Skip to content

damounayman/Deep-Neural-Networks-with-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

40 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep-Neural-Networks-with-PyTorch

This repository presents my implementation of the different labs of the Deep Neural Networks with PyTorch IBM certificate.

The course teach how to develop deep learning models using Pytorch. The course start with Pytorch's tensors and Automatic differentiation package. Then each section cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning is covered. Finally, several other Deep learning methods is covered.

Learning Outcomes:
Able to:

  • explain and apply their knowledge of Deep Neural Networks and related machine learning methods
  • know how to use Python libraries such as PyTorch for Deep Learning applications
  • build Deep Neural Networks using PyTorch

About

Deep Neural Networks with PyTorch IBM

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published