-
Notifications
You must be signed in to change notification settings - Fork 0
/
inner_loops.pyx
114 lines (102 loc) · 4.58 KB
/
inner_loops.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
##############################################################################
# File: inner_loops.pyx
# Desc: This file contains the cython optimized inner loops of various
# functions.
import numpy as np
cimport numpy as np
cimport cython
import util
import pyximport; pyximport.install()
from nw_innerloop import nwil, trackback
BASETYPE = np.uint8 # type used for DNA bases
ctypedef np.uint8_t BASETYPE_t
DOUBLE = np.double
ctypedef np.double_t DOUBLE_t
##############################################################################
# Create custom MAX functions that don't bother with all of the regular Python
# type checking etc.
cdef inline int int_max(int a, int b): return a if a >= b else b
##############################################################################
# TwoBit decoding
@cython.boundscheck(False)
def twobit_decode(np.ndarray[BASETYPE_t, ndim=1] data not None,
np.ndarray[BASETYPE_t, ndim=1] base_lut not None,
seq_start,
slice_start,
slice_stop):
cdef unsigned int length = slice_stop - slice_start
cdef unsigned int byte_quotient = length / 4
cdef unsigned int byte_remainder = length % 4 > 0
cdef unsigned int num = byte_quotient + byte_remainder
cdef unsigned int idx = (slice_start/4) + seq_start
cdef unsigned int res_idx = 0
cdef np.ndarray result = np.zeros(num*4, dtype=BASETYPE)
while num > 0:
next_byte = data[idx]
idx += 1
num -= 1
result[res_idx ] = (next_byte & 0xC0) >> 6
result[res_idx+1] = (next_byte & 0x30) >> 4
result[res_idx+2] = (next_byte & 0x0C) >> 2
result[res_idx+3] = (next_byte & 0x03) >> 0
# result[res_idx ] = base_lut[(next_byte & 0xC0) >> 6]
# result[res_idx+1] = base_lut[(next_byte & 0x30) >> 4]
# result[res_idx+2] = base_lut[(next_byte & 0x0C) >> 2]
# result[res_idx+3] = base_lut[(next_byte & 0x03) >> 0]
res_idx += 4
result = result[:length]
return result
##############################################################################
# Returns the Reverse Complement of a sequence
@cython.boundscheck(False)
def seqRC(np.ndarray[BASETYPE_t, ndim=1] seq not None):
cdef unsigned int length = seq.shape[0]
cdef unsigned int idx = 0
cdef np.ndarray out_seq = np.zeros(length, dtype=BASETYPE)
while idx < length:
out_seq[length - idx - 1] = (seq[idx] + 2) % 4
idx += 1
return out_seq
##############################################################################
# Increments the count of amino acid triples
@cython.boundscheck(False)
def aaTripleCount(np.ndarray[BASETYPE_t, ndim=1] seq not None,
np.ndarray[DOUBLE_t, ndim=3] counts not None):
TTA = util.tripletToAmino
cdef unsigned int num_bases = seq.shape[0] - 6
if TTA[(seq[-3] << 4) + (seq[-2] << 2) + (seq[-1] << 0)] > 0:
num_bases -= 3 # ignore STOP codon
cdef unsigned int idx = 0
cdef unsigned int i1, i2, i3
while idx < num_bases:
i1 = TTA[(seq[idx ] << 4) + (seq[idx+1] << 2) + (seq[idx+2] << 0)]
i2 = TTA[(seq[idx+3] << 4) + (seq[idx+4] << 2) + (seq[idx+5] << 0)]
i3 = TTA[(seq[idx+6] << 4) + (seq[idx+7] << 2) + (seq[idx+8] << 0)]
counts[i1,i2,i3] += 1.0
idx += 3
return
##############################################################################
# Does a lookup of 9 basepairs
@cython.boundscheck(False)
def aaLookup(np.ndarray[BASETYPE_t, ndim=1] seq not None,
np.ndarray[DOUBLE_t, ndim=3] counts not None):
pass
##############################################################################
# Convolves a (short) guess sequence against a (longer) target sequence
def convolveSubsequence(np.ndarray[BASETYPE_t, ndim=1] guess not None,
np.ndarray[BASETYPE_t, ndim=1] target_seq not None):
cdef unsigned int num_tests = target_seq.shape[0] - guess.shape[0] + 1
cdef unsigned int guess_len = guess.shape[0]
cdef unsigned int target_len = target_seq.shape[0]
cdef np.ndarray v_matrix = util.initValueMatrix(guess, target_seq, -1)
cdef int score_max = -100000
cdef int score
cdef unsigned int i
cdef unsigned int slack = 4
for i in range(num_tests):
#nwil(v_matrix, guess, target_seq[i:guess_len+i+slack], util.nw_basepairs_cost, -1)
#score = v_matrix[guess_len, target_len]
score = util.align(guess, target_seq[i:guess_len+i+slack], -1,
util.nw_basepairs_cost, v_matrix, False)[0]
score_max = int_max(score, score_max)
return score_max