-
Notifications
You must be signed in to change notification settings - Fork 1
/
NHubsToMNodesInPermanentRingWithRealVisibility.tcl
executable file
·600 lines (527 loc) · 22.8 KB
/
NHubsToMNodesInPermanentRingWithRealVisibility.tcl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
##
## Network Topology of N hubs that can be connected each one to one and only one of M possible gateway nodes
## connected permanently in ring with a changing topology following a connectivity matrix (N <= M). Then, K workstations can connect to
## the gateways via the most convenient hub.
##
## Simulated topology consists of N hubs connecting K workstations (usually K=1) to N gateways through 150 kbit/s full duplex links. The workstations connect to the N hubs through a high speed LAN.
##
## The M possible nodes are connected intermitently in ring, following a connectivity matrix, in a full-duplex way.
## The connectivity matrix period is equal to M (number of nodes) timeslots of timeslot duration (40 s).
## Each timeslot each pairs of nodes A <-> B can connect each other in each direction.
## In reality, the link layer rate is 120 kbit/s and there are two 16.5 s connections possible in each direction each 40 s.
## From the network layer, this is equivalent to being able to transfer 120e3*16.5 bits on each direction full-duplex each 40 s.
## So, it is like the links have a rate of ~48 kbit/s and are up 40 s on each direction.
##
## There are ping agents at the workstations and at each node to characterize the network latency.
## First each node pings each workstation, then each workstation pings to each node.
## So, if M nodes have to ping K workstations M*K pings are sent in M*K timeslots. Then K workstations send K*M pings to nodes.
## In total 2*M*K pings are sent to characterize network latency in 2*M*K timeslots.
## The connectivity matrix needs to be repeated 2*K times if ideal visibility conditions.
## With real-visibility conditions, the simulation period should be 14 hours and 7 minutes if real visibility of GWs to nodes is not considered, only the visibility among nodes, or 10 days if the visibility between GWs and
## Hubs is accounted and dynamic.
##
## TODO:
## A VoIP could be established between any hub and any node.
## An FTP transfer can be done between any node and any hub.
##
## References: http://intronetworks.cs.luc.edu/current/html/ns2.html
## https://www.isi.edu/nsnam/ns/tutorial/nsscript3.html
set pingPacketSize 64
set pingPacketSize2 1064
set pingFid 100
set pingPrio 0
set mss 1460
set timeslot 40.0
set epsilon 0.001
# set ber 1e-6
set ber 0.0
set per 0.0
set bw1 150kb
set bw2 48kb
set lan_delay 1ms
set lan_capacity 1Gb
# set file_name "satsVisibility.mat"
# set file_name "visibility.mat"
set file_name ""
set mychar #
if { [file exists $file_name] == 1} {
catch {set vf [ open $file_name r]}
set visibility_matrix_data [ read -nonewline $vf ]
close $vf
set visibility_data [split $visibility_matrix_data "\n"]
set n 1
set satIndex 0
set timeslot 1
foreach line $visibility_data {
# This indicates a new element
# name: <cell-element>
# type: matrix
# rows: 21601
# columns: 30
if {[string match $mychar* $line]} {
# Check if it is a new <cell-element>
set substring "cell-element"
if {[string first $substring $line] != -1} {
set satIndex [expr $satIndex+1]
set timeslot 1
}
} else {
# if not a blank line
if { $line ne ""} {
puts "$n $satIndex $timeslot $line"
if { $timeslot > 21601 } {
puts "Error: too many timeslots!"
exit
}
lappend satsVisibility($satIndex) $line
set n [expr $n+1]
set timeslot [expr $timeslot+1]
}
}
}
# set satsrc 1
# set timeslot 1
# set satdst 2
# puts [lindex [lindex $satsVisibility($satsrc) $timeslot] $satdst]
set idealVisibility 0
} else {
set idealVisibility 1
}
# Slurp connectivity matrix
# catch {set cf [open "connectivityMatrix2.txt" r]}
# Ideal visibility:
# One hub: 3 pings sent and 3 pings received with RTT=[196.8, 613.2] ms.
# Two hubs: 3 pings sent and 3 pings received with RTT=[196.8, 196.8] ms.
# catch {set cf [ open "connectivityMatrix4.txt" r]}
# Ideal visibility:
# One hub: 7 pings sent and 7 pings received with RTT=[196.8, 1030.5] ms.
# 24 pings sent and 24 pings received with RTT=[196.8, 1029.5] ms.
# Two hubs: 7 pings sent and 7 pings received with RTT=[196.8, 614.3] ms.
# 24 pings sent and 24 pings received with RTT=[196.8, 613.2] ms.
# Three hubs: 7 pings sent and 7 pings received with RTT=[196.8, 614.5] ms.
# 24 pings sent and 24 pings received with RTT=[196.8, 613.2] ms.
# Four hubs: 7 pings sent and 7 pings received with RTT=[196.8, 197.3] ms.
# 24 pings sent and 24 pings received with RTT=[196.8, 196.8] ms.
# catch {set cf [ open "connectivityMatrix6.txt" r]}
# Ideal visibility:
# One hub: 12 pings sent and 12 pings received with RTT=[196.8, 1029.5] ms.
# 36 pings sent and 36 pings received with RTT=[196.8, 1029.5] ms.
# Two hubs: 12 pings sent and 12 pings received with RTT=[196.8, 1029.5] ms.
# 36 pings sent and 36 pings received with RTT=[196.8, 1029.5] ms.
# Three, Four and Five hubs: 12 pings sent and 12 pings received with RTT=[196.8, 613.2] ms.
# 36 pings sent and 36 pings received with RTT=[196.8, 613.2] ms.
# catch {set cf [ open "connectivityMatrix8.txt" r]}
# Ideal visibility:
# One, Two and Three hubs: 16 pings sent and 16 pings received with RTT=[196.8, 1029.5] ms.
# 48 pings sent and 48 pings received with RTT=[196.8, 1029.5] ms.
# Four, Five, Six and Seven hubs: 16 pings sent and 16 pings received with RTT=[196.8, 613.2] ms
# Four hubs: 48 pings sent and 48 pings received with RTT=[196.8, 614.5] ms.
# Five, Six and Seven hubs: 48 pings sent and 48 pings received with RTT=[196.8, 613.2] ms.
catch {set cf [ open "connectivityMatrix24.txt" r]}
# Ideal visibility:
# One, Two, Three, Four, Five, Six, Seven and Eight hubs: 48 pings sent and 48 pings received with RTT=[196.8, 1029.5] ms.
# 144 pings sent and 144 pings received with RTT=[196.8, 1029.5] ms.
# Sixteen: 48 pings sent and 48 pings received with RTT=[196.8, 613.2] ms
# catch {set cf [ open "connectivityMatrix30.txt" r]}
# Ideal visibility:
# One hub: 61 pings sent and 61 pings received with RTT=[194.8, 1809.0] ms
# catch {set cf [ open "connectivityMatrix36.txt" r]}
# Ideal visibility:
# One hub: 73 pings sent and 73 pings received with RTT=[194.8, 1809.0] ms
# catch {set cf [ open "connectivityMatrix40.txt" r]}
# Ideal visibility:
# One hub: 81 pings sent and 81 pings received with RTT=[194.8, 1809.0] ms
# catch {set cf [ open "connectivityMatrix42.txt" r]}
# Ideal visibility:
# One hub: 85 pings sent and 85 pings received with RTT=[194.8, 1809.0] ms
# catch {set cf [ open "connectivityMatrix48.txt" r]}
# Ideal visibility:
# One hub: 97 pings sent and 97 pings received with RTT=[194.8, 1809.0] ms
# catch {set cf [ open "connectivityMatrix54.txt" r]}
# Ideal visibility:
# One hub: 109 pings sent and 109 pings received with RTT=[194.8, 1811.4] ms
set conn_matrix_data [ read -nonewline $cf ]
close $cf
# Process connectivity matrix data
set data [split $conn_matrix_data "\n"]
set opt(ws) 1
set opt(nodes) 0
foreach line $data {
puts "$opt(nodes) $line"
set opt(nodes) [expr $opt(nodes)+1] ; # number of nodes is equal to number of timeslots of the connectivity matrix
}
set opt(hubs) 1 ;# number of hubs
if { $opt(hubs) > $opt(nodes) } {
puts "Limiting number of hubs $opt(hubs) to number of nodes $opt(nodes)"
set opt(hubs) $opt(nodes)
}
set opt(time_btw_pkts) $timeslot ;# seconds
# The delay in the links depends on the distance between nodes and the speed of light in vaccuum: 299792 km/h
# Worst case distance estimated between a hub and a node: 30000 km => 100 ms
# Worst case distance between hub and node: 28102 km => 94 ms
# Worst case distance measured between nodes 59205 km => 197.5 ms
set latencyHubNode 94ms
set latencyBtwNodes 197.5ms
set startpingtime [ expr $timeslot/2 - 2*$epsilon ]
set startime $epsilon
set ns [new Simulator]
# Enable dynamic routing distance vector protocol
$ns rtproto DV
# Workstations
for {set k 0} {$k < $opt(ws)} {incr k} {
set ws($k) [$ns node]
puts "ws($k)"
}
# Hubs
for {set j 0} {$j < $opt(hubs)} {incr j} {
set hub($j) [$ns node]
puts "hub($j)"
}
# Nodes
for {set i 0} {$i < $opt(nodes)} {incr i} {
set n($i) [$ns node]
puts "node($i)"
}
# So, subtract number of hubs to node number to get node index, plus one extra for the workstation
set f [open NHubsToMNodesInPermanentRing.tr w]
$ns trace-all $f
if { $opt(nodes) < 24 } {
set nf [open NHubsToMNodesInPermanentRing.nam w]
$ns namtrace-all $nf
}
# Any hub can be potentially connected to any node (only one) at any time (scheduled contact plan)
# And any node can be connected to any hub, but only to one.
for {set j 0} {$j < $opt(hubs)} {incr j} {
# Connect the workstations to the hub using LAN
for {set k 0} {$k < $opt(ws)} {incr k} {
$ns duplex-link $ws($k) $hub($j) $lan_capacity $lan_delay DropTail
}
# Connect the hubs to the nodes
for {set i 0} {$i < $opt(nodes)} {incr i} {
$ns duplex-link $hub($j) $n($i) $bw1 $latencyHubNode DropTail
puts "duplex link from hub($j) to node($i)"
# Add an error model to the link from node to hub
set emIndex [expr $i + $j*$opt(nodes)]
set emHubNode($emIndex) [new ErrorModel]
$emHubNode($emIndex) unit byte
# Byte error rate = 1 - (1-BER)^8
$emHubNode($emIndex) set rate_ [expr 1-pow((1-$ber),8)]
# $emHubNode($emIndex) unit pkt
# $emHubNode($emIndex) set rate_ $per
$emHubNode($emIndex) ranvar [new RandomVariable/Uniform]
$emHubNode($emIndex) drop-target [new Agent/Null]
$ns link-lossmodel $emHubNode($emIndex) $n($i) $hub($j)
# Add an error model to the link from hub to node
set emIndex [expr $i + $j*$opt(nodes)]
set emNodeHub($emIndex) [new ErrorModel]
$emNodeHub($emIndex) unit byte
# Byte error rate = 1 - (1-BER)^8
$emNodeHub($emIndex) set rate_ [expr 1-pow((1-$ber),8)]
# $emNodeHub($emIndex) unit pkt
# $emNodeHub($emIndex) set rate_ $per
$emNodeHub($emIndex) ranvar [new RandomVariable/Uniform]
$emNodeHub($emIndex) drop-target [new Agent/Null]
$ns link-lossmodel $emNodeHub($emIndex) $hub($j) $n($i)
}
}
# Each GW can be connected to each other using simplex links.
# The number of links that can be established between n nodes is N=n(n-1)/2
# The links between GWs are half-duplex and are active in each direction each 40 s.
for {set i 0} {$i < $opt(nodes)} {incr i} {
for {set j [expr $i+1]} {$j < $opt(nodes)} {incr j} {
$ns simplex-link $n($i) $n($j) $bw2 $latencyBtwNodes DropTail
puts "simplex link from node($i) to node($j)"
$ns simplex-link $n($j) $n($i) $bw2 $latencyBtwNodes DropTail
puts "simplex link from node($j) to node($i)"
# Add an error model to the link from node i to node j
set emIndex [expr $j + $i*$opt(nodes)]
set emAB($emIndex) [new ErrorModel]
$emAB($emIndex) unit byte
# Byte error rate = 1 - (1-BER)^8
$emAB($emIndex) set rate_ [expr 1-pow((1-$ber),8)]
# $emAB($emIndex) unit pkt
# $emAB($emIndex) set rate_ $per
$emAB($emIndex) ranvar [new RandomVariable/Uniform]
$emAB($emIndex) drop-target [new Agent/Null]
$ns link-lossmodel $emAB($emIndex) $n($i) $n($j)
# Add an error model to the link from node j to node i
set emIndex [expr $j + $i*$opt(nodes)]
set emBA($emIndex) [new ErrorModel]
$emBA($emIndex) unit byte
# Byte error rate = 1 - (1-BER)^8
$emBA($emIndex) set rate_ [expr 1-pow((1-$ber),8)]
# $emBA($emIndex) unit pkt
# $emBA($emIndex) set rate_ $per
$emBA($emIndex) ranvar [new RandomVariable/Uniform]
$emBA($emIndex) drop-target [new Agent/Null]
$ns link-lossmodel $emBA($emIndex) $n($j) $n($i)
# Setup initial connectivity between gateways (all down)
$ns rtmodel-at [expr $startime] down $n($i) $n($j)
$ns rtmodel-at [expr $startime] down $n($j) $n($i)
}
}
# $ns duplex-link-op $n0 $n1 orient down
# $ns duplex-link-op $n0 $n2 orient left
# $ns duplex-link-op $n0 $n1 queuePos 0.5
#$ns trace-queue $n0 $n1 $f
# Setup contact schedule of hub to GWs.
# Let's assume always hub j connected to node j.
# TODO: Determine connectivity schedule according to real visibility of hubs to nodes in function of time.
for {set j 0} {$j < $opt(hubs)} {incr j} {
for {set i 0} {$i < $opt(nodes)} {incr i} {
if { $i != $j } {
$ns rtmodel-at [expr $startime] down $n($i) $hub($j)
} else {
puts "Hub $j connected to node $j"
}
}
}
set currentTime $startime
# Connectivity matrix for nodes
# Configure nodes connections according to connectivity matrix txt file and visibility conditions (ideal or not)
# Assuming permanent connectivity among GWs
# for {set i 0} { $i < [expr 2*$opt(ws)] } {incr i} {
for {set i 0} { $i < [expr 6*$opt(ws)] } {incr i} {
foreach line $data {
# puts "$line"
set connElem [split $line "\]\["]
set j 0
foreach conn $connElem {
set nodes [split $conn " "]
set k 0
foreach nk $nodes {
if { [expr $j % 2] == 1 } {
if { $k != 0 && $k != 3 } {
scan $nk %d nodeNum
incr nodeNum -1
if { $j ==1 && $k == 1 } {
set firstNode $nodeNum
set prevNode $nodeNum
} else {
set satsrc [expr $prevNode + 1]
set satdst [expr $nodeNum + 1]
if { $idealVisibility == 1 || ([lindex [lindex $satsVisibility($satsrc) $i] $satdst] == 1 && [lindex [lindex $satsVisibility($satdst) $i] $satsrc] == 1) } {
$ns rtmodel-at [expr $currentTime] up $n($prevNode) $n($nodeNum)
$ns rtmodel-at [expr $currentTime] up $n($nodeNum) $n($prevNode)
puts "t=$currentTime: $prevNode <-> $nodeNum up"
$ns rtmodel-at [expr $currentTime + $timeslot] down $n($nodeNum) $n($prevNode)
$ns rtmodel-at [expr $currentTime + $timeslot] down $n($prevNode) $n($nodeNum)
} else {
puts "t=$currentTime: $prevNode <-> $nodeNum down"
}
set prevNode $nodeNum
}
}
}
set k [ expr $k + 1]
}
set j [expr $j + 1]
}
if { $opt(nodes) > 2 } {
set satsrc [expr $prevNode + 1]
set satdst [expr $firstNode + 1]
if { $idealVisibility == 1 || ([lindex [lindex $satsVisibility($satsrc) $i] $satdst] == 1 && [lindex [lindex $satsVisibility($satdst) $i] $satsrc] == 1) } {
$ns rtmodel-at [expr $currentTime] up $n($prevNode) $n($firstNode)
$ns rtmodel-at [expr $currentTime] up $n($firstNode) $n($prevNode)
puts "t=$currentTime: $prevNode <-> $firstNode up"
$ns rtmodel-at [expr $currentTime + $timeslot] down $n($firstNode) $n($prevNode)
$ns rtmodel-at [expr $currentTime + $timeslot] down $n($prevNode) $n($firstNode)
} else {
puts "t=$currentTime: $prevNode <-> $firstNode down"
}
}
# puts "$prevNode -> $nodeNum"
set currentTime [expr $currentTime + $timeslot]
}
}
set stoptime $currentTime
set stoppingtime $currentTime
set endtime [ expr $currentTime + 2*$epsilon ]
puts "Simulating $endtime s"
set filename "NHubsToMNodesInPermanentRingWithRealVisibilityMeasuredRTTs.txt"
set fileId [open $filename "w"]
set num_pings_tx 0
set num_pings_rx 0
set maxrtt 0
set minrtt 1e9
set last_arrival(all) 0
# $defaultRNG seed 0
# set arrival_ [new RandomVariable/Exponential]
# $arrival_ set avg_ $opt(time_btw_pkts)
#Define a 'recv' function for the class 'Agent/Ping'
Agent/Ping instproc recv {from rtt} {
global ns num_pings_rx num_pings_tx maxrtt minrtt currsrcnode currdstnode last_arrival bp opt timeslot stoppingtime epsilon fileId
$self instvar node_
set pingrxtime [$ns now]
set currsrcnode [$node_ id]
set currdstnode $from
if { $currsrcnode > $currdstnode } {
# This is a ping received from a node, so performed from workstation to node
set nodeSrcIndex [ expr $currsrcnode - $opt(hubs) - $opt(ws)]
set nodeDstIndex -1
set bpIndexNode [expr $currdstnode + $nodeSrcIndex*2*$opt(ws) ]
set bpIndexWs [expr $currdstnode + $nodeSrcIndex*2*$opt(ws) + 1 ]
puts "t=$pingrxtime: ping agent $bpIndexNode at ns-2 node $currsrcnode (node $nodeSrcIndex) received ping answer from \
ping agent $bpIndexWs at workstation $currdstnode, with round-trip-time $rtt ms."
puts $fileId "[$ns now] $rtt"
set nodeSrcIndex [expr $nodeSrcIndex + 1]
set currsrcnode [expr $nodeSrcIndex + $opt(hubs) + $opt(ws)]
if { $nodeSrcIndex == $opt(nodes) } {
set nodeSrcIndex 0
set currsrcnode [expr $nodeSrcIndex + $opt(hubs) + $opt(ws)]
set currdstnode [expr $currdstnode + 1]
if { $currdstnode == $opt(ws) } {
# All nodes have ping all worstations, so now workstations ping nodes
set currsrcnode 0
set currdstnode [expr $opt(hubs) + $opt(ws)]
}
}
} else {
# This is a ping received from a workstation, so performed from a node to a workstation
set nodeSrcIndex -1
set nodeDstIndex [ expr $currdstnode - $opt(hubs) - $opt(ws)]
set bpIndexNode [expr $currsrcnode + $nodeDstIndex*2*$opt(ws) ]
set bpIndexWs [expr $currsrcnode + $nodeDstIndex*2*$opt(ws) + 1 ]
puts "t=$pingrxtime: ping agent $bpIndexWs at workstation $currsrcnode received ping answer from \
ping agent $bpIndexNode at ns-2 node $currdstnode (node $nodeDstIndex), with round-trip-time $rtt ms."
set nodeDstIndex [expr $nodeDstIndex + 1]
set currdstnode [expr $nodeDstIndex + $opt(hubs) + $opt(ws)]
if { $nodeDstIndex == $opt(nodes) } {
set nodeDstIndex 0
set currdstnode [expr $nodeDstIndex + $opt(hubs) + $opt(ws)]
set currsrcnode [expr $currsrcnode + 1]
if { $currsrcnode == $opt(ws) } {
# All workstations have ping all nodes, so now nodes ping workstations
set currdstnode 0
set currsrcnode [expr $opt(hubs) + $opt(ws)]
}
}
}
set num_pings_rx [expr $num_pings_rx + 1]
if { $rtt > $maxrtt } {
set maxrtt $rtt
}
if { $rtt < $minrtt } {
set minrtt $rtt
}
# Program the next sending of a ping (see, e.g. wireless-net-grid2.tcl)
set last_arrival(all) $pingrxtime
# Compute the next timeslot to send a ping
set numTimeSlots [expr floor($pingrxtime / $timeslot) ]
set numTimeSlots [expr $numTimeSlots + 1]
# set startpingtime [expr $last_arrival(all) + $opt(time_btw_pkts)]
set startpingtime [expr $numTimeSlots * $timeslot + $timeslot/2 - 2*$epsilon]
if { $startpingtime < $stoppingtime } {
if { $currsrcnode > $currdstnode } {
# This is a ping performed from a node to a workstation
set nodeSrcIndex [ expr $currsrcnode - $opt(hubs) - $opt(ws)]
set bpIndexNode [expr $currdstnode + $nodeSrcIndex*2*$opt(ws) ]
set bpIndexWs [expr $currdstnode + $nodeSrcIndex*2*$opt(ws) + 1 ]
set bpindex $bpIndexNode
puts "t=$startpingtime s: ping agent $bpIndexNode at ns-2 node $currsrcnode (node $nodeSrcIndex) will send ping request to \
ping agent $bpIndexWs at workstation $currdstnode."
} else {
# This is a ping performed from a workstation to a node
set nodeDstIndex [ expr $currdstnode - $opt(hubs) - $opt(ws)]
set bpIndexNode [expr $currsrcnode + $nodeDstIndex*2*$opt(ws) ]
set bpIndexWs [expr $currsrcnode + $nodeDstIndex*2*$opt(ws) + 1 ]
set bpindex $bpIndexWs
puts "t=$startpingtime s: ping agent $bpIndexWs at workstation $currsrcnode will send ping request to \
ping agent $bpIndexNode at ns-2 node $currdstnode (node $nodeDstIndex)."
}
$ns at $startpingtime "$bp($bpindex) send"
set num_pings_tx [expr $num_pings_tx + 1]
# puts "t = $startpingtime s: ping agent $bpindex at ns-2 node $currsrcnode will send [$bp($bpindex) set packetSize_] bytes ping request to ns-2 node $currdstnode."
}
}
# Build ping agents. Each node will try to ping a workstation and each workstation will try to ping each node.
for {set i 0} {$i < $opt(nodes)} {incr i} {
for {set j 0} {$j < $opt(ws)} {incr j} {
# Building node i to workstation j ping Agents
set bpIndexNode [expr $j + $i*2*$opt(ws) ]
puts "Setting up ping agent $bpIndexNode at node $i to ping workstation $j."
# node i ping Agent to workstation j
set bp($bpIndexNode) [new Agent/Ping]
$bp($bpIndexNode) set packetSize_ $pingPacketSize
$bp($bpIndexNode) set fid_ $pingFid
$bp($bpIndexNode) set prio_ $pingPrio
$ns attach-agent $n($i) $bp($bpIndexNode)
# First, the node 0 will try to ping workstation 0, then node 1 ... until node M
# Then, the node 0 will try to ping workstation 1, then node 1 ...
# Then, the workstation 0 will try to ping node 0...
if { $i==0 && $j==0 } {
$ns at $startpingtime "$bp($bpIndexNode) send"
set num_pings_tx [expr $num_pings_tx + 1]
puts "t = $startpingtime s: node $i will send [$bp($bpIndexNode) set packetSize_] bytes ping request to workstation $j."
}
# $ns at $stoptime "$bp($bpIndexNode) set packetSize_ $pingPacketSize2"
# $ns at [expr ($startime+$stoptime)/2.0] "$bp($bpIndexNode) send"
# $ns at $stoppingtime "$bp($bpIndexNode) send"
# Workstation j Ping Agent to node i
set bpIndexWs [expr $j + $i*2*$opt(ws) + 1 ]
puts "Setting up ping agent $bpIndexWs at workstation $j to ping node $i."
set bp($bpIndexWs) [new Agent/Ping]
$bp($bpIndexWs) set packetSize_ $pingPacketSize
$bp($bpIndexWs) set fid_ $pingFid
$bp($bpIndexWs) set prio_ $pingPrio
$ns attach-agent $ws($j) $bp($bpIndexWs)
$ns connect $bp($bpIndexNode) $bp($bpIndexWs)
puts "Ping agent $bpIndexNode is connected to ping agent $bpIndexWs"
# $ns at $stoptime "$bp($bpIndexWs) set packetSize_ $pingPacketSize2"
}
}
# Attach agents for FTP transfer from node 0 to hub 0
set tcp0_0_ [$ns create-connection TCP $n(0) TCPSink $ws(0) 0]
$tcp0_0_ set packetSize_ $mss
# Trace ack_ and maxseq_ to get the amount of data transferred
$tcp0_0_ attach $f
$tcp0_0_ tracevar ack_
$tcp0_0_ tracevar maxseq_
set ftp0_0_ [$tcp0_0_ attach-app FTP]
# $ns at 7.0 "$ftp0_0_ produce 100"
# $ftp produce <n> Causes the FTP object to produce n packets instantaneously
## set up a VoIP
set s1 [new Agent/UDP]
$s1 set fid_ 0
$ns attach-agent $n(0) $s1
set null1 [new Agent/UDP]
$ns attach-agent $ws(0) $null1
$ns connect $s1 $null1
set voip_s [new Application/Traffic/Voice]
set voip_r [new Application/Traffic/Voice]
$voip_s attach-agent $s1
$voip_s set interval_ 0.02
$voip_s set burst_time_ 6.0
$voip_s set idle_time_ 6.0
$voip_s set packetSize_ 80
$voip_r attach-agent $null1
# $ns at $startime "$ftp0_0_ start"
# $ns at $stoptime "$ftp0_0_ stop"
# $ns at $startime "$voip_s start"
# $ns at $stoptime "$voip_s stop"
$ns at $endtime "close $f"
$ns at $endtime "close $fileId"
$ns at $endtime "finish"
proc finish {} {
global ns opt voip_r tcp0_0_ startime stoptime num_pings_rx num_pings_tx minrtt maxrtt
# $voip_r update_score
# puts "[$voip_r set delay_] [$voip_r set rscore_] [$voip_r set mos_]"
# set lastAck [$tcp0_0_ set ack_]
# set lastSEQ [$tcp0_0_ set maxseq_]
# set reTxNum [$tcp0_0_ set nrexmitpack_]
# puts "Final ack: $lastAck, final seq num: $lastSEQ, Number of reTx packets: $reTxNum"
# puts "Estimated goodput: [expr $lastAck*8*1.460/($stoptime-$startime)] kbits/s [expr $lastAck*1460] bytes in [expr $stoptime-$startime] s"
# puts "Estimated throughput: [expr $lastSEQ*1.500*8/($stoptime-$startime)] kbits/s [expr $lastSEQ*1500] bytes in [expr $stoptime-$startime] s"
# puts "$num_pings_tx pings sent at interval t=\[$minstartpingtime, $maxstartpingtime\] s."
# puts "$num_pings_rx pings received at interval t=\[$minpingtimerx, $maxpingtimerx\] s with RTT=\[$minrtt, $maxrtt] ms."
puts "$num_pings_tx pings sent and $num_pings_rx pings received with RTT=\[$minrtt, $maxrtt] ms."
puts "Ping loss rate: [expr 1 - (1.0 * $num_pings_rx) / $num_pings_tx ]"
exec ./NHubsToMNodesInPermanentRingWithRealVisibilityMeasuredRTTs.sh
if { $opt(nodes) < 24 } {
puts "run nam NHubsToMNodesInPermanentRing.nam..."
exec nam NHubsToMNodesInPermanentRing.nam &
}
$ns halt
}
$ns run
exit 0