forked from mbandrews/MLAnalyzer
-
Notifications
You must be signed in to change notification settings - Fork 2
/
convert_Tree2Dask_EBv6.py
159 lines (142 loc) · 5.58 KB
/
convert_Tree2Dask_EBv6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import ROOT
from root_numpy import tree2array, root2array
from dask.delayed import delayed
import dask.array as da
import glob
import os
eosDir='/eos/uscms/store/group/lpcml/IMG'
#decays = ['h22gammaSM_1j_1M_noPU', 'h24gamma_1j_1M_1GeV_noPU']
#decays = ['SM2gamma_1j_1M_noPU', 'h24gamma_1j_1M_1GeV_noPU']
#decays = ['SM2gamma_1j_1M_noPU', 'h22gammaSM_1j_1M_noPU']
#pu = 'noPU'
pu = '2016_25ns_Moriond17MC_PoissonOOTPU'
#decays = ['SM2gamma_1j_1M_noPU', 'h22gammaSM_1j_1M_noPU', 'h24gamma_1j_1M_1GeV_noPU']
decays = {
'SM2gamma_1j_1M_1': 0,
'SM2gamma_1j_1M': 0,
#'h24gamma_1j_1M_100MeV': 1,
'h24gamma_1j_1M_1GeV': 1,
#'h24gamma_1j_1M_200MeV': 1,
#'h24gamma_1j_1M_400MeV': 1,
'h22gammaSM_1j_1M': 2,
'SM2gammaj_1j_1M': 3
}
decays = {'%s_%s'%(d, pu):l for d,l in decays.iteritems()} #python 2.x
print(decays)
chunk_size_ = 250
scale = 1.
@delayed
def load_X(tree, start_, stop_, branches_, readouts, scale):
#X = tree2array(tree, start=start_, stop=stop_, branches=branches_)
X = root2array(tree, treename='fevt/RHTree', start=start_, stop=stop_, branches=branches_)
# Convert the object array X to a multidim array:
# 1: for each event x in X, concatenate the object columns (branches) into a flat array of shape (readouts*branches)
# 2: reshape the flat array into a stacked array: (branches, readouts)
# 3: embed each stacked array as a single row entry in a list via list comprehension
# 4: convert this list into an array with shape (events, branches, readouts)
X = np.array([np.concatenate(x).reshape(len(branches_),readouts[0]*readouts[1]) for x in X])
#print "X.shape:",X.shape
X = X.reshape((-1,len(branches_),readouts[0],readouts[1]))
X = np.transpose(X, [0,2,3,1])
# Rescale
X /= scale
return X
@delayed
def load_single(tree, start_, stop_, branches_):
#X = tree2array(tree, start=start_, stop=stop_, branches=branches_)
X = root2array(tree, treename='fevt/RHTree', start=start_, stop=stop_, branches=branches_)
X = np.array([x[0] for x in X])
return X
#for j,decay in enumerate(decays):
for decay,label in decays.iteritems():
tfiles = glob.glob('%s/%s*_IMG/*/*/output_*.root'%(eosDir,decay))
print " >> %d files found."%len(tfiles)
tree = ROOT.TChain("fevt/RHTree")
for f in tfiles:
tree.Add(f)
nevts = tree.GetEntries()
tree = tfiles
print " >> Input file[0]:", tfiles[0]
#tfile_str = '%s/%s_FEVTDEBUG_IMG.root'%(eosDir,decay)
##tfile_str = '%s/%s_FEVTDEBUG_nXXX_IMG.root'%(eosDir,decay)
#tfile = ROOT.TFile(tfile_str)
#tree = tfile.Get('fevt/RHTree')
#nevts = tree.GetEntries()
#print " >> Input file:", tfile_str
print " >> Doing decay, label:", decay, label
print " >> Total events:", nevts
neff = (nevts//1000)*1000
#neff = 250
#neff = 170000
chunk_size = chunk_size_
if neff < chunk_size:
print(' >> Not enough events!\n')
continue
if neff > nevts:
neff = int(nevts)
chunk_size = int(nevts)
#neff = 1000
print " >> Effective events:", neff
# EB
readouts = [170,360]
branches = ["EB_energy"]
X = da.concatenate([\
da.from_delayed(\
load_X(tree,i,i+chunk_size, branches, readouts, scale),\
shape=(chunk_size, readouts[0], readouts[1], len(branches)),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", X.shape
# eventId
branches = ["eventId"]
eventId = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.int32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", eventId.shape
# m0
branches = ["m0"]
m0 = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", m0.shape
# diPhoE
branches = ["diPhoE"]
diPhoE = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", diPhoE.shape
# diPhoPt
branches = ["diPhoPt"]
diPhoPt = da.concatenate([\
da.from_delayed(\
load_single(tree,i,i+chunk_size, branches),\
shape=(chunk_size,),\
dtype=np.float32)\
for i in range(0,neff,chunk_size)])
print " >> Expected shape:", diPhoPt.shape
# Class label
#label = j
#label = 1
print " >> Class label:",label
y = da.from_array(\
np.full(X.shape[0], label, dtype=np.float32),\
chunks=(chunk_size,))
file_out_str = "%s/%s_IMG/%s_IMG_RH%d_n%dk_label%d.hdf5"%(eosDir,decay,decay,int(scale),neff//1000.,label)
if os.path.isfile(file_out_str):
os.remove(file_out_str)
#file_out_str = "test.hdf5"
print " >> Writing to:", file_out_str
#da.to_hdf5(file_out_str, {'/X': X, '/y': y}, chunks=(chunk_size,s,s,2), compression='lzf')
#da.to_hdf5(file_out_str, {'/X': X, '/y': y, 'eventId': eventId, 'm0': m0}, compression='lzf')
da.to_hdf5(file_out_str, {'/X': X, '/y': y, 'eventId': eventId, 'm0': m0, 'diPhoE': diPhoE, 'diPhoPt': diPhoPt}, compression='lzf')
print " >> Done.\n"