-
Notifications
You must be signed in to change notification settings - Fork 93
/
effnetv2.py
232 lines (200 loc) · 6.51 KB
/
effnetv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
"""
Creates a EfficientNetV2 Model as defined in:
Mingxing Tan, Quoc V. Le. (2021).
EfficientNetV2: Smaller Models and Faster Training
arXiv preprint arXiv:2104.00298.
import from https://github.com/d-li14/mobilenetv2.pytorch
"""
import torch
import torch.nn as nn
import math
__all__ = ['effnetv2_s', 'effnetv2_m', 'effnetv2_l', 'effnetv2_xl']
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
# SiLU (Swish) activation function
if hasattr(nn, 'SiLU'):
SiLU = nn.SiLU
else:
# For compatibility with old PyTorch versions
class SiLU(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class SELayer(nn.Module):
def __init__(self, inp, oup, reduction=4):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(oup, _make_divisible(inp // reduction, 8)),
SiLU(),
nn.Linear(_make_divisible(inp // reduction, 8), oup),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
def conv_3x3_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
SiLU()
)
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
SiLU()
)
class MBConv(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, use_se):
super(MBConv, self).__init__()
assert stride in [1, 2]
hidden_dim = round(inp * expand_ratio)
self.identity = stride == 1 and inp == oup
if use_se:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
SiLU(),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
SiLU(),
SELayer(inp, hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# fused
nn.Conv2d(inp, hidden_dim, 3, stride, 1, bias=False),
nn.BatchNorm2d(hidden_dim),
SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.identity:
return x + self.conv(x)
else:
return self.conv(x)
class EffNetV2(nn.Module):
def __init__(self, cfgs, num_classes=1000, width_mult=1.):
super(EffNetV2, self).__init__()
self.cfgs = cfgs
# building first layer
input_channel = _make_divisible(24 * width_mult, 8)
layers = [conv_3x3_bn(3, input_channel, 2)]
# building inverted residual blocks
block = MBConv
for t, c, n, s, use_se in self.cfgs:
output_channel = _make_divisible(c * width_mult, 8)
for i in range(n):
layers.append(block(input_channel, output_channel, s if i == 0 else 1, t, use_se))
input_channel = output_channel
self.features = nn.Sequential(*layers)
# building last several layers
output_channel = _make_divisible(1792 * width_mult, 8) if width_mult > 1.0 else 1792
self.conv = conv_1x1_bn(input_channel, output_channel)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Linear(output_channel, num_classes)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.conv(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.001)
m.bias.data.zero_()
def effnetv2_s(**kwargs):
"""
Constructs a EfficientNetV2-S model
"""
cfgs = [
# t, c, n, s, SE
[1, 24, 2, 1, 0],
[4, 48, 4, 2, 0],
[4, 64, 4, 2, 0],
[4, 128, 6, 2, 1],
[6, 160, 9, 1, 1],
[6, 256, 15, 2, 1],
]
return EffNetV2(cfgs, **kwargs)
def effnetv2_m(**kwargs):
"""
Constructs a EfficientNetV2-M model
"""
cfgs = [
# t, c, n, s, SE
[1, 24, 3, 1, 0],
[4, 48, 5, 2, 0],
[4, 80, 5, 2, 0],
[4, 160, 7, 2, 1],
[6, 176, 14, 1, 1],
[6, 304, 18, 2, 1],
[6, 512, 5, 1, 1],
]
return EffNetV2(cfgs, **kwargs)
def effnetv2_l(**kwargs):
"""
Constructs a EfficientNetV2-L model
"""
cfgs = [
# t, c, n, s, SE
[1, 32, 4, 1, 0],
[4, 64, 7, 2, 0],
[4, 96, 7, 2, 0],
[4, 192, 10, 2, 1],
[6, 224, 19, 1, 1],
[6, 384, 25, 2, 1],
[6, 640, 7, 1, 1],
]
return EffNetV2(cfgs, **kwargs)
def effnetv2_xl(**kwargs):
"""
Constructs a EfficientNetV2-XL model
"""
cfgs = [
# t, c, n, s, SE
[1, 32, 4, 1, 0],
[4, 64, 8, 2, 0],
[4, 96, 8, 2, 0],
[4, 192, 16, 2, 1],
[6, 256, 24, 1, 1],
[6, 512, 32, 2, 1],
[6, 640, 8, 1, 1],
]
return EffNetV2(cfgs, **kwargs)