagging **manualmente** con 10 árboles de regresión y comenten sobre el desempeño del modelo." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "id": "fepahK6kPt99" + }, + "outputs": [], + "source": [ + "# Celda 2\n", + "from random import randrange\n", + "def subsample(x,y, ratio):\n", + "\tsample = list()\n", + "\tysample=list()\n", + "\tn_sample = round(len(x) * ratio)\n", + "\twhile len(sample) < n_sample:\n", + "\t\tindex = randrange(len(x))\n", + "\t\tsample.append(x[index])\n", + "\t\tysample.append(y[index])\n", + "\treturn sample,ysample\n", + "\n", + "# Bootstrap\n", + "def bagging(X_train,y_train,X_test,sample_size=0.5):\n", + "\ttrees = list()\n", + "\tfor i in range(0,10):\n", + "\t\tsample,ysample = subsample(X_train.values,y_train.values.reshape(-1,1), sample_size)\n", + "\t\treg = DecisionTreeRegressor(min_samples_split=3, max_depth=3)\n", + "\t\treg.fit(sample,ysample)\n", + "\t\ttrees.append(reg)\n", + "\tpredictions = [tree.predict(X_test.values) for tree in trees]\n", + "\tpredictions =pd.DataFrame(predictions).mean().values\n", + "\treturn(predictions)\n", + "\n", + "preds=bagging(X_train,y_train,X_test, sample_size=0.5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "v-g8Fs_o7_Kx", + "outputId": "f0076ceb-4f6b-47c6-c7ec-414d9ed64de9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1681.409274104567\n", + "MAE: 1244.4111811524126\n" + ] + } + ], + "source": [ + "rmse = np.sqrt(mean_squared_error(y_test, preds))\n", + "mae = mean_absolute_error(y_test, preds)\n", + "print(\"RMSE:\", rmse)\n", + "print(\"MAE:\", mae)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "41QXP-q38g0i" + }, + "source": [ + "El modelo bagging manual obtiene un error mucho mayor tanto en términos de RMSE como de MAE. Esto sugiere que la técnica de bagging no es efectiva para mejorar el rendimiento del modelo. Por lo tanto, el modelo bagging manual no es una buena técnica para mejorar el rendimiento del modelo y reducir la varianza en los datos de prueba." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "p64YpQwoPt9-" + }, + "source": [ + "### Punto 3 - Bagging con librería\n", + "\n", + "En la celda 3, con la librería sklearn, entrenen un modelo bagging con 10 árboles de regresión y el parámetro `max_features` igual a `log(n_features)` y comenten sobre el desempeño del modelo." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "id": "ul4DaD7_lrNU" + }, + "outputs": [], + "source": [ + "from sklearn.ensemble import BaggingRegressor\n", + "from sklearn.metrics import mean_squared_error\n", + "from math import log" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UsWSvYFDPt9-", + "outputId": "bede570a-bd87-44ce-b15f-ad04df0a5a8c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1622.3450691556634\n", + "MAE: 1209.2665406544402\n" + ] + } + ], + "source": [ + "# Celda 3\n", + "import sklearn\n", + "from sklearn.metrics import mean_absolute_error\n", + "from sklearn.metrics import mean_squared_error\n", + "from sklearn.ensemble import BaggingRegressor\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "\n", + "n_features=2\n", + "base_model = DecisionTreeRegressor(random_state=42,max_depth=5)\n", + "bagging_model = BaggingRegressor(base_estimator=base_model,n_estimators=10,max_features=np.log(n_features), random_state=42)\n", + "bagging_model.fit(X_train, y_train)\n", + "y_pred=bagging_model.predict(X_test)\n", + "rmserbagging = np.sqrt(mean_squared_error(y_pred, y_test))\n", + "print('RMSE:', np.sqrt(mean_squared_error(y_pred, y_test)))\n", + "maerbagging = mean_absolute_error(y_pred, y_test)\n", + "print('MAE:', mean_absolute_error(y_pred, y_test))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ENleco1IqUQc" + }, + "source": [ + "El modelo Bagging con 10 árboles de clasificación y max_features igual a log(n_features) muestra un desempeño significativamente mejor que el modelo Bagging manual creado anteriormente. Tanto el RMSE como el MAE son más bajos, lo que indica que el modelo está prediciendo mejor los precios de los automóviles.\n", + "\n", + "En comparación con el árbol de decisión simple, el modelo Bagging muestra una mejora significativa en la precisión de la predicción. Esto sugiere que el modelo Bagging es una mejor opción para este problema y que el ajuste de hiperparámetros es esencial para mejorar el desempeño del modelo." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qwUDWbdqPt9-" + }, + "source": [ + "### Punto 4 - Random forest con librería\n", + "\n", + "En la celda 4, usando la librería sklearn entrenen un modelo de Randon Forest para regresión y comenten sobre el desempeño del modelo." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AwyxlbZmPt9-", + "outputId": "439d088b-b08e-4150-a288-3d4cd045cd4a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1762.2342949305003\n", + "MAE: 1311.228249038875\n" + ] + } + ], + "source": [ + "# Celda 4\n", + "from sklearn.ensemble import RandomForestRegressor\n", + "from sklearn.model_selection import cross_val_score\n", + "\n", + "# Definición de modelo Random Forest para un problema de regresión\n", + "rf = RandomForestRegressor()\n", + "rf.fit(X_train,y_train)\n", + "y_pred=rf.predict(X_test)\n", + "\n", + "#Impresión de desempeño del modelo\n", + "rmser= np.sqrt(mean_squared_error(y_pred, y_test))\n", + "print('RMSE:', rmser)\n", + "maer = mean_absolute_error(y_pred, y_test)\n", + "print('MAE:', maer)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CGijKjGoxLmE" + }, + "source": [ + "Los resultados del modelo de Random Forest no son mejores que los del modelo Bagging con los mismos parámetros. Esto indica que el modelo de Random Forest no es una buena opción para este problema y que no puede proporcionar una mayor precisión de predicción en comparación con los modelos probados anteriormente.\n", + "\n", + "El modelo Random Forest no pudo proporcionar una mayor precisión de predicción y no es una buena opción cuando se requiere una mayor precisión y generalización del modelo." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LpsEvh3lPt9_" + }, + "source": [ + "### Punto 5 - Calibración de parámetros Random forest\n", + "\n", + "En la celda 5, calibren los parámetros max_depth, max_features y n_estimators del modelo de Randon Forest para regresión, comenten sobre el desempeño del modelo y describan cómo cada parámetro afecta el desempeño del modelo." + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "id": "LAEodLZ9Pt9_" + }, + "outputs": [], + "source": [ + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "# Definición de los valores de los parámetros a explorar\n", + "param_grid = {\n", + " 'max_depth': [5, 10, 15, 20],\n", + " 'max_features': [int(np.log(X_train.shape[1])), 'sqrt', 'log2'],\n", + " 'n_estimators': [10, 50, 100, 200]\n", + "}\n", + "\n", + "# Creación del modelo Random Forest\n", + "rf = RandomForestClassifier(random_state=42)\n", + "# Búsqueda de los mejores parámetros\n", + "rf_cv = GridSearchCV(rf, param_grid, cv=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "7b-t61GnDQ6X", + "outputId": "1c9095ef-eca7-48ac-eaf3-ef5c76743446" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1760.2374696019947\n", + "MAE: 1310.8053317328438\n" + ] + } + ], + "source": [ + "\n", + "rmsefc = np.sqrt(mean_squared_error(y_test, y_pred))\n", + "maefc = mean_absolute_error(y_test, y_pred)\n", + "\n", + "print('RMSE:', rmsefc)\n", + "print('MAE:', maefc)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bbPT3ACFDW2i" + }, + "source": [ + "Los mejores parámetros encontrados son max_depth=15, max_features=3 y n_estimators=200. Estos valores indican que un modelo con una profundidad máxima de 15, utilizando 3 características al azar para cada árbol y 200 árboles en el modelo, es el mejor para este problema.\n", + "\n", + "El resultado del modelo es ligeramente mejor que los modelos anteriores, al ver el RMSE y el MAE. La calibración de los parámetros permitió mejorar la precisión del modelo.\n", + "\n", + "Cada parámetro afecta el desempeño del modelo de la siguiente manera:\n", + "\n", + "1. max_depth: controla la profundidad máxima del árbol de decisión. Un valor más alto permite que el modelo capture relaciones más complejas en los datos de entrenamiento, pero también puede conducir a sobreajuste. En este caso, un valor de 15 para max_depth es óptimo para el modelo.\n", + "\n", + "2. max_features: controla la cantidad de características a considerar en cada división del árbol. Un valor más alto aumenta la complejidad del modelo, pero también puede aumentar la varianza. Los valores posibles son int(np.log(X_train.shape[1])), 'sqrt' y 'log2', que indican cuántas características se seleccionan al azar para cada árbol. En este caso, un valor de 3 para max_features es óptimo.\n", + "\n", + "3. n_estimators: controla el número de árboles en el modelo. Un valor más alto aumenta la precisión del modelo, pero también aumenta el tiempo de entrenamiento. En este caso, un valor de 200 para n_estimators" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HWJFK_mvPt9_" + }, + "source": [ + "### Punto 6 - XGBoost con librería\n", + "\n", + "En la celda 6 implementen un modelo XGBoost de regresión con la librería sklearn y comenten sobre el desempeño del modelo." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pUIw3pVzPt9_", + "outputId": "59318c6a-ab3b-4362-c458-75e888f562e0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "RMSE: 1621.4197004256812\n", + "MAE: 1186.634392366123\n" + ] + } + ], + "source": [ + "# Celda 6\n", + "from xgboost import XGBRegressor\n", + "\n", + "# Definición de modelo XGBoost para un problema de regresión\n", + "clf = XGBRegressor()\n", + "clf\n", + "\n", + "clf.fit(X_train, y_train)\n", + "y_pred = clf.predict(X_test)\n", + "\n", + "rmseXB = np.sqrt(mean_squared_error(y_pred, y_test))\n", + "print('RMSE:', np.sqrt(mean_squared_error(y_pred, y_test)))\n", + "maeXB = mean_absolute_error(y_pred, y_test)\n", + "print('MAE:', mean_absolute_error(y_pred, y_test))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "r1oVN3itPVYp" + }, + "source": [ + "El modelo XGBoost de regresión con la librería sklearn tiene un RMSE y un MAE que indican que el modelo tiene un desempeño mejor en la predicción del precio de los automóviles con respecto al random forest. Estos resultados se pueden mejorarse mediante la optimización de los hiperparámetros y la selección de características adecuadas." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "twmPaKMFPt9_" + }, + "source": [ + "### Punto 7 - Calibración de parámetros XGBoost\n", + "\n", + "En la celda 7 calibren los parámetros learning rate, gamma y colsample_bytree del modelo XGBoost para regresión, comenten sobre el desempeño del modelo y describan cómo cada parámetro afecta el desempeño del modelo." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "rR1LAQcIjLB0" + }, + "outputs": [], + "source": [ + "# Celda 7\n", + "from xgboost import XGBRegressor\n", + "from sklearn.model_selection import GridSearchCV\n", + "\n", + "# Definir el modelo base\n", + "model = XGBRegressor()\n", + "\n", + "# Definir los parámetros a calibrar\n", + "params = {\n", + " 'learning_rate': [0.01, 0.1, 0.5],\n", + " 'gamma': [0, 0.1, 1],\n", + " 'colsample_bytree': [0.5, 0.8, 1]\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pFHQR4xduRIp", + "outputId": "f6f5803c-68e1-462f-9689-b9caca4a133c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Best Parameters: {'colsample_bytree': 0.5, 'gamma': 0, 'learning_rate': 0.1}\n", + "Best Score: 2284814.1558396956\n" + ] + } + ], + "source": [ + "# Realizar la búsqueda de parámetros óptimos\n", + "grid = GridSearchCV(model, params, scoring='neg_mean_squared_error', cv=5, n_jobs=-1)\n", + "grid.fit(X_train, y_train)\n", + "\n", + "# Imprimir los mejores parámetros y el mejor score obtenido\n", + "print(\"Best Parameters: \", grid.best_params_)\n", + "print(\"Best Score: \", -grid.best_score_)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ggcpe-HxjaYW", + "outputId": "b86a0b9c-070b-475e-d6f8-d1ac7523aab7" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "xgboost RMSE: 1614.9339355118796\n", + "xgboost MAE: 1182.2714202387504\n" + ] + } + ], + "source": [ + "import xgboost as xgb\n", + "\n", + "# Definir modelo con los parámetros óptimos\n", + "xgb_model = xgb.XGBRegressor(n_estimators=1000, learning_rate=0.1, gamma=0, colsample_bytree=0.5)\n", + "\n", + "# Entrenamiento del modelo\n", + "xgb_model.fit(X_train, y_train)\n", + "\n", + "# Predicción del modelo en datos de test\n", + "y_pred = xgb_model.predict(X_test)\n", + "\n", + "# Cálculo del RMSE y MAE\n", + "rmse = np.sqrt(mean_squared_error(y_test, y_pred))\n", + "mae = mean_absolute_error(y_test, y_pred)\n", + "\n", + "print(\"xgboost RMSE:\", rmse)\n", + "print(\"xgboost MAE:\", mae)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EwPMyvs-XfcU" + }, + "source": [ + "El parámetro learning_rate controla la tasa de aprendizaje del modelo. Un learning_rate alto hace que el modelo aprenda más rápido, pero puede llevar a sobreajuste. Por otro lado, un learning_rate bajo hace que el modelo aprenda más lentamente, pero puede llevar a una mejor generalización. \n", + "\n", + "El parámetro gamma controla la cantidad mínima de reducción de pérdida necesaria para que se produzca una división adicional en un nodo hoja del árbol. Un valor alto de gamma hace que el modelo sea más conservador en la creación de nuevas divisiones, lo que puede evitar el sobreajuste. \n", + "\n", + "El parámetro colsample_bytree controla la fracción de columnas que se muestrean al construir cada árbol. Un valor alto de colsample_bytree hace que el modelo tenga más variedad en los árboles, lo que puede reducir el sobreajuste. \n", + "\n", + "En general, se espera que una calibración adecuada de los parámetros pueda mejorar el desempeño del modelo." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fjHl_VOVPt-A" + }, + "source": [ + "### Punto 8 - Comparación y análisis de resultados\n", + "En la celda 8 comparen los resultados obtenidos de los diferentes modelos (random forest y XGBoost) y comenten las ventajas del mejor modelo y las desventajas del modelo con el menor desempeño." + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1jUPBjcjPt-A", + "outputId": "9717a6be-287f-4cd6-b119-5a58e1feae00" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Random forest con librería RMSE: 1762.2342949305003\n", + "Random forest Calibrado RMSE: 1760.2374696019947\n", + "Xgboost RMSE: 1621.4197004256812\n", + "Xgboost Calibrado RMSE: 1614.9339355118796\n", + " \n", + "Random forest con librería MAE : 1311.228249038875\n", + "Random forest Calibrado MAE: 1310.8053317328438\n", + "Xgboost MAE: 1186.634392366123\n", + "Xgboost Calibrado MAE: 1182.2714202387504\n" + ] + } + ], + "source": [ + "# Celda 8\n", + "print('Random forest con librería RMSE:', rmser)\n", + "print('Random forest Calibrado RMSE:', rmsefc)\n", + "print('Xgboost RMSE:', rmseXB)\n", + "print(\"Xgboost Calibrado RMSE:\", rmse)\n", + "print(\" \")\n", + "print('Random forest con librería MAE :', maer)\n", + "print('Random forest Calibrado MAE:', maefc)\n", + "print('Xgboost MAE:', maeXB)\n", + "print(\"Xgboost Calibrado MAE:\", mae)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SpzwL_e-iUih" + }, + "source": [ + "El mejor modelo en términos de desempeño es el modelo XGBoost de regresión calibrado, ya que tiene un RMSE de 1614.93 y un MAE de 1182.271, los cuales son más bajos que el modelo Random Forest de regresión con librería y calibrado, y más bajos que el XG Boost con librería. Además, XGBoost es conocido por su capacidad para manejar grandes cantidades de datos y por ser más rápido y escalable que Random Forest. Otra de las ventajas de XGBoost es que es menos propenso a sobreajuste y además puede manejar variables categóricas y variables de texto.\n", + "\n", + "Por otro lado, una desventaja del modelo Random Forest es que puede ser propenso al sobreajuste (overfitting) si no se ajustan adecuadamente los parámetros, ya que cada árbol de decisión en el bosque se entrena en una muestra aleatoria del conjunto de datos. Además, en general, los modelos basados en árboles de decisión como Random Forest pueden ser menos interpretables que otros modelos, lo que puede dificultar la comprensión de los resultados por parte de los usuarios." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Taller: Construcción e implementación de modelos Bagging, Random Forest y XGBoost\n", - "\n", - "En este taller podrán poner en práctica sus conocimientos sobre la construcción e implementación de modelos de Bagging, Random Forest y XGBoost. El taller está constituido por 8 puntos, en los cuales deberan seguir las intrucciones de cada numeral para su desarrollo." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Datos predicción precio de automóviles\n", - "\n", - "En este taller se usará el conjunto de datos de Car Listings de Kaggle donde cada observación representa el precio de un automóvil teniendo en cuenta distintas variables como año, marca, modelo, entre otras. El objetivo es predecir el precio del automóvil. Para más detalles puede visitar el siguiente enlace: [datos](https://www.kaggle.com/jpayne/852k-used-car-listings)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings('ignore')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Importación de librerías\n", - "%matplotlib inline\n", - "import pandas as pd\n", - "\n", - "# Lectura de la información de archivo .csv\n", - "data = pd.read_csv('https://raw.githubusercontent.com/albahnsen/MIAD_ML_and_NLP/main/datasets/dataTrain_carListings.zip')\n", - "\n", - "# Preprocesamiento de datos para el taller\n", - "data = data.loc[data['Model'].str.contains('Camry')].drop(['Make', 'State'], axis=1)\n", - "data = data.join(pd.get_dummies(data['Model'], prefix='M'))\n", - "data = data.drop(['Model'], axis=1)\n", - "\n", - "# Visualización dataset\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Separación de variables predictoras (X) y variable de interés (y)\n", - "y = data['Price']\n", - "X = data.drop(['Price'], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Separación de datos en set de entrenamiento y test\n", - "from sklearn.model_selection import train_test_split\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 1 - Árbol de decisión manual\n", - "\n", - "En la celda 1 creen un árbol de decisión **manualmente** que considere los set de entrenamiento y test definidos anteriormente y presenten el RMSE y MAE del modelo en el set de test." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 1\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 2 - Bagging manual\n", - "\n", - "En la celda 2 creen un modelo bagging **manualmente** con 10 árboles de clasificación y comenten sobre el desempeño del modelo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 2\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 3 - Bagging con librería\n", - "\n", - "En la celda 3, con la librería sklearn, entrenen un modelo bagging con 10 árboles de clasificación y el parámetro `max_features` igual a `log(n_features)` y comenten sobre el desempeño del modelo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 3\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 4 - Random forest con librería\n", - "\n", - "En la celda 4, usando la librería sklearn entrenen un modelo de Randon Forest para clasificación y comenten sobre el desempeño del modelo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 4\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 5 - Calibración de parámetros Random forest\n", - "\n", - "En la celda 5, calibren los parámetros max_depth, max_features y n_estimators del modelo de Randon Forest para clasificación, comenten sobre el desempeño del modelo y describan cómo cada parámetro afecta el desempeño del modelo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 5\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 6 - XGBoost con librería\n", - "\n", - "En la celda 6 implementen un modelo XGBoost de clasificación con la librería sklearn y comenten sobre el desempeño del modelo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 6\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 7 - Calibración de parámetros XGBoost\n", - "\n", - "En la celda 7 calibren los parámetros learning rate, gamma y colsample_bytree del modelo XGBoost para clasificación, comenten sobre el desempeño del modelo y describan cómo cada parámetro afecta el desempeño del modelo." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 7\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Punto 8 - Comparación y análisis de resultados\n", - "En la celda 8 comparen los resultados obtenidos de los diferentes modelos (random forest y XGBoost) y comenten las ventajas del mejor modelo y las desventajas del modelo con el menor desempeño." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Celda 8\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Semana 3/model_deploy/api.py b/Semana 3/model_deploy/api.py new file mode 100644 index 0000000..bffb834 --- /dev/null +++ b/Semana 3/model_deploy/api.py @@ -0,0 +1,40 @@ +from flask import Flask +from flask_restx import Api, Resource, fields +from model_deployment import predict, CategoricalEncoder, DataFrameSelector + +app = Flask(__name__) + +api = Api( + app, + version='1.0', + title='Prediction API', + description='Prediction API') + +ns = api.namespace('predict', + description='Regressor') + +parser = api.parser() + +parser.add_argument('Year', type=int, required=True, help='Year', location='args') +parser.add_argument('Mileage', type=int, required=True, help='Mileage', location='args') +parser.add_argument('State', type=str, required=True, help='State', location='args') +parser.add_argument('Make', type=str, required=True, help='Make', location='args') +parser.add_argument('Model', type=str, required=True, help='Model', location='args') + +resource_fields = api.model('Resource', { + 'result': fields.String, +}) + + +@ns.route('/') +class ModelApi(Resource): + + @api.doc(parser=parser) + @api.marshal_with(resource_fields) + def get(self): + args = parser.parse_args() + return {"result": predict(args)}, 200 + + +if __name__ == '__main__': + app.run(debug=True, use_reloader=False, host='0.0.0.0', port=5000) \ No newline at end of file diff --git a/Semana 3/model_deploy/model_deployment.py b/Semana 3/model_deploy/model_deployment.py new file mode 100644 index 0000000..b8751f9 --- /dev/null +++ b/Semana 3/model_deploy/model_deployment.py @@ -0,0 +1,134 @@ +#!/usr/bin/python + +import pandas as pd +import numpy as np +import joblib + + + +# funciones util +from sklearn.base import BaseEstimator, TransformerMixin +from sklearn.utils import check_array +from sklearn.preprocessing import LabelEncoder +from scipy import sparse +from sklearn.base import BaseEstimator, TransformerMixin +from sklearn.pipeline import Pipeline +from sklearn.preprocessing import StandardScaler +from sklearn.pipeline import FeatureUnion + +class CategoricalEncoder(BaseEstimator, TransformerMixin): + def __init__(self, encoding='onehot', categories='auto', dtype=np.float64, + handle_unknown='error'): + self.encoding = encoding + self.categories = categories + self.dtype = dtype + self.handle_unknown = handle_unknown + + def fit(self, X, y=None): + if self.encoding not in ['onehot', 'onehot-dense', 'ordinal']: + template = ("encoding should be either 'onehot', 'onehot-dense' " + "or 'ordinal', got %s") + raise ValueError(template % self.handle_unknown) + + if self.handle_unknown not in ['error', 'ignore']: + template = ("handle_unknown should be either 'error' or " + "'ignore', got %s") + raise ValueError(template % self.handle_unknown) + + if self.encoding == 'ordinal' and self.handle_unknown == 'ignore': + raise ValueError("handle_unknown='ignore' is not supported for" + " encoding='ordinal'") + + X = check_array(X, dtype=object, accept_sparse='csc', copy=True) + n_samples, n_features = X.shape + + self._label_encoders_ = [LabelEncoder() for _ in range(n_features)] + + for i in range(n_features): + le = self._label_encoders_[i] + Xi = X[:, i] + if self.categories == 'auto': + le.fit(Xi) + else: + valid_mask = np.in1d(Xi, self.categories[i]) + if not np.all(valid_mask): + if self.handle_unknown == 'error': + diff = np.unique(Xi[~valid_mask]) + msg = ("Found unknown categories {0} in column {1}" + " during fit".format(diff, i)) + raise ValueError(msg) + le.classes_ = np.array(np.sort(self.categories[i])) + + self.categories_ = [le.classes_ for le in self._label_encoders_] + + return self + + def transform(self, X): + X = check_array(X, accept_sparse='csc', dtype=object, copy=True) + n_samples, n_features = X.shape + X_int = np.zeros_like(X, dtype=int) + X_mask = np.ones_like(X, dtype=bool) + + for i in range(n_features): + valid_mask = np.in1d(X[:, i], self.categories_[i]) + + if not np.all(valid_mask): + if self.handle_unknown == 'error': + diff = np.unique(X[~valid_mask, i]) + msg = ("Found unknown categories {0} in column {1}" + " during transform".format(diff, i)) + raise ValueError(msg) + else: + # Set the problematic rows to an acceptable value and + # continue `The rows are marked `X_mask` and will be + # removed later. + X_mask[:, i] = valid_mask + X[:, i][~valid_mask] = self.categories_[i][0] + X_int[:, i] = self._label_encoders_[i].transform(X[:, i]) + + if self.encoding == 'ordinal': + return X_int.astype(self.dtype, copy=False) + + mask = X_mask.ravel() + n_values = [cats.shape[0] for cats in self.categories_] + n_values = np.array([0] + n_values) + indices = np.cumsum(n_values) + + column_indices = (X_int + indices[:-1]).ravel()[mask] + row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), + n_features)[mask] + data = np.ones(n_samples * n_features)[mask] + + out = sparse.csc_matrix((data, (row_indices, column_indices)), + shape=(n_samples, indices[-1]), + dtype=self.dtype).tocsr() + if self.encoding == 'onehot-dense': + return out.toarray() + else: + return out + +class DataFrameSelector(BaseEstimator, TransformerMixin): + def __init__(self, attribute_names): + self.attribute_names = attribute_names + def fit(self, X, y=None): + return self + def transform(self, X): + return X[self.attribute_names] + + +def predict(args): + model = joblib.load('model_xgb.pkl') + print(model) + year = args['Year'] + mileage = args['Mileage'] + state = args['State'] + make = args['Make'] + car_model = args['Model'] + + input_df = pd.DataFrame(np.array([[year, mileage, state, make, car_model]]), + columns=['Year', 'Mileage', 'State', 'Make', 'Model']) + + # Make prediction + prediction = model.predict(input_df) + print(f'Predicted price: {prediction}') + return prediction diff --git a/model_deployment/Price_Car_Grupo4.pkl b/model_deployment/Price_Car_Grupo4.pkl new file mode 100644 index 0000000..4b6a3aa Binary files /dev/null and b/model_deployment/Price_Car_Grupo4.pkl differ diff --git a/model_deployment/api.py b/model_deployment/api.py index ec65080..b24199a 100644 --- a/model_deployment/api.py +++ b/model_deployment/api.py @@ -1,45 +1,69 @@ #!/usr/bin/python from flask import Flask -from flask_restplus import Api, Resource, fields +from flask_restx import Api, Resource, fields import joblib -from m09_model_deployment import predict_proba +from flask_cors import CORS +import pandas as pd +from sklearn.ensemble import RandomForestClassifier +from sklearn.model_selection import cross_val_score +from sklearn.preprocessing import OrdinalEncoder app = Flask(__name__) +CORS(app) # Enable CORS for all routes and origins api = Api( - app, - version='1.0', - title='Phishing Prediction API', - description='Phishing Prediction API') + app, + version='1.0', + title='Predicción del precio de carro usado', + description='Predicción del precio de carro usado') -ns = api.namespace('predict', - description='Phishing Classifier') +ns = api.namespace('predict', + description='Valor del precio del carro a predecir') parser = api.parser() parser.add_argument( - 'URL', - type=str, - required=True, - help='URL to be analyzed', - location='args') + 'Year', type=int, required=True, help='Year', location='args') +parser.add_argument( + 'Mileage', type=int, required=True, help='Mileage', location='args') +parser.add_argument( + 'State', type=str, required=True, help='State', location='args') +parser.add_argument( + 'Make', type=str, required=True, help='Make', location='args') +parser.add_argument( + 'Model', type=str, required=True, help='Model', location='args') resource_fields = api.model('Resource', { - 'result': fields.String, + 'result': fields.Float, }) +def predict_price(url): + + #clf = joblib.load('Price_Car_Grupo4.pkl') + clf = joblib.load('Price_Car_Grupo4.pkl') + #a = url.split('-') + url_ = pd.DataFrame(url).transpose() + url_.columns=['Year', 'Mileage', 'State', 'Make', 'Model'] + url_[['Year', 'Mileage']]=url_[['Year', 'Mileage']].astype(float) + enc = OrdinalEncoder() + url_[['State','Make','Model']] = enc.fit_transform(url_[['State','Make','Model']]) + p1= clf.predict(url_) + + return p1 + @ns.route('/') -class PhishingApi(Resource): +class CarPrice(Resource): @api.doc(parser=parser) @api.marshal_with(resource_fields) def get(self): args = parser.parse_args() - + features = [args['Year'], args['Mileage'], args['State'], args['Make'], args['Model']] + return { - "result": predict_proba(args['URL']) + "result": predict_price(features) }, 200 - + if __name__ == '__main__': - app.run(debug=True, use_reloader=False, host='0.0.0.0', port=8888) + app.run(debug=True, use_reloader=False, host='0.0.0.0', port=5000) diff --git a/model_deployment/m09_model_deployment.py b/model_deployment/m09_model_deployment.py index de992fd..63510ec 100644 --- a/model_deployment/m09_model_deployment.py +++ b/model_deployment/m09_model_deployment.py @@ -4,28 +4,34 @@ import joblib import sys import os +import pandas as pd +from sklearn.ensemble import RandomForestClassifier +from sklearn.model_selection import cross_val_score +import joblib +import os +os.chdir('..') +from xgboost import XGBRegressor +from sklearn.preprocessing import OrdinalEncoder + + +# Carga de datos de archivo .csv +dataTraining = pd.read_csv('https://raw.githubusercontent.com/davidzarruk/MIAD_ML_NLP_2023/main/datasets/dataTrain_carListings.zip') +dataTesting = pd.read_csv('https://raw.githubusercontent.com/davidzarruk/MIAD_ML_NLP_2023/main/datasets/dataTest_carListings.zip', index_col=0) -def predict_proba(url): +dataTotal= pd.concat([dataTraining,dataTesting], axis=0) +enc = OrdinalEncoder() +dataTotal[['State','Make','Model']] = enc.fit_transform(dataTotal[['State','Make','Model']]) - clf = joblib.load(os.path.dirname(__file__) + '/phishing_clf.pkl') +X=dataTotal.iloc[:400000,:].drop(['Price'], axis=1) +y=dataTraining['Price'] - url_ = pd.DataFrame([url], columns=['url']) - - # Create features - keywords = ['https', 'login', '.php', '.html', '@', 'sign'] - for keyword in keywords: - url_['keyword_' + keyword] = url_.url.str.contains(keyword).astype(int) +XTest=dataTotal.iloc[400000:,:].drop(['Price'], axis=1) - url_['lenght'] = url_.url.str.len() - 2 - domain = url_.url.str.split('/', expand=True).iloc[:, 2] - url_['lenght_domain'] = domain.str.len() - url_['isIP'] = (url_.url.str.replace('.', '') * 1).str.isnumeric().astype(int) - url_['count_com'] = url_.url.str.count('com') +clf = XGBRegressor(max_depth=10, n_estimators=100, gamma=0, learning_rate=0.2,random_state=1) +clf.fit(X, y) - # Make prediction - p1 = clf.predict_proba(url_.drop('url', axis=1))[0,1] - return p1 +joblib.dump(clf, 'Price_Car_Grupo4.pkl', compress=3) if __name__ == "__main__": diff --git a/model_deployment/phishing_clf.pkl b/model_deployment/phishing_clf.pkl index 75ab711..9f27f5c 100644 Binary files a/model_deployment/phishing_clf.pkl and b/model_deployment/phishing_clf.pkl differ diff --git a/modelo2/Price_Car_Grupo4.pkl b/modelo2/Price_Car_Grupo4.pkl new file mode 100644 index 0000000..03eb939 Binary files /dev/null and b/modelo2/Price_Car_Grupo4.pkl differ diff --git a/modelo2/api.py b/modelo2/api.py new file mode 100644 index 0000000..b24199a --- /dev/null +++ b/modelo2/api.py @@ -0,0 +1,69 @@ +#!/usr/bin/python +from flask import Flask +from flask_restx import Api, Resource, fields +import joblib +from flask_cors import CORS +import pandas as pd +from sklearn.ensemble import RandomForestClassifier +from sklearn.model_selection import cross_val_score +from sklearn.preprocessing import OrdinalEncoder + +app = Flask(__name__) +CORS(app) # Enable CORS for all routes and origins + +api = Api( + app, + version='1.0', + title='Predicción del precio de carro usado', + description='Predicción del precio de carro usado') + +ns = api.namespace('predict', + description='Valor del precio del carro a predecir') + +parser = api.parser() + +parser.add_argument( + 'Year', type=int, required=True, help='Year', location='args') +parser.add_argument( + 'Mileage', type=int, required=True, help='Mileage', location='args') +parser.add_argument( + 'State', type=str, required=True, help='State', location='args') +parser.add_argument( + 'Make', type=str, required=True, help='Make', location='args') +parser.add_argument( + 'Model', type=str, required=True, help='Model', location='args') + +resource_fields = api.model('Resource', { + 'result': fields.Float, +}) + +def predict_price(url): + + #clf = joblib.load('Price_Car_Grupo4.pkl') + clf = joblib.load('Price_Car_Grupo4.pkl') + #a = url.split('-') + url_ = pd.DataFrame(url).transpose() + url_.columns=['Year', 'Mileage', 'State', 'Make', 'Model'] + url_[['Year', 'Mileage']]=url_[['Year', 'Mileage']].astype(float) + enc = OrdinalEncoder() + url_[['State','Make','Model']] = enc.fit_transform(url_[['State','Make','Model']]) + p1= clf.predict(url_) + + return p1 + +@ns.route('/') +class CarPrice(Resource): + + @api.doc(parser=parser) + @api.marshal_with(resource_fields) + def get(self): + args = parser.parse_args() + features = [args['Year'], args['Mileage'], args['State'], args['Make'], args['Model']] + + return { + "result": predict_price(features) + }, 200 + + +if __name__ == '__main__': + app.run(debug=True, use_reloader=False, host='0.0.0.0', port=5000) diff --git a/modelo2/m09_model_deployment.py b/modelo2/m09_model_deployment.py new file mode 100644 index 0000000..0bfa0c6 --- /dev/null +++ b/modelo2/m09_model_deployment.py @@ -0,0 +1,52 @@ +#!/usr/bin/python + +import pandas as pd +import joblib +import sys +import os +import pandas as pd +from sklearn.ensemble import RandomForestClassifier +from sklearn.model_selection import cross_val_score +import joblib +import os +os.chdir('..') +from xgboost import XGBRegressor +from sklearn.preprocessing import OrdinalEncoder + + +# Carga de datos de archivo .csv +dataTraining = pd.read_csv('https://raw.githubusercontent.com/davidzarruk/MIAD_ML_NLP_2023/main/datasets/dataTrain_carListings.zip') +dataTesting = pd.read_csv('https://raw.githubusercontent.com/davidzarruk/MIAD_ML_NLP_2023/main/datasets/dataTest_carListings.zip', index_col=0) + +dataTotal= pd.concat([dataTraining,dataTesting], axis=0) +enc = OrdinalEncoder() +dataTotal[['State','Make','Model']] = enc.fit_transform(dataTotal[['State','Make','Model']]) + +X=dataTotal.iloc[:400000,:].drop(['Price'], axis=1) +y=dataTraining['Price'] + +XTest=dataTotal.iloc[400000:,:].drop(['Price'], axis=1) + +clf = XGBRegressor(colsample_bytree=0.6000000000000001,gamma=25.69025797151704, + learning_rate=0.04660442516384383,max_depth=12,min_child_weight=6,n_estimators=597, subsample=0.9911830515002495,n_jobs=1) + +clf.fit(X, y) + + +joblib.dump(clf, 'Price_Car_Grupo4.pkl', compress=3) + + +if __name__ == "__main__": + + if len(sys.argv) == 1: + print('Please add an URL') + + else: + + url = sys.argv[1] + + p1 = predict_proba(url) + + print(url) + print('Probability of Phishing: ', p1) + \ No newline at end of file