-
Notifications
You must be signed in to change notification settings - Fork 4
/
eye_functions.ino
429 lines (381 loc) · 18 KB
/
eye_functions.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Code adapted to run with TFT_eSPI compatible processor on ESP32,
// running on two 240x240 TFT displays.
//--------------------------------------------------------------------------
// Uncanny eyes for Adafruit 1.5" OLED (product #1431) or 1.44" TFT LCD
// (#2088). Works on PJRC Teensy 3.x and on Adafruit M0 and M4 boards
// (Feather, Metro, etc.). This code uses features specific to these
// boards and WILL NOT work on normal Arduino or other boards!
//
// SEE FILE "config.h" FOR MOST CONFIGURATION (graphics, pins, display type,
// etc). Probably won't need to edit THIS file unless you're doing some
// extremely custom modifications.
//
// Adafruit invests time and resources providing this open source code,
// please support Adafruit and open-source hardware by purchasing products
// from Adafruit!
//
// Written by Phil Burgess / Paint Your Dragon for Adafruit Industries.
// MIT license. SPI FIFO insight from Paul Stoffregen's ILI9341_t3 library.
// Inspired by David Boccabella's (Marcwolf) hybrid servo/OLED eye concept.
//--------------------------------------------------------------------------
#if !defined(LIGHT_PIN) || (LIGHT_PIN < 0)
// Autonomous iris motion uses a fractal behavior to similate both the major
// reaction of the eye plus the continuous smaller adjustments that occur.
uint16_t oldIris = (IRIS_MIN + IRIS_MAX) / 2, newIris;
#endif
// Initialise eyes ---------------------------------------------------------
void initEyes(void)
{
Serial.println("Initialise eye objects");
// Initialise eye objects based on eyeInfo list in config.h:
for (uint8_t e = 0; e < NUM_EYES; e++) {
Serial.print("Create display #"); Serial.println(e);
eye[e].tft_cs = eyeInfo[e].select;
eye[e].blink.state = NOBLINK;
eye[e].xposition = eyeInfo[e].xposition;
pinMode(eye[e].tft_cs, OUTPUT);
digitalWrite(eye[e].tft_cs, LOW);
// Also set up an individual eye-wink pin if defined:
if (eyeInfo[e].wink >= 0) pinMode(eyeInfo[e].wink, INPUT_PULLUP);
}
#if defined(BLINK_PIN) && (BLINK_PIN >= 0)
pinMode(BLINK_PIN, INPUT_PULLUP); // Ditto for all-eyes blink pin
#endif
}
// UPDATE EYE --------------------------------------------------------------
void updateEye (void)
{
#if defined(LIGHT_PIN) && (LIGHT_PIN >= 0) // Interactive iris
int16_t v = analogRead(LIGHT_PIN); // Raw dial/photocell reading
#ifdef LIGHT_PIN_FLIP
v = 1023 - v; // Reverse reading from sensor
#endif
if (v < LIGHT_MIN) v = LIGHT_MIN; // Clamp light sensor range
else if (v > LIGHT_MAX) v = LIGHT_MAX;
v -= LIGHT_MIN; // 0 to (LIGHT_MAX - LIGHT_MIN)
#ifdef LIGHT_CURVE // Apply gamma curve to sensor input?
v = (int16_t)(pow((double)v / (double)(LIGHT_MAX - LIGHT_MIN),
LIGHT_CURVE) * (double)(LIGHT_MAX - LIGHT_MIN));
#endif
// And scale to iris range (IRIS_MAX is size at LIGHT_MIN)
v = map(v, 0, (LIGHT_MAX - LIGHT_MIN), IRIS_MAX, IRIS_MIN);
#ifdef IRIS_SMOOTH // Filter input (gradual motion)
static int16_t irisValue = (IRIS_MIN + IRIS_MAX) / 2;
irisValue = ((irisValue * 15) + v) / 16;
frame(irisValue);
#else // Unfiltered (immediate motion)
frame(v);
#endif // IRIS_SMOOTH
#else // Autonomous iris scaling -- invoke recursive function
newIris = random(IRIS_MIN, IRIS_MAX);
split(oldIris, newIris, micros(), 10000000L, IRIS_MAX - IRIS_MIN);
oldIris = newIris;
#endif // LIGHT_PIN
}
// EYE-RENDERING FUNCTION --------------------------------------------------
void drawEye( // Renders one eye. Inputs must be pre-clipped & valid.
// Use native 32 bit variables where possible as this is 10% faster!
uint8_t e, // Eye array index; 0 or 1 for left/right
uint32_t iScale, // Scale factor for iris
uint32_t scleraX, // First pixel X offset into sclera image
uint32_t scleraY, // First pixel Y offset into sclera image
uint32_t uT, // Upper eyelid threshold value
uint32_t lT) { // Lower eyelid threshold value
uint32_t screenX, screenY, scleraXsave;
int32_t irisX, irisY;
uint32_t p, a;
uint32_t d;
uint32_t pixels = 0;
// Set up raw pixel dump to entire screen. Although such writes can wrap
// around automatically from end of rect back to beginning, the region is
// reset on each frame here in case of an SPI glitch.
digitalWrite(eye[e].tft_cs, LOW);
tft.startWrite();
tft.setAddrWindow(eye[e].xposition, 0, 240, 240);
// Now just issue raw 16-bit values for every pixel...
scleraXsave = scleraX; // Save initial X value to reset on each line
irisY = scleraY - (SCLERA_HEIGHT - IRIS_HEIGHT) / 2;
// Eyelid image is left<>right swapped for two displays
uint16_t lidX = 0;
uint16_t dlidX = -1;
if (e) dlidX = 1;
for (screenY = 0; screenY < SCREEN_HEIGHT; screenY++, scleraY++, irisY++) {
scleraX = scleraXsave;
irisX = scleraXsave - (SCLERA_WIDTH - IRIS_WIDTH) / 2;
if (e) lidX = 0; else lidX = SCREEN_WIDTH - 1;
for (screenX = 0; screenX < SCREEN_WIDTH; screenX++, scleraX++, irisX++, lidX += dlidX) {
if ((pgm_read_byte(lower + screenY * SCREEN_WIDTH + lidX) <= lT) ||
(pgm_read_byte(upper + screenY * SCREEN_WIDTH + lidX) <= uT)) { // Covered by eyelid
p = 0;
} else if ((irisY < 0) || (irisY >= IRIS_HEIGHT) ||
(irisX < 0) || (irisX >= IRIS_WIDTH)) { // In sclera
p = pgm_read_word(sclera + scleraY * SCLERA_WIDTH + scleraX);
} else { // Maybe iris...
p = pgm_read_word(polar + irisY * IRIS_WIDTH + irisX); // Polar angle/dist
d = (iScale * (p & 0x7F)) / 128; // Distance (Y)
if (d < IRIS_MAP_HEIGHT) { // Within iris area
a = (IRIS_MAP_WIDTH * (p >> 7)) / 512; // Angle (X)
p = pgm_read_word(iris + d * IRIS_MAP_WIDTH + a); // Pixel = iris
} else { // Not in iris
p = pgm_read_word(sclera + scleraY * SCLERA_WIDTH + scleraX); // Pixel = sclera
}
}
*(&pbuffer[dmaBuf][0] + pixels++) = p >> 8 | p << 8;
if (pixels >= BUFFER_SIZE) {
yield();
#ifdef USE_DMA
tft.pushPixelsDMA(&pbuffer[dmaBuf][0], pixels);
dmaBuf = !dmaBuf;
#else
tft.pushPixels(pbuffer, pixels);
#endif
pixels = 0;
}
}
}
if (pixels) {
#ifdef USE_DMA
tft.pushPixelsDMA(&pbuffer[dmaBuf][0], pixels);
#else
tft.pushPixels(pbuffer, pixels);
#endif
}
tft.endWrite();
digitalWrite(eye[e].tft_cs, HIGH);
}
// EYE ANIMATION -----------------------------------------------------------
const uint8_t ease[] = { // Ease in/out curve for eye movements 3*t^2-2*t^3
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, // T
3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 9, 10, 10, // h
11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, // x
24, 25, 26, 27, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, // 2
40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, // A
60, 61, 62, 63, 65, 66, 67, 69, 70, 72, 73, 74, 76, 77, 78, 80, // l
81, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 103, // e
104, 106, 107, 109, 110, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125, 127, // c
128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 143, 145, 146, 148, 149, 151, // J
152, 154, 155, 157, 158, 159, 161, 162, 164, 165, 167, 168, 170, 171, 172, 174, // a
175, 177, 178, 179, 181, 182, 183, 185, 186, 188, 189, 190, 192, 193, 194, 195, // c
197, 198, 199, 201, 202, 203, 204, 205, 207, 208, 209, 210, 211, 213, 214, 215, // o
216, 217, 218, 219, 220, 221, 222, 224, 225, 226, 227, 228, 228, 229, 230, 231, // b
232, 233, 234, 235, 236, 237, 237, 238, 239, 240, 240, 241, 242, 243, 243, 244, // s
245, 245, 246, 246, 247, 248, 248, 249, 249, 250, 250, 251, 251, 251, 252, 252, // o
252, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255
}; // n
#ifdef AUTOBLINK
uint32_t timeOfLastBlink = 0L, timeToNextBlink = 0L;
#endif
// Process motion for a single frame of left or right eye
void frame(uint16_t iScale) // Iris scale (0-1023)
{
static uint32_t frames = 0; // Used in frame rate calculation
static uint8_t eyeIndex = 0; // eye[] array counter
int16_t eyeX, eyeY;
uint32_t t = micros(); // Time at start of function
if (!(++frames & 255)) { // Every 256 frames...
float elapsed = (millis() - startTime) / 1000.0;
if (elapsed) {
Serial.print("FPS=");
Serial.println((uint16_t)(frames / elapsed));
}
}
if (++eyeIndex >= NUM_EYES) eyeIndex = 0; // Cycle through eyes, 1 per call
// X/Y movement
#if defined(JOYSTICK_X_PIN) && (JOYSTICK_X_PIN >= 0) && \
defined(JOYSTICK_Y_PIN) && (JOYSTICK_Y_PIN >= 0)
// Read X/Y from joystick, constrain to circle
int16_t dx, dy;
int32_t d;
eyeX = analogRead(JOYSTICK_X_PIN); // Raw (unclipped) X/Y reading
eyeY = analogRead(JOYSTICK_Y_PIN);
#ifdef JOYSTICK_X_FLIP
eyeX = 1023 - eyeX;
#endif
#ifdef JOYSTICK_Y_FLIP
eyeY = 1023 - eyeY;
#endif
dx = (eyeX * 2) - 1023; // A/D exact center is at 511.5. Scale coords
dy = (eyeY * 2) - 1023; // X2 so range is -1023 to +1023 w/center at 0.
if ((d = (dx * dx + dy * dy)) > (1023 * 1023)) { // Outside circle
d = (int32_t)sqrt((float)d); // Distance from center
eyeX = ((dx * 1023 / d) + 1023) / 2; // Clip to circle edge,
eyeY = ((dy * 1023 / d) + 1023) / 2; // scale back to 0-1023
}
#else // Autonomous X/Y eye motion
// Periodically initiates motion to a new random point, random speed,
// holds there for random period until next motion.
static bool eyeInMotion = false;
static int16_t eyeOldX = 512, eyeOldY = 512, eyeNewX = 512, eyeNewY = 512;
static uint32_t eyeMoveStartTime = 0L;
static int32_t eyeMoveDuration = 0L;
int32_t dt = t - eyeMoveStartTime; // uS elapsed since last eye event
if (eyeInMotion) { // Currently moving?
if (dt >= eyeMoveDuration) { // Time up? Destination reached.
eyeInMotion = false; // Stop moving
eyeMoveDuration = random(3000000); // 0-3 sec stop
eyeMoveStartTime = t; // Save initial time of stop
eyeX = eyeOldX = eyeNewX; // Save position
eyeY = eyeOldY = eyeNewY;
} else { // Move time's not yet fully elapsed -- interpolate position
int16_t e = ease[255 * dt / eyeMoveDuration] + 1; // Ease curve
eyeX = eyeOldX + (((eyeNewX - eyeOldX) * e) / 256); // Interp X
eyeY = eyeOldY + (((eyeNewY - eyeOldY) * e) / 256); // and Y
}
} else { // Eye stopped
eyeX = eyeOldX;
eyeY = eyeOldY;
if (dt > eyeMoveDuration) { // Time up? Begin new move.
int16_t dx, dy;
uint32_t d;
do { // Pick new dest in circle
eyeNewX = random(1024);
eyeNewY = random(1024);
dx = (eyeNewX * 2) - 1023;
dy = (eyeNewY * 2) - 1023;
} while ((d = (dx * dx + dy * dy)) > (1023 * 1023)); // Keep trying
eyeMoveDuration = random(72000, 144000); // ~1/14 - ~1/7 sec
eyeMoveStartTime = t; // Save initial time of move
eyeInMotion = true; // Start move on next frame
}
}
#endif // JOYSTICK_X_PIN etc.
// Blinking
#ifdef AUTOBLINK
// Similar to the autonomous eye movement above -- blink start times
// and durations are random (within ranges).
if ((t - timeOfLastBlink) >= timeToNextBlink) { // Start new blink?
timeOfLastBlink = t;
uint32_t blinkDuration = random(36000, 72000); // ~1/28 - ~1/14 sec
// Set up durations for both eyes (if not already winking)
for (uint8_t e = 0; e < NUM_EYES; e++) {
if (eye[e].blink.state == NOBLINK) {
eye[e].blink.state = ENBLINK;
eye[e].blink.startTime = t;
eye[e].blink.duration = blinkDuration;
}
}
timeToNextBlink = blinkDuration * 3 + random(4000000);
}
#endif
if (eye[eyeIndex].blink.state) { // Eye currently blinking?
// Check if current blink state time has elapsed
if ((t - eye[eyeIndex].blink.startTime) >= eye[eyeIndex].blink.duration) {
// Yes -- increment blink state, unless...
if ((eye[eyeIndex].blink.state == ENBLINK) && ( // Enblinking and...
#if defined(BLINK_PIN) && (BLINK_PIN >= 0)
(digitalRead(BLINK_PIN) == LOW) || // blink or wink held...
#endif
((eyeInfo[eyeIndex].wink >= 0) &&
digitalRead(eyeInfo[eyeIndex].wink) == LOW) )) {
// Don't advance state yet -- eye is held closed instead
} else { // No buttons, or other state...
if (++eye[eyeIndex].blink.state > DEBLINK) { // Deblinking finished?
eye[eyeIndex].blink.state = NOBLINK; // No longer blinking
} else { // Advancing from ENBLINK to DEBLINK mode
eye[eyeIndex].blink.duration *= 2; // DEBLINK is 1/2 ENBLINK speed
eye[eyeIndex].blink.startTime = t;
}
}
}
} else { // Not currently blinking...check buttons!
#if defined(BLINK_PIN) && (BLINK_PIN >= 0)
if (digitalRead(BLINK_PIN) == LOW) {
// Manually-initiated blinks have random durations like auto-blink
uint32_t blinkDuration = random(36000, 72000);
for (uint8_t e = 0; e < NUM_EYES; e++) {
if (eye[e].blink.state == NOBLINK) {
eye[e].blink.state = ENBLINK;
eye[e].blink.startTime = t;
eye[e].blink.duration = blinkDuration;
}
}
} else
#endif
if ((eyeInfo[eyeIndex].wink >= 0) &&
(digitalRead(eyeInfo[eyeIndex].wink) == LOW)) { // Wink!
eye[eyeIndex].blink.state = ENBLINK;
eye[eyeIndex].blink.startTime = t;
eye[eyeIndex].blink.duration = random(45000, 90000);
}
}
// Process motion, blinking and iris scale into renderable values
// Scale eye X/Y positions (0-1023) to pixel units used by drawEye()
eyeX = map(eyeX, 0, 1023, 0, SCLERA_WIDTH - 240);
eyeY = map(eyeY, 0, 1023, 0, SCLERA_HEIGHT - 240);
// Horizontal position is offset so that eyes are very slightly crossed
// to appear fixated (converged) at a conversational distance. Number
// here was extracted from my posterior and not mathematically based.
// I suppose one could get all clever with a range sensor, but for now...
if (NUM_EYES > 1) {
if (eyeIndex == 1) eyeX += 4;
else eyeX -= 4;
}
if (eyeX > (SCLERA_WIDTH - 240)) eyeX = (SCLERA_WIDTH - 240);
// Eyelids are rendered using a brightness threshold image. This same
// map can be used to simplify another problem: making the upper eyelid
// track the pupil (eyes tend to open only as much as needed -- e.g. look
// down and the upper eyelid drops). Just sample a point in the upper
// lid map slightly above the pupil to determine the rendering threshold.
static uint8_t uThreshold = 128;
uint8_t lThreshold, n;
#ifdef TRACKING
int16_t sampleX = SCLERA_WIDTH / 2 - (eyeX / 2), // Reduce X influence
sampleY = SCLERA_HEIGHT / 2 - (eyeY + IRIS_HEIGHT / 4);
// Eyelid is slightly asymmetrical, so two readings are taken, averaged
if (sampleY < 0) n = 0;
else n = (pgm_read_byte(upper + sampleY * SCREEN_WIDTH + sampleX) +
pgm_read_byte(upper + sampleY * SCREEN_WIDTH + (SCREEN_WIDTH - 1 - sampleX))) / 2;
uThreshold = (uThreshold * 3 + n) / 4; // Filter/soften motion
// Lower eyelid doesn't track the same way, but seems to be pulled upward
// by tension from the upper lid.
lThreshold = 254 - uThreshold;
#else // No tracking -- eyelids full open unless blink modifies them
uThreshold = lThreshold = 0;
#endif
// The upper/lower thresholds are then scaled relative to the current
// blink position so that blinks work together with pupil tracking.
if (eye[eyeIndex].blink.state) { // Eye currently blinking?
uint32_t s = (t - eye[eyeIndex].blink.startTime);
if (s >= eye[eyeIndex].blink.duration) s = 255; // At or past blink end
else s = 255 * s / eye[eyeIndex].blink.duration; // Mid-blink
s = (eye[eyeIndex].blink.state == DEBLINK) ? 1 + s : 256 - s;
n = (uThreshold * s + 254 * (257 - s)) / 256;
lThreshold = (lThreshold * s + 254 * (257 - s)) / 256;
} else {
n = uThreshold;
}
// Pass all the derived values to the eye-rendering function:
drawEye(eyeIndex, iScale, eyeX, eyeY, n, lThreshold);
if (eyeIndex == (NUM_EYES - 1)) {
user_loop(); // Call user code after rendering last eye
}
}
// AUTONOMOUS IRIS SCALING (if no photocell or dial) -----------------------
#if !defined(LIGHT_PIN) || (LIGHT_PIN < 0)
// Autonomous iris motion uses a fractal behavior to similate both the major
// reaction of the eye plus the continuous smaller adjustments that occur.
void split( // Subdivides motion path into two sub-paths w/randimization
int16_t startValue, // Iris scale value (IRIS_MIN to IRIS_MAX) at start
int16_t endValue, // Iris scale value at end
uint32_t startTime, // micros() at start
int32_t duration, // Start-to-end time, in microseconds
int16_t range) { // Allowable scale value variance when subdividing
if (range >= 8) { // Limit subdvision count, because recursion
range /= 2; // Split range & time in half for subdivision,
duration /= 2; // then pick random center point within range:
int16_t midValue = (startValue + endValue - range) / 2 + random(range);
uint32_t midTime = startTime + duration;
split(startValue, midValue, startTime, duration, range); // First half
split(midValue , endValue, midTime , duration, range); // Second half
} else { // No more subdivisons, do iris motion...
int32_t dt; // Time (micros) since start of motion
int16_t v; // Interim value
while ((dt = (micros() - startTime)) < duration) {
v = startValue + (((endValue - startValue) * dt) / duration);
if (v < IRIS_MIN) v = IRIS_MIN; // Clip just in case
else if (v > IRIS_MAX) v = IRIS_MAX;
frame(v); // Draw frame w/interim iris scale value
}
}
}
#endif // !LIGHT_PIN