forked from huggingface/torchMoji
-
Notifications
You must be signed in to change notification settings - Fork 5
/
lstm.py
357 lines (292 loc) · 12.1 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# -*- coding: utf-8 -*-
""" Implement a pyTorch LSTM with hard sigmoid reccurent activation functions.
Adapted from the non-cuda variant of pyTorch LSTM at
https://github.com/pytorch/pytorch/blob/master/torch/nn/_functions/rnn.py
"""
from __future__ import print_function, division
import math
import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
from torch.nn.utils.rnn import PackedSequence
import torch.nn.functional as F
class LSTMHardSigmoid(Module):
def __init__(self, input_size, hidden_size,
num_layers=1, bias=True, batch_first=False,
dropout=0, bidirectional=False):
super(LSTMHardSigmoid, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = dropout
self.dropout_state = {}
self.bidirectional = bidirectional
num_directions = 2 if bidirectional else 1
gate_size = 4 * hidden_size
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
layer_input_size = input_size if layer == 0 else hidden_size * num_directions
w_ih = Parameter(torch.Tensor(gate_size, layer_input_size))
w_hh = Parameter(torch.Tensor(gate_size, hidden_size))
b_ih = Parameter(torch.Tensor(gate_size))
b_hh = Parameter(torch.Tensor(gate_size))
layer_params = (w_ih, w_hh, b_ih, b_hh)
suffix = '_reverse' if direction == 1 else ''
param_names = ['weight_ih_l{}{}', 'weight_hh_l{}{}']
if bias:
param_names += ['bias_ih_l{}{}', 'bias_hh_l{}{}']
param_names = [x.format(layer, suffix) for x in param_names]
for name, param in zip(param_names, layer_params):
setattr(self, name, param)
self._all_weights.append(param_names)
self.flatten_parameters()
self.reset_parameters()
def flatten_parameters(self):
"""Resets parameter data pointer so that they can use faster code paths.
Right now, this is a no-op wince we don't use CUDA acceleration.
"""
self._data_ptrs = []
def _apply(self, fn):
ret = super(LSTMHardSigmoid, self)._apply(fn)
self.flatten_parameters()
return ret
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
weight.data.uniform_(-stdv, stdv)
def forward(self, input, hx=None):
is_packed = isinstance(input, PackedSequence)
if is_packed:
batch_sizes = input.batch_sizes
input = input.data
max_batch_size = batch_sizes[0]
else:
batch_sizes = None
max_batch_size = input.size(0) if self.batch_first else input.size(1)
if hx is None:
num_directions = 2 if self.bidirectional else 1
hx = torch.autograd.Variable(input.data.new(self.num_layers *
num_directions,
max_batch_size,
self.hidden_size).zero_(), requires_grad=False)
hx = (hx, hx)
has_flat_weights = list(p.data.data_ptr() for p in self.parameters()) == self._data_ptrs
if has_flat_weights:
first_data = next(self.parameters()).data
assert first_data.storage().size() == self._param_buf_size
flat_weight = first_data.new().set_(first_data.storage(), 0, torch.Size([self._param_buf_size]))
else:
flat_weight = None
func = AutogradRNN(
self.input_size,
self.hidden_size,
num_layers=self.num_layers,
batch_first=self.batch_first,
dropout=self.dropout,
train=self.training,
bidirectional=self.bidirectional,
batch_sizes=batch_sizes,
dropout_state=self.dropout_state,
flat_weight=flat_weight
)
output, hidden = func(input, self.all_weights, hx)
if is_packed:
output = PackedSequence(output, batch_sizes)
return output, hidden
def __repr__(self):
s = '{name}({input_size}, {hidden_size}'
if self.num_layers != 1:
s += ', num_layers={num_layers}'
if self.bias is not True:
s += ', bias={bias}'
if self.batch_first is not False:
s += ', batch_first={batch_first}'
if self.dropout != 0:
s += ', dropout={dropout}'
if self.bidirectional is not False:
s += ', bidirectional={bidirectional}'
s += ')'
return s.format(name=self.__class__.__name__, **self.__dict__)
def __setstate__(self, d):
super(LSTMHardSigmoid, self).__setstate__(d)
self.__dict__.setdefault('_data_ptrs', [])
if 'all_weights' in d:
self._all_weights = d['all_weights']
if isinstance(self._all_weights[0][0], str):
return
num_layers = self.num_layers
num_directions = 2 if self.bidirectional else 1
self._all_weights = []
for layer in range(num_layers):
for direction in range(num_directions):
suffix = '_reverse' if direction == 1 else ''
weights = ['weight_ih_l{}{}', 'weight_hh_l{}{}', 'bias_ih_l{}{}', 'bias_hh_l{}{}']
weights = [x.format(layer, suffix) for x in weights]
if self.bias:
self._all_weights += [weights]
else:
self._all_weights += [weights[:2]]
@property
def all_weights(self):
return [[getattr(self, weight) for weight in weights] for weights in self._all_weights]
def AutogradRNN(input_size, hidden_size, num_layers=1, batch_first=False,
dropout=0, train=True, bidirectional=False, batch_sizes=None,
dropout_state=None, flat_weight=None):
cell = LSTMCell
if batch_sizes is None:
rec_factory = Recurrent
else:
rec_factory = variable_recurrent_factory(batch_sizes)
if bidirectional:
layer = (rec_factory(cell), rec_factory(cell, reverse=True))
else:
layer = (rec_factory(cell),)
func = StackedRNN(layer,
num_layers,
True,
dropout=dropout,
train=train)
def forward(input, weight, hidden):
if batch_first and batch_sizes is None:
input = input.transpose(0, 1)
nexth, output = func(input, hidden, weight)
if batch_first and batch_sizes is None:
output = output.transpose(0, 1)
return output, nexth
return forward
def Recurrent(inner, reverse=False):
def forward(input, hidden, weight):
output = []
steps = range(input.size(0) - 1, -1, -1) if reverse else range(input.size(0))
for i in steps:
hidden = inner(input[i], hidden, *weight)
# hack to handle LSTM
output.append(hidden[0] if isinstance(hidden, tuple) else hidden)
if reverse:
output.reverse()
output = torch.cat(output, 0).view(input.size(0), *output[0].size())
return hidden, output
return forward
def variable_recurrent_factory(batch_sizes):
def fac(inner, reverse=False):
if reverse:
return VariableRecurrentReverse(batch_sizes, inner)
else:
return VariableRecurrent(batch_sizes, inner)
return fac
def VariableRecurrent(batch_sizes, inner):
def forward(input, hidden, weight):
output = []
input_offset = 0
last_batch_size = batch_sizes[0]
hiddens = []
flat_hidden = not isinstance(hidden, tuple)
if flat_hidden:
hidden = (hidden,)
for batch_size in batch_sizes:
step_input = input[input_offset:input_offset + batch_size]
input_offset += batch_size
dec = last_batch_size - batch_size
if dec > 0:
hiddens.append(tuple(h[-dec:] for h in hidden))
hidden = tuple(h[:-dec] for h in hidden)
last_batch_size = batch_size
if flat_hidden:
hidden = (inner(step_input, hidden[0], *weight),)
else:
hidden = inner(step_input, hidden, *weight)
output.append(hidden[0])
hiddens.append(hidden)
hiddens.reverse()
hidden = tuple(torch.cat(h, 0) for h in zip(*hiddens))
assert hidden[0].size(0) == batch_sizes[0]
if flat_hidden:
hidden = hidden[0]
output = torch.cat(output, 0)
return hidden, output
return forward
def VariableRecurrentReverse(batch_sizes, inner):
def forward(input, hidden, weight):
output = []
input_offset = input.size(0)
last_batch_size = batch_sizes[-1]
initial_hidden = hidden
flat_hidden = not isinstance(hidden, tuple)
if flat_hidden:
hidden = (hidden,)
initial_hidden = (initial_hidden,)
hidden = tuple(h[:batch_sizes[-1]] for h in hidden)
for batch_size in reversed(batch_sizes):
inc = batch_size - last_batch_size
if inc > 0:
hidden = tuple(torch.cat((h, ih[last_batch_size:batch_size]), 0)
for h, ih in zip(hidden, initial_hidden))
last_batch_size = batch_size
step_input = input[input_offset - batch_size:input_offset]
input_offset -= batch_size
if flat_hidden:
hidden = (inner(step_input, hidden[0], *weight),)
else:
hidden = inner(step_input, hidden, *weight)
output.append(hidden[0])
output.reverse()
output = torch.cat(output, 0)
if flat_hidden:
hidden = hidden[0]
return hidden, output
return forward
def StackedRNN(inners, num_layers, lstm=False, dropout=0, train=True):
num_directions = len(inners)
total_layers = num_layers * num_directions
def forward(input, hidden, weight):
assert(len(weight) == total_layers)
next_hidden = []
if lstm:
hidden = list(zip(*hidden))
for i in range(num_layers):
all_output = []
for j, inner in enumerate(inners):
l = i * num_directions + j
hy, output = inner(input, hidden[l], weight[l])
next_hidden.append(hy)
all_output.append(output)
input = torch.cat(all_output, input.dim() - 1)
if dropout != 0 and i < num_layers - 1:
input = F.dropout(input, p=dropout, training=train, inplace=False)
if lstm:
next_h, next_c = zip(*next_hidden)
next_hidden = (
torch.cat(next_h, 0).view(total_layers, *next_h[0].size()),
torch.cat(next_c, 0).view(total_layers, *next_c[0].size())
)
else:
next_hidden = torch.cat(next_hidden, 0).view(
total_layers, *next_hidden[0].size())
return next_hidden, input
return forward
def LSTMCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None):
"""
A modified LSTM cell with hard sigmoid activation on the input, forget and output gates.
"""
hx, cx = hidden
gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh)
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
ingate = hard_sigmoid(ingate)
forgetgate = hard_sigmoid(forgetgate)
cellgate = F.tanh(cellgate)
outgate = hard_sigmoid(outgate)
cy = (forgetgate * cx) + (ingate * cellgate)
hy = outgate * F.tanh(cy)
return hy, cy
def hard_sigmoid(x):
"""
Computes element-wise hard sigmoid of x.
See e.g. https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py#L279
"""
x = (0.2 * x) + 0.5
x = F.threshold(-x, -1, -1)
x = F.threshold(-x, 0, 0)
return x