-
Notifications
You must be signed in to change notification settings - Fork 25
/
demux_fuzzy.py
executable file
·361 lines (314 loc) · 12.8 KB
/
demux_fuzzy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/home/berald01/.local/bin/python
import Levenshtein
import sys
import argparse
import gzip
import subprocess
import operator
try:
import sblab
except:
pass
## raise Warning('Module sblab not found on this system.')
parser = argparse.ArgumentParser(description="""
DESCRIPTION
De-multiplex a FASTQ file into separate files on the bases of the barcode sequence
found on the read name. The output files are gzipped.
The barcode is extracted from the header line of each sequence by extracting the substring
between rightmost '#' and '/'.
From this substring, the first 6 bases are extracted as the barcode.
barcode_sequence= hline[(hline.rfind('#')+1) : hline.rfind('/')][0:6]
demux_fuzzy.py rescues imperfect matches provided that
1) A unique best match can be found
2) The edit distance between sequence and barcodes is less than a given threshold
(1 by default).
The edit distance is the Levenshtein distance as implemented in the python package
Levenshtein
The sample sheet gives the link between barcode and output (like demux).
It has no header and the first two columns (1st barcode, 2nd file name) must be separated
by space (*not* TAB). Additional columns are ignored.
-------sample sheet example ---------
TAGCTTA demultiplex_file-1.fq
ACTTGAA demultiplex_file-2.fq
-------------------------------------
USAGE:
demux_fuzzy.py -f <fastqfile> -s <sample sheet>
REQUIREMENTS:
Python with package Levenshtein (http://pypi.python.org/pypi/python-Levenshtein/)
and argparse (http://pypi.python.org/pypi/argparse)
TODO
- Allow to output in uncompressed format.
""", formatter_class= argparse.RawTextHelpFormatter)
parser.add_argument('--fastq', '-f',
type= str,
help='''Input FASTQ file to de-multiplex.
''',
required= True)
parser.add_argument('--samplesheet', '-s',
type= str,
help='''Sample sheet with barcodes (1st colulmn) and output
files (2nd column). Additional columns are ignored.
Memo: Columns are space (not tab) separated.
''',
required= True)
parser.add_argument('--distance', '-d',
type= int,
help='''Maximum edit distance between barcodes found in the sample
sheet and sequence read from the fastq file. Default 1. (Memo: ambiguos barcodes
are always discarded)
''',
required= False,
default= 1)
parser.add_argument('--report', '-r',
type= str,
nargs= '?',
help='''Report file where to write some QC.
Use - to send to stdout (default). Leave blank to send to file <sample sheet>.demux_report
''',
required= False,
default= '-')
parser.add_argument('--illumina',
action= 'store_true',
help='''DEPRECATED: Encoding is determined by reading the file.
The input fastq is in Illumina 1.5-1.7 encoding. The output files will be in Sanger format.
NB: No checking is done on whether the encoding is actually Illumina!
''')
parser.add_argument('--pgupload', '-p',
action= 'store_true',
help='''DEPRECATED. Use python module sblab.uplod_demux_fuzzy_report() instead.
Upload report to postgres sblab.main.demux_report
''')
parser.add_argument('--pgupload_only', '-u',
type= str,
required= False,
help='''DEPRECATED. Use python module sblab.uplod_demux_fuzzy_report() instead.
Only upload a report file. Using sblab module.
''')
args = parser.parse_args()
# -----------------------------------------------------------------------------
barcode_dict= { "ACAGTG": "TruSeq-5",
"ACTGAT": "TruSeq-25",
"ACTTGA": "TruSeq-8",
"AGTCAA": "TruSeq-13",
"AGTTCC": "TruSeq-14",
"ATCACG": "TruSeq-1",
"ATGTCA": "TruSeq-15",
"ATTCCT": "TruSeq-27",
"CAGATC": "TruSeq-7",
"CCGTCC": "TruSeq-16",
"CGATGT": "TruSeq-2",
"CGTACG": "TruSeq-22",
"CTTGTA": "TruSeq-12",
"GAGTGG": "TruSeq-23",
"GATCAG": "TruSeq-9",
"GCCAAT": "TruSeq-6",
"GGCTAC": "TruSeq-11",
"GTCCGC": "TruSeq-18",
"GTGAAA": "TruSeq-19",
"GTGGCC": "TruSeq-20",
"GTTTCG": "TruSeq-21",
"TAGCTT": "TruSeq-10",
"TGACCA": "TruSeq-4",
"TTAGGC": "TruSeq-3"}
if args.pgupload_only:
reportname= args.pgupload_only
sblab.uplod_demux_fuzzy_report(reportname)
sys.exit()
if args.report is None:
reportname= args.samplesheet + '.demux_report'
fhreport= open(reportname, 'w')
elif args.report == '-':
fhreport= sys.stdout
else:
reportname= args.report
fhreport= open(reportname, 'w')
#------------------------[ Functions ]-----------------------------------------
def read_fastq_line(fastq_fh):
"""
Given the file handle fastq_fh (e.g. fastq_fh= open('myfastqfile')), reads
a chunk of 4 lines.
"""
fqline= [fastq_fh.readline().strip()]
fqline.append(fastq_fh.readline().strip())
fqline.append(fastq_fh.readline().strip())
fqline.append(fastq_fh.readline().strip())
return(fqline)
def illumina2sanger(fqline):
"""Convert illumina <1.9 encoding to sanger """
qual_sanger= ''.join([chr(ord(x) - 31) for x in fqline[3]])
fqline[3]= qual_sanger
return(fqline)
def read_samplesheet(sample_sheet):
"""
Read the file sample_sheet containing. Format is space or tab separated with barcode
sequence (first column) and output file (second column). Additional columns
ignored.
Returns a dictionary of codes and files:
{'ACTACT': 'file1.fq', 'ACGACG': 'file2.fq', ...}
"""
ssheet= open(sample_sheet).readlines()
ssheet= [x.strip() for x in ssheet if x.strip() != ''] ## Strip leading and trailing blanks and blank lines
ssheet= [x.split(' ') for x in ssheet]
codes= [x[0] for x in ssheet]
if len(codes) != len(set(codes)):
sys.exit('Duplicate barcodes found in sample sheet')
code_dict= {}
print('\nSample sheet: %s' %(sample_sheet))
for line in ssheet:
print('\t'.join(line))
## For each barcode/file store the following
if line[1].endswith('.gz'):
filename= line[1]
else:
filename= line[1] + '.gz'
if len(line[0]) == 7:
index_seq= line[0][0:6]
elif len(line[0]) == 6:
index_seq= line[0]
else:
sys.exit('Unexpected barcode: %s' %(line[0]))
code_dict[index_seq]= [
filename, ## Output file name
gzip.open(filename, 'wb'), ## Output file handle
0 ## Counter for number of reads in this file
]
print('')
return(code_dict)
def spurious_hits(barcode_dict_matches, exclude_codes, totreads= None):
"""
Returns a lst of top spurious barcodes.
barcode_dict_matches: Dictionary of barcodes and their hit count.
Like {'ACTGAC': ['TruSeq-X', 10], }
exclude_codes: List of barcodes expected to be present in the master file
and therefore don't consider them as spurious.
totreads: Total reads to compute percent spurious. If None, percent is not
calculated
OUTPUT: List of list in descending order: [['TruSeq-A', 100], ['TruSeq-B', 90], ... ]
"""
spurhits= {}
for k in barcode_dict_matches:
if k in exclude_codes:
pass
else:
spurhits[k]= barcode_dict_matches[k][::-1] ## Make count to be the first
sorted_x = sorted(spurhits.iteritems(), key=operator.itemgetter(1), reverse= True)
sorted_x= [x[1][::-1] for x in sorted_x] ## MAke code name to be first
if totreads is not None:
for i in range(0, len(sorted_x)):
x= sorted_x[i]
x.append(round(float(x[1]) / float(totreads), 2))
sorted_x[i]= x
return(sorted_x)
# -----------------------------------------------------------------------------
## Determine encoding of fastq file
encoding= sblab.get_fastq_encoding(args.fastq)
barcode_dict_matches= {}
for k in barcode_dict:
barcode_dict_matches[k]= [barcode_dict[k], 0]
barcode_dict_matches['N']= ['Barcodes_with_N', 0]
barcode_dict_matches['no match']= ['No_match', 0]
if args.fastq.endswith('.gz'):
fh= gzip.open(args.fastq)
fastq_undt= 'undetermined.' + args.fastq
else:
fh= open(args.fastq)
fastq_undt= 'undetermined.' + args.fastq + '.gz'
## Open a file to write undetermined reads
fh_undt= gzip.open(fastq_undt, 'wb')
code_dict= read_samplesheet(args.samplesheet)
print('Undetermined reads will go to: %s' %(fastq_undt))
codes= []
for k in code_dict:
codes.append(k)
if k[0:6] not in barcode_dict.keys():
print('WARNING: barcode sequence %s is not in current dictionary' %(k))
n= 0
n_lost= 0
while True:
fqline= read_fastq_line(fh)
if fqline[0] == '':
break
n += 1
if n % 1000000 == 0:
print(n)
if encoding != 'Sanger':
fqline= illumina2sanger(fqline)
hline= fqline[0]
bcode= hline[(hline.rfind('#')+1) : hline.rfind('/')][0:6]## fqline[0][-9:-3]
## Check match between barcode and barcode dict. This is only for reporting/QC
if bcode in barcode_dict_matches.keys():
barcode_dict_matches[bcode][1] += 1
elif 'N' in bcode.upper():
barcode_dict_matches['N'][1] += 1
else:
barcode_dict_matches['no match'][1] += 1
## Do the actual demultiplexing
if bcode in code_dict:
## Test for perfect match
code_dict[bcode][1].write('\n'.join(fqline) + '\n')
code_dict[bcode][2] += 1
elif args.distance == 0 or bcode.count('N') > args.distance:
## If there are more Ns than allowed by args.distance, don't go to Levenshtein distance at all
n_lost += 1
fh_undt.write('\n'.join(fqline) + '\n')
continue
else:
dists= [Levenshtein.distance(bcode, x) for x in codes]
best_dist= min(dists)
if best_dist > args.distance or len([x for x in dists if x == best_dist]) > 1:
n_lost += 1
fh_undt.write('\n'.join(fqline) + '\n')
else:
bcode= codes[dists.index(best_dist)]
code_dict[bcode][1].write('\n'.join(fqline) + '\n')
code_dict[bcode][2] += 1
for f in code_dict:
"Close demultiplexed files"
code_dict[f][1].close()
fh_undt.close()
fh.close()
## Convert list of lists to string formatted like a postgres array
match_report= sorted(barcode_dict_matches.values())
match_report_array= []
for x in match_report:
match_report_array.append("{'" + x[0] + "'," + str(x[1]) + '}')
match_report_array='{' + ','.join(match_report_array) + '}'
spur_report= spurious_hits(barcode_dict_matches, codes, n)
spur_report_array= []
for x in spur_report:
spur_report_array.append("{'" + x[0] + "'," + str(x[1]) + ',' + str(x[2]) + '}')
spur_report_array='{' + ','.join(spur_report_array) + '}'
perc_lost= round(100*(n_lost/float(n)),2)
print('\nTotal reads: %s' %(n))
print('Lost: %s (%s%%)' %(n_lost, perc_lost))
print('\nReads in:')
for k in code_dict:
code_dict[k][1].close()
p= subprocess.Popen('get_file_stats2.py -i %s --md5sum' %(code_dict[k][0]), stdout= subprocess.PIPE, shell= True)
fstats= p.stdout.read()
fstats= eval(fstats)
perc= round(100*(code_dict[k][2]/float(n)),2)
print('%s\t%s\t%s%%' %(code_dict[k][0], code_dict[k][2], perc,))
## Row to print in report
reportline= []
reportline.append(code_dict[k][0]) ## Demultiplexed file name
reportline.append(args.fastq) ## Master file name
reportline.append(k) ## Barcode seq
reportline.append(barcode_dict[k]) ## Barcode name (e.g. TruSeq-1)
reportline.append(code_dict[k][2]) ## N. reads
reportline.append(n) ## Tot reads in master file
reportline.append(perc) ## % in this file
reportline.append(n_lost) ## Reads lost
reportline.append(perc_lost) ## Reads lost
reportline.append(fstats['md5sum'])
reportline.append(fstats['fsize'])
reportline.append(fstats['mtime'])
reportline.append(fstats['path'])
reportline.append(match_report_array)
reportline.append(spur_report_array)
fhreport.write('\t'.join([str(x) for x in reportline]) + '\n')
print('')
fhreport.close()
if args.pgupload and args.report != '-':
sblab.uplod_demux_fuzzy_report(reportname)
sys.exit()